Properties

Label 675.2.l.f.151.2
Level $675$
Weight $2$
Character 675.151
Analytic conductor $5.390$
Analytic rank $0$
Dimension $66$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [675,2,Mod(76,675)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(675, base_ring=CyclotomicField(18))
 
chi = DirichletCharacter(H, H._module([14, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("675.76");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 675 = 3^{3} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 675.l (of order \(9\), degree \(6\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.38990213644\)
Analytic rank: \(0\)
Dimension: \(66\)
Relative dimension: \(11\) over \(\Q(\zeta_{9})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{9}]$

Embedding invariants

Embedding label 151.2
Character \(\chi\) \(=\) 675.151
Dual form 675.2.l.f.76.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.55121 - 1.30162i) q^{2} +(-1.45868 + 0.933937i) q^{3} +(0.364742 + 2.06856i) q^{4} +(3.47836 + 0.449921i) q^{6} +(0.0652816 - 0.370230i) q^{7} +(0.101721 - 0.176186i) q^{8} +(1.25552 - 2.72464i) q^{9} +O(q^{10})\) \(q+(-1.55121 - 1.30162i) q^{2} +(-1.45868 + 0.933937i) q^{3} +(0.364742 + 2.06856i) q^{4} +(3.47836 + 0.449921i) q^{6} +(0.0652816 - 0.370230i) q^{7} +(0.101721 - 0.176186i) q^{8} +(1.25552 - 2.72464i) q^{9} +(0.272976 - 0.0993552i) q^{11} +(-2.46395 - 2.67673i) q^{12} +(-0.677752 + 0.568702i) q^{13} +(-0.583165 + 0.489333i) q^{14} +(3.56047 - 1.29590i) q^{16} +(-2.32471 - 4.02651i) q^{17} +(-5.49403 + 2.59227i) q^{18} +(-1.75100 + 3.03282i) q^{19} +(0.250547 + 0.601018i) q^{21} +(-0.552766 - 0.201190i) q^{22} +(-0.0948473 - 0.537906i) q^{23} +(0.0161677 + 0.352001i) q^{24} +1.79157 q^{26} +(0.713228 + 5.14697i) q^{27} +0.789653 q^{28} +(-4.65300 - 3.90433i) q^{29} +(0.953291 + 5.40638i) q^{31} +(-7.59216 - 2.76332i) q^{32} +(-0.305395 + 0.399870i) q^{33} +(-1.63488 + 9.27184i) q^{34} +(6.09401 + 1.60333i) q^{36} +(5.47398 + 9.48122i) q^{37} +(6.66375 - 2.42541i) q^{38} +(0.457496 - 1.46253i) q^{39} +(-7.28901 + 6.11620i) q^{41} +(0.393647 - 1.25842i) q^{42} +(9.54330 - 3.47348i) q^{43} +(0.305088 + 0.528427i) q^{44} +(-0.553021 + 0.957860i) q^{46} +(-1.09967 + 6.23654i) q^{47} +(-3.98331 + 5.21557i) q^{48} +(6.44504 + 2.34580i) q^{49} +(7.15152 + 3.70228i) q^{51} +(-1.42360 - 1.19454i) q^{52} +12.2148 q^{53} +(5.59303 - 8.91238i) q^{54} +(-0.0585889 - 0.0491619i) q^{56} +(-0.278306 - 6.05925i) q^{57} +(2.13583 + 12.1129i) q^{58} +(-1.18778 - 0.432318i) q^{59} +(0.499613 - 2.83345i) q^{61} +(5.55830 - 9.62726i) q^{62} +(-0.926782 - 0.642702i) q^{63} +(4.39127 + 7.60590i) q^{64} +(0.994211 - 0.222775i) q^{66} +(-6.78495 + 5.69325i) q^{67} +(7.48114 - 6.27742i) q^{68} +(0.640723 + 0.696054i) q^{69} +(5.36876 + 9.29896i) q^{71} +(-0.352330 - 0.498359i) q^{72} +(0.389512 - 0.674654i) q^{73} +(3.84964 - 21.8324i) q^{74} +(-6.91222 - 2.51584i) q^{76} +(-0.0189640 - 0.107550i) q^{77} +(-2.61334 + 1.67321i) q^{78} +(5.29571 + 4.44363i) q^{79} +(-5.84732 - 6.84170i) q^{81} +19.2678 q^{82} +(6.88221 + 5.77486i) q^{83} +(-1.15186 + 0.737486i) q^{84} +(-19.3248 - 7.03366i) q^{86} +(10.4337 + 1.34958i) q^{87} +(0.0102624 - 0.0582011i) q^{88} +(-3.11061 + 5.38773i) q^{89} +(0.166306 + 0.288050i) q^{91} +(1.07809 - 0.392394i) q^{92} +(-6.43977 - 6.99589i) q^{93} +(9.82342 - 8.24283i) q^{94} +(13.6553 - 3.05978i) q^{96} +(-13.1743 + 4.79504i) q^{97} +(-6.94427 - 12.0278i) q^{98} +(0.0720209 - 0.868504i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 66 q - 6 q^{2} - 6 q^{6} - 6 q^{7} - 12 q^{8} - 6 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 66 q - 6 q^{2} - 6 q^{6} - 6 q^{7} - 12 q^{8} - 6 q^{9} + 15 q^{11} - 18 q^{12} + 15 q^{14} + 18 q^{16} - 30 q^{17} + 12 q^{18} + 12 q^{19} + 12 q^{21} + 45 q^{22} - 36 q^{23} - 39 q^{24} + 6 q^{26} - 51 q^{27} + 36 q^{28} - 15 q^{29} + 3 q^{31} - 27 q^{32} + 3 q^{33} + 30 q^{36} - 6 q^{37} + 12 q^{38} - 15 q^{39} + 39 q^{41} - 48 q^{42} - 12 q^{43} + 51 q^{44} + 9 q^{46} - 30 q^{47} + 132 q^{48} - 6 q^{49} - 9 q^{52} + 24 q^{53} + 75 q^{54} + 144 q^{56} - 33 q^{57} - 27 q^{58} + 45 q^{59} - 54 q^{61} - 66 q^{62} + 120 q^{63} - 24 q^{64} + 48 q^{66} - 9 q^{67} + 69 q^{68} + 51 q^{69} - 15 q^{71} - 9 q^{72} + 15 q^{73} + 96 q^{74} - 48 q^{76} + 36 q^{77} + 18 q^{78} + 48 q^{79} - 54 q^{81} + 36 q^{82} - 30 q^{83} + 57 q^{84} - 111 q^{86} + 33 q^{87} - 36 q^{88} - 12 q^{89} + 9 q^{91} + 219 q^{92} - 63 q^{93} + 36 q^{94} - 249 q^{96} - 57 q^{97} - 75 q^{98} - 48 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/675\mathbb{Z}\right)^\times\).

\(n\) \(326\) \(352\)
\(\chi(n)\) \(e\left(\frac{2}{9}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.55121 1.30162i −1.09687 0.920384i −0.0996605 0.995022i \(-0.531776\pi\)
−0.997211 + 0.0746373i \(0.976220\pi\)
\(3\) −1.45868 + 0.933937i −0.842172 + 0.539209i
\(4\) 0.364742 + 2.06856i 0.182371 + 1.03428i
\(5\) 0 0
\(6\) 3.47836 + 0.449921i 1.42003 + 0.183679i
\(7\) 0.0652816 0.370230i 0.0246741 0.139934i −0.969982 0.243176i \(-0.921811\pi\)
0.994656 + 0.103242i \(0.0329217\pi\)
\(8\) 0.101721 0.176186i 0.0359638 0.0622912i
\(9\) 1.25552 2.72464i 0.418508 0.908213i
\(10\) 0 0
\(11\) 0.272976 0.0993552i 0.0823054 0.0299567i −0.300539 0.953769i \(-0.597167\pi\)
0.382845 + 0.923813i \(0.374944\pi\)
\(12\) −2.46395 2.67673i −0.711280 0.772704i
\(13\) −0.677752 + 0.568702i −0.187975 + 0.157729i −0.731919 0.681392i \(-0.761375\pi\)
0.543944 + 0.839122i \(0.316930\pi\)
\(14\) −0.583165 + 0.489333i −0.155857 + 0.130780i
\(15\) 0 0
\(16\) 3.56047 1.29590i 0.890117 0.323976i
\(17\) −2.32471 4.02651i −0.563824 0.976572i −0.997158 0.0753383i \(-0.975996\pi\)
0.433334 0.901233i \(-0.357337\pi\)
\(18\) −5.49403 + 2.59227i −1.29495 + 0.611005i
\(19\) −1.75100 + 3.03282i −0.401707 + 0.695777i −0.993932 0.109996i \(-0.964916\pi\)
0.592225 + 0.805772i \(0.298250\pi\)
\(20\) 0 0
\(21\) 0.250547 + 0.601018i 0.0546737 + 0.131153i
\(22\) −0.552766 0.201190i −0.117850 0.0428939i
\(23\) −0.0948473 0.537906i −0.0197770 0.112161i 0.973321 0.229447i \(-0.0736918\pi\)
−0.993098 + 0.117286i \(0.962581\pi\)
\(24\) 0.0161677 + 0.352001i 0.00330021 + 0.0718519i
\(25\) 0 0
\(26\) 1.79157 0.351356
\(27\) 0.713228 + 5.14697i 0.137261 + 0.990535i
\(28\) 0.789653 0.149230
\(29\) −4.65300 3.90433i −0.864040 0.725016i 0.0987944 0.995108i \(-0.468501\pi\)
−0.962834 + 0.270092i \(0.912946\pi\)
\(30\) 0 0
\(31\) 0.953291 + 5.40638i 0.171216 + 0.971015i 0.942421 + 0.334428i \(0.108543\pi\)
−0.771205 + 0.636587i \(0.780346\pi\)
\(32\) −7.59216 2.76332i −1.34212 0.488490i
\(33\) −0.305395 + 0.399870i −0.0531624 + 0.0696085i
\(34\) −1.63488 + 9.27184i −0.280379 + 1.59011i
\(35\) 0 0
\(36\) 6.09401 + 1.60333i 1.01567 + 0.267222i
\(37\) 5.47398 + 9.48122i 0.899917 + 1.55870i 0.827598 + 0.561321i \(0.189707\pi\)
0.0723191 + 0.997382i \(0.476960\pi\)
\(38\) 6.66375 2.42541i 1.08100 0.393453i
\(39\) 0.457496 1.46253i 0.0732579 0.234193i
\(40\) 0 0
\(41\) −7.28901 + 6.11620i −1.13835 + 0.955190i −0.999384 0.0351066i \(-0.988823\pi\)
−0.138968 + 0.990297i \(0.544378\pi\)
\(42\) 0.393647 1.25842i 0.0607411 0.194179i
\(43\) 9.54330 3.47348i 1.45534 0.529701i 0.511263 0.859424i \(-0.329178\pi\)
0.944077 + 0.329724i \(0.106956\pi\)
\(44\) 0.305088 + 0.528427i 0.0459937 + 0.0796634i
\(45\) 0 0
\(46\) −0.553021 + 0.957860i −0.0815385 + 0.141229i
\(47\) −1.09967 + 6.23654i −0.160403 + 0.909693i 0.793275 + 0.608864i \(0.208374\pi\)
−0.953678 + 0.300829i \(0.902737\pi\)
\(48\) −3.98331 + 5.21557i −0.574941 + 0.752803i
\(49\) 6.44504 + 2.34580i 0.920720 + 0.335115i
\(50\) 0 0
\(51\) 7.15152 + 3.70228i 1.00141 + 0.518423i
\(52\) −1.42360 1.19454i −0.197417 0.165653i
\(53\) 12.2148 1.67783 0.838913 0.544265i \(-0.183191\pi\)
0.838913 + 0.544265i \(0.183191\pi\)
\(54\) 5.59303 8.91238i 0.761115 1.21282i
\(55\) 0 0
\(56\) −0.0585889 0.0491619i −0.00782927 0.00656954i
\(57\) −0.278306 6.05925i −0.0368625 0.802567i
\(58\) 2.13583 + 12.1129i 0.280448 + 1.59050i
\(59\) −1.18778 0.432318i −0.154636 0.0562830i 0.263542 0.964648i \(-0.415109\pi\)
−0.418179 + 0.908365i \(0.637331\pi\)
\(60\) 0 0
\(61\) 0.499613 2.83345i 0.0639690 0.362786i −0.935974 0.352070i \(-0.885478\pi\)
0.999943 0.0107158i \(-0.00341102\pi\)
\(62\) 5.55830 9.62726i 0.705905 1.22266i
\(63\) −0.926782 0.642702i −0.116764 0.0809728i
\(64\) 4.39127 + 7.60590i 0.548909 + 0.950737i
\(65\) 0 0
\(66\) 0.994211 0.222775i 0.122379 0.0274217i
\(67\) −6.78495 + 5.69325i −0.828913 + 0.695541i −0.955041 0.296473i \(-0.904189\pi\)
0.126128 + 0.992014i \(0.459745\pi\)
\(68\) 7.48114 6.27742i 0.907222 0.761249i
\(69\) 0.640723 + 0.696054i 0.0771339 + 0.0837951i
\(70\) 0 0
\(71\) 5.36876 + 9.29896i 0.637154 + 1.10358i 0.986054 + 0.166424i \(0.0532219\pi\)
−0.348900 + 0.937160i \(0.613445\pi\)
\(72\) −0.352330 0.498359i −0.0415225 0.0587322i
\(73\) 0.389512 0.674654i 0.0455889 0.0789623i −0.842331 0.538961i \(-0.818817\pi\)
0.887919 + 0.459999i \(0.152150\pi\)
\(74\) 3.84964 21.8324i 0.447512 2.53797i
\(75\) 0 0
\(76\) −6.91222 2.51584i −0.792886 0.288587i
\(77\) −0.0189640 0.107550i −0.00216115 0.0122565i
\(78\) −2.61334 + 1.67321i −0.295902 + 0.189454i
\(79\) 5.29571 + 4.44363i 0.595813 + 0.499947i 0.890097 0.455771i \(-0.150637\pi\)
−0.294283 + 0.955718i \(0.595081\pi\)
\(80\) 0 0
\(81\) −5.84732 6.84170i −0.649702 0.760189i
\(82\) 19.2678 2.12777
\(83\) 6.88221 + 5.77486i 0.755421 + 0.633874i 0.936931 0.349516i \(-0.113654\pi\)
−0.181509 + 0.983389i \(0.558098\pi\)
\(84\) −1.15186 + 0.737486i −0.125678 + 0.0804664i
\(85\) 0 0
\(86\) −19.3248 7.03366i −2.08385 0.758459i
\(87\) 10.4337 + 1.34958i 1.11861 + 0.144690i
\(88\) 0.0102624 0.0582011i 0.00109398 0.00620426i
\(89\) −3.11061 + 5.38773i −0.329724 + 0.571099i −0.982457 0.186489i \(-0.940289\pi\)
0.652733 + 0.757588i \(0.273622\pi\)
\(90\) 0 0
\(91\) 0.166306 + 0.288050i 0.0174336 + 0.0301959i
\(92\) 1.07809 0.392394i 0.112399 0.0409099i
\(93\) −6.43977 6.99589i −0.667773 0.725440i
\(94\) 9.82342 8.24283i 1.01321 0.850183i
\(95\) 0 0
\(96\) 13.6553 3.05978i 1.39369 0.312288i
\(97\) −13.1743 + 4.79504i −1.33765 + 0.486863i −0.909070 0.416643i \(-0.863206\pi\)
−0.428575 + 0.903506i \(0.640984\pi\)
\(98\) −6.94427 12.0278i −0.701477 1.21499i
\(99\) 0.0720209 0.868504i 0.00723838 0.0872880i
\(100\) 0 0
\(101\) −0.698390 + 3.96077i −0.0694924 + 0.394111i 0.930145 + 0.367192i \(0.119681\pi\)
−0.999638 + 0.0269191i \(0.991430\pi\)
\(102\) −6.27455 15.0516i −0.621273 1.49033i
\(103\) 0.484326 + 0.176280i 0.0477221 + 0.0173694i 0.365771 0.930705i \(-0.380805\pi\)
−0.318049 + 0.948074i \(0.603028\pi\)
\(104\) 0.0312556 + 0.177260i 0.00306487 + 0.0173817i
\(105\) 0 0
\(106\) −18.9477 15.8990i −1.84036 1.54425i
\(107\) 17.9687 1.73710 0.868552 0.495598i \(-0.165051\pi\)
0.868552 + 0.495598i \(0.165051\pi\)
\(108\) −10.3867 + 3.35267i −0.999456 + 0.322611i
\(109\) −1.10502 −0.105842 −0.0529209 0.998599i \(-0.516853\pi\)
−0.0529209 + 0.998599i \(0.516853\pi\)
\(110\) 0 0
\(111\) −16.8397 8.71775i −1.59835 0.827453i
\(112\) −0.247350 1.40279i −0.0233724 0.132551i
\(113\) −8.53194 3.10537i −0.802618 0.292129i −0.0920470 0.995755i \(-0.529341\pi\)
−0.710571 + 0.703626i \(0.751563\pi\)
\(114\) −7.45513 + 9.76142i −0.698237 + 0.914241i
\(115\) 0 0
\(116\) 6.37918 11.0491i 0.592292 1.02588i
\(117\) 0.698573 + 2.56065i 0.0645831 + 0.236732i
\(118\) 1.27979 + 2.21666i 0.117814 + 0.204060i
\(119\) −1.64250 + 0.597820i −0.150567 + 0.0548020i
\(120\) 0 0
\(121\) −8.36184 + 7.01642i −0.760168 + 0.637856i
\(122\) −4.46308 + 3.74497i −0.404068 + 0.339053i
\(123\) 4.92022 15.7291i 0.443641 1.41824i
\(124\) −10.8357 + 3.94387i −0.973074 + 0.354170i
\(125\) 0 0
\(126\) 0.601080 + 2.20328i 0.0535484 + 0.196284i
\(127\) −5.39923 + 9.35175i −0.479105 + 0.829833i −0.999713 0.0239622i \(-0.992372\pi\)
0.520608 + 0.853796i \(0.325705\pi\)
\(128\) 0.282262 1.60079i 0.0249487 0.141491i
\(129\) −10.6767 + 13.9796i −0.940028 + 1.23083i
\(130\) 0 0
\(131\) 2.14908 + 12.1880i 0.187766 + 1.06487i 0.922350 + 0.386356i \(0.126266\pi\)
−0.734584 + 0.678518i \(0.762623\pi\)
\(132\) −0.938545 0.485876i −0.0816898 0.0422901i
\(133\) 1.00853 + 0.846260i 0.0874510 + 0.0733801i
\(134\) 17.9353 1.54938
\(135\) 0 0
\(136\) −0.945886 −0.0811091
\(137\) 12.6386 + 10.6051i 1.07979 + 0.906052i 0.995903 0.0904234i \(-0.0288220\pi\)
0.0838872 + 0.996475i \(0.473266\pi\)
\(138\) −0.0878978 1.91370i −0.00748236 0.162905i
\(139\) −2.14103 12.1424i −0.181600 1.02990i −0.930247 0.366935i \(-0.880407\pi\)
0.748647 0.662969i \(-0.230704\pi\)
\(140\) 0 0
\(141\) −4.22046 10.1242i −0.355427 0.852609i
\(142\) 3.77564 21.4127i 0.316845 1.79692i
\(143\) −0.128507 + 0.222580i −0.0107463 + 0.0186131i
\(144\) 0.939380 11.3280i 0.0782817 0.944003i
\(145\) 0 0
\(146\) −1.48236 + 0.539534i −0.122681 + 0.0446522i
\(147\) −11.5921 + 2.59747i −0.956101 + 0.214236i
\(148\) −17.6158 + 14.7814i −1.44801 + 1.21503i
\(149\) −7.81833 + 6.56036i −0.640503 + 0.537446i −0.904173 0.427167i \(-0.859512\pi\)
0.263670 + 0.964613i \(0.415067\pi\)
\(150\) 0 0
\(151\) 16.7786 6.10690i 1.36542 0.496972i 0.447695 0.894187i \(-0.352245\pi\)
0.917726 + 0.397214i \(0.130023\pi\)
\(152\) 0.356227 + 0.617003i 0.0288938 + 0.0500456i
\(153\) −13.8895 + 1.27861i −1.12290 + 0.103369i
\(154\) −0.110572 + 0.191517i −0.00891016 + 0.0154329i
\(155\) 0 0
\(156\) 3.19220 + 0.412907i 0.255581 + 0.0330590i
\(157\) −10.8531 3.95020i −0.866170 0.315260i −0.129555 0.991572i \(-0.541355\pi\)
−0.736615 + 0.676312i \(0.763577\pi\)
\(158\) −2.43084 13.7860i −0.193387 1.09675i
\(159\) −17.8175 + 11.4078i −1.41302 + 0.904699i
\(160\) 0 0
\(161\) −0.205341 −0.0161831
\(162\) 0.165131 + 18.2239i 0.0129739 + 1.43180i
\(163\) −6.26212 −0.490487 −0.245244 0.969461i \(-0.578868\pi\)
−0.245244 + 0.969461i \(0.578868\pi\)
\(164\) −15.3103 12.8469i −1.19553 1.00317i
\(165\) 0 0
\(166\) −3.15908 17.9161i −0.245192 1.39056i
\(167\) −14.7179 5.35688i −1.13891 0.414528i −0.297388 0.954757i \(-0.596116\pi\)
−0.841518 + 0.540229i \(0.818338\pi\)
\(168\) 0.131377 + 0.0169934i 0.0101360 + 0.00131107i
\(169\) −2.12150 + 12.0316i −0.163192 + 0.925509i
\(170\) 0 0
\(171\) 6.06492 + 8.57862i 0.463796 + 0.656023i
\(172\) 10.6659 + 18.4739i 0.813270 + 1.40862i
\(173\) −8.57107 + 3.11962i −0.651647 + 0.237180i −0.646626 0.762807i \(-0.723820\pi\)
−0.00502090 + 0.999987i \(0.501598\pi\)
\(174\) −14.4282 15.6741i −1.09380 1.18825i
\(175\) 0 0
\(176\) 0.843168 0.707502i 0.0635562 0.0533300i
\(177\) 2.13636 0.478700i 0.160579 0.0359813i
\(178\) 11.8380 4.30868i 0.887295 0.322949i
\(179\) 1.32110 + 2.28821i 0.0987437 + 0.171029i 0.911165 0.412042i \(-0.135184\pi\)
−0.812421 + 0.583071i \(0.801851\pi\)
\(180\) 0 0
\(181\) 3.54912 6.14725i 0.263804 0.456922i −0.703446 0.710749i \(-0.748356\pi\)
0.967250 + 0.253827i \(0.0816895\pi\)
\(182\) 0.116957 0.663294i 0.00866940 0.0491666i
\(183\) 1.91748 + 4.59972i 0.141744 + 0.340021i
\(184\) −0.104420 0.0380056i −0.00769791 0.00280181i
\(185\) 0 0
\(186\) 0.883443 + 19.2342i 0.0647772 + 1.41032i
\(187\) −1.03464 0.868169i −0.0756606 0.0634868i
\(188\) −13.3017 −0.970128
\(189\) 1.95213 + 0.0719439i 0.141996 + 0.00523315i
\(190\) 0 0
\(191\) 3.97951 + 3.33921i 0.287948 + 0.241617i 0.775307 0.631585i \(-0.217595\pi\)
−0.487359 + 0.873202i \(0.662040\pi\)
\(192\) −13.5089 6.99344i −0.974921 0.504708i
\(193\) 0.681015 + 3.86223i 0.0490205 + 0.278009i 0.999458 0.0329051i \(-0.0104759\pi\)
−0.950438 + 0.310914i \(0.899365\pi\)
\(194\) 26.6774 + 9.70978i 1.91533 + 0.697121i
\(195\) 0 0
\(196\) −2.50165 + 14.1875i −0.178689 + 1.01340i
\(197\) 5.18583 8.98212i 0.369475 0.639950i −0.620008 0.784595i \(-0.712871\pi\)
0.989484 + 0.144646i \(0.0462042\pi\)
\(198\) −1.24218 + 1.25349i −0.0882780 + 0.0890816i
\(199\) −5.95479 10.3140i −0.422124 0.731140i 0.574023 0.818839i \(-0.305382\pi\)
−0.996147 + 0.0876991i \(0.972049\pi\)
\(200\) 0 0
\(201\) 4.57997 14.6414i 0.323046 1.03272i
\(202\) 6.23876 5.23494i 0.438958 0.368329i
\(203\) −1.74926 + 1.46780i −0.122774 + 0.103019i
\(204\) −5.04991 + 16.1437i −0.353565 + 1.13028i
\(205\) 0 0
\(206\) −0.521842 0.903856i −0.0363584 0.0629747i
\(207\) −1.58468 0.416929i −0.110143 0.0289786i
\(208\) −1.67613 + 2.90315i −0.116219 + 0.201297i
\(209\) −0.176655 + 1.00186i −0.0122195 + 0.0693000i
\(210\) 0 0
\(211\) −2.30091 0.837462i −0.158401 0.0576532i 0.261603 0.965176i \(-0.415749\pi\)
−0.420004 + 0.907522i \(0.637971\pi\)
\(212\) 4.45524 + 25.2669i 0.305987 + 1.73534i
\(213\) −16.5160 8.55017i −1.13166 0.585848i
\(214\) −27.8733 23.3885i −1.90538 1.59880i
\(215\) 0 0
\(216\) 0.979375 + 0.397895i 0.0666380 + 0.0270733i
\(217\) 2.06384 0.140103
\(218\) 1.71412 + 1.43832i 0.116095 + 0.0974152i
\(219\) 0.0619094 + 1.34789i 0.00418345 + 0.0910818i
\(220\) 0 0
\(221\) 3.86546 + 1.40691i 0.260019 + 0.0946391i
\(222\) 14.7747 + 35.4419i 0.991611 + 2.37871i
\(223\) −3.12885 + 17.7446i −0.209523 + 1.18826i 0.680639 + 0.732619i \(0.261702\pi\)
−0.890162 + 0.455645i \(0.849409\pi\)
\(224\) −1.51869 + 2.63045i −0.101472 + 0.175755i
\(225\) 0 0
\(226\) 9.19282 + 15.9224i 0.611497 + 1.05914i
\(227\) 5.02409 1.82862i 0.333460 0.121370i −0.169863 0.985468i \(-0.554333\pi\)
0.503324 + 0.864098i \(0.332110\pi\)
\(228\) 12.4324 2.78576i 0.823355 0.184491i
\(229\) 16.5031 13.8477i 1.09055 0.915083i 0.0937994 0.995591i \(-0.470099\pi\)
0.996754 + 0.0805082i \(0.0256543\pi\)
\(230\) 0 0
\(231\) 0.128107 + 0.139171i 0.00842885 + 0.00915675i
\(232\) −1.16120 + 0.422641i −0.0762363 + 0.0277477i
\(233\) −12.7820 22.1390i −0.837375 1.45038i −0.892082 0.451874i \(-0.850756\pi\)
0.0547064 0.998502i \(-0.482578\pi\)
\(234\) 2.24936 4.88138i 0.147045 0.319106i
\(235\) 0 0
\(236\) 0.461039 2.61468i 0.0300111 0.170201i
\(237\) −11.8748 1.53599i −0.771353 0.0997735i
\(238\) 3.32599 + 1.21056i 0.215592 + 0.0784691i
\(239\) 1.60685 + 9.11290i 0.103939 + 0.589465i 0.991639 + 0.129043i \(0.0411906\pi\)
−0.887700 + 0.460421i \(0.847698\pi\)
\(240\) 0 0
\(241\) −22.0268 18.4827i −1.41887 1.19058i −0.951940 0.306283i \(-0.900914\pi\)
−0.466933 0.884293i \(-0.654641\pi\)
\(242\) 22.1037 1.42088
\(243\) 14.9191 + 4.51886i 0.957062 + 0.289885i
\(244\) 6.04338 0.386888
\(245\) 0 0
\(246\) −28.1056 + 17.9949i −1.79195 + 1.14731i
\(247\) −0.538026 3.05130i −0.0342338 0.194149i
\(248\) 1.04950 + 0.381986i 0.0666432 + 0.0242562i
\(249\) −15.4323 1.99615i −0.977985 0.126501i
\(250\) 0 0
\(251\) 5.86206 10.1534i 0.370010 0.640876i −0.619557 0.784952i \(-0.712688\pi\)
0.989567 + 0.144076i \(0.0460210\pi\)
\(252\) 0.991429 2.15152i 0.0624541 0.135533i
\(253\) −0.0793348 0.137412i −0.00498774 0.00863901i
\(254\) 20.5478 7.47878i 1.28928 0.469260i
\(255\) 0 0
\(256\) 10.9342 9.17485i 0.683385 0.573428i
\(257\) 2.82575 2.37109i 0.176265 0.147904i −0.550387 0.834910i \(-0.685520\pi\)
0.726652 + 0.687006i \(0.241075\pi\)
\(258\) 34.7578 7.78827i 2.16393 0.484876i
\(259\) 3.86758 1.40769i 0.240320 0.0874693i
\(260\) 0 0
\(261\) −16.4798 + 7.77576i −1.02008 + 0.481308i
\(262\) 12.5305 21.7035i 0.774138 1.34085i
\(263\) −3.83968 + 21.7759i −0.236765 + 1.34276i 0.602099 + 0.798421i \(0.294331\pi\)
−0.838864 + 0.544340i \(0.816780\pi\)
\(264\) 0.0393865 + 0.0944815i 0.00242407 + 0.00581494i
\(265\) 0 0
\(266\) −0.462939 2.62546i −0.0283846 0.160977i
\(267\) −0.494404 10.7641i −0.0302570 0.658754i
\(268\) −14.2516 11.9585i −0.870553 0.730480i
\(269\) 25.3331 1.54459 0.772294 0.635265i \(-0.219109\pi\)
0.772294 + 0.635265i \(0.219109\pi\)
\(270\) 0 0
\(271\) 28.7783 1.74816 0.874079 0.485783i \(-0.161466\pi\)
0.874079 + 0.485783i \(0.161466\pi\)
\(272\) −13.4950 11.3237i −0.818255 0.686598i
\(273\) −0.511609 0.264855i −0.0309640 0.0160298i
\(274\) −5.80140 32.9014i −0.350475 1.98764i
\(275\) 0 0
\(276\) −1.20613 + 1.57925i −0.0726004 + 0.0950598i
\(277\) 3.42530 19.4258i 0.205806 1.16718i −0.690360 0.723466i \(-0.742548\pi\)
0.896166 0.443719i \(-0.146341\pi\)
\(278\) −12.4836 + 21.6222i −0.748715 + 1.29681i
\(279\) 15.9273 + 4.19047i 0.953544 + 0.250877i
\(280\) 0 0
\(281\) −8.19525 + 2.98283i −0.488887 + 0.177940i −0.574689 0.818372i \(-0.694877\pi\)
0.0858017 + 0.996312i \(0.472655\pi\)
\(282\) −6.63100 + 21.1982i −0.394870 + 1.26233i
\(283\) 5.69001 4.77449i 0.338236 0.283814i −0.457810 0.889050i \(-0.651366\pi\)
0.796046 + 0.605236i \(0.206921\pi\)
\(284\) −17.2772 + 14.4973i −1.02521 + 0.860257i
\(285\) 0 0
\(286\) 0.489056 0.178002i 0.0289185 0.0105255i
\(287\) 1.78857 + 3.09789i 0.105576 + 0.182862i
\(288\) −17.0612 + 17.2165i −1.00534 + 1.01449i
\(289\) −2.30851 + 3.99846i −0.135795 + 0.235204i
\(290\) 0 0
\(291\) 14.7389 19.2984i 0.864007 1.13129i
\(292\) 1.53763 + 0.559652i 0.0899831 + 0.0327512i
\(293\) 0.328799 + 1.86471i 0.0192086 + 0.108937i 0.992905 0.118914i \(-0.0379412\pi\)
−0.973696 + 0.227851i \(0.926830\pi\)
\(294\) 21.3627 + 11.0593i 1.24590 + 0.644991i
\(295\) 0 0
\(296\) 2.22728 0.129458
\(297\) 0.706072 + 1.33414i 0.0409705 + 0.0774145i
\(298\) 20.6670 1.19721
\(299\) 0.370191 + 0.310627i 0.0214087 + 0.0179640i
\(300\) 0 0
\(301\) −0.662985 3.75998i −0.0382138 0.216721i
\(302\) −33.9759 12.3662i −1.95510 0.711597i
\(303\) −2.68037 6.42976i −0.153983 0.369380i
\(304\) −2.30413 + 13.0674i −0.132151 + 0.749466i
\(305\) 0 0
\(306\) 23.2098 + 16.0955i 1.32682 + 0.920117i
\(307\) −7.11195 12.3183i −0.405900 0.703040i 0.588525 0.808479i \(-0.299709\pi\)
−0.994426 + 0.105439i \(0.966375\pi\)
\(308\) 0.215556 0.0784561i 0.0122825 0.00447045i
\(309\) −0.871114 + 0.195193i −0.0495559 + 0.0111041i
\(310\) 0 0
\(311\) 11.2222 9.41658i 0.636355 0.533965i −0.266541 0.963824i \(-0.585881\pi\)
0.902896 + 0.429858i \(0.141436\pi\)
\(312\) −0.211141 0.229375i −0.0119535 0.0129858i
\(313\) 24.3151 8.84996i 1.37437 0.500229i 0.453902 0.891051i \(-0.350032\pi\)
0.920466 + 0.390822i \(0.127809\pi\)
\(314\) 11.6938 + 20.2542i 0.659917 + 1.14301i
\(315\) 0 0
\(316\) −7.26032 + 12.5752i −0.408425 + 0.707413i
\(317\) 3.17156 17.9868i 0.178133 1.01024i −0.756333 0.654187i \(-0.773011\pi\)
0.934466 0.356053i \(-0.115878\pi\)
\(318\) 42.4873 + 5.49568i 2.38257 + 0.308182i
\(319\) −1.65807 0.603489i −0.0928342 0.0337889i
\(320\) 0 0
\(321\) −26.2107 + 16.7817i −1.46294 + 0.936661i
\(322\) 0.318527 + 0.267276i 0.0177508 + 0.0148947i
\(323\) 16.2822 0.905968
\(324\) 12.0197 14.5910i 0.667760 0.810609i
\(325\) 0 0
\(326\) 9.71387 + 8.15090i 0.538001 + 0.451437i
\(327\) 1.61188 1.03202i 0.0891371 0.0570709i
\(328\) 0.336144 + 1.90637i 0.0185605 + 0.105262i
\(329\) 2.23717 + 0.814263i 0.123339 + 0.0448918i
\(330\) 0 0
\(331\) −5.49188 + 31.1460i −0.301861 + 1.71194i 0.336062 + 0.941840i \(0.390905\pi\)
−0.637923 + 0.770100i \(0.720206\pi\)
\(332\) −9.43539 + 16.3426i −0.517835 + 0.896916i
\(333\) 32.7056 3.01074i 1.79226 0.164987i
\(334\) 15.8580 + 27.4668i 0.867709 + 1.50292i
\(335\) 0 0
\(336\) 1.67093 + 1.81522i 0.0911565 + 0.0990285i
\(337\) 5.87047 4.92591i 0.319785 0.268332i −0.468737 0.883338i \(-0.655291\pi\)
0.788522 + 0.615006i \(0.210846\pi\)
\(338\) 18.9515 15.9022i 1.03083 0.864965i
\(339\) 15.3456 3.43854i 0.833461 0.186756i
\(340\) 0 0
\(341\) 0.797378 + 1.38110i 0.0431804 + 0.0747907i
\(342\) 1.75814 21.2015i 0.0950691 1.14644i
\(343\) 2.60503 4.51204i 0.140658 0.243627i
\(344\) 0.358777 2.03472i 0.0193439 0.109705i
\(345\) 0 0
\(346\) 17.3561 + 6.31710i 0.933069 + 0.339609i
\(347\) 0.616506 + 3.49638i 0.0330958 + 0.187695i 0.996874 0.0790102i \(-0.0251760\pi\)
−0.963778 + 0.266706i \(0.914065\pi\)
\(348\) 1.01391 + 22.0749i 0.0543515 + 1.18334i
\(349\) −3.58455 3.00779i −0.191876 0.161003i 0.541788 0.840515i \(-0.317747\pi\)
−0.733665 + 0.679511i \(0.762192\pi\)
\(350\) 0 0
\(351\) −3.41048 3.08276i −0.182038 0.164545i
\(352\) −2.34703 −0.125097
\(353\) 12.0080 + 10.0759i 0.639120 + 0.536286i 0.903748 0.428065i \(-0.140805\pi\)
−0.264628 + 0.964351i \(0.585249\pi\)
\(354\) −3.93703 2.03817i −0.209251 0.108327i
\(355\) 0 0
\(356\) −12.2794 4.46934i −0.650807 0.236874i
\(357\) 1.83756 2.40602i 0.0972539 0.127340i
\(358\) 0.929080 5.26907i 0.0491034 0.278479i
\(359\) −1.36397 + 2.36247i −0.0719876 + 0.124686i −0.899772 0.436360i \(-0.856268\pi\)
0.827785 + 0.561046i \(0.189601\pi\)
\(360\) 0 0
\(361\) 3.36800 + 5.83355i 0.177263 + 0.307029i
\(362\) −13.5068 + 4.91608i −0.709902 + 0.258383i
\(363\) 5.64440 18.0442i 0.296254 0.947074i
\(364\) −0.535189 + 0.449077i −0.0280516 + 0.0235380i
\(365\) 0 0
\(366\) 3.01266 9.63096i 0.157474 0.503418i
\(367\) −29.9725 + 10.9091i −1.56455 + 0.569450i −0.971773 0.235916i \(-0.924191\pi\)
−0.592778 + 0.805366i \(0.701969\pi\)
\(368\) −1.03478 1.79228i −0.0539414 0.0934293i
\(369\) 7.51293 + 27.5390i 0.391107 + 1.43362i
\(370\) 0 0
\(371\) 0.797399 4.52228i 0.0413989 0.234785i
\(372\) 12.1225 15.8727i 0.628525 0.822962i
\(373\) −5.82118 2.11873i −0.301409 0.109704i 0.186888 0.982381i \(-0.440160\pi\)
−0.488298 + 0.872677i \(0.662382\pi\)
\(374\) 0.474924 + 2.69343i 0.0245577 + 0.139274i
\(375\) 0 0
\(376\) 0.986932 + 0.828134i 0.0508971 + 0.0427078i
\(377\) 5.37398 0.276774
\(378\) −2.93451 2.65253i −0.150935 0.136431i
\(379\) 24.4506 1.25595 0.627973 0.778235i \(-0.283885\pi\)
0.627973 + 0.778235i \(0.283885\pi\)
\(380\) 0 0
\(381\) −0.858161 18.6838i −0.0439649 0.957200i
\(382\) −1.82668 10.3596i −0.0934612 0.530045i
\(383\) 7.01885 + 2.55465i 0.358647 + 0.130537i 0.515058 0.857155i \(-0.327770\pi\)
−0.156411 + 0.987692i \(0.549993\pi\)
\(384\) 1.08330 + 2.59866i 0.0552821 + 0.132612i
\(385\) 0 0
\(386\) 3.97075 6.87755i 0.202106 0.350058i
\(387\) 2.51787 30.3631i 0.127990 1.54344i
\(388\) −14.7240 25.5028i −0.747500 1.29471i
\(389\) −26.7061 + 9.72022i −1.35405 + 0.492835i −0.914210 0.405240i \(-0.867188\pi\)
−0.439842 + 0.898075i \(0.644966\pi\)
\(390\) 0 0
\(391\) −1.94539 + 1.63238i −0.0983826 + 0.0825528i
\(392\) 1.06889 0.896909i 0.0539873 0.0453007i
\(393\) −14.5177 15.7714i −0.732320 0.795562i
\(394\) −19.7356 + 7.18318i −0.994266 + 0.361883i
\(395\) 0 0
\(396\) 1.82282 0.167801i 0.0916001 0.00843231i
\(397\) −14.4933 + 25.1031i −0.727396 + 1.25989i 0.230585 + 0.973052i \(0.425936\pi\)
−0.957980 + 0.286834i \(0.907397\pi\)
\(398\) −4.18777 + 23.7501i −0.209914 + 1.19048i
\(399\) −2.26149 0.292520i −0.113216 0.0146443i
\(400\) 0 0
\(401\) 5.27642 + 29.9241i 0.263492 + 1.49434i 0.773296 + 0.634046i \(0.218607\pi\)
−0.509804 + 0.860291i \(0.670282\pi\)
\(402\) −26.1620 + 16.7505i −1.30484 + 0.835437i
\(403\) −3.72071 3.12205i −0.185342 0.155520i
\(404\) −8.44780 −0.420294
\(405\) 0 0
\(406\) 4.62398 0.229484
\(407\) 2.43627 + 2.04428i 0.120762 + 0.101331i
\(408\) 1.37975 0.883398i 0.0683078 0.0437347i
\(409\) −0.726985 4.12294i −0.0359471 0.203866i 0.961545 0.274649i \(-0.0885615\pi\)
−0.997492 + 0.0707824i \(0.977450\pi\)
\(410\) 0 0
\(411\) −28.3402 3.66577i −1.39792 0.180819i
\(412\) −0.187992 + 1.06615i −0.00926168 + 0.0525256i
\(413\) −0.237598 + 0.411531i −0.0116914 + 0.0202501i
\(414\) 1.91549 + 2.70940i 0.0941414 + 0.133160i
\(415\) 0 0
\(416\) 6.71711 2.44483i 0.329333 0.119868i
\(417\) 14.4633 + 15.7123i 0.708271 + 0.769436i
\(418\) 1.57807 1.32416i 0.0771858 0.0647666i
\(419\) −17.7641 + 14.9058i −0.867832 + 0.728197i −0.963640 0.267203i \(-0.913901\pi\)
0.0958087 + 0.995400i \(0.469456\pi\)
\(420\) 0 0
\(421\) 6.96568 2.53530i 0.339487 0.123563i −0.166651 0.986016i \(-0.553295\pi\)
0.506137 + 0.862453i \(0.331073\pi\)
\(422\) 2.47913 + 4.29399i 0.120682 + 0.209028i
\(423\) 15.6117 + 10.8263i 0.759065 + 0.526394i
\(424\) 1.24250 2.15207i 0.0603411 0.104514i
\(425\) 0 0
\(426\) 14.4907 + 34.7606i 0.702075 + 1.68416i
\(427\) −1.01641 0.369944i −0.0491877 0.0179029i
\(428\) 6.55396 + 37.1694i 0.316798 + 1.79665i
\(429\) −0.0204250 0.444692i −0.000986129 0.0214699i
\(430\) 0 0
\(431\) 3.55875 0.171419 0.0857095 0.996320i \(-0.472684\pi\)
0.0857095 + 0.996320i \(0.472684\pi\)
\(432\) 9.20941 + 17.4014i 0.443088 + 0.837223i
\(433\) −39.5383 −1.90009 −0.950046 0.312111i \(-0.898964\pi\)
−0.950046 + 0.312111i \(0.898964\pi\)
\(434\) −3.20145 2.68633i −0.153674 0.128948i
\(435\) 0 0
\(436\) −0.403048 2.28580i −0.0193025 0.109470i
\(437\) 1.79745 + 0.654218i 0.0859837 + 0.0312955i
\(438\) 1.65840 2.17144i 0.0792415 0.103755i
\(439\) −0.368776 + 2.09143i −0.0176007 + 0.0998186i −0.992343 0.123516i \(-0.960583\pi\)
0.974742 + 0.223334i \(0.0716942\pi\)
\(440\) 0 0
\(441\) 14.4834 14.6152i 0.689684 0.695962i
\(442\) −4.16487 7.21377i −0.198103 0.343124i
\(443\) −15.2652 + 5.55606i −0.725270 + 0.263977i −0.678161 0.734913i \(-0.737223\pi\)
−0.0471084 + 0.998890i \(0.515001\pi\)
\(444\) 11.8910 38.0136i 0.564323 1.80404i
\(445\) 0 0
\(446\) 27.9502 23.4530i 1.32348 1.11053i
\(447\) 5.27752 16.8713i 0.249618 0.797987i
\(448\) 3.10260 1.12926i 0.146584 0.0533523i
\(449\) −17.8132 30.8534i −0.840658 1.45606i −0.889339 0.457249i \(-0.848835\pi\)
0.0486805 0.998814i \(-0.484498\pi\)
\(450\) 0 0
\(451\) −1.38205 + 2.39378i −0.0650781 + 0.112719i
\(452\) 3.31168 18.7815i 0.155768 0.883406i
\(453\) −18.7712 + 24.5782i −0.881947 + 1.15478i
\(454\) −10.1736 3.70288i −0.477470 0.173785i
\(455\) 0 0
\(456\) −1.09587 0.567320i −0.0513186 0.0265672i
\(457\) 19.7485 + 16.5710i 0.923796 + 0.775157i 0.974693 0.223547i \(-0.0717636\pi\)
−0.0508970 + 0.998704i \(0.516208\pi\)
\(458\) −43.6242 −2.03842
\(459\) 19.0663 14.8370i 0.889938 0.692532i
\(460\) 0 0
\(461\) −26.3039 22.0716i −1.22509 1.02798i −0.998542 0.0539762i \(-0.982810\pi\)
−0.226551 0.973999i \(-0.572745\pi\)
\(462\) −0.0175745 0.382630i −0.000817639 0.0178016i
\(463\) −5.12509 29.0659i −0.238183 1.35080i −0.835805 0.549026i \(-0.814999\pi\)
0.597622 0.801778i \(-0.296112\pi\)
\(464\) −21.6265 7.87140i −1.00398 0.365421i
\(465\) 0 0
\(466\) −8.98908 + 50.9796i −0.416411 + 2.36158i
\(467\) −8.31964 + 14.4100i −0.384987 + 0.666817i −0.991767 0.128053i \(-0.959127\pi\)
0.606780 + 0.794869i \(0.292461\pi\)
\(468\) −5.04205 + 2.37902i −0.233069 + 0.109970i
\(469\) 1.66488 + 2.88366i 0.0768770 + 0.133155i
\(470\) 0 0
\(471\) 19.5205 4.37400i 0.899455 0.201543i
\(472\) −0.196991 + 0.165295i −0.00906725 + 0.00760833i
\(473\) 2.25999 1.89635i 0.103914 0.0871944i
\(474\) 16.4211 + 17.8392i 0.754245 + 0.819380i
\(475\) 0 0
\(476\) −1.83571 3.17955i −0.0841397 0.145734i
\(477\) 15.3359 33.2808i 0.702184 1.52382i
\(478\) 9.36897 16.2275i 0.428527 0.742230i
\(479\) 0.965663 5.47655i 0.0441223 0.250230i −0.954767 0.297356i \(-0.903895\pi\)
0.998889 + 0.0471262i \(0.0150063\pi\)
\(480\) 0 0
\(481\) −9.10199 3.31285i −0.415015 0.151053i
\(482\) 10.1108 + 57.3411i 0.460534 + 2.61182i
\(483\) 0.299528 0.191775i 0.0136290 0.00872609i
\(484\) −17.5638 14.7378i −0.798354 0.669898i
\(485\) 0 0
\(486\) −17.2608 26.4287i −0.782968 1.19883i
\(487\) −17.5069 −0.793314 −0.396657 0.917967i \(-0.629830\pi\)
−0.396657 + 0.917967i \(0.629830\pi\)
\(488\) −0.448393 0.376246i −0.0202978 0.0170319i
\(489\) 9.13446 5.84843i 0.413075 0.264475i
\(490\) 0 0
\(491\) 25.2199 + 9.17930i 1.13816 + 0.414256i 0.841248 0.540649i \(-0.181821\pi\)
0.296911 + 0.954905i \(0.404044\pi\)
\(492\) 34.3311 + 4.44068i 1.54777 + 0.200201i
\(493\) −4.90396 + 27.8118i −0.220863 + 1.25258i
\(494\) −3.13704 + 5.43351i −0.141142 + 0.244465i
\(495\) 0 0
\(496\) 10.4003 + 18.0139i 0.466988 + 0.808847i
\(497\) 3.79324 1.38063i 0.170150 0.0619295i
\(498\) 21.3406 + 23.1835i 0.956294 + 1.03888i
\(499\) 4.46524 3.74678i 0.199892 0.167729i −0.537347 0.843361i \(-0.680574\pi\)
0.737239 + 0.675632i \(0.236129\pi\)
\(500\) 0 0
\(501\) 26.4718 5.93160i 1.18267 0.265004i
\(502\) −22.3091 + 8.11986i −0.995705 + 0.362407i
\(503\) 15.2521 + 26.4175i 0.680059 + 1.17790i 0.974963 + 0.222369i \(0.0713790\pi\)
−0.294904 + 0.955527i \(0.595288\pi\)
\(504\) −0.207508 + 0.0979097i −0.00924316 + 0.00436124i
\(505\) 0 0
\(506\) −0.0557931 + 0.316419i −0.00248031 + 0.0140665i
\(507\) −8.14218 19.5317i −0.361607 0.867433i
\(508\) −21.3139 7.75764i −0.945654 0.344190i
\(509\) −5.46355 30.9853i −0.242167 1.37340i −0.826980 0.562231i \(-0.809943\pi\)
0.584813 0.811168i \(-0.301168\pi\)
\(510\) 0 0
\(511\) −0.224349 0.188252i −0.00992464 0.00832776i
\(512\) −32.1543 −1.42103
\(513\) −16.8587 6.84925i −0.744330 0.302402i
\(514\) −7.46958 −0.329469
\(515\) 0 0
\(516\) −32.8117 16.9863i −1.44446 0.747782i
\(517\) 0.319449 + 1.81168i 0.0140493 + 0.0796778i
\(518\) −7.83171 2.85051i −0.344106 0.125244i
\(519\) 9.58897 12.5554i 0.420909 0.551120i
\(520\) 0 0
\(521\) −4.14101 + 7.17245i −0.181421 + 0.314231i −0.942365 0.334587i \(-0.891403\pi\)
0.760944 + 0.648818i \(0.224736\pi\)
\(522\) 35.6848 + 9.38864i 1.56188 + 0.410930i
\(523\) −8.91120 15.4347i −0.389660 0.674910i 0.602744 0.797935i \(-0.294074\pi\)
−0.992404 + 0.123024i \(0.960741\pi\)
\(524\) −24.4278 + 8.89098i −1.06713 + 0.388404i
\(525\) 0 0
\(526\) 34.3001 28.7812i 1.49556 1.25492i
\(527\) 19.5527 16.4067i 0.851730 0.714686i
\(528\) −0.569154 + 1.81949i −0.0247693 + 0.0791831i
\(529\) 21.3326 7.76443i 0.927504 0.337584i
\(530\) 0 0
\(531\) −2.66920 + 2.69350i −0.115834 + 0.116888i
\(532\) −1.38268 + 2.39488i −0.0599469 + 0.103831i
\(533\) 1.46185 8.29054i 0.0633196 0.359103i
\(534\) −13.2439 + 17.3409i −0.573118 + 0.750416i
\(535\) 0 0
\(536\) 0.312899 + 1.77454i 0.0135152 + 0.0766483i
\(537\) −4.06412 2.10396i −0.175380 0.0907925i
\(538\) −39.2970 32.9741i −1.69421 1.42161i
\(539\) 1.99241 0.0858191
\(540\) 0 0
\(541\) −34.8916 −1.50011 −0.750054 0.661376i \(-0.769973\pi\)
−0.750054 + 0.661376i \(0.769973\pi\)
\(542\) −44.6412 37.4584i −1.91750 1.60898i
\(543\) 0.564101 + 12.2816i 0.0242079 + 0.527052i
\(544\) 6.52300 + 36.9938i 0.279671 + 1.58610i
\(545\) 0 0
\(546\) 0.448872 + 1.07677i 0.0192099 + 0.0460814i
\(547\) −4.30509 + 24.4154i −0.184072 + 1.04393i 0.743069 + 0.669214i \(0.233369\pi\)
−0.927142 + 0.374711i \(0.877742\pi\)
\(548\) −17.3273 + 30.0118i −0.740187 + 1.28204i
\(549\) −7.09285 4.91873i −0.302715 0.209926i
\(550\) 0 0
\(551\) 19.9885 7.27523i 0.851540 0.309935i
\(552\) 0.187810 0.0420831i 0.00799373 0.00179117i
\(553\) 1.99088 1.67054i 0.0846607 0.0710388i
\(554\) −30.5984 + 25.6751i −1.30000 + 1.09083i
\(555\) 0 0
\(556\) 24.3363 8.85768i 1.03209 0.375649i
\(557\) 15.5900 + 27.0026i 0.660568 + 1.14414i 0.980467 + 0.196686i \(0.0630180\pi\)
−0.319898 + 0.947452i \(0.603649\pi\)
\(558\) −19.2522 27.2316i −0.815012 1.15281i
\(559\) −4.49262 + 7.78145i −0.190018 + 0.329120i
\(560\) 0 0
\(561\) 2.32003 + 0.300093i 0.0979519 + 0.0126699i
\(562\) 16.5951 + 6.04011i 0.700020 + 0.254787i
\(563\) 1.99921 + 11.3381i 0.0842567 + 0.477844i 0.997514 + 0.0704615i \(0.0224472\pi\)
−0.913258 + 0.407382i \(0.866442\pi\)
\(564\) 19.4030 12.4230i 0.817015 0.523102i
\(565\) 0 0
\(566\) −15.0410 −0.632219
\(567\) −2.91473 + 1.71822i −0.122407 + 0.0721584i
\(568\) 2.18446 0.0916580
\(569\) 0.688909 + 0.578063i 0.0288805 + 0.0242337i 0.657114 0.753791i \(-0.271777\pi\)
−0.628233 + 0.778025i \(0.716222\pi\)
\(570\) 0 0
\(571\) 7.41437 + 42.0490i 0.310282 + 1.75969i 0.597538 + 0.801841i \(0.296146\pi\)
−0.287256 + 0.957854i \(0.592743\pi\)
\(572\) −0.507292 0.184639i −0.0212109 0.00772015i
\(573\) −8.92347 1.15424i −0.372783 0.0482190i
\(574\) 1.25783 7.13351i 0.0525008 0.297747i
\(575\) 0 0
\(576\) 26.2367 2.41524i 1.09319 0.100635i
\(577\) −6.22274 10.7781i −0.259056 0.448698i 0.706933 0.707280i \(-0.250078\pi\)
−0.965989 + 0.258582i \(0.916745\pi\)
\(578\) 8.78546 3.19765i 0.365427 0.133005i
\(579\) −4.60046 4.99775i −0.191189 0.207699i
\(580\) 0 0
\(581\) 2.58731 2.17101i 0.107340 0.0900688i
\(582\) −47.9822 + 10.7515i −1.98893 + 0.445664i
\(583\) 3.33434 1.21360i 0.138094 0.0502622i
\(584\) −0.0792431 0.137253i −0.00327910 0.00567957i
\(585\) 0 0
\(586\) 1.91711 3.32053i 0.0791950 0.137170i
\(587\) −1.91101 + 10.8379i −0.0788758 + 0.447327i 0.919635 + 0.392774i \(0.128484\pi\)
−0.998511 + 0.0545530i \(0.982627\pi\)
\(588\) −9.60115 23.0315i −0.395945 0.949804i
\(589\) −18.0658 6.57541i −0.744388 0.270935i
\(590\) 0 0
\(591\) 0.824242 + 17.9453i 0.0339048 + 0.738172i
\(592\) 31.7767 + 26.6638i 1.30601 + 1.09588i
\(593\) 9.57442 0.393174 0.196587 0.980486i \(-0.437014\pi\)
0.196587 + 0.980486i \(0.437014\pi\)
\(594\) 0.641273 2.98856i 0.0263117 0.122622i
\(595\) 0 0
\(596\) −16.4222 13.7798i −0.672678 0.564444i
\(597\) 18.3188 + 9.48348i 0.749738 + 0.388133i
\(598\) −0.169926 0.963696i −0.00694878 0.0394085i
\(599\) −30.9256 11.2560i −1.26359 0.459908i −0.378616 0.925554i \(-0.623600\pi\)
−0.884971 + 0.465646i \(0.845822\pi\)
\(600\) 0 0
\(601\) −2.22127 + 12.5974i −0.0906074 + 0.513860i 0.905398 + 0.424564i \(0.139573\pi\)
−0.996005 + 0.0892957i \(0.971538\pi\)
\(602\) −3.86563 + 6.69547i −0.157551 + 0.272887i
\(603\) 6.99338 + 25.6345i 0.284793 + 1.04392i
\(604\) 18.7523 + 32.4800i 0.763021 + 1.32159i
\(605\) 0 0
\(606\) −4.21128 + 13.4627i −0.171072 + 0.546886i
\(607\) 28.7032 24.0848i 1.16503 0.977573i 0.165064 0.986283i \(-0.447217\pi\)
0.999962 + 0.00870958i \(0.00277238\pi\)
\(608\) 21.6745 18.1871i 0.879018 0.737583i
\(609\) 1.18078 3.77475i 0.0478477 0.152961i
\(610\) 0 0
\(611\) −2.80143 4.85221i −0.113334 0.196300i
\(612\) −7.71096 28.2649i −0.311697 1.14254i
\(613\) 1.30760 2.26483i 0.0528136 0.0914758i −0.838410 0.545040i \(-0.816514\pi\)
0.891224 + 0.453564i \(0.149848\pi\)
\(614\) −5.00156 + 28.3653i −0.201847 + 1.14473i
\(615\) 0 0
\(616\) −0.0208779 0.00759892i −0.000841193 0.000306169i
\(617\) 1.11998 + 6.35172i 0.0450887 + 0.255711i 0.999017 0.0443232i \(-0.0141131\pi\)
−0.953929 + 0.300034i \(0.903002\pi\)
\(618\) 1.60535 + 0.831075i 0.0645766 + 0.0334307i
\(619\) −0.0522006 0.0438015i −0.00209812 0.00176053i 0.641738 0.766924i \(-0.278214\pi\)
−0.643836 + 0.765163i \(0.722658\pi\)
\(620\) 0 0
\(621\) 2.70094 0.871826i 0.108385 0.0349852i
\(622\) −29.6649 −1.18945
\(623\) 1.79164 + 1.50336i 0.0717804 + 0.0602309i
\(624\) −0.266407 5.80018i −0.0106648 0.232193i
\(625\) 0 0
\(626\) −49.2370 17.9208i −1.96791 0.716260i
\(627\) −0.677989 1.62638i −0.0270763 0.0649514i
\(628\) 4.21263 23.8910i 0.168102 0.953355i
\(629\) 25.4508 44.0821i 1.01479 1.75767i
\(630\) 0 0
\(631\) −22.5451 39.0492i −0.897506 1.55453i −0.830673 0.556761i \(-0.812044\pi\)
−0.0668329 0.997764i \(-0.521289\pi\)
\(632\) 1.32159 0.481019i 0.0525700 0.0191339i
\(633\) 4.13843 0.927309i 0.164488 0.0368572i
\(634\) −28.3317 + 23.7732i −1.12520 + 0.944153i
\(635\) 0 0
\(636\) −30.0965 32.6956i −1.19340 1.29646i
\(637\) −5.70220 + 2.07543i −0.225930 + 0.0822316i
\(638\) 1.78651 + 3.09432i 0.0707284 + 0.122505i
\(639\) 32.0769 2.95286i 1.26894 0.116813i
\(640\) 0 0
\(641\) 6.39211 36.2514i 0.252473 1.43185i −0.550004 0.835162i \(-0.685374\pi\)
0.802477 0.596683i \(-0.203515\pi\)
\(642\) 62.5017 + 8.08451i 2.46675 + 0.319070i
\(643\) −4.60918 1.67760i −0.181768 0.0661582i 0.249533 0.968366i \(-0.419723\pi\)
−0.431301 + 0.902208i \(0.641945\pi\)
\(644\) −0.0748965 0.424759i −0.00295134 0.0167379i
\(645\) 0 0
\(646\) −25.2572 21.1933i −0.993730 0.833838i
\(647\) −37.6519 −1.48025 −0.740125 0.672469i \(-0.765234\pi\)
−0.740125 + 0.672469i \(0.765234\pi\)
\(648\) −1.80021 + 0.334271i −0.0707188 + 0.0131314i
\(649\) −0.367190 −0.0144135
\(650\) 0 0
\(651\) −3.01049 + 1.92750i −0.117990 + 0.0755445i
\(652\) −2.28406 12.9536i −0.0894507 0.507300i
\(653\) −21.5387 7.83944i −0.842874 0.306781i −0.115743 0.993279i \(-0.536925\pi\)
−0.727132 + 0.686498i \(0.759147\pi\)
\(654\) −3.84366 0.497172i −0.150299 0.0194410i
\(655\) 0 0
\(656\) −18.0263 + 31.2224i −0.703807 + 1.21903i
\(657\) −1.34915 1.90832i −0.0526353 0.0744508i
\(658\) −2.41046 4.17504i −0.0939694 0.162760i
\(659\) 4.41936 1.60852i 0.172154 0.0626589i −0.254505 0.967071i \(-0.581913\pi\)
0.426659 + 0.904412i \(0.359690\pi\)
\(660\) 0 0
\(661\) −25.3416 + 21.2641i −0.985675 + 0.827079i −0.984936 0.172920i \(-0.944680\pi\)
−0.000739053 1.00000i \(0.500235\pi\)
\(662\) 49.0593 41.1657i 1.90675 1.59995i
\(663\) −6.95245 + 1.55785i −0.270011 + 0.0605020i
\(664\) 1.71752 0.625125i 0.0666526 0.0242596i
\(665\) 0 0
\(666\) −54.6521 37.9000i −2.11773 1.46859i
\(667\) −1.65884 + 2.87319i −0.0642304 + 0.111250i
\(668\) 5.71277 32.3987i 0.221034 1.25354i
\(669\) −12.0083 28.8059i −0.464268 1.11370i
\(670\) 0 0
\(671\) −0.145135 0.823103i −0.00560288 0.0317755i
\(672\) −0.241383 5.25537i −0.00931155 0.202730i
\(673\) 34.0702 + 28.5883i 1.31331 + 1.10200i 0.987678 + 0.156500i \(0.0500212\pi\)
0.325631 + 0.945497i \(0.394423\pi\)
\(674\) −15.5180 −0.597731
\(675\) 0 0
\(676\) −25.6619 −0.986996
\(677\) 6.56883 + 5.51191i 0.252461 + 0.211840i 0.760231 0.649653i \(-0.225086\pi\)
−0.507770 + 0.861492i \(0.669530\pi\)
\(678\) −28.2800 14.6403i −1.08609 0.562257i
\(679\) 0.915233 + 5.19055i 0.0351234 + 0.199195i
\(680\) 0 0
\(681\) −5.62075 + 7.35956i −0.215388 + 0.282019i
\(682\) 0.560765 3.18026i 0.0214728 0.121778i
\(683\) 21.9820 38.0739i 0.841117 1.45686i −0.0478347 0.998855i \(-0.515232\pi\)
0.888951 0.458002i \(-0.151435\pi\)
\(684\) −15.5332 + 15.6746i −0.593928 + 0.599334i
\(685\) 0 0
\(686\) −9.91390 + 3.60836i −0.378514 + 0.137768i
\(687\) −11.1399 + 35.6123i −0.425013 + 1.35869i
\(688\) 29.4773 24.7344i 1.12381 0.942991i
\(689\) −8.27859 + 6.94656i −0.315389 + 0.264643i
\(690\) 0 0
\(691\) 20.7711 7.56005i 0.790169 0.287598i 0.0847628 0.996401i \(-0.472987\pi\)
0.705406 + 0.708803i \(0.250765\pi\)
\(692\) −9.57933 16.5919i −0.364152 0.630729i
\(693\) −0.316845 0.0833617i −0.0120359 0.00316665i
\(694\) 3.59462 6.22607i 0.136450 0.236338i
\(695\) 0 0
\(696\) 1.29910 1.70098i 0.0492423 0.0644756i
\(697\) 41.5717 + 15.1309i 1.57464 + 0.573123i
\(698\) 1.64538 + 9.33144i 0.0622787 + 0.353200i
\(699\) 39.3213 + 20.3563i 1.48727 + 0.769947i
\(700\) 0 0
\(701\) −0.728282 −0.0275068 −0.0137534 0.999905i \(-0.504378\pi\)
−0.0137534 + 0.999905i \(0.504378\pi\)
\(702\) 1.27780 + 9.22116i 0.0482274 + 0.348030i
\(703\) −38.3398 −1.44601
\(704\) 1.95440 + 1.63993i 0.0736591 + 0.0618073i
\(705\) 0 0
\(706\) −5.51192 31.2596i −0.207444 1.17647i
\(707\) 1.42080 + 0.517130i 0.0534348 + 0.0194487i
\(708\) 1.76944 + 4.24458i 0.0664996 + 0.159521i
\(709\) 2.85514 16.1923i 0.107227 0.608115i −0.883080 0.469222i \(-0.844535\pi\)
0.990307 0.138893i \(-0.0443544\pi\)
\(710\) 0 0
\(711\) 18.7562 8.84981i 0.703411 0.331894i
\(712\) 0.632829 + 1.09609i 0.0237163 + 0.0410778i
\(713\) 2.81771 1.02556i 0.105524 0.0384076i
\(714\) −5.98216 + 1.34044i −0.223877 + 0.0501646i
\(715\) 0 0
\(716\) −4.25144 + 3.56738i −0.158884 + 0.133319i
\(717\) −10.8548 11.7922i −0.405379 0.440386i
\(718\) 5.19084 1.88931i 0.193720 0.0705085i
\(719\) 18.6844 + 32.3624i 0.696811 + 1.20691i 0.969566 + 0.244829i \(0.0787318\pi\)
−0.272755 + 0.962083i \(0.587935\pi\)
\(720\) 0 0
\(721\) 0.0968819 0.167804i 0.00360807 0.00624936i
\(722\) 2.36859 13.4329i 0.0881497 0.499922i
\(723\) 49.3919 + 6.38878i 1.83690 + 0.237601i
\(724\) 14.0105 + 5.09939i 0.520694 + 0.189517i
\(725\) 0 0
\(726\) −32.2423 + 20.6435i −1.19662 + 0.766150i
\(727\) 3.88514 + 3.26002i 0.144092 + 0.120907i 0.711984 0.702195i \(-0.247797\pi\)
−0.567893 + 0.823103i \(0.692241\pi\)
\(728\) 0.0676673 0.00250792
\(729\) −25.9826 + 7.34192i −0.962319 + 0.271923i
\(730\) 0 0
\(731\) −36.1714 30.3514i −1.33785 1.12259i
\(732\) −8.81539 + 5.64413i −0.325826 + 0.208613i
\(733\) 4.35439 + 24.6950i 0.160833 + 0.912129i 0.953257 + 0.302159i \(0.0977075\pi\)
−0.792424 + 0.609970i \(0.791181\pi\)
\(734\) 60.6931 + 22.0905i 2.24022 + 0.815375i
\(735\) 0 0
\(736\) −0.766310 + 4.34596i −0.0282466 + 0.160194i
\(737\) −1.28647 + 2.22824i −0.0473879 + 0.0820783i
\(738\) 24.1911 52.4977i 0.890487 1.93247i
\(739\) −23.1354 40.0717i −0.851050 1.47406i −0.880262 0.474489i \(-0.842633\pi\)
0.0292117 0.999573i \(-0.490700\pi\)
\(740\) 0 0
\(741\) 3.63453 + 3.94840i 0.133518 + 0.145048i
\(742\) −7.12322 + 5.97709i −0.261502 + 0.219426i
\(743\) −25.1018 + 21.0629i −0.920896 + 0.772723i −0.974160 0.225857i \(-0.927482\pi\)
0.0532649 + 0.998580i \(0.483037\pi\)
\(744\) −1.88764 + 0.422968i −0.0692042 + 0.0155068i
\(745\) 0 0
\(746\) 6.27208 + 10.8636i 0.229637 + 0.397743i
\(747\) 24.3752 11.5011i 0.891842 0.420802i
\(748\) 1.41848 2.45688i 0.0518647 0.0898323i
\(749\) 1.17303 6.65257i 0.0428615 0.243080i
\(750\) 0 0
\(751\) 11.8075 + 4.29756i 0.430860 + 0.156820i 0.548341 0.836255i \(-0.315260\pi\)
−0.117481 + 0.993075i \(0.537482\pi\)
\(752\) 4.16662 + 23.6301i 0.151941 + 0.861700i
\(753\) 0.931722 + 20.2854i 0.0339538 + 0.739240i
\(754\) −8.33617 6.99488i −0.303585 0.254738i
\(755\) 0 0
\(756\) 0.563203 + 4.06432i 0.0204835 + 0.147818i
\(757\) 35.3551 1.28500 0.642501 0.766285i \(-0.277897\pi\)
0.642501 + 0.766285i \(0.277897\pi\)
\(758\) −37.9281 31.8254i −1.37761 1.15595i
\(759\) 0.244059 + 0.126347i 0.00885876 + 0.00458611i
\(760\) 0 0
\(761\) 4.34791 + 1.58251i 0.157612 + 0.0573660i 0.419621 0.907699i \(-0.362163\pi\)
−0.262009 + 0.965065i \(0.584385\pi\)
\(762\) −22.9880 + 30.0995i −0.832768 + 1.09039i
\(763\) −0.0721376 + 0.409113i −0.00261156 + 0.0148109i
\(764\) −5.45584 + 9.44980i −0.197386 + 0.341882i
\(765\) 0 0
\(766\) −7.56253 13.0987i −0.273245 0.473275i
\(767\) 1.05088 0.382490i 0.0379452 0.0138109i
\(768\) −7.38076 + 23.5950i −0.266330 + 0.851412i
\(769\) −10.2592 + 8.60849i −0.369956 + 0.310430i −0.808744 0.588161i \(-0.799852\pi\)
0.438788 + 0.898591i \(0.355408\pi\)
\(770\) 0 0
\(771\) −1.90743 + 6.09774i −0.0686946 + 0.219605i
\(772\) −7.74084 + 2.81744i −0.278599 + 0.101402i
\(773\) 11.6796 + 20.2297i 0.420087 + 0.727612i 0.995948 0.0899361i \(-0.0286663\pi\)
−0.575861 + 0.817548i \(0.695333\pi\)
\(774\) −43.4270 + 43.8222i −1.56095 + 1.57516i
\(775\) 0 0