Properties

Label 675.2.l.f.151.4
Level $675$
Weight $2$
Character 675.151
Analytic conductor $5.390$
Analytic rank $0$
Dimension $66$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [675,2,Mod(76,675)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(675, base_ring=CyclotomicField(18))
 
chi = DirichletCharacter(H, H._module([14, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("675.76");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 675 = 3^{3} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 675.l (of order \(9\), degree \(6\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.38990213644\)
Analytic rank: \(0\)
Dimension: \(66\)
Relative dimension: \(11\) over \(\Q(\zeta_{9})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{9}]$

Embedding invariants

Embedding label 151.4
Character \(\chi\) \(=\) 675.151
Dual form 675.2.l.f.76.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.01600 - 0.852522i) q^{2} +(0.196018 - 1.72092i) q^{3} +(-0.0418420 - 0.237298i) q^{4} +(-1.66628 + 1.58134i) q^{6} +(-0.769922 + 4.36644i) q^{7} +(-1.48608 + 2.57396i) q^{8} +(-2.92315 - 0.674663i) q^{9} +O(q^{10})\) \(q+(-1.01600 - 0.852522i) q^{2} +(0.196018 - 1.72092i) q^{3} +(-0.0418420 - 0.237298i) q^{4} +(-1.66628 + 1.58134i) q^{6} +(-0.769922 + 4.36644i) q^{7} +(-1.48608 + 2.57396i) q^{8} +(-2.92315 - 0.674663i) q^{9} +(3.91123 - 1.42357i) q^{11} +(-0.416573 + 0.0254923i) q^{12} +(-1.15946 + 0.972900i) q^{13} +(4.50473 - 3.77991i) q^{14} +(3.25136 - 1.18340i) q^{16} +(0.568932 + 0.985419i) q^{17} +(2.39475 + 3.17751i) q^{18} +(-3.37499 + 5.84565i) q^{19} +(7.36340 + 2.18088i) q^{21} +(-5.18742 - 1.88807i) q^{22} +(1.38642 + 7.86279i) q^{23} +(4.13830 + 3.06197i) q^{24} +2.00742 q^{26} +(-1.73403 + 4.89828i) q^{27} +1.06836 q^{28} +(1.89402 + 1.58927i) q^{29} +(0.369663 + 2.09646i) q^{31} +(1.27359 + 0.463549i) q^{32} +(-1.68319 - 7.00997i) q^{33} +(0.262059 - 1.48621i) q^{34} +(-0.0377853 + 0.721887i) q^{36} +(-4.99967 - 8.65969i) q^{37} +(8.41252 - 3.06191i) q^{38} +(1.44701 + 2.18604i) q^{39} +(-0.384359 + 0.322515i) q^{41} +(-5.62194 - 8.49322i) q^{42} +(-0.102738 + 0.0373936i) q^{43} +(-0.501464 - 0.868561i) q^{44} +(5.29460 - 9.17051i) q^{46} +(1.31484 - 7.45681i) q^{47} +(-1.39921 - 5.82730i) q^{48} +(-11.8952 - 4.32950i) q^{49} +(1.80735 - 0.785929i) q^{51} +(0.279381 + 0.234429i) q^{52} +3.96330 q^{53} +(5.93766 - 3.49833i) q^{54} +(-10.0949 - 8.47063i) q^{56} +(9.39836 + 6.95395i) q^{57} +(-0.569427 - 3.22938i) q^{58} +(7.67614 + 2.79389i) q^{59} +(-2.14296 + 12.1533i) q^{61} +(1.41170 - 2.44514i) q^{62} +(5.19648 - 12.2444i) q^{63} +(-4.35880 - 7.54966i) q^{64} +(-4.26604 + 8.55705i) q^{66} +(-2.25173 + 1.88943i) q^{67} +(0.210033 - 0.176238i) q^{68} +(13.8030 - 0.844680i) q^{69} +(-3.78880 - 6.56240i) q^{71} +(6.08060 - 6.52149i) q^{72} +(-5.12757 + 8.88121i) q^{73} +(-2.30293 + 13.0605i) q^{74} +(1.52838 + 0.556283i) q^{76} +(3.20460 + 18.1742i) q^{77} +(0.393490 - 3.45462i) q^{78} +(3.74388 + 3.14149i) q^{79} +(8.08966 + 3.94429i) q^{81} +0.665459 q^{82} +(-2.78888 - 2.34014i) q^{83} +(0.209418 - 1.83857i) q^{84} +(0.136260 + 0.0495947i) q^{86} +(3.10627 - 2.94793i) q^{87} +(-2.14817 + 12.1829i) q^{88} +(5.74755 - 9.95505i) q^{89} +(-3.35542 - 5.81176i) q^{91} +(1.80781 - 0.657989i) q^{92} +(3.68031 - 0.225218i) q^{93} +(-7.69297 + 6.45516i) q^{94} +(1.04738 - 2.10089i) q^{96} +(-7.36555 + 2.68084i) q^{97} +(8.39449 + 14.5397i) q^{98} +(-12.3936 + 1.52256i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 66 q - 6 q^{2} - 6 q^{6} - 6 q^{7} - 12 q^{8} - 6 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 66 q - 6 q^{2} - 6 q^{6} - 6 q^{7} - 12 q^{8} - 6 q^{9} + 15 q^{11} - 18 q^{12} + 15 q^{14} + 18 q^{16} - 30 q^{17} + 12 q^{18} + 12 q^{19} + 12 q^{21} + 45 q^{22} - 36 q^{23} - 39 q^{24} + 6 q^{26} - 51 q^{27} + 36 q^{28} - 15 q^{29} + 3 q^{31} - 27 q^{32} + 3 q^{33} + 30 q^{36} - 6 q^{37} + 12 q^{38} - 15 q^{39} + 39 q^{41} - 48 q^{42} - 12 q^{43} + 51 q^{44} + 9 q^{46} - 30 q^{47} + 132 q^{48} - 6 q^{49} - 9 q^{52} + 24 q^{53} + 75 q^{54} + 144 q^{56} - 33 q^{57} - 27 q^{58} + 45 q^{59} - 54 q^{61} - 66 q^{62} + 120 q^{63} - 24 q^{64} + 48 q^{66} - 9 q^{67} + 69 q^{68} + 51 q^{69} - 15 q^{71} - 9 q^{72} + 15 q^{73} + 96 q^{74} - 48 q^{76} + 36 q^{77} + 18 q^{78} + 48 q^{79} - 54 q^{81} + 36 q^{82} - 30 q^{83} + 57 q^{84} - 111 q^{86} + 33 q^{87} - 36 q^{88} - 12 q^{89} + 9 q^{91} + 219 q^{92} - 63 q^{93} + 36 q^{94} - 249 q^{96} - 57 q^{97} - 75 q^{98} - 48 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/675\mathbb{Z}\right)^\times\).

\(n\) \(326\) \(352\)
\(\chi(n)\) \(e\left(\frac{2}{9}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.01600 0.852522i −0.718418 0.602824i 0.208529 0.978016i \(-0.433132\pi\)
−0.926947 + 0.375192i \(0.877577\pi\)
\(3\) 0.196018 1.72092i 0.113171 0.993576i
\(4\) −0.0418420 0.237298i −0.0209210 0.118649i
\(5\) 0 0
\(6\) −1.66628 + 1.58134i −0.680255 + 0.645580i
\(7\) −0.769922 + 4.36644i −0.291003 + 1.65036i 0.392015 + 0.919959i \(0.371778\pi\)
−0.683018 + 0.730402i \(0.739333\pi\)
\(8\) −1.48608 + 2.57396i −0.525408 + 0.910034i
\(9\) −2.92315 0.674663i −0.974385 0.224888i
\(10\) 0 0
\(11\) 3.91123 1.42357i 1.17928 0.429223i 0.323332 0.946286i \(-0.395197\pi\)
0.855947 + 0.517063i \(0.172975\pi\)
\(12\) −0.416573 + 0.0254923i −0.120254 + 0.00735900i
\(13\) −1.15946 + 0.972900i −0.321576 + 0.269834i −0.789257 0.614063i \(-0.789534\pi\)
0.467681 + 0.883897i \(0.345090\pi\)
\(14\) 4.50473 3.77991i 1.20394 1.01022i
\(15\) 0 0
\(16\) 3.25136 1.18340i 0.812839 0.295849i
\(17\) 0.568932 + 0.985419i 0.137986 + 0.238999i 0.926734 0.375717i \(-0.122604\pi\)
−0.788748 + 0.614717i \(0.789270\pi\)
\(18\) 2.39475 + 3.17751i 0.564448 + 0.748946i
\(19\) −3.37499 + 5.84565i −0.774275 + 1.34108i 0.160926 + 0.986967i \(0.448552\pi\)
−0.935201 + 0.354118i \(0.884781\pi\)
\(20\) 0 0
\(21\) 7.36340 + 2.18088i 1.60683 + 0.475906i
\(22\) −5.18742 1.88807i −1.10596 0.402537i
\(23\) 1.38642 + 7.86279i 0.289089 + 1.63950i 0.690303 + 0.723520i \(0.257477\pi\)
−0.401215 + 0.915984i \(0.631412\pi\)
\(24\) 4.13830 + 3.06197i 0.844726 + 0.625022i
\(25\) 0 0
\(26\) 2.00742 0.393688
\(27\) −1.73403 + 4.89828i −0.333715 + 0.942674i
\(28\) 1.06836 0.201902
\(29\) 1.89402 + 1.58927i 0.351710 + 0.295120i 0.801476 0.598026i \(-0.204048\pi\)
−0.449766 + 0.893146i \(0.648493\pi\)
\(30\) 0 0
\(31\) 0.369663 + 2.09646i 0.0663933 + 0.376535i 0.999841 + 0.0178222i \(0.00567328\pi\)
−0.933448 + 0.358713i \(0.883216\pi\)
\(32\) 1.27359 + 0.463549i 0.225141 + 0.0819447i
\(33\) −1.68319 7.00997i −0.293005 1.22028i
\(34\) 0.262059 1.48621i 0.0449427 0.254883i
\(35\) 0 0
\(36\) −0.0377853 + 0.721887i −0.00629756 + 0.120315i
\(37\) −4.99967 8.65969i −0.821941 1.42364i −0.904235 0.427036i \(-0.859558\pi\)
0.0822930 0.996608i \(-0.473776\pi\)
\(38\) 8.41252 3.06191i 1.36469 0.496707i
\(39\) 1.44701 + 2.18604i 0.231708 + 0.350047i
\(40\) 0 0
\(41\) −0.384359 + 0.322515i −0.0600268 + 0.0503685i −0.672307 0.740272i \(-0.734697\pi\)
0.612281 + 0.790640i \(0.290252\pi\)
\(42\) −5.62194 8.49322i −0.867484 1.31053i
\(43\) −0.102738 + 0.0373936i −0.0156674 + 0.00570247i −0.349842 0.936809i \(-0.613765\pi\)
0.334175 + 0.942511i \(0.391542\pi\)
\(44\) −0.501464 0.868561i −0.0755985 0.130940i
\(45\) 0 0
\(46\) 5.29460 9.17051i 0.780646 1.35212i
\(47\) 1.31484 7.45681i 0.191789 1.08769i −0.725129 0.688613i \(-0.758220\pi\)
0.916918 0.399075i \(-0.130669\pi\)
\(48\) −1.39921 5.82730i −0.201959 0.841099i
\(49\) −11.8952 4.32950i −1.69932 0.618500i
\(50\) 0 0
\(51\) 1.80735 0.785929i 0.253080 0.110052i
\(52\) 0.279381 + 0.234429i 0.0387432 + 0.0325094i
\(53\) 3.96330 0.544401 0.272201 0.962241i \(-0.412249\pi\)
0.272201 + 0.962241i \(0.412249\pi\)
\(54\) 5.93766 3.49833i 0.808013 0.476063i
\(55\) 0 0
\(56\) −10.0949 8.47063i −1.34899 1.13194i
\(57\) 9.39836 + 6.95395i 1.24484 + 0.921073i
\(58\) −0.569427 3.22938i −0.0747695 0.424039i
\(59\) 7.67614 + 2.79389i 0.999348 + 0.363733i 0.789333 0.613965i \(-0.210426\pi\)
0.210015 + 0.977698i \(0.432649\pi\)
\(60\) 0 0
\(61\) −2.14296 + 12.1533i −0.274377 + 1.55607i 0.466555 + 0.884492i \(0.345495\pi\)
−0.740932 + 0.671580i \(0.765616\pi\)
\(62\) 1.41170 2.44514i 0.179286 0.310533i
\(63\) 5.19648 12.2444i 0.654695 1.54264i
\(64\) −4.35880 7.54966i −0.544850 0.943708i
\(65\) 0 0
\(66\) −4.26604 + 8.55705i −0.525113 + 1.05330i
\(67\) −2.25173 + 1.88943i −0.275093 + 0.230830i −0.769887 0.638180i \(-0.779688\pi\)
0.494795 + 0.869010i \(0.335243\pi\)
\(68\) 0.210033 0.176238i 0.0254702 0.0213720i
\(69\) 13.8030 0.844680i 1.66169 0.101688i
\(70\) 0 0
\(71\) −3.78880 6.56240i −0.449648 0.778814i 0.548715 0.836010i \(-0.315117\pi\)
−0.998363 + 0.0571960i \(0.981784\pi\)
\(72\) 6.08060 6.52149i 0.716605 0.768565i
\(73\) −5.12757 + 8.88121i −0.600136 + 1.03947i 0.392663 + 0.919682i \(0.371554\pi\)
−0.992800 + 0.119785i \(0.961780\pi\)
\(74\) −2.30293 + 13.0605i −0.267710 + 1.51826i
\(75\) 0 0
\(76\) 1.52838 + 0.556283i 0.175317 + 0.0638101i
\(77\) 3.20460 + 18.1742i 0.365198 + 2.07114i
\(78\) 0.393490 3.45462i 0.0445540 0.391159i
\(79\) 3.74388 + 3.14149i 0.421219 + 0.353445i 0.828627 0.559802i \(-0.189123\pi\)
−0.407408 + 0.913246i \(0.633567\pi\)
\(80\) 0 0
\(81\) 8.08966 + 3.94429i 0.898851 + 0.438254i
\(82\) 0.665459 0.0734876
\(83\) −2.78888 2.34014i −0.306119 0.256864i 0.476767 0.879030i \(-0.341809\pi\)
−0.782886 + 0.622166i \(0.786253\pi\)
\(84\) 0.209418 1.83857i 0.0228494 0.200604i
\(85\) 0 0
\(86\) 0.136260 + 0.0495947i 0.0146933 + 0.00534794i
\(87\) 3.10627 2.94793i 0.333027 0.316052i
\(88\) −2.14817 + 12.1829i −0.228996 + 1.29870i
\(89\) 5.74755 9.95505i 0.609239 1.05523i −0.382127 0.924110i \(-0.624808\pi\)
0.991366 0.131123i \(-0.0418583\pi\)
\(90\) 0 0
\(91\) −3.35542 5.81176i −0.351744 0.609238i
\(92\) 1.80781 0.657989i 0.188477 0.0686001i
\(93\) 3.68031 0.225218i 0.381630 0.0233540i
\(94\) −7.69297 + 6.45516i −0.793469 + 0.665799i
\(95\) 0 0
\(96\) 1.04738 2.10089i 0.106898 0.214421i
\(97\) −7.36555 + 2.68084i −0.747858 + 0.272198i −0.687704 0.725991i \(-0.741381\pi\)
−0.0601538 + 0.998189i \(0.519159\pi\)
\(98\) 8.39449 + 14.5397i 0.847971 + 1.46873i
\(99\) −12.3936 + 1.52256i −1.24560 + 0.153023i
\(100\) 0 0
\(101\) −1.84949 + 10.4890i −0.184031 + 1.04369i 0.743163 + 0.669110i \(0.233325\pi\)
−0.927194 + 0.374581i \(0.877786\pi\)
\(102\) −2.50628 0.742306i −0.248159 0.0734993i
\(103\) 7.83309 + 2.85101i 0.771817 + 0.280918i 0.697756 0.716335i \(-0.254182\pi\)
0.0740609 + 0.997254i \(0.476404\pi\)
\(104\) −0.781165 4.43021i −0.0765996 0.434418i
\(105\) 0 0
\(106\) −4.02670 3.37880i −0.391107 0.328178i
\(107\) −12.1812 −1.17760 −0.588800 0.808279i \(-0.700399\pi\)
−0.588800 + 0.808279i \(0.700399\pi\)
\(108\) 1.23491 + 0.206528i 0.118829 + 0.0198732i
\(109\) −0.268688 −0.0257356 −0.0128678 0.999917i \(-0.504096\pi\)
−0.0128678 + 0.999917i \(0.504096\pi\)
\(110\) 0 0
\(111\) −15.8827 + 6.90660i −1.50752 + 0.655546i
\(112\) 2.66395 + 15.1080i 0.251719 + 1.42757i
\(113\) −1.94653 0.708479i −0.183114 0.0666481i 0.248836 0.968546i \(-0.419952\pi\)
−0.431950 + 0.901898i \(0.642174\pi\)
\(114\) −3.62030 15.0775i −0.339073 1.41214i
\(115\) 0 0
\(116\) 0.297881 0.515944i 0.0276575 0.0479042i
\(117\) 4.04565 2.06170i 0.374021 0.190604i
\(118\) −5.41708 9.38266i −0.498683 0.863743i
\(119\) −4.74081 + 1.72551i −0.434589 + 0.158178i
\(120\) 0 0
\(121\) 4.84466 4.06516i 0.440424 0.369560i
\(122\) 12.5382 10.5208i 1.13515 0.952508i
\(123\) 0.479683 + 0.724671i 0.0432516 + 0.0653414i
\(124\) 0.482018 0.175440i 0.0432865 0.0157550i
\(125\) 0 0
\(126\) −15.7182 + 8.01010i −1.40029 + 0.713597i
\(127\) 7.59522 13.1553i 0.673967 1.16735i −0.302802 0.953053i \(-0.597922\pi\)
0.976770 0.214292i \(-0.0687444\pi\)
\(128\) −1.53703 + 8.71693i −0.135855 + 0.770475i
\(129\) 0.0442131 + 0.184134i 0.00389274 + 0.0162121i
\(130\) 0 0
\(131\) 0.588630 + 3.33829i 0.0514289 + 0.291668i 0.999665 0.0258999i \(-0.00824510\pi\)
−0.948236 + 0.317568i \(0.897134\pi\)
\(132\) −1.59302 + 0.692728i −0.138655 + 0.0602942i
\(133\) −22.9262 19.2374i −1.98796 1.66809i
\(134\) 3.89853 0.336782
\(135\) 0 0
\(136\) −3.38191 −0.289997
\(137\) 14.1918 + 11.9084i 1.21249 + 1.01740i 0.999183 + 0.0404136i \(0.0128676\pi\)
0.213306 + 0.976985i \(0.431577\pi\)
\(138\) −14.7439 10.9092i −1.25509 0.928651i
\(139\) 2.88601 + 16.3674i 0.244788 + 1.38826i 0.820985 + 0.570950i \(0.193425\pi\)
−0.576197 + 0.817311i \(0.695464\pi\)
\(140\) 0 0
\(141\) −12.5749 3.72440i −1.05900 0.313651i
\(142\) −1.74518 + 9.89741i −0.146452 + 0.830572i
\(143\) −3.14991 + 5.45581i −0.263409 + 0.456237i
\(144\) −10.3026 + 1.26568i −0.858551 + 0.105474i
\(145\) 0 0
\(146\) 12.7810 4.65191i 1.05776 0.384995i
\(147\) −9.78241 + 19.6221i −0.806840 + 1.61840i
\(148\) −1.84573 + 1.54875i −0.151718 + 0.127307i
\(149\) −6.52625 + 5.47617i −0.534651 + 0.448626i −0.869704 0.493574i \(-0.835690\pi\)
0.335053 + 0.942199i \(0.391246\pi\)
\(150\) 0 0
\(151\) 11.3452 4.12932i 0.923259 0.336039i 0.163725 0.986506i \(-0.447649\pi\)
0.759534 + 0.650467i \(0.225427\pi\)
\(152\) −10.0310 17.3742i −0.813621 1.40923i
\(153\) −0.998250 3.26437i −0.0807038 0.263909i
\(154\) 12.2380 21.1969i 0.986169 1.70810i
\(155\) 0 0
\(156\) 0.458197 0.434841i 0.0366851 0.0348152i
\(157\) 12.2495 + 4.45846i 0.977618 + 0.355824i 0.780914 0.624639i \(-0.214754\pi\)
0.196704 + 0.980463i \(0.436976\pi\)
\(158\) −1.12558 6.38347i −0.0895462 0.507842i
\(159\) 0.776877 6.82053i 0.0616103 0.540904i
\(160\) 0 0
\(161\) −35.3999 −2.78990
\(162\) −4.85647 10.9040i −0.381561 0.856698i
\(163\) −15.2191 −1.19205 −0.596025 0.802966i \(-0.703254\pi\)
−0.596025 + 0.802966i \(0.703254\pi\)
\(164\) 0.0926146 + 0.0777128i 0.00723198 + 0.00606835i
\(165\) 0 0
\(166\) 0.838462 + 4.75515i 0.0650773 + 0.369072i
\(167\) 14.9634 + 5.44622i 1.15790 + 0.421441i 0.848347 0.529441i \(-0.177598\pi\)
0.309553 + 0.950882i \(0.399821\pi\)
\(168\) −16.5561 + 15.7122i −1.27733 + 1.21222i
\(169\) −1.85962 + 10.5464i −0.143048 + 0.811264i
\(170\) 0 0
\(171\) 13.8095 14.8108i 1.05604 1.13261i
\(172\) 0.0131722 + 0.0228149i 0.00100437 + 0.00173962i
\(173\) 12.0020 4.36838i 0.912497 0.332122i 0.157248 0.987559i \(-0.449738\pi\)
0.755249 + 0.655437i \(0.227516\pi\)
\(174\) −5.66914 + 0.346925i −0.429776 + 0.0263003i
\(175\) 0 0
\(176\) 11.0322 9.25707i 0.831580 0.697778i
\(177\) 6.31272 12.6624i 0.474493 0.951764i
\(178\) −14.3264 + 5.21438i −1.07381 + 0.390834i
\(179\) −1.85652 3.21558i −0.138763 0.240344i 0.788266 0.615335i \(-0.210979\pi\)
−0.927029 + 0.374991i \(0.877646\pi\)
\(180\) 0 0
\(181\) −1.53697 + 2.66211i −0.114242 + 0.197873i −0.917477 0.397790i \(-0.869777\pi\)
0.803234 + 0.595663i \(0.203111\pi\)
\(182\) −1.54556 + 8.76530i −0.114564 + 0.649727i
\(183\) 20.4949 + 6.07013i 1.51502 + 0.448717i
\(184\) −22.2989 8.11612i −1.64389 0.598328i
\(185\) 0 0
\(186\) −3.93118 2.90872i −0.288248 0.213278i
\(187\) 3.62804 + 3.04428i 0.265308 + 0.222620i
\(188\) −1.82450 −0.133065
\(189\) −20.0530 11.3428i −1.45864 0.825071i
\(190\) 0 0
\(191\) −3.18718 2.67436i −0.230616 0.193510i 0.520156 0.854071i \(-0.325874\pi\)
−0.750772 + 0.660561i \(0.770318\pi\)
\(192\) −13.8468 + 6.02129i −0.999306 + 0.434549i
\(193\) 0.685014 + 3.88491i 0.0493084 + 0.279642i 0.999486 0.0320682i \(-0.0102094\pi\)
−0.950177 + 0.311710i \(0.899098\pi\)
\(194\) 9.76884 + 3.55557i 0.701362 + 0.255275i
\(195\) 0 0
\(196\) −0.529662 + 3.00386i −0.0378330 + 0.214562i
\(197\) −4.35710 + 7.54672i −0.310430 + 0.537681i −0.978456 0.206457i \(-0.933807\pi\)
0.668025 + 0.744139i \(0.267140\pi\)
\(198\) 13.8898 + 9.01886i 0.987106 + 0.640943i
\(199\) 6.70417 + 11.6120i 0.475246 + 0.823151i 0.999598 0.0283510i \(-0.00902560\pi\)
−0.524352 + 0.851502i \(0.675692\pi\)
\(200\) 0 0
\(201\) 2.81018 + 4.24542i 0.198215 + 0.299449i
\(202\) 10.8211 9.08002i 0.761373 0.638868i
\(203\) −8.39770 + 7.04651i −0.589403 + 0.494568i
\(204\) −0.262122 0.395996i −0.0183522 0.0277252i
\(205\) 0 0
\(206\) −5.52784 9.57450i −0.385143 0.667087i
\(207\) 1.25200 23.9195i 0.0870204 1.66252i
\(208\) −2.61848 + 4.53535i −0.181559 + 0.314470i
\(209\) −4.87865 + 27.6682i −0.337463 + 1.91385i
\(210\) 0 0
\(211\) 3.45959 + 1.25919i 0.238168 + 0.0866861i 0.458347 0.888773i \(-0.348442\pi\)
−0.220179 + 0.975460i \(0.570664\pi\)
\(212\) −0.165832 0.940482i −0.0113894 0.0645926i
\(213\) −12.0361 + 5.23390i −0.824697 + 0.358621i
\(214\) 12.3760 + 10.3847i 0.846009 + 0.709886i
\(215\) 0 0
\(216\) −10.0311 11.7426i −0.682529 0.798980i
\(217\) −9.43869 −0.640740
\(218\) 0.272986 + 0.229062i 0.0184889 + 0.0155140i
\(219\) 14.2788 + 10.5650i 0.964871 + 0.713918i
\(220\) 0 0
\(221\) −1.61837 0.589038i −0.108863 0.0396230i
\(222\) 22.0248 + 6.52326i 1.47821 + 0.437812i
\(223\) 1.82849 10.3699i 0.122445 0.694417i −0.860348 0.509707i \(-0.829754\pi\)
0.982793 0.184711i \(-0.0591349\pi\)
\(224\) −3.00463 + 5.20417i −0.200755 + 0.347718i
\(225\) 0 0
\(226\) 1.37367 + 2.37927i 0.0913754 + 0.158267i
\(227\) −24.9055 + 9.06486i −1.65304 + 0.601656i −0.989246 0.146263i \(-0.953276\pi\)
−0.663790 + 0.747919i \(0.731053\pi\)
\(228\) 1.25691 2.52118i 0.0832409 0.166969i
\(229\) −8.45322 + 7.09309i −0.558605 + 0.468725i −0.877842 0.478950i \(-0.841018\pi\)
0.319238 + 0.947675i \(0.396573\pi\)
\(230\) 0 0
\(231\) 31.9046 1.95241i 2.09917 0.128459i
\(232\) −6.90538 + 2.51335i −0.453361 + 0.165010i
\(233\) −6.70173 11.6077i −0.439045 0.760448i 0.558571 0.829457i \(-0.311350\pi\)
−0.997616 + 0.0690083i \(0.978016\pi\)
\(234\) −5.86801 1.35433i −0.383604 0.0885356i
\(235\) 0 0
\(236\) 0.341798 1.93843i 0.0222492 0.126181i
\(237\) 6.14012 5.82714i 0.398844 0.378513i
\(238\) 6.28768 + 2.28853i 0.407570 + 0.148343i
\(239\) −1.52780 8.66459i −0.0988253 0.560466i −0.993508 0.113763i \(-0.963709\pi\)
0.894683 0.446702i \(-0.147402\pi\)
\(240\) 0 0
\(241\) −11.2282 9.42161i −0.723274 0.606899i 0.205015 0.978759i \(-0.434276\pi\)
−0.928289 + 0.371860i \(0.878720\pi\)
\(242\) −8.38779 −0.539188
\(243\) 8.37353 13.1485i 0.537162 0.843479i
\(244\) 2.97362 0.190366
\(245\) 0 0
\(246\) 0.130442 1.14520i 0.00831666 0.0730155i
\(247\) −1.77408 10.0613i −0.112882 0.640186i
\(248\) −5.94556 2.16401i −0.377544 0.137415i
\(249\) −4.57388 + 4.34073i −0.289858 + 0.275083i
\(250\) 0 0
\(251\) −1.91159 + 3.31097i −0.120658 + 0.208986i −0.920027 0.391854i \(-0.871834\pi\)
0.799369 + 0.600840i \(0.205167\pi\)
\(252\) −3.12299 0.720784i −0.196730 0.0454052i
\(253\) 16.6158 + 28.7795i 1.04463 + 1.80935i
\(254\) −18.9319 + 6.89065i −1.18789 + 0.432358i
\(255\) 0 0
\(256\) −4.36315 + 3.66112i −0.272697 + 0.228820i
\(257\) 6.25436 5.24803i 0.390136 0.327363i −0.426530 0.904473i \(-0.640264\pi\)
0.816666 + 0.577110i \(0.195820\pi\)
\(258\) 0.112058 0.224772i 0.00697644 0.0139937i
\(259\) 41.6614 15.1635i 2.58871 0.942215i
\(260\) 0 0
\(261\) −4.46428 5.92350i −0.276332 0.366656i
\(262\) 2.24792 3.89351i 0.138877 0.240542i
\(263\) 4.83914 27.4441i 0.298394 1.69228i −0.354683 0.934987i \(-0.615411\pi\)
0.653077 0.757291i \(-0.273478\pi\)
\(264\) 20.5448 + 6.08491i 1.26444 + 0.374500i
\(265\) 0 0
\(266\) 6.89266 + 39.0902i 0.422616 + 2.39678i
\(267\) −16.0052 11.8425i −0.979505 0.724746i
\(268\) 0.542574 + 0.455273i 0.0331430 + 0.0278103i
\(269\) −13.1520 −0.801893 −0.400947 0.916101i \(-0.631319\pi\)
−0.400947 + 0.916101i \(0.631319\pi\)
\(270\) 0 0
\(271\) 8.19664 0.497911 0.248955 0.968515i \(-0.419913\pi\)
0.248955 + 0.968515i \(0.419913\pi\)
\(272\) 3.01594 + 2.53068i 0.182868 + 0.153445i
\(273\) −10.6593 + 4.63522i −0.645132 + 0.280536i
\(274\) −4.26670 24.1977i −0.257761 1.46183i
\(275\) 0 0
\(276\) −0.777987 3.24008i −0.0468293 0.195030i
\(277\) 5.06046 28.6993i 0.304054 1.72437i −0.323873 0.946101i \(-0.604985\pi\)
0.627926 0.778273i \(-0.283904\pi\)
\(278\) 11.0214 19.0896i 0.661017 1.14492i
\(279\) 0.333823 6.37767i 0.0199855 0.381821i
\(280\) 0 0
\(281\) −22.1793 + 8.07261i −1.32311 + 0.481572i −0.904453 0.426574i \(-0.859720\pi\)
−0.418655 + 0.908145i \(0.637498\pi\)
\(282\) 9.60089 + 14.5043i 0.571724 + 0.863720i
\(283\) 15.0763 12.6506i 0.896195 0.751997i −0.0732477 0.997314i \(-0.523336\pi\)
0.969443 + 0.245317i \(0.0788919\pi\)
\(284\) −1.39871 + 1.17366i −0.0829983 + 0.0696438i
\(285\) 0 0
\(286\) 7.85149 2.85771i 0.464268 0.168980i
\(287\) −1.11232 1.92659i −0.0656581 0.113723i
\(288\) −3.41016 2.21427i −0.200946 0.130477i
\(289\) 7.85263 13.6012i 0.461920 0.800068i
\(290\) 0 0
\(291\) 3.16974 + 13.2010i 0.185814 + 0.773858i
\(292\) 2.32204 + 0.845153i 0.135887 + 0.0494588i
\(293\) 1.07189 + 6.07899i 0.0626205 + 0.355138i 0.999977 + 0.00676709i \(0.00215405\pi\)
−0.937357 + 0.348371i \(0.886735\pi\)
\(294\) 26.6671 11.5962i 1.55526 0.676306i
\(295\) 0 0
\(296\) 29.7196 1.72742
\(297\) 0.190848 + 21.6268i 0.0110742 + 1.25491i
\(298\) 11.2992 0.654545
\(299\) −9.25720 7.76772i −0.535358 0.449219i
\(300\) 0 0
\(301\) −0.0841768 0.477390i −0.00485187 0.0275163i
\(302\) −15.0470 5.47666i −0.865858 0.315147i
\(303\) 17.6882 + 5.23885i 1.01616 + 0.300964i
\(304\) −4.05556 + 23.0002i −0.232603 + 1.31915i
\(305\) 0 0
\(306\) −1.76873 + 4.16762i −0.101111 + 0.238247i
\(307\) −5.97167 10.3432i −0.340821 0.590320i 0.643764 0.765224i \(-0.277372\pi\)
−0.984585 + 0.174904i \(0.944038\pi\)
\(308\) 4.17861 1.52089i 0.238098 0.0866607i
\(309\) 6.44179 12.9213i 0.366461 0.735067i
\(310\) 0 0
\(311\) 19.1774 16.0917i 1.08745 0.912478i 0.0909314 0.995857i \(-0.471016\pi\)
0.996518 + 0.0833788i \(0.0265711\pi\)
\(312\) −7.77717 + 0.475927i −0.440296 + 0.0269440i
\(313\) 14.4140 5.24628i 0.814729 0.296537i 0.0991534 0.995072i \(-0.468387\pi\)
0.715576 + 0.698535i \(0.246164\pi\)
\(314\) −8.64453 14.9728i −0.487839 0.844962i
\(315\) 0 0
\(316\) 0.588816 1.01986i 0.0331235 0.0573716i
\(317\) 0.0427784 0.242608i 0.00240267 0.0136262i −0.983583 0.180457i \(-0.942242\pi\)
0.985986 + 0.166831i \(0.0533534\pi\)
\(318\) −6.60396 + 6.26733i −0.370332 + 0.351455i
\(319\) 9.67037 + 3.51973i 0.541437 + 0.197067i
\(320\) 0 0
\(321\) −2.38773 + 20.9629i −0.133270 + 1.17003i
\(322\) 35.9661 + 30.1791i 2.00431 + 1.68182i
\(323\) −7.68055 −0.427358
\(324\) 0.597483 2.08470i 0.0331935 0.115816i
\(325\) 0 0
\(326\) 15.4625 + 12.9746i 0.856390 + 0.718597i
\(327\) −0.0526675 + 0.462391i −0.00291252 + 0.0255703i
\(328\) −0.258955 1.46861i −0.0142984 0.0810904i
\(329\) 31.5474 + 11.4823i 1.73927 + 0.633041i
\(330\) 0 0
\(331\) −4.33167 + 24.5661i −0.238090 + 1.35028i 0.597918 + 0.801558i \(0.295995\pi\)
−0.836008 + 0.548718i \(0.815116\pi\)
\(332\) −0.438619 + 0.759710i −0.0240723 + 0.0416945i
\(333\) 8.77245 + 28.6867i 0.480727 + 1.57202i
\(334\) −10.5597 18.2899i −0.577801 1.00078i
\(335\) 0 0
\(336\) 26.5219 1.62301i 1.44689 0.0885427i
\(337\) −22.7032 + 19.0503i −1.23672 + 1.03773i −0.238950 + 0.971032i \(0.576803\pi\)
−0.997773 + 0.0667018i \(0.978752\pi\)
\(338\) 10.8804 9.12976i 0.591817 0.496594i
\(339\) −1.60079 + 3.21096i −0.0869431 + 0.174395i
\(340\) 0 0
\(341\) 4.43029 + 7.67349i 0.239914 + 0.415543i
\(342\) −26.6568 + 3.27481i −1.44144 + 0.177082i
\(343\) 12.5446 21.7279i 0.677344 1.17319i
\(344\) 0.0564271 0.320014i 0.00304235 0.0172540i
\(345\) 0 0
\(346\) −15.9181 5.79373i −0.855765 0.311473i
\(347\) 5.18983 + 29.4330i 0.278604 + 1.58004i 0.727274 + 0.686347i \(0.240787\pi\)
−0.448670 + 0.893698i \(0.648102\pi\)
\(348\) −0.829511 0.613764i −0.0444665 0.0329012i
\(349\) 0.356538 + 0.299171i 0.0190850 + 0.0160142i 0.652280 0.757978i \(-0.273813\pi\)
−0.633195 + 0.773992i \(0.718257\pi\)
\(350\) 0 0
\(351\) −2.75500 7.36639i −0.147051 0.393189i
\(352\) 5.64120 0.300677
\(353\) 1.25375 + 1.05202i 0.0667304 + 0.0559934i 0.675543 0.737321i \(-0.263909\pi\)
−0.608812 + 0.793314i \(0.708354\pi\)
\(354\) −17.2087 + 7.48321i −0.914631 + 0.397728i
\(355\) 0 0
\(356\) −2.60280 0.947342i −0.137948 0.0502090i
\(357\) 2.04019 + 8.49680i 0.107979 + 0.449699i
\(358\) −0.855141 + 4.84974i −0.0451956 + 0.256317i
\(359\) 9.42812 16.3300i 0.497597 0.861863i −0.502399 0.864636i \(-0.667549\pi\)
0.999996 + 0.00277241i \(0.000882486\pi\)
\(360\) 0 0
\(361\) −13.2811 23.0035i −0.699005 1.21071i
\(362\) 3.83107 1.39439i 0.201356 0.0732877i
\(363\) −6.04618 9.13414i −0.317342 0.479418i
\(364\) −1.23872 + 1.03941i −0.0649266 + 0.0544799i
\(365\) 0 0
\(366\) −15.6478 23.6395i −0.817922 1.23566i
\(367\) −9.61068 + 3.49800i −0.501673 + 0.182594i −0.580446 0.814298i \(-0.697122\pi\)
0.0787732 + 0.996893i \(0.474900\pi\)
\(368\) 13.8125 + 23.9240i 0.720029 + 1.24713i
\(369\) 1.34113 0.683450i 0.0698164 0.0355790i
\(370\) 0 0
\(371\) −3.05143 + 17.3055i −0.158422 + 0.898458i
\(372\) −0.207435 0.863905i −0.0107550 0.0447914i
\(373\) 6.52759 + 2.37585i 0.337986 + 0.123017i 0.505437 0.862864i \(-0.331331\pi\)
−0.167451 + 0.985880i \(0.553554\pi\)
\(374\) −1.09075 6.18596i −0.0564014 0.319868i
\(375\) 0 0
\(376\) 17.2396 + 14.4658i 0.889065 + 0.746014i
\(377\) −3.74223 −0.192735
\(378\) 10.7037 + 28.6199i 0.550541 + 1.47205i
\(379\) 8.93586 0.459004 0.229502 0.973308i \(-0.426290\pi\)
0.229502 + 0.973308i \(0.426290\pi\)
\(380\) 0 0
\(381\) −21.1505 15.6495i −1.08357 0.801747i
\(382\) 0.958210 + 5.43428i 0.0490263 + 0.278042i
\(383\) −19.4731 7.08761i −0.995026 0.362160i −0.207362 0.978264i \(-0.566488\pi\)
−0.787665 + 0.616104i \(0.788710\pi\)
\(384\) 14.6999 + 4.35378i 0.750150 + 0.222178i
\(385\) 0 0
\(386\) 2.61600 4.53104i 0.133151 0.230624i
\(387\) 0.325547 0.0399937i 0.0165485 0.00203300i
\(388\) 0.944347 + 1.63566i 0.0479419 + 0.0830379i
\(389\) −5.25158 + 1.91142i −0.266266 + 0.0969127i −0.471703 0.881758i \(-0.656361\pi\)
0.205437 + 0.978670i \(0.434138\pi\)
\(390\) 0 0
\(391\) −6.95936 + 5.83960i −0.351950 + 0.295321i
\(392\) 28.8212 24.1839i 1.45569 1.22147i
\(393\) 5.86032 0.358624i 0.295614 0.0180902i
\(394\) 10.8605 3.95291i 0.547146 0.199145i
\(395\) 0 0
\(396\) 0.879871 + 2.87726i 0.0442152 + 0.144588i
\(397\) 6.78805 11.7572i 0.340682 0.590079i −0.643877 0.765129i \(-0.722675\pi\)
0.984560 + 0.175050i \(0.0560086\pi\)
\(398\) 3.08804 17.5132i 0.154790 0.877856i
\(399\) −37.6000 + 35.6834i −1.88236 + 1.78641i
\(400\) 0 0
\(401\) −3.34334 18.9610i −0.166958 0.946868i −0.947022 0.321168i \(-0.895925\pi\)
0.780064 0.625700i \(-0.215187\pi\)
\(402\) 0.764180 6.70907i 0.0381138 0.334618i
\(403\) −2.46826 2.07111i −0.122953 0.103169i
\(404\) 2.56640 0.127683
\(405\) 0 0
\(406\) 14.5393 0.721575
\(407\) −31.8826 26.7526i −1.58036 1.32608i
\(408\) −0.662914 + 5.82001i −0.0328191 + 0.288133i
\(409\) 1.49345 + 8.46979i 0.0738464 + 0.418804i 0.999211 + 0.0397248i \(0.0126481\pi\)
−0.925364 + 0.379079i \(0.876241\pi\)
\(410\) 0 0
\(411\) 23.2752 22.0888i 1.14808 1.08956i
\(412\) 0.348787 1.97807i 0.0171835 0.0974524i
\(413\) −18.1094 + 31.3664i −0.891104 + 1.54344i
\(414\) −21.6639 + 23.2348i −1.06472 + 1.14193i
\(415\) 0 0
\(416\) −1.92766 + 0.701612i −0.0945114 + 0.0343994i
\(417\) 28.7327 1.75831i 1.40705 0.0861046i
\(418\) 28.5444 23.9516i 1.39615 1.17151i
\(419\) 22.8459 19.1700i 1.11609 0.936515i 0.117694 0.993050i \(-0.462450\pi\)
0.998401 + 0.0565354i \(0.0180054\pi\)
\(420\) 0 0
\(421\) 3.86135 1.40541i 0.188190 0.0684957i −0.246206 0.969218i \(-0.579184\pi\)
0.434396 + 0.900722i \(0.356962\pi\)
\(422\) −2.44145 4.22871i −0.118848 0.205850i
\(423\) −8.87430 + 20.9103i −0.431483 + 1.01670i
\(424\) −5.88978 + 10.2014i −0.286033 + 0.495423i
\(425\) 0 0
\(426\) 16.6906 + 4.94339i 0.808662 + 0.239508i
\(427\) −51.4168 18.7142i −2.48823 0.905643i
\(428\) 0.509685 + 2.89057i 0.0246366 + 0.139721i
\(429\) 8.77159 + 6.49019i 0.423496 + 0.313349i
\(430\) 0 0
\(431\) 38.4602 1.85256 0.926281 0.376833i \(-0.122987\pi\)
0.926281 + 0.376833i \(0.122987\pi\)
\(432\) 0.158650 + 17.9781i 0.00763305 + 0.864972i
\(433\) −13.0726 −0.628230 −0.314115 0.949385i \(-0.601708\pi\)
−0.314115 + 0.949385i \(0.601708\pi\)
\(434\) 9.58967 + 8.04669i 0.460319 + 0.386253i
\(435\) 0 0
\(436\) 0.0112424 + 0.0637590i 0.000538415 + 0.00305350i
\(437\) −50.6423 18.4323i −2.42255 0.881735i
\(438\) −5.50027 22.9070i −0.262813 1.09454i
\(439\) 1.34135 7.60717i 0.0640191 0.363071i −0.935922 0.352208i \(-0.885431\pi\)
0.999941 0.0108629i \(-0.00345783\pi\)
\(440\) 0 0
\(441\) 31.8506 + 20.6811i 1.51669 + 0.984812i
\(442\) 1.14209 + 1.97815i 0.0543236 + 0.0940912i
\(443\) −20.4640 + 7.44827i −0.972272 + 0.353878i −0.778831 0.627234i \(-0.784187\pi\)
−0.193441 + 0.981112i \(0.561965\pi\)
\(444\) 2.30349 + 3.47994i 0.109319 + 0.165151i
\(445\) 0 0
\(446\) −10.6983 + 8.97692i −0.506578 + 0.425069i
\(447\) 8.14481 + 12.3046i 0.385236 + 0.581988i
\(448\) 36.3211 13.2198i 1.71601 0.624577i
\(449\) −15.4280 26.7221i −0.728093 1.26109i −0.957688 0.287808i \(-0.907073\pi\)
0.229595 0.973286i \(-0.426260\pi\)
\(450\) 0 0
\(451\) −1.04419 + 1.80859i −0.0491691 + 0.0851634i
\(452\) −0.0866738 + 0.491552i −0.00407679 + 0.0231206i
\(453\) −4.88238 20.3336i −0.229394 0.955358i
\(454\) 33.0319 + 12.0226i 1.55026 + 0.564250i
\(455\) 0 0
\(456\) −31.8659 + 13.8569i −1.49226 + 0.648910i
\(457\) 24.8797 + 20.8765i 1.16382 + 0.976564i 0.999951 0.00991784i \(-0.00315700\pi\)
0.163872 + 0.986482i \(0.447601\pi\)
\(458\) 14.6355 0.683870
\(459\) −5.81340 + 1.07804i −0.271346 + 0.0503185i
\(460\) 0 0
\(461\) 19.5612 + 16.4138i 0.911056 + 0.764467i 0.972320 0.233655i \(-0.0750685\pi\)
−0.0612635 + 0.998122i \(0.519513\pi\)
\(462\) −34.0794 25.2157i −1.58552 1.17314i
\(463\) −1.63666 9.28198i −0.0760622 0.431370i −0.998930 0.0462526i \(-0.985272\pi\)
0.922868 0.385117i \(-0.125839\pi\)
\(464\) 8.03886 + 2.92591i 0.373195 + 0.135832i
\(465\) 0 0
\(466\) −3.08692 + 17.5068i −0.142999 + 0.810986i
\(467\) 19.3386 33.4955i 0.894885 1.54999i 0.0609381 0.998142i \(-0.480591\pi\)
0.833947 0.551845i \(-0.186076\pi\)
\(468\) −0.658514 0.873759i −0.0304398 0.0403895i
\(469\) −6.51642 11.2868i −0.300900 0.521175i
\(470\) 0 0
\(471\) 10.0738 20.2065i 0.464176 0.931068i
\(472\) −18.5987 + 15.6062i −0.856075 + 0.718332i
\(473\) −0.348600 + 0.292510i −0.0160286 + 0.0134496i
\(474\) −11.2061 + 0.685761i −0.514713 + 0.0314981i
\(475\) 0 0
\(476\) 0.607826 + 1.05279i 0.0278596 + 0.0482543i
\(477\) −11.5853 2.67389i −0.530456 0.122429i
\(478\) −5.83451 + 10.1057i −0.266864 + 0.462223i
\(479\) 6.46290 36.6529i 0.295297 1.67471i −0.370695 0.928755i \(-0.620880\pi\)
0.665992 0.745959i \(-0.268009\pi\)
\(480\) 0 0
\(481\) 14.2219 + 5.17636i 0.648464 + 0.236022i
\(482\) 3.37571 + 19.1446i 0.153760 + 0.872014i
\(483\) −6.93900 + 60.9204i −0.315735 + 2.77198i
\(484\) −1.16736 0.979534i −0.0530620 0.0445243i
\(485\) 0 0
\(486\) −19.7169 + 6.22024i −0.894376 + 0.282156i
\(487\) 38.1901 1.73056 0.865279 0.501290i \(-0.167141\pi\)
0.865279 + 0.501290i \(0.167141\pi\)
\(488\) −28.0976 23.5767i −1.27192 1.06727i
\(489\) −2.98321 + 26.1909i −0.134905 + 1.18439i
\(490\) 0 0
\(491\) −0.225443 0.0820546i −0.0101741 0.00370307i 0.336928 0.941530i \(-0.390612\pi\)
−0.347102 + 0.937827i \(0.612834\pi\)
\(492\) 0.151892 0.144149i 0.00684782 0.00649876i
\(493\) −0.488529 + 2.77059i −0.0220023 + 0.124781i
\(494\) −6.77503 + 11.7347i −0.304823 + 0.527969i
\(495\) 0 0
\(496\) 3.68285 + 6.37888i 0.165365 + 0.286420i
\(497\) 31.5714 11.4911i 1.41617 0.515445i
\(498\) 8.34761 0.510835i 0.374065 0.0228911i
\(499\) −15.4596 + 12.9721i −0.692067 + 0.580713i −0.919504 0.393080i \(-0.871410\pi\)
0.227438 + 0.973793i \(0.426965\pi\)
\(500\) 0 0
\(501\) 12.3056 24.6832i 0.549774 1.10277i
\(502\) 4.76484 1.73426i 0.212665 0.0774037i
\(503\) −10.8170 18.7357i −0.482308 0.835382i 0.517486 0.855692i \(-0.326868\pi\)
−0.999794 + 0.0203102i \(0.993535\pi\)
\(504\) 23.7941 + 31.5716i 1.05988 + 1.40631i
\(505\) 0 0
\(506\) 7.65351 43.4052i 0.340240 1.92960i
\(507\) 17.7851 + 5.26755i 0.789863 + 0.233940i
\(508\) −3.43953 1.25189i −0.152604 0.0555434i
\(509\) −3.61621 20.5086i −0.160286 0.909026i −0.953793 0.300465i \(-0.902858\pi\)
0.793507 0.608561i \(-0.208253\pi\)
\(510\) 0 0
\(511\) −34.8315 29.2271i −1.54085 1.29293i
\(512\) 25.2569 1.11621
\(513\) −22.7813 26.6682i −1.00582 1.17743i
\(514\) −10.8285 −0.477623
\(515\) 0 0
\(516\) 0.0418447 0.0181962i 0.00184211 0.000801043i
\(517\) −5.47267 31.0371i −0.240688 1.36501i
\(518\) −55.2551 20.1112i −2.42777 0.883635i
\(519\) −5.16504 21.5108i −0.226720 0.944221i
\(520\) 0 0
\(521\) 4.03581 6.99023i 0.176812 0.306247i −0.763975 0.645246i \(-0.776755\pi\)
0.940787 + 0.338999i \(0.110088\pi\)
\(522\) −0.514220 + 9.82416i −0.0225068 + 0.429992i
\(523\) 10.2876 + 17.8186i 0.449845 + 0.779154i 0.998376 0.0569761i \(-0.0181459\pi\)
−0.548531 + 0.836131i \(0.684813\pi\)
\(524\) 0.767539 0.279361i 0.0335301 0.0122040i
\(525\) 0 0
\(526\) −28.3133 + 23.7577i −1.23452 + 1.03588i
\(527\) −1.85558 + 1.55702i −0.0808303 + 0.0678247i
\(528\) −13.7682 20.8000i −0.599185 0.905205i
\(529\) −38.2883 + 13.9358i −1.66471 + 0.605904i
\(530\) 0 0
\(531\) −20.5536 13.3458i −0.891951 0.579157i
\(532\) −3.60571 + 6.24528i −0.156327 + 0.270767i
\(533\) 0.131872 0.747886i 0.00571203 0.0323945i
\(534\) 6.16532 + 25.6767i 0.266799 + 1.11114i
\(535\) 0 0
\(536\) −1.51707 8.60371i −0.0655273 0.371624i
\(537\) −5.89768 + 2.56461i −0.254504 + 0.110671i
\(538\) 13.3624 + 11.2124i 0.576094 + 0.483400i
\(539\) −52.6882 −2.26944
\(540\) 0 0
\(541\) −36.3288 −1.56190 −0.780949 0.624595i \(-0.785264\pi\)
−0.780949 + 0.624595i \(0.785264\pi\)
\(542\) −8.32776 6.98782i −0.357708 0.300152i
\(543\) 4.28002 + 3.16683i 0.183673 + 0.135902i
\(544\) 0.267797 + 1.51875i 0.0114817 + 0.0651159i
\(545\) 0 0
\(546\) 14.7815 + 4.37794i 0.632588 + 0.187359i
\(547\) 2.24700 12.7434i 0.0960749 0.544868i −0.898338 0.439306i \(-0.855225\pi\)
0.994413 0.105563i \(-0.0336643\pi\)
\(548\) 2.23201 3.86596i 0.0953468 0.165145i
\(549\) 14.4636 34.0802i 0.617290 1.45451i
\(550\) 0 0
\(551\) −15.6826 + 5.70800i −0.668101 + 0.243169i
\(552\) −18.3382 + 36.7837i −0.780525 + 1.56562i
\(553\) −16.5996 + 13.9287i −0.705887 + 0.592310i
\(554\) −29.6082 + 24.8442i −1.25793 + 1.05553i
\(555\) 0 0
\(556\) 3.76318 1.36969i 0.159594 0.0580876i
\(557\) 8.28524 + 14.3505i 0.351057 + 0.608049i 0.986435 0.164153i \(-0.0524890\pi\)
−0.635378 + 0.772201i \(0.719156\pi\)
\(558\) −5.77627 + 6.19510i −0.244529 + 0.262260i
\(559\) 0.0827402 0.143310i 0.00349954 0.00606138i
\(560\) 0 0
\(561\) 5.95014 5.64684i 0.251215 0.238410i
\(562\) 29.4162 + 10.7066i 1.24085 + 0.451631i
\(563\) 1.76244 + 9.99530i 0.0742781 + 0.421252i 0.999159 + 0.0409958i \(0.0130530\pi\)
−0.924881 + 0.380256i \(0.875836\pi\)
\(564\) −0.357634 + 3.13983i −0.0150591 + 0.132211i
\(565\) 0 0
\(566\) −26.1024 −1.09716
\(567\) −23.4509 + 32.2863i −0.984846 + 1.35590i
\(568\) 22.5218 0.944996
\(569\) 21.4282 + 17.9804i 0.898317 + 0.753777i 0.969861 0.243660i \(-0.0783482\pi\)
−0.0715441 + 0.997437i \(0.522793\pi\)
\(570\) 0 0
\(571\) −3.43834 19.4998i −0.143890 0.816041i −0.968252 0.249978i \(-0.919577\pi\)
0.824362 0.566064i \(-0.191534\pi\)
\(572\) 1.42645 + 0.519185i 0.0596428 + 0.0217082i
\(573\) −5.22711 + 4.96067i −0.218366 + 0.207235i
\(574\) −0.512351 + 2.90569i −0.0213851 + 0.121281i
\(575\) 0 0
\(576\) 7.64797 + 25.0095i 0.318665 + 1.04206i
\(577\) −1.56447 2.70975i −0.0651299 0.112808i 0.831622 0.555343i \(-0.187413\pi\)
−0.896752 + 0.442534i \(0.854080\pi\)
\(578\) −19.5735 + 7.12418i −0.814151 + 0.296327i
\(579\) 6.81990 0.417346i 0.283426 0.0173443i
\(580\) 0 0
\(581\) 12.3653 10.3757i 0.513000 0.430458i
\(582\) 8.03372 16.1145i 0.333009 0.667966i
\(583\) 15.5014 5.64204i 0.642001 0.233669i
\(584\) −15.2399 26.3964i −0.630633 1.09229i
\(585\) 0 0
\(586\) 4.09344 7.09004i 0.169098 0.292887i
\(587\) −7.65127 + 43.3925i −0.315802 + 1.79100i 0.251887 + 0.967757i \(0.418949\pi\)
−0.567688 + 0.823244i \(0.692162\pi\)
\(588\) 5.06559 + 1.50032i 0.208902 + 0.0618720i
\(589\) −13.5028 4.91461i −0.556372 0.202503i
\(590\) 0 0
\(591\) 12.1333 + 8.97752i 0.499095 + 0.369286i
\(592\) −26.5036 22.2391i −1.08929 0.914023i
\(593\) −10.1063 −0.415015 −0.207507 0.978233i \(-0.566535\pi\)
−0.207507 + 0.978233i \(0.566535\pi\)
\(594\) 18.2434 22.1354i 0.748537 0.908228i
\(595\) 0 0
\(596\) 1.57256 + 1.31953i 0.0644144 + 0.0540501i
\(597\) 21.2974 9.26122i 0.871647 0.379036i
\(598\) 2.78313 + 15.7839i 0.113811 + 0.645453i
\(599\) 1.62169 + 0.590247i 0.0662605 + 0.0241169i 0.374938 0.927050i \(-0.377664\pi\)
−0.308677 + 0.951167i \(0.599886\pi\)
\(600\) 0 0
\(601\) 3.60539 20.4472i 0.147067 0.834058i −0.818617 0.574339i \(-0.805259\pi\)
0.965684 0.259719i \(-0.0836299\pi\)
\(602\) −0.321462 + 0.556789i −0.0131018 + 0.0226930i
\(603\) 7.85688 4.00393i 0.319957 0.163053i
\(604\) −1.45458 2.51941i −0.0591862 0.102513i
\(605\) 0 0
\(606\) −13.5049 20.4022i −0.548598 0.828783i
\(607\) 1.55129 1.30168i 0.0629648 0.0528337i −0.610762 0.791814i \(-0.709137\pi\)
0.673727 + 0.738980i \(0.264692\pi\)
\(608\) −7.00810 + 5.88050i −0.284216 + 0.238486i
\(609\) 10.4804 + 15.8330i 0.424687 + 0.641587i
\(610\) 0 0
\(611\) 5.73024 + 9.92506i 0.231821 + 0.401525i
\(612\) −0.732859 + 0.373470i −0.0296241 + 0.0150966i
\(613\) −15.5244 + 26.8891i −0.627027 + 1.08604i 0.361119 + 0.932520i \(0.382395\pi\)
−0.988145 + 0.153522i \(0.950938\pi\)
\(614\) −2.75064 + 15.5997i −0.111007 + 0.629551i
\(615\) 0 0
\(616\) −51.5420 18.7598i −2.07669 0.755852i
\(617\) −1.47195 8.34783i −0.0592584 0.336071i 0.940737 0.339137i \(-0.110135\pi\)
−0.999995 + 0.00306626i \(0.999024\pi\)
\(618\) −17.5605 + 7.63621i −0.706388 + 0.307174i
\(619\) −32.3309 27.1288i −1.29949 1.09040i −0.990233 0.139421i \(-0.955476\pi\)
−0.309255 0.950979i \(-0.600080\pi\)
\(620\) 0 0
\(621\) −40.9182 6.84325i −1.64199 0.274610i
\(622\) −33.2027 −1.33131
\(623\) 39.0430 + 32.7610i 1.56422 + 1.31254i
\(624\) 7.29171 + 5.39522i 0.291902 + 0.215982i
\(625\) 0 0
\(626\) −19.1172 6.95808i −0.764076 0.278101i
\(627\) 46.6586 + 13.8192i 1.86336 + 0.551887i
\(628\) 0.545438 3.09333i 0.0217654 0.123437i
\(629\) 5.68895 9.85355i 0.226833 0.392887i
\(630\) 0 0
\(631\) 14.3615 + 24.8748i 0.571721 + 0.990250i 0.996389 + 0.0849008i \(0.0270573\pi\)
−0.424668 + 0.905349i \(0.639609\pi\)
\(632\) −13.6498 + 4.96811i −0.542959 + 0.197621i
\(633\) 2.84511 5.70687i 0.113083 0.226828i
\(634\) −0.250291 + 0.210019i −0.00994034 + 0.00834094i
\(635\) 0 0
\(636\) −1.65100 + 0.101034i −0.0654666 + 0.00400625i
\(637\) 18.0042 6.55298i 0.713351 0.259638i
\(638\) −6.82442 11.8202i −0.270181 0.467968i
\(639\) 6.64785 + 21.7391i 0.262985 + 0.859985i
\(640\) 0 0
\(641\) −3.15096 + 17.8700i −0.124456 + 0.705822i 0.857174 + 0.515026i \(0.172218\pi\)
−0.981630 + 0.190796i \(0.938893\pi\)
\(642\) 20.2972 19.2626i 0.801069 0.760235i
\(643\) −14.9832 5.45343i −0.590879 0.215062i 0.0292372 0.999573i \(-0.490692\pi\)
−0.620116 + 0.784510i \(0.712914\pi\)
\(644\) 1.48120 + 8.40031i 0.0583675 + 0.331018i
\(645\) 0 0
\(646\) 7.80341 + 6.54784i 0.307021 + 0.257621i
\(647\) 13.7644 0.541133 0.270567 0.962701i \(-0.412789\pi\)
0.270567 + 0.962701i \(0.412789\pi\)
\(648\) −22.1743 + 14.9610i −0.871090 + 0.587723i
\(649\) 34.0004 1.33463
\(650\) 0 0
\(651\) −1.85015 + 16.2433i −0.0725131 + 0.636624i
\(652\) 0.636797 + 3.61146i 0.0249389 + 0.141436i
\(653\) 15.9602 + 5.80905i 0.624573 + 0.227326i 0.634867 0.772621i \(-0.281055\pi\)
−0.0102948 + 0.999947i \(0.503277\pi\)
\(654\) 0.447708 0.424887i 0.0175068 0.0166144i
\(655\) 0 0
\(656\) −0.868024 + 1.50346i −0.0338907 + 0.0587003i
\(657\) 20.9805 22.5018i 0.818527 0.877877i
\(658\) −22.2631 38.5609i −0.867907 1.50326i
\(659\) 10.6118 3.86239i 0.413378 0.150457i −0.126955 0.991908i \(-0.540520\pi\)
0.540333 + 0.841451i \(0.318298\pi\)
\(660\) 0 0
\(661\) −2.63000 + 2.20683i −0.102295 + 0.0858358i −0.692501 0.721417i \(-0.743491\pi\)
0.590206 + 0.807253i \(0.299047\pi\)
\(662\) 25.3441 21.2662i 0.985027 0.826535i
\(663\) −1.33092 + 2.66962i −0.0516885 + 0.103680i
\(664\) 10.1679 3.70083i 0.394592 0.143620i
\(665\) 0 0
\(666\) 15.5433 36.6243i 0.602289 1.41916i
\(667\) −9.87018 + 17.0957i −0.382175 + 0.661946i
\(668\) 0.666279 3.77865i 0.0257791 0.146201i
\(669\) −17.4873 5.17936i −0.676099 0.200246i
\(670\) 0 0
\(671\) 8.91950 + 50.5850i 0.344334 + 1.95281i
\(672\) 8.36702 + 6.19084i 0.322765 + 0.238817i
\(673\) −20.0688 16.8397i −0.773595 0.649123i 0.168032 0.985782i \(-0.446259\pi\)
−0.941627 + 0.336658i \(0.890703\pi\)
\(674\) 39.3071 1.51405
\(675\) 0 0
\(676\) 2.58045 0.0992482
\(677\) 14.4837 + 12.1532i 0.556653 + 0.467087i 0.877186 0.480150i \(-0.159418\pi\)
−0.320534 + 0.947237i \(0.603862\pi\)
\(678\) 4.36381 1.89761i 0.167591 0.0728772i
\(679\) −6.03484 34.2253i −0.231596 1.31345i
\(680\) 0 0
\(681\) 10.7180 + 44.6373i 0.410715 + 1.71051i
\(682\) 2.04066 11.5732i 0.0781409 0.443159i
\(683\) 12.2251 21.1745i 0.467782 0.810222i −0.531541 0.847033i \(-0.678387\pi\)
0.999322 + 0.0368112i \(0.0117200\pi\)
\(684\) −4.09238 2.65724i −0.156476 0.101602i
\(685\) 0 0
\(686\) −31.2687 + 11.3809i −1.19385 + 0.434524i
\(687\) 10.5497 + 15.9377i 0.402496 + 0.608062i
\(688\) −0.289787 + 0.243160i −0.0110480 + 0.00927039i
\(689\) −4.59528 + 3.85590i −0.175066 + 0.146898i
\(690\) 0 0
\(691\) 17.7400 6.45685i 0.674863 0.245630i 0.0182226 0.999834i \(-0.494199\pi\)
0.656640 + 0.754204i \(0.271977\pi\)
\(692\) −1.53880 2.66527i −0.0584962 0.101318i
\(693\) 2.89391 55.2880i 0.109931 2.10022i
\(694\) 19.8194 34.3282i 0.752334 1.30308i
\(695\) 0 0
\(696\) 2.97171 + 12.3763i 0.112642 + 0.469122i
\(697\) −0.536487 0.195265i −0.0203209 0.00739620i
\(698\) −0.107191 0.607913i −0.00405725 0.0230098i
\(699\) −21.2897 + 9.25785i −0.805250 + 0.350164i
\(700\) 0 0
\(701\) −21.8730 −0.826131 −0.413066 0.910701i \(-0.635542\pi\)
−0.413066 + 0.910701i \(0.635542\pi\)
\(702\) −3.48094 + 9.83292i −0.131380 + 0.371120i
\(703\) 67.4954 2.54564
\(704\) −27.7957 23.3234i −1.04759 0.879034i
\(705\) 0 0
\(706\) −0.376934 2.13770i −0.0141861 0.0804533i
\(707\) −44.3755 16.1514i −1.66891 0.607435i
\(708\) −3.26890 0.968175i −0.122853 0.0363863i
\(709\) −5.59910 + 31.7541i −0.210279 + 1.19255i 0.678636 + 0.734475i \(0.262572\pi\)
−0.888914 + 0.458074i \(0.848539\pi\)
\(710\) 0 0
\(711\) −8.82449 11.7089i −0.330944 0.439118i
\(712\) 17.0826 + 29.5880i 0.640198 + 1.10886i
\(713\) −15.9715 + 5.81315i −0.598138 + 0.217704i
\(714\) 5.17088 10.3720i 0.193515 0.388163i
\(715\) 0 0
\(716\) −0.685371 + 0.575094i −0.0256135 + 0.0214923i
\(717\) −15.2106 + 0.930816i −0.568049 + 0.0347620i
\(718\) −23.5006 + 8.55352i −0.877035 + 0.319214i
\(719\) 21.9733 + 38.0589i 0.819467 + 1.41936i 0.906076 + 0.423115i \(0.139063\pi\)
−0.0866093 + 0.996242i \(0.527603\pi\)
\(720\) 0 0
\(721\) −18.4796 + 32.0077i −0.688218 + 1.19203i
\(722\) −6.11747 + 34.6939i −0.227669 + 1.29117i
\(723\) −18.4148 + 17.4761i −0.684854 + 0.649944i
\(724\) 0.696024 + 0.253332i 0.0258675 + 0.00941501i
\(725\) 0 0
\(726\) −1.64416 + 14.4347i −0.0610203 + 0.535724i
\(727\) 6.81176 + 5.71575i 0.252634 + 0.211985i 0.760306 0.649565i \(-0.225049\pi\)
−0.507671 + 0.861551i \(0.669494\pi\)
\(728\) 19.9457 0.739237
\(729\) −20.9863 16.9875i −0.777269 0.629168i
\(730\) 0 0
\(731\) −0.0952994 0.0799657i −0.00352478 0.00295764i
\(732\) 0.582882 5.11737i 0.0215439 0.189143i
\(733\) −0.294938 1.67268i −0.0108938 0.0617818i 0.978876 0.204454i \(-0.0655418\pi\)
−0.989770 + 0.142672i \(0.954431\pi\)
\(734\) 12.7465 + 4.63936i 0.470483 + 0.171242i
\(735\) 0 0
\(736\) −1.87906 + 10.6567i −0.0692629 + 0.392809i
\(737\) −6.11730 + 10.5955i −0.225334 + 0.390289i
\(738\) −1.94524 0.448960i −0.0716052 0.0165265i
\(739\) −20.4924 35.4939i −0.753826 1.30566i −0.945956 0.324295i \(-0.894873\pi\)
0.192130 0.981369i \(-0.438460\pi\)
\(740\) 0 0
\(741\) −17.6625 + 1.08086i −0.648848 + 0.0397065i
\(742\) 17.8536 14.9809i 0.655426 0.549967i
\(743\) 40.7602 34.2019i 1.49535 1.25475i 0.607747 0.794131i \(-0.292074\pi\)
0.887600 0.460614i \(-0.152371\pi\)
\(744\) −4.88953 + 9.80767i −0.179259 + 0.359567i
\(745\) 0 0
\(746\) −4.60655 7.97877i −0.168658 0.292124i
\(747\) 6.57351 + 8.72215i 0.240512 + 0.319127i
\(748\) 0.570598 0.988304i 0.0208631 0.0361360i
\(749\) 9.37857 53.1885i 0.342685 1.94347i
\(750\) 0 0
\(751\) 15.4986 + 5.64104i 0.565554 + 0.205845i 0.608944 0.793214i \(-0.291594\pi\)
−0.0433900 + 0.999058i \(0.513816\pi\)
\(752\) −4.54937 25.8007i −0.165898 0.940856i
\(753\) 5.32321 + 3.93870i 0.193989 + 0.143534i
\(754\) 3.80210 + 3.19034i 0.138464 + 0.116185i
\(755\) 0 0
\(756\) −1.85258 + 5.23314i −0.0673775 + 0.190327i
\(757\) 5.75782 0.209271 0.104636 0.994511i \(-0.466632\pi\)
0.104636 + 0.994511i \(0.466632\pi\)
\(758\) −9.07880 7.61802i −0.329757 0.276699i
\(759\) 52.7843 22.9533i 1.91595 0.833152i
\(760\) 0 0
\(761\) −35.1758 12.8029i −1.27512 0.464106i −0.386305 0.922371i \(-0.626249\pi\)
−0.888816 + 0.458265i \(0.848471\pi\)
\(762\) 8.14730 + 33.9311i 0.295145 + 1.22919i
\(763\) 0.206869 1.17321i 0.00748914 0.0424730i
\(764\) −0.501262 + 0.868212i −0.0181350 + 0.0314108i
\(765\) 0 0
\(766\) 13.7422 + 23.8022i 0.496526 + 0.860008i
\(767\) −11.6183 + 4.22873i −0.419514 + 0.152690i
\(768\) 5.44525 + 8.22630i 0.196489 + 0.296841i
\(769\) 13.8998 11.6633i 0.501239 0.420589i −0.356795 0.934183i \(-0.616130\pi\)
0.858034 + 0.513593i \(0.171686\pi\)
\(770\) 0 0
\(771\) −7.80549 11.7920i −0.281108 0.424678i
\(772\) 0.893218 0.325105i 0.0321476 0.0117008i
\(773\) 11.0792 + 19.1897i 0.398490 + 0.690206i 0.993540 0.113483i \(-0.0362009\pi\)
−0.595049 + 0.803689i \(0.702868\pi\)
\(774\) −0.364850 0.236903i −0.0131143 0.00851530i
\(775\) 0 0