Properties

Label 675.2.l.f.151.1
Level $675$
Weight $2$
Character 675.151
Analytic conductor $5.390$
Analytic rank $0$
Dimension $66$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [675,2,Mod(76,675)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("675.76"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(675, base_ring=CyclotomicField(18)) chi = DirichletCharacter(H, H._module([14, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 675 = 3^{3} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 675.l (of order \(9\), degree \(6\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [66,-6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.38990213644\)
Analytic rank: \(0\)
Dimension: \(66\)
Relative dimension: \(11\) over \(\Q(\zeta_{9})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{9}]$

Embedding invariants

Embedding label 151.1
Character \(\chi\) \(=\) 675.151
Dual form 675.2.l.f.76.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.84958 - 1.55198i) q^{2} +(1.53931 - 0.794060i) q^{3} +(0.665000 + 3.77140i) q^{4} +(-4.07944 - 0.920299i) q^{6} +(0.0583477 - 0.330906i) q^{7} +(2.20872 - 3.82562i) q^{8} +(1.73894 - 2.44461i) q^{9} +(-4.97408 + 1.81042i) q^{11} +(4.01836 + 5.27730i) q^{12} +(4.68414 - 3.93046i) q^{13} +(-0.621479 + 0.521483i) q^{14} +(-2.82523 + 1.02830i) q^{16} +(-1.52112 - 2.63465i) q^{17} +(-7.01028 + 1.82269i) q^{18} +(-0.260295 + 0.450843i) q^{19} +(-0.172944 - 0.555698i) q^{21} +(12.0097 + 4.37117i) q^{22} +(-0.0350517 - 0.198788i) q^{23} +(0.362131 - 7.64266i) q^{24} -14.7637 q^{26} +(0.735594 - 5.14382i) q^{27} +1.28678 q^{28} +(1.41738 + 1.18933i) q^{29} +(-1.58422 - 8.98458i) q^{31} +(-1.48070 - 0.538930i) q^{32} +(-6.21906 + 6.73651i) q^{33} +(-1.27550 + 7.23373i) q^{34} +(10.3760 + 4.93257i) q^{36} +(-3.11234 - 5.39074i) q^{37} +(1.18114 - 0.429898i) q^{38} +(4.08931 - 9.76968i) q^{39} +(6.96293 - 5.84259i) q^{41} +(-0.542558 + 1.29621i) q^{42} +(-6.38441 + 2.32373i) q^{43} +(-10.1356 - 17.5553i) q^{44} +(-0.243684 + 0.422073i) q^{46} +(2.11902 - 12.0175i) q^{47} +(-3.53236 + 3.82627i) q^{48} +(6.47175 + 2.35553i) q^{49} +(-4.43354 - 2.84768i) q^{51} +(17.9383 + 15.0520i) q^{52} +2.74867 q^{53} +(-9.34365 + 8.37227i) q^{54} +(-1.13705 - 0.954096i) q^{56} +(-0.0426766 + 0.900676i) q^{57} +(-0.775751 - 4.39950i) q^{58} +(-6.56519 - 2.38954i) q^{59} +(-2.16727 + 12.2912i) q^{61} +(-11.0137 + 19.0764i) q^{62} +(-0.707472 - 0.718062i) q^{63} +(4.90880 + 8.50230i) q^{64} +(21.9576 - 2.80784i) q^{66} +(-4.29512 + 3.60403i) q^{67} +(8.92479 - 7.48879i) q^{68} +(-0.211805 - 0.278163i) q^{69} +(1.58699 + 2.74874i) q^{71} +(-5.51130 - 12.0520i) q^{72} +(0.731226 - 1.26652i) q^{73} +(-2.60980 + 14.8009i) q^{74} +(-1.87341 - 0.681865i) q^{76} +(0.308852 + 1.75159i) q^{77} +(-22.7259 + 11.7233i) q^{78} +(-2.18198 - 1.83090i) q^{79} +(-2.95220 - 8.50203i) q^{81} -21.9461 q^{82} +(-0.578595 - 0.485499i) q^{83} +(1.98075 - 1.02178i) q^{84} +(15.4149 + 5.61055i) q^{86} +(3.12618 + 0.705250i) q^{87} +(-4.06039 + 23.0276i) q^{88} +(-3.18070 + 5.50914i) q^{89} +(-1.02731 - 1.77934i) q^{91} +(0.726400 - 0.264388i) q^{92} +(-9.57291 - 12.5721i) q^{93} +(-22.5703 + 18.9387i) q^{94} +(-2.70719 + 0.346184i) q^{96} +(-10.0155 + 3.64534i) q^{97} +(-8.31429 - 14.4008i) q^{98} +(-4.22385 + 15.3079i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 66 q - 6 q^{2} - 6 q^{6} - 6 q^{7} - 12 q^{8} - 6 q^{9} + 15 q^{11} - 18 q^{12} + 15 q^{14} + 18 q^{16} - 30 q^{17} + 12 q^{18} + 12 q^{19} + 12 q^{21} + 45 q^{22} - 36 q^{23} - 39 q^{24} + 6 q^{26} - 51 q^{27}+ \cdots - 48 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/675\mathbb{Z}\right)^\times\).

\(n\) \(326\) \(352\)
\(\chi(n)\) \(e\left(\frac{2}{9}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.84958 1.55198i −1.30785 1.09742i −0.988731 0.149701i \(-0.952169\pi\)
−0.319118 0.947715i \(-0.603387\pi\)
\(3\) 1.53931 0.794060i 0.888720 0.458451i
\(4\) 0.665000 + 3.77140i 0.332500 + 1.88570i
\(5\) 0 0
\(6\) −4.07944 0.920299i −1.66542 0.375710i
\(7\) 0.0583477 0.330906i 0.0220534 0.125071i −0.971794 0.235833i \(-0.924218\pi\)
0.993847 + 0.110762i \(0.0353292\pi\)
\(8\) 2.20872 3.82562i 0.780901 1.35256i
\(9\) 1.73894 2.44461i 0.579646 0.814869i
\(10\) 0 0
\(11\) −4.97408 + 1.81042i −1.49974 + 0.545861i −0.955994 0.293387i \(-0.905217\pi\)
−0.543748 + 0.839249i \(0.682995\pi\)
\(12\) 4.01836 + 5.27730i 1.16000 + 1.52343i
\(13\) 4.68414 3.93046i 1.29915 1.09011i 0.308855 0.951109i \(-0.400054\pi\)
0.990292 0.139005i \(-0.0443903\pi\)
\(14\) −0.621479 + 0.521483i −0.166097 + 0.139372i
\(15\) 0 0
\(16\) −2.82523 + 1.02830i −0.706307 + 0.257075i
\(17\) −1.52112 2.63465i −0.368925 0.638996i 0.620473 0.784228i \(-0.286941\pi\)
−0.989398 + 0.145231i \(0.953607\pi\)
\(18\) −7.01028 + 1.82269i −1.65234 + 0.429613i
\(19\) −0.260295 + 0.450843i −0.0597157 + 0.103431i −0.894338 0.447392i \(-0.852353\pi\)
0.834622 + 0.550823i \(0.185686\pi\)
\(20\) 0 0
\(21\) −0.172944 0.555698i −0.0377396 0.121263i
\(22\) 12.0097 + 4.37117i 2.56047 + 0.931936i
\(23\) −0.0350517 0.198788i −0.00730878 0.0414501i 0.980935 0.194335i \(-0.0622548\pi\)
−0.988244 + 0.152885i \(0.951144\pi\)
\(24\) 0.362131 7.64266i 0.0739197 1.56005i
\(25\) 0 0
\(26\) −14.7637 −2.89540
\(27\) 0.735594 5.14382i 0.141565 0.989929i
\(28\) 1.28678 0.243179
\(29\) 1.41738 + 1.18933i 0.263201 + 0.220852i 0.764832 0.644230i \(-0.222822\pi\)
−0.501631 + 0.865082i \(0.667266\pi\)
\(30\) 0 0
\(31\) −1.58422 8.98458i −0.284535 1.61368i −0.706942 0.707272i \(-0.749926\pi\)
0.422407 0.906406i \(-0.361185\pi\)
\(32\) −1.48070 0.538930i −0.261753 0.0952703i
\(33\) −6.21906 + 6.73651i −1.08260 + 1.17268i
\(34\) −1.27550 + 7.23373i −0.218747 + 1.24058i
\(35\) 0 0
\(36\) 10.3760 + 4.93257i 1.72933 + 0.822095i
\(37\) −3.11234 5.39074i −0.511666 0.886232i −0.999909 0.0135239i \(-0.995695\pi\)
0.488242 0.872708i \(-0.337638\pi\)
\(38\) 1.18114 0.429898i 0.191605 0.0697387i
\(39\) 4.08931 9.76968i 0.654814 1.56440i
\(40\) 0 0
\(41\) 6.96293 5.84259i 1.08743 0.912459i 0.0909107 0.995859i \(-0.471022\pi\)
0.996516 + 0.0833996i \(0.0265778\pi\)
\(42\) −0.542558 + 1.29621i −0.0837186 + 0.200010i
\(43\) −6.38441 + 2.32373i −0.973613 + 0.354366i −0.779354 0.626584i \(-0.784452\pi\)
−0.194259 + 0.980950i \(0.562230\pi\)
\(44\) −10.1356 17.5553i −1.52800 2.64657i
\(45\) 0 0
\(46\) −0.243684 + 0.422073i −0.0359293 + 0.0622313i
\(47\) 2.11902 12.0175i 0.309090 1.75294i −0.294508 0.955649i \(-0.595156\pi\)
0.603598 0.797288i \(-0.293733\pi\)
\(48\) −3.53236 + 3.82627i −0.509853 + 0.552275i
\(49\) 6.47175 + 2.35553i 0.924536 + 0.336504i
\(50\) 0 0
\(51\) −4.43354 2.84768i −0.620819 0.398755i
\(52\) 17.9383 + 15.0520i 2.48760 + 2.08734i
\(53\) 2.74867 0.377558 0.188779 0.982020i \(-0.439547\pi\)
0.188779 + 0.982020i \(0.439547\pi\)
\(54\) −9.34365 + 8.37227i −1.27151 + 1.13932i
\(55\) 0 0
\(56\) −1.13705 0.954096i −0.151944 0.127496i
\(57\) −0.0426766 + 0.900676i −0.00565265 + 0.119297i
\(58\) −0.775751 4.39950i −0.101861 0.577683i
\(59\) −6.56519 2.38954i −0.854716 0.311091i −0.122754 0.992437i \(-0.539173\pi\)
−0.731961 + 0.681346i \(0.761395\pi\)
\(60\) 0 0
\(61\) −2.16727 + 12.2912i −0.277491 + 1.57373i 0.453447 + 0.891283i \(0.350194\pi\)
−0.730938 + 0.682444i \(0.760917\pi\)
\(62\) −11.0137 + 19.0764i −1.39875 + 2.42270i
\(63\) −0.707472 0.718062i −0.0891332 0.0904673i
\(64\) 4.90880 + 8.50230i 0.613601 + 1.06279i
\(65\) 0 0
\(66\) 21.9576 2.80784i 2.70279 0.345621i
\(67\) −4.29512 + 3.60403i −0.524732 + 0.440303i −0.866278 0.499562i \(-0.833494\pi\)
0.341545 + 0.939865i \(0.389050\pi\)
\(68\) 8.92479 7.48879i 1.08229 0.908149i
\(69\) −0.211805 0.278163i −0.0254983 0.0334868i
\(70\) 0 0
\(71\) 1.58699 + 2.74874i 0.188341 + 0.326216i 0.944697 0.327944i \(-0.106356\pi\)
−0.756356 + 0.654160i \(0.773022\pi\)
\(72\) −5.51130 12.0520i −0.649513 1.42034i
\(73\) 0.731226 1.26652i 0.0855835 0.148235i −0.820056 0.572283i \(-0.806058\pi\)
0.905640 + 0.424048i \(0.139391\pi\)
\(74\) −2.60980 + 14.8009i −0.303383 + 1.72057i
\(75\) 0 0
\(76\) −1.87341 0.681865i −0.214895 0.0782153i
\(77\) 0.308852 + 1.75159i 0.0351970 + 0.199612i
\(78\) −22.7259 + 11.7233i −2.57320 + 1.32740i
\(79\) −2.18198 1.83090i −0.245491 0.205992i 0.511737 0.859142i \(-0.329002\pi\)
−0.757228 + 0.653151i \(0.773447\pi\)
\(80\) 0 0
\(81\) −2.95220 8.50203i −0.328022 0.944670i
\(82\) −21.9461 −2.42354
\(83\) −0.578595 0.485499i −0.0635091 0.0532905i 0.610481 0.792031i \(-0.290976\pi\)
−0.673990 + 0.738741i \(0.735421\pi\)
\(84\) 1.98075 1.02178i 0.216118 0.111486i
\(85\) 0 0
\(86\) 15.4149 + 5.61055i 1.66223 + 0.605001i
\(87\) 3.12618 + 0.705250i 0.335162 + 0.0756108i
\(88\) −4.06039 + 23.0276i −0.432840 + 2.45476i
\(89\) −3.18070 + 5.50914i −0.337154 + 0.583968i −0.983896 0.178741i \(-0.942798\pi\)
0.646742 + 0.762709i \(0.276131\pi\)
\(90\) 0 0
\(91\) −1.02731 1.77934i −0.107691 0.186526i
\(92\) 0.726400 0.264388i 0.0757325 0.0275644i
\(93\) −9.57291 12.5721i −0.992664 1.30366i
\(94\) −22.5703 + 18.9387i −2.32794 + 1.95338i
\(95\) 0 0
\(96\) −2.70719 + 0.346184i −0.276302 + 0.0353323i
\(97\) −10.0155 + 3.64534i −1.01692 + 0.370128i −0.796086 0.605184i \(-0.793099\pi\)
−0.220832 + 0.975312i \(0.570877\pi\)
\(98\) −8.31429 14.4008i −0.839870 1.45470i
\(99\) −4.22385 + 15.3079i −0.424513 + 1.53850i
\(100\) 0 0
\(101\) −2.11146 + 11.9747i −0.210098 + 1.19152i 0.679116 + 0.734031i \(0.262363\pi\)
−0.889213 + 0.457493i \(0.848748\pi\)
\(102\) 3.78063 + 12.1478i 0.374338 + 1.20281i
\(103\) −2.42584 0.882932i −0.239025 0.0869979i 0.219730 0.975561i \(-0.429482\pi\)
−0.458755 + 0.888563i \(0.651704\pi\)
\(104\) −4.69048 26.6010i −0.459939 2.60845i
\(105\) 0 0
\(106\) −5.08387 4.26588i −0.493790 0.414339i
\(107\) 5.35813 0.517990 0.258995 0.965879i \(-0.416609\pi\)
0.258995 + 0.965879i \(0.416609\pi\)
\(108\) 19.8886 0.646421i 1.91378 0.0622019i
\(109\) 17.4957 1.67579 0.837893 0.545834i \(-0.183787\pi\)
0.837893 + 0.545834i \(0.183787\pi\)
\(110\) 0 0
\(111\) −9.07143 5.82662i −0.861022 0.553038i
\(112\) 0.175425 + 0.994885i 0.0165761 + 0.0940078i
\(113\) 15.7488 + 5.73211i 1.48153 + 0.539232i 0.951204 0.308564i \(-0.0998485\pi\)
0.530323 + 0.847796i \(0.322071\pi\)
\(114\) 1.47677 1.59964i 0.138312 0.149820i
\(115\) 0 0
\(116\) −3.54287 + 6.13642i −0.328947 + 0.569753i
\(117\) −1.46300 18.2857i −0.135255 1.69051i
\(118\) 8.43433 + 14.6087i 0.776443 + 1.34484i
\(119\) −0.960576 + 0.349621i −0.0880558 + 0.0320497i
\(120\) 0 0
\(121\) 13.0374 10.9397i 1.18522 0.994514i
\(122\) 23.0842 19.3700i 2.08995 1.75368i
\(123\) 6.07872 14.5225i 0.548100 1.30945i
\(124\) 32.8310 11.9495i 2.94831 1.07310i
\(125\) 0 0
\(126\) 0.194107 + 2.42610i 0.0172925 + 0.216134i
\(127\) −4.00306 + 6.93350i −0.355214 + 0.615249i −0.987155 0.159768i \(-0.948925\pi\)
0.631940 + 0.775017i \(0.282259\pi\)
\(128\) 3.56894 20.2405i 0.315453 1.78902i
\(129\) −7.98238 + 8.64655i −0.702810 + 0.761286i
\(130\) 0 0
\(131\) 1.87834 + 10.6526i 0.164111 + 0.930721i 0.949976 + 0.312323i \(0.101107\pi\)
−0.785865 + 0.618398i \(0.787782\pi\)
\(132\) −29.5418 18.9748i −2.57128 1.65154i
\(133\) 0.133999 + 0.112439i 0.0116192 + 0.00974968i
\(134\) 13.5376 1.16947
\(135\) 0 0
\(136\) −13.4389 −1.15238
\(137\) −10.0791 8.45733i −0.861112 0.722559i 0.101095 0.994877i \(-0.467765\pi\)
−0.962207 + 0.272318i \(0.912210\pi\)
\(138\) −0.0399532 + 0.843201i −0.00340105 + 0.0717780i
\(139\) −1.27373 7.22368i −0.108036 0.612705i −0.989964 0.141320i \(-0.954865\pi\)
0.881928 0.471385i \(-0.156246\pi\)
\(140\) 0 0
\(141\) −6.28083 20.1813i −0.528941 1.69957i
\(142\) 1.33074 7.54699i 0.111673 0.633329i
\(143\) −16.1835 + 28.0307i −1.35333 + 2.34404i
\(144\) −2.39911 + 8.69472i −0.199926 + 0.724560i
\(145\) 0 0
\(146\) −3.31807 + 1.20768i −0.274606 + 0.0999483i
\(147\) 11.8325 1.51308i 0.975924 0.124797i
\(148\) 18.2609 15.3228i 1.50104 1.25952i
\(149\) 10.1927 8.55268i 0.835017 0.700663i −0.121420 0.992601i \(-0.538745\pi\)
0.956437 + 0.291939i \(0.0943003\pi\)
\(150\) 0 0
\(151\) 8.57654 3.12160i 0.697949 0.254033i 0.0314139 0.999506i \(-0.489999\pi\)
0.666535 + 0.745474i \(0.267777\pi\)
\(152\) 1.14984 + 1.99158i 0.0932641 + 0.161538i
\(153\) −9.08581 0.862960i −0.734544 0.0697662i
\(154\) 2.14718 3.71903i 0.173025 0.299688i
\(155\) 0 0
\(156\) 39.5648 + 8.92561i 3.16772 + 0.714620i
\(157\) −4.17491 1.51954i −0.333194 0.121273i 0.170005 0.985443i \(-0.445622\pi\)
−0.503199 + 0.864171i \(0.667844\pi\)
\(158\) 1.19422 + 6.77277i 0.0950072 + 0.538813i
\(159\) 4.23104 2.18261i 0.335544 0.173092i
\(160\) 0 0
\(161\) −0.0678253 −0.00534539
\(162\) −7.73466 + 20.3069i −0.607693 + 1.59546i
\(163\) 16.5806 1.29869 0.649347 0.760492i \(-0.275042\pi\)
0.649347 + 0.760492i \(0.275042\pi\)
\(164\) 26.6651 + 22.3747i 2.08220 + 1.74717i
\(165\) 0 0
\(166\) 0.316672 + 1.79594i 0.0245785 + 0.139392i
\(167\) 18.8502 + 6.86091i 1.45867 + 0.530913i 0.944999 0.327073i \(-0.106062\pi\)
0.513673 + 0.857986i \(0.328284\pi\)
\(168\) −2.50788 0.565763i −0.193487 0.0436496i
\(169\) 4.23523 24.0192i 0.325787 1.84763i
\(170\) 0 0
\(171\) 0.649499 + 1.42031i 0.0496684 + 0.108613i
\(172\) −13.0094 22.5329i −0.991955 1.71812i
\(173\) −3.14658 + 1.14526i −0.239230 + 0.0870725i −0.458853 0.888512i \(-0.651739\pi\)
0.219623 + 0.975585i \(0.429517\pi\)
\(174\) −4.68759 6.15619i −0.355365 0.466700i
\(175\) 0 0
\(176\) 12.1913 10.2297i 0.918951 0.771091i
\(177\) −12.0033 + 1.53493i −0.902223 + 0.115372i
\(178\) 14.4330 5.25320i 1.08180 0.393744i
\(179\) −6.19883 10.7367i −0.463323 0.802498i 0.535802 0.844344i \(-0.320010\pi\)
−0.999124 + 0.0418458i \(0.986676\pi\)
\(180\) 0 0
\(181\) 2.32049 4.01921i 0.172481 0.298746i −0.766806 0.641879i \(-0.778155\pi\)
0.939287 + 0.343134i \(0.111488\pi\)
\(182\) −0.861427 + 4.88540i −0.0638532 + 0.362130i
\(183\) 6.42386 + 20.6409i 0.474865 + 1.52582i
\(184\) −0.837906 0.304973i −0.0617713 0.0224829i
\(185\) 0 0
\(186\) −1.80576 + 38.1100i −0.132405 + 2.79436i
\(187\) 12.3360 + 10.3511i 0.902095 + 0.756948i
\(188\) 46.7321 3.40829
\(189\) −1.65920 0.543543i −0.120689 0.0395369i
\(190\) 0 0
\(191\) 10.8645 + 9.11641i 0.786129 + 0.659641i 0.944784 0.327694i \(-0.106271\pi\)
−0.158655 + 0.987334i \(0.550716\pi\)
\(192\) 14.3075 + 9.18977i 1.03255 + 0.663214i
\(193\) 2.94460 + 16.6997i 0.211957 + 1.20207i 0.886109 + 0.463477i \(0.153398\pi\)
−0.674152 + 0.738593i \(0.735491\pi\)
\(194\) 24.1819 + 8.80149i 1.73616 + 0.631910i
\(195\) 0 0
\(196\) −4.57992 + 25.9740i −0.327137 + 1.85529i
\(197\) −3.41348 + 5.91232i −0.243200 + 0.421236i −0.961624 0.274370i \(-0.911531\pi\)
0.718424 + 0.695606i \(0.244864\pi\)
\(198\) 31.5699 21.7578i 2.24357 1.54626i
\(199\) −7.72021 13.3718i −0.547271 0.947901i −0.998460 0.0554726i \(-0.982333\pi\)
0.451189 0.892428i \(-0.351000\pi\)
\(200\) 0 0
\(201\) −3.74969 + 8.95830i −0.264483 + 0.631870i
\(202\) 22.4898 18.8711i 1.58237 1.32777i
\(203\) 0.476256 0.399626i 0.0334266 0.0280483i
\(204\) 7.79145 18.6144i 0.545510 1.30327i
\(205\) 0 0
\(206\) 3.11648 + 5.39790i 0.217135 + 0.376090i
\(207\) −0.546911 0.259992i −0.0380129 0.0180707i
\(208\) −9.19208 + 15.9211i −0.637356 + 1.10393i
\(209\) 0.478511 2.71377i 0.0330993 0.187716i
\(210\) 0 0
\(211\) 17.3343 + 6.30917i 1.19334 + 0.434341i 0.860896 0.508781i \(-0.169904\pi\)
0.332447 + 0.943122i \(0.392126\pi\)
\(212\) 1.82786 + 10.3663i 0.125538 + 0.711963i
\(213\) 4.62553 + 2.97100i 0.316936 + 0.203569i
\(214\) −9.91028 8.31571i −0.677453 0.568450i
\(215\) 0 0
\(216\) −18.0536 14.1754i −1.22839 0.964512i
\(217\) −3.06549 −0.208099
\(218\) −32.3597 27.1530i −2.19168 1.83904i
\(219\) 0.119888 2.53020i 0.00810129 0.170975i
\(220\) 0 0
\(221\) −17.4805 6.36239i −1.17587 0.427980i
\(222\) 7.73552 + 24.8555i 0.519174 + 1.66819i
\(223\) −0.541070 + 3.06856i −0.0362328 + 0.205486i −0.997550 0.0699575i \(-0.977714\pi\)
0.961317 + 0.275444i \(0.0888248\pi\)
\(224\) −0.264731 + 0.458527i −0.0176881 + 0.0306366i
\(225\) 0 0
\(226\) −20.2326 35.0439i −1.34585 2.33108i
\(227\) 6.55642 2.38634i 0.435165 0.158387i −0.115143 0.993349i \(-0.536733\pi\)
0.550308 + 0.834962i \(0.314510\pi\)
\(228\) −3.42519 + 0.437999i −0.226839 + 0.0290072i
\(229\) −7.76380 + 6.51460i −0.513046 + 0.430497i −0.862200 0.506569i \(-0.830914\pi\)
0.349153 + 0.937066i \(0.386469\pi\)
\(230\) 0 0
\(231\) 1.86628 + 2.45099i 0.122793 + 0.161263i
\(232\) 7.68051 2.79548i 0.504250 0.183532i
\(233\) −5.61343 9.72275i −0.367748 0.636959i 0.621465 0.783442i \(-0.286538\pi\)
−0.989213 + 0.146483i \(0.953205\pi\)
\(234\) −25.6731 + 36.0914i −1.67830 + 2.35937i
\(235\) 0 0
\(236\) 4.64605 26.3490i 0.302432 1.71518i
\(237\) −4.81257 1.08569i −0.312610 0.0705232i
\(238\) 2.31926 + 0.844143i 0.150336 + 0.0547177i
\(239\) 2.49115 + 14.1280i 0.161139 + 0.913864i 0.952957 + 0.303106i \(0.0980238\pi\)
−0.791818 + 0.610757i \(0.790865\pi\)
\(240\) 0 0
\(241\) −7.78696 6.53404i −0.501602 0.420894i 0.356560 0.934272i \(-0.383949\pi\)
−0.858163 + 0.513378i \(0.828394\pi\)
\(242\) −41.0918 −2.64148
\(243\) −11.2955 10.7430i −0.724605 0.689165i
\(244\) −47.7963 −3.05985
\(245\) 0 0
\(246\) −33.7818 + 17.4265i −2.15385 + 1.11107i
\(247\) 0.552766 + 3.13489i 0.0351717 + 0.199468i
\(248\) −37.8707 13.7838i −2.40479 0.875273i
\(249\) −1.27615 0.287893i −0.0808728 0.0182445i
\(250\) 0 0
\(251\) 0.766397 1.32744i 0.0483745 0.0837872i −0.840824 0.541308i \(-0.817929\pi\)
0.889199 + 0.457521i \(0.151263\pi\)
\(252\) 2.23763 3.14568i 0.140958 0.198159i
\(253\) 0.534239 + 0.925329i 0.0335873 + 0.0581749i
\(254\) 18.1646 6.61139i 1.13975 0.414835i
\(255\) 0 0
\(256\) −22.9724 + 19.2761i −1.43577 + 1.20476i
\(257\) 18.3627 15.4081i 1.14543 0.961131i 0.145828 0.989310i \(-0.453415\pi\)
0.999603 + 0.0281791i \(0.00897086\pi\)
\(258\) 28.1833 3.60396i 1.75462 0.224373i
\(259\) −1.96543 + 0.715357i −0.122126 + 0.0444501i
\(260\) 0 0
\(261\) 5.37217 1.39678i 0.332529 0.0864586i
\(262\) 13.0585 22.6179i 0.806755 1.39734i
\(263\) 1.42813 8.09931i 0.0880621 0.499425i −0.908592 0.417686i \(-0.862841\pi\)
0.996654 0.0817395i \(-0.0260475\pi\)
\(264\) 12.0351 + 38.6708i 0.740712 + 2.38002i
\(265\) 0 0
\(266\) −0.0733394 0.415929i −0.00449673 0.0255022i
\(267\) −0.521493 + 11.0059i −0.0319148 + 0.673552i
\(268\) −16.4485 13.8019i −1.00475 0.843088i
\(269\) 2.05741 0.125442 0.0627211 0.998031i \(-0.480022\pi\)
0.0627211 + 0.998031i \(0.480022\pi\)
\(270\) 0 0
\(271\) −15.4436 −0.938131 −0.469066 0.883163i \(-0.655409\pi\)
−0.469066 + 0.883163i \(0.655409\pi\)
\(272\) 7.00671 + 5.87933i 0.424844 + 0.356486i
\(273\) −2.99425 1.92322i −0.181220 0.116398i
\(274\) 5.51639 + 31.2850i 0.333257 + 1.89000i
\(275\) 0 0
\(276\) 0.908213 0.983780i 0.0546680 0.0592166i
\(277\) 0.209051 1.18559i 0.0125607 0.0712350i −0.977883 0.209152i \(-0.932930\pi\)
0.990444 + 0.137917i \(0.0440407\pi\)
\(278\) −8.85515 + 15.3376i −0.531097 + 0.919887i
\(279\) −24.7186 11.7508i −1.47987 0.703503i
\(280\) 0 0
\(281\) 26.1069 9.50212i 1.55740 0.566849i 0.587265 0.809395i \(-0.300205\pi\)
0.970140 + 0.242546i \(0.0779825\pi\)
\(282\) −19.7041 + 47.0746i −1.17336 + 2.80325i
\(283\) −17.3768 + 14.5809i −1.03295 + 0.866745i −0.991199 0.132383i \(-0.957737\pi\)
−0.0417476 + 0.999128i \(0.513293\pi\)
\(284\) −9.31127 + 7.81309i −0.552522 + 0.463621i
\(285\) 0 0
\(286\) 73.4357 26.7284i 4.34235 1.58048i
\(287\) −1.52708 2.64498i −0.0901406 0.156128i
\(288\) −3.89231 + 2.68256i −0.229357 + 0.158071i
\(289\) 3.87241 6.70722i 0.227789 0.394542i
\(290\) 0 0
\(291\) −12.5223 + 13.5642i −0.734069 + 0.795147i
\(292\) 5.26282 + 1.91551i 0.307983 + 0.112097i
\(293\) 2.89878 + 16.4398i 0.169348 + 0.960422i 0.944467 + 0.328606i \(0.106579\pi\)
−0.775119 + 0.631816i \(0.782310\pi\)
\(294\) −24.2333 15.5652i −1.41332 0.907779i
\(295\) 0 0
\(296\) −27.4972 −1.59824
\(297\) 5.65356 + 26.9175i 0.328053 + 1.56191i
\(298\) −32.1258 −1.86100
\(299\) −0.945515 0.793381i −0.0546806 0.0458824i
\(300\) 0 0
\(301\) 0.396423 + 2.24822i 0.0228494 + 0.129586i
\(302\) −20.7076 7.53697i −1.19159 0.433704i
\(303\) 6.25842 + 20.1093i 0.359537 + 1.15525i
\(304\) 0.271790 1.54140i 0.0155882 0.0884051i
\(305\) 0 0
\(306\) 15.4656 + 15.6971i 0.884110 + 0.897344i
\(307\) −3.17549 5.50011i −0.181235 0.313908i 0.761066 0.648674i \(-0.224676\pi\)
−0.942301 + 0.334766i \(0.891343\pi\)
\(308\) −6.40056 + 2.32961i −0.364706 + 0.132742i
\(309\) −4.43521 + 0.567156i −0.252310 + 0.0322644i
\(310\) 0 0
\(311\) −0.398806 + 0.334638i −0.0226142 + 0.0189756i −0.654025 0.756473i \(-0.726921\pi\)
0.631410 + 0.775449i \(0.282476\pi\)
\(312\) −28.3429 37.2227i −1.60460 2.10732i
\(313\) 15.2139 5.53741i 0.859942 0.312993i 0.125855 0.992049i \(-0.459833\pi\)
0.734087 + 0.679056i \(0.237610\pi\)
\(314\) 5.36352 + 9.28988i 0.302681 + 0.524258i
\(315\) 0 0
\(316\) 5.45403 9.44666i 0.306813 0.531416i
\(317\) −1.46495 + 8.30814i −0.0822797 + 0.466631i 0.915631 + 0.402020i \(0.131692\pi\)
−0.997911 + 0.0646113i \(0.979419\pi\)
\(318\) −11.2130 2.52960i −0.628794 0.141853i
\(319\) −9.20335 3.34975i −0.515289 0.187550i
\(320\) 0 0
\(321\) 8.24781 4.25468i 0.460348 0.237473i
\(322\) 0.125448 + 0.105264i 0.00699096 + 0.00586611i
\(323\) 1.58375 0.0881223
\(324\) 30.1014 16.7878i 1.67230 0.932655i
\(325\) 0 0
\(326\) −30.6672 25.7328i −1.69850 1.42521i
\(327\) 26.9313 13.8927i 1.48930 0.768266i
\(328\) −6.97235 39.5422i −0.384984 2.18335i
\(329\) −3.85304 1.40239i −0.212425 0.0773163i
\(330\) 0 0
\(331\) −1.19110 + 6.75507i −0.0654688 + 0.371292i 0.934417 + 0.356181i \(0.115921\pi\)
−0.999886 + 0.0151112i \(0.995190\pi\)
\(332\) 1.44625 2.50497i 0.0793731 0.137478i
\(333\) −18.5904 1.76570i −1.01875 0.0967596i
\(334\) −24.2169 41.9449i −1.32509 2.29513i
\(335\) 0 0
\(336\) 1.06003 + 1.39214i 0.0578295 + 0.0759472i
\(337\) −16.1166 + 13.5234i −0.877926 + 0.736667i −0.965752 0.259468i \(-0.916453\pi\)
0.0878255 + 0.996136i \(0.472008\pi\)
\(338\) −45.1107 + 37.8523i −2.45370 + 2.05890i
\(339\) 28.7940 3.68205i 1.56387 0.199981i
\(340\) 0 0
\(341\) 24.1459 + 41.8219i 1.30757 + 2.26478i
\(342\) 1.00299 3.63498i 0.0542354 0.196557i
\(343\) 2.33311 4.04106i 0.125976 0.218197i
\(344\) −5.21166 + 29.5568i −0.280994 + 1.59360i
\(345\) 0 0
\(346\) 7.59726 + 2.76518i 0.408431 + 0.148657i
\(347\) 1.93708 + 10.9857i 0.103988 + 0.589744i 0.991620 + 0.129190i \(0.0412378\pi\)
−0.887632 + 0.460553i \(0.847651\pi\)
\(348\) −0.580871 + 12.2591i −0.0311379 + 0.657156i
\(349\) −6.90169 5.79120i −0.369439 0.309996i 0.439101 0.898438i \(-0.355297\pi\)
−0.808540 + 0.588442i \(0.799742\pi\)
\(350\) 0 0
\(351\) −16.7720 26.9856i −0.895221 1.44039i
\(352\) 8.34080 0.444566
\(353\) 7.32667 + 6.14780i 0.389959 + 0.327214i 0.816597 0.577208i \(-0.195858\pi\)
−0.426638 + 0.904422i \(0.640302\pi\)
\(354\) 24.5832 + 15.7899i 1.30658 + 0.839224i
\(355\) 0 0
\(356\) −22.8924 8.33214i −1.21329 0.441603i
\(357\) −1.20100 + 1.30093i −0.0635637 + 0.0688525i
\(358\) −5.19791 + 29.4788i −0.274718 + 1.55800i
\(359\) −12.6845 + 21.9702i −0.669463 + 1.15954i 0.308591 + 0.951195i \(0.400143\pi\)
−0.978054 + 0.208350i \(0.933191\pi\)
\(360\) 0 0
\(361\) 9.36449 + 16.2198i 0.492868 + 0.853673i
\(362\) −10.5297 + 3.83249i −0.553427 + 0.201431i
\(363\) 11.3818 27.1919i 0.597389 1.42721i
\(364\) 6.02747 5.05765i 0.315925 0.265093i
\(365\) 0 0
\(366\) 20.1528 48.1466i 1.05341 2.51667i
\(367\) −25.2446 + 9.18829i −1.31776 + 0.479625i −0.902740 0.430188i \(-0.858447\pi\)
−0.415019 + 0.909813i \(0.636225\pi\)
\(368\) 0.303442 + 0.525578i 0.0158180 + 0.0273976i
\(369\) −2.17474 27.1815i −0.113213 1.41501i
\(370\) 0 0
\(371\) 0.160378 0.909551i 0.00832643 0.0472215i
\(372\) 41.0484 44.4637i 2.12826 2.30534i
\(373\) 23.6679 + 8.61440i 1.22548 + 0.446037i 0.872046 0.489424i \(-0.162793\pi\)
0.353430 + 0.935461i \(0.385015\pi\)
\(374\) −6.75162 38.2904i −0.349118 1.97995i
\(375\) 0 0
\(376\) −41.2942 34.6499i −2.12959 1.78693i
\(377\) 11.3138 0.582691
\(378\) 2.22526 + 3.58037i 0.114455 + 0.184155i
\(379\) 25.4242 1.30595 0.652976 0.757379i \(-0.273520\pi\)
0.652976 + 0.757379i \(0.273520\pi\)
\(380\) 0 0
\(381\) −0.656322 + 13.8515i −0.0336244 + 0.709632i
\(382\) −5.94628 33.7230i −0.304238 1.72542i
\(383\) −9.29719 3.38390i −0.475064 0.172909i 0.0933808 0.995630i \(-0.470233\pi\)
−0.568445 + 0.822721i \(0.692455\pi\)
\(384\) −10.5784 33.9903i −0.539829 1.73456i
\(385\) 0 0
\(386\) 20.4713 35.4573i 1.04196 1.80473i
\(387\) −5.42146 + 19.6482i −0.275589 + 0.998773i
\(388\) −20.4083 35.3483i −1.03608 1.79454i
\(389\) −4.09700 + 1.49119i −0.207726 + 0.0756061i −0.443788 0.896132i \(-0.646366\pi\)
0.236061 + 0.971738i \(0.424143\pi\)
\(390\) 0 0
\(391\) −0.470419 + 0.394728i −0.0237901 + 0.0199623i
\(392\) 23.3057 19.5558i 1.17711 0.987715i
\(393\) 11.3501 + 14.9061i 0.572539 + 0.751913i
\(394\) 15.4893 5.63765i 0.780340 0.284021i
\(395\) 0 0
\(396\) −60.5410 5.75012i −3.04230 0.288954i
\(397\) −8.10396 + 14.0365i −0.406726 + 0.704470i −0.994521 0.104540i \(-0.966663\pi\)
0.587795 + 0.809010i \(0.299996\pi\)
\(398\) −6.47363 + 36.7138i −0.324494 + 1.84030i
\(399\) 0.295549 + 0.0666743i 0.0147960 + 0.00333789i
\(400\) 0 0
\(401\) −0.111264 0.631007i −0.00555624 0.0315110i 0.981904 0.189381i \(-0.0606483\pi\)
−0.987460 + 0.157870i \(0.949537\pi\)
\(402\) 20.8385 10.7496i 1.03933 0.536143i
\(403\) −42.7343 35.8583i −2.12875 1.78623i
\(404\) −46.5654 −2.31672
\(405\) 0 0
\(406\) −1.50109 −0.0744976
\(407\) 25.2405 + 21.1793i 1.25113 + 1.04982i
\(408\) −20.6866 + 10.6713i −1.02414 + 0.528308i
\(409\) 4.23533 + 24.0197i 0.209423 + 1.18770i 0.890326 + 0.455325i \(0.150477\pi\)
−0.680902 + 0.732374i \(0.738412\pi\)
\(410\) 0 0
\(411\) −22.2304 5.01506i −1.09654 0.247375i
\(412\) 1.71671 9.73596i 0.0845763 0.479656i
\(413\) −1.17378 + 2.03304i −0.0577577 + 0.100039i
\(414\) 0.608052 + 1.32967i 0.0298841 + 0.0653497i
\(415\) 0 0
\(416\) −9.05405 + 3.29540i −0.443911 + 0.161570i
\(417\) −7.69670 10.1081i −0.376909 0.494994i
\(418\) −5.09677 + 4.27669i −0.249291 + 0.209180i
\(419\) −13.1999 + 11.0760i −0.644855 + 0.541098i −0.905505 0.424336i \(-0.860508\pi\)
0.260650 + 0.965433i \(0.416063\pi\)
\(420\) 0 0
\(421\) 21.2230 7.72454i 1.03435 0.376471i 0.231612 0.972808i \(-0.425600\pi\)
0.802734 + 0.596337i \(0.203378\pi\)
\(422\) −22.2694 38.5718i −1.08406 1.87765i
\(423\) −25.6933 26.0779i −1.24925 1.26795i
\(424\) 6.07104 10.5154i 0.294836 0.510671i
\(425\) 0 0
\(426\) −3.94435 12.6738i −0.191104 0.614049i
\(427\) 3.94078 + 1.43433i 0.190708 + 0.0694119i
\(428\) 3.56316 + 20.2077i 0.172232 + 0.976775i
\(429\) −2.65337 + 55.9985i −0.128106 + 2.70363i
\(430\) 0 0
\(431\) −10.3129 −0.496754 −0.248377 0.968663i \(-0.579897\pi\)
−0.248377 + 0.968663i \(0.579897\pi\)
\(432\) 3.21117 + 15.2889i 0.154497 + 0.735587i
\(433\) 11.0194 0.529557 0.264778 0.964309i \(-0.414701\pi\)
0.264778 + 0.964309i \(0.414701\pi\)
\(434\) 5.66986 + 4.75758i 0.272162 + 0.228371i
\(435\) 0 0
\(436\) 11.6347 + 65.9835i 0.557199 + 3.16003i
\(437\) 0.0987460 + 0.0359406i 0.00472366 + 0.00171927i
\(438\) −4.14856 + 4.49374i −0.198226 + 0.214719i
\(439\) −4.27981 + 24.2720i −0.204264 + 1.15844i 0.694329 + 0.719658i \(0.255701\pi\)
−0.898593 + 0.438783i \(0.855410\pi\)
\(440\) 0 0
\(441\) 17.0123 11.7248i 0.810110 0.558323i
\(442\) 22.4573 + 38.8971i 1.06818 + 1.85015i
\(443\) 20.5698 7.48678i 0.977299 0.355708i 0.196509 0.980502i \(-0.437039\pi\)
0.780789 + 0.624794i \(0.214817\pi\)
\(444\) 15.9420 38.0867i 0.756575 1.80752i
\(445\) 0 0
\(446\) 5.76310 4.83582i 0.272891 0.228983i
\(447\) 8.89834 21.2588i 0.420877 1.00551i
\(448\) 3.09988 1.12826i 0.146456 0.0533055i
\(449\) −0.0863524 0.149567i −0.00407522 0.00705849i 0.863981 0.503525i \(-0.167964\pi\)
−0.868056 + 0.496467i \(0.834631\pi\)
\(450\) 0 0
\(451\) −24.0566 + 41.6673i −1.13278 + 1.96204i
\(452\) −11.1451 + 63.2071i −0.524222 + 2.97301i
\(453\) 10.7232 11.6154i 0.503819 0.545739i
\(454\) −15.8302 5.76171i −0.742947 0.270411i
\(455\) 0 0
\(456\) 3.35138 + 2.15261i 0.156943 + 0.100805i
\(457\) −6.86690 5.76201i −0.321220 0.269536i 0.467891 0.883786i \(-0.345014\pi\)
−0.789111 + 0.614251i \(0.789458\pi\)
\(458\) 24.4703 1.14342
\(459\) −14.6711 + 5.88632i −0.684788 + 0.274750i
\(460\) 0 0
\(461\) 12.4655 + 10.4598i 0.580576 + 0.487161i 0.885136 0.465332i \(-0.154065\pi\)
−0.304560 + 0.952493i \(0.598510\pi\)
\(462\) 0.352042 7.42973i 0.0163785 0.345662i
\(463\) −2.38861 13.5465i −0.111008 0.629558i −0.988650 0.150240i \(-0.951995\pi\)
0.877642 0.479318i \(-0.159116\pi\)
\(464\) −5.22741 1.90262i −0.242677 0.0883270i
\(465\) 0 0
\(466\) −4.70704 + 26.6949i −0.218049 + 1.23662i
\(467\) 2.09492 3.62851i 0.0969414 0.167907i −0.813476 0.581599i \(-0.802427\pi\)
0.910417 + 0.413691i \(0.135761\pi\)
\(468\) 67.9899 17.6776i 3.14283 0.817146i
\(469\) 0.941987 + 1.63157i 0.0434969 + 0.0753389i
\(470\) 0 0
\(471\) −7.63307 + 0.976085i −0.351713 + 0.0449756i
\(472\) −23.6421 + 19.8381i −1.08822 + 0.913123i
\(473\) 27.5496 23.1169i 1.26673 1.06292i
\(474\) 7.21626 + 9.47709i 0.331454 + 0.435297i
\(475\) 0 0
\(476\) −1.95734 3.39022i −0.0897148 0.155391i
\(477\) 4.77976 6.71941i 0.218850 0.307661i
\(478\) 17.3188 29.9970i 0.792143 1.37203i
\(479\) 4.29952 24.3838i 0.196450 1.11412i −0.713888 0.700259i \(-0.753068\pi\)
0.910339 0.413864i \(-0.135821\pi\)
\(480\) 0 0
\(481\) −35.7668 13.0180i −1.63082 0.593571i
\(482\) 4.26190 + 24.1704i 0.194124 + 1.10093i
\(483\) −0.104404 + 0.0538574i −0.00475055 + 0.00245060i
\(484\) 49.9277 + 41.8943i 2.26944 + 1.90429i
\(485\) 0 0
\(486\) 4.21890 + 37.4004i 0.191373 + 1.69652i
\(487\) 14.2164 0.644205 0.322102 0.946705i \(-0.395610\pi\)
0.322102 + 0.946705i \(0.395610\pi\)
\(488\) 42.2346 + 35.4390i 1.91187 + 1.60425i
\(489\) 25.5227 13.1660i 1.15418 0.595388i
\(490\) 0 0
\(491\) −10.7333 3.90659i −0.484385 0.176302i 0.0882726 0.996096i \(-0.471865\pi\)
−0.572658 + 0.819795i \(0.694088\pi\)
\(492\) 58.8127 + 13.2678i 2.65148 + 0.598160i
\(493\) 0.977453 5.54341i 0.0440222 0.249663i
\(494\) 3.84291 6.65611i 0.172901 0.299473i
\(495\) 0 0
\(496\) 13.7146 + 23.7544i 0.615805 + 1.06661i
\(497\) 1.00217 0.364761i 0.0449536 0.0163618i
\(498\) 1.91354 + 2.51304i 0.0857477 + 0.112612i
\(499\) 29.0144 24.3459i 1.29886 1.08987i 0.308520 0.951218i \(-0.400166\pi\)
0.990341 0.138656i \(-0.0442781\pi\)
\(500\) 0 0
\(501\) 34.4642 4.40714i 1.53975 0.196897i
\(502\) −3.47767 + 1.26577i −0.155216 + 0.0564940i
\(503\) 18.1596 + 31.4533i 0.809694 + 1.40243i 0.913076 + 0.407790i \(0.133700\pi\)
−0.103381 + 0.994642i \(0.532966\pi\)
\(504\) −4.30964 + 1.12052i −0.191967 + 0.0499120i
\(505\) 0 0
\(506\) 0.447976 2.54060i 0.0199149 0.112943i
\(507\) −12.5533 40.3359i −0.557514 1.79138i
\(508\) −28.8111 10.4864i −1.27828 0.465258i
\(509\) −1.95163 11.0682i −0.0865043 0.490590i −0.997022 0.0771197i \(-0.975428\pi\)
0.910518 0.413470i \(-0.135683\pi\)
\(510\) 0 0
\(511\) −0.376434 0.315866i −0.0166525 0.0139731i
\(512\) 31.3000 1.38328
\(513\) 2.12759 + 1.67055i 0.0939352 + 0.0737564i
\(514\) −57.8762 −2.55281
\(515\) 0 0
\(516\) −37.9179 24.3548i −1.66924 1.07216i
\(517\) 11.2166 + 63.6125i 0.493305 + 2.79767i
\(518\) 4.74543 + 1.72720i 0.208502 + 0.0758886i
\(519\) −3.93414 + 4.26148i −0.172690 + 0.187058i
\(520\) 0 0
\(521\) 2.20153 3.81316i 0.0964507 0.167057i −0.813762 0.581198i \(-0.802584\pi\)
0.910213 + 0.414140i \(0.135918\pi\)
\(522\) −12.1040 5.75405i −0.529779 0.251848i
\(523\) 7.79908 + 13.5084i 0.341030 + 0.590681i 0.984624 0.174686i \(-0.0558910\pi\)
−0.643594 + 0.765367i \(0.722558\pi\)
\(524\) −38.9261 + 14.1679i −1.70050 + 0.618930i
\(525\) 0 0
\(526\) −15.2114 + 12.7639i −0.663249 + 0.556532i
\(527\) −21.2614 + 17.8405i −0.926163 + 0.777143i
\(528\) 10.6431 25.4272i 0.463182 1.10658i
\(529\) 21.5746 7.85253i 0.938028 0.341414i
\(530\) 0 0
\(531\) −17.2579 + 11.8941i −0.748930 + 0.516158i
\(532\) −0.334942 + 0.580137i −0.0145216 + 0.0251521i
\(533\) 9.65127 54.7350i 0.418043 2.37084i
\(534\) 18.0455 19.5470i 0.780907 0.845881i
\(535\) 0 0
\(536\) 4.30093 + 24.3918i 0.185772 + 1.05357i
\(537\) −18.0675 11.6048i −0.779670 0.500785i
\(538\) −3.80533 3.19305i −0.164060 0.137662i
\(539\) −36.4555 −1.57025
\(540\) 0 0
\(541\) −1.52861 −0.0657202 −0.0328601 0.999460i \(-0.510462\pi\)
−0.0328601 + 0.999460i \(0.510462\pi\)
\(542\) 28.5641 + 23.9681i 1.22693 + 1.02952i
\(543\) 0.380456 8.02941i 0.0163269 0.344575i
\(544\) 0.832422 + 4.72090i 0.0356898 + 0.202407i
\(545\) 0 0
\(546\) 2.55330 + 8.20415i 0.109271 + 0.351105i
\(547\) 2.13129 12.0871i 0.0911273 0.516808i −0.904738 0.425968i \(-0.859934\pi\)
0.995865 0.0908404i \(-0.0289553\pi\)
\(548\) 25.1934 43.6363i 1.07621 1.86405i
\(549\) 26.2784 + 26.6717i 1.12154 + 1.13832i
\(550\) 0 0
\(551\) −0.905136 + 0.329443i −0.0385601 + 0.0140347i
\(552\) −1.53196 + 0.195901i −0.0652047 + 0.00833809i
\(553\) −0.733168 + 0.615201i −0.0311775 + 0.0261610i
\(554\) −2.22666 + 1.86839i −0.0946019 + 0.0793804i
\(555\) 0 0
\(556\) 26.3964 9.60751i 1.11946 0.407449i
\(557\) 8.99212 + 15.5748i 0.381008 + 0.659926i 0.991207 0.132323i \(-0.0422436\pi\)
−0.610198 + 0.792249i \(0.708910\pi\)
\(558\) 27.4820 + 60.0969i 1.16341 + 2.54410i
\(559\) −20.7721 + 35.9784i −0.878567 + 1.52172i
\(560\) 0 0
\(561\) 27.2082 + 6.13804i 1.14873 + 0.259148i
\(562\) −63.0338 22.9424i −2.65892 0.967768i
\(563\) 1.63413 + 9.26763i 0.0688705 + 0.390584i 0.999685 + 0.0250923i \(0.00798797\pi\)
−0.930815 + 0.365492i \(0.880901\pi\)
\(564\) 71.9351 37.1081i 3.02901 1.56253i
\(565\) 0 0
\(566\) 54.7691 2.30212
\(567\) −2.98563 + 0.480827i −0.125385 + 0.0201928i
\(568\) 14.0209 0.588302
\(569\) −25.8778 21.7141i −1.08485 0.910301i −0.0885394 0.996073i \(-0.528220\pi\)
−0.996315 + 0.0857719i \(0.972664\pi\)
\(570\) 0 0
\(571\) −0.978955 5.55193i −0.0409680 0.232341i 0.957448 0.288606i \(-0.0931919\pi\)
−0.998416 + 0.0562653i \(0.982081\pi\)
\(572\) −116.477 42.3942i −4.87015 1.77259i
\(573\) 23.9628 + 5.40588i 1.00106 + 0.225834i
\(574\) −1.28050 + 7.26209i −0.0534472 + 0.303114i
\(575\) 0 0
\(576\) 29.3209 + 2.78486i 1.22170 + 0.116036i
\(577\) −7.94027 13.7529i −0.330558 0.572543i 0.652064 0.758164i \(-0.273904\pi\)
−0.982621 + 0.185622i \(0.940570\pi\)
\(578\) −17.5718 + 6.39561i −0.730891 + 0.266022i
\(579\) 17.7932 + 23.3678i 0.739460 + 0.971131i
\(580\) 0 0
\(581\) −0.194414 + 0.163133i −0.00806567 + 0.00676790i
\(582\) 44.2123 5.65368i 1.83266 0.234353i
\(583\) −13.6721 + 4.97623i −0.566240 + 0.206094i
\(584\) −3.23015 5.59478i −0.133664 0.231514i
\(585\) 0 0
\(586\) 20.1527 34.9055i 0.832500 1.44193i
\(587\) 3.45096 19.5714i 0.142436 0.807797i −0.826953 0.562270i \(-0.809928\pi\)
0.969390 0.245527i \(-0.0789609\pi\)
\(588\) 13.5750 + 43.6187i 0.559825 + 1.79881i
\(589\) 4.46300 + 1.62440i 0.183895 + 0.0669323i
\(590\) 0 0
\(591\) −0.559657 + 11.8114i −0.0230212 + 0.485856i
\(592\) 14.3364 + 12.0296i 0.589221 + 0.494416i
\(593\) −43.0280 −1.76695 −0.883474 0.468480i \(-0.844802\pi\)
−0.883474 + 0.468480i \(0.844802\pi\)
\(594\) 31.3188 58.5603i 1.28502 2.40276i
\(595\) 0 0
\(596\) 39.0337 + 32.7532i 1.59888 + 1.34162i
\(597\) −22.5018 14.4530i −0.920936 0.591521i
\(598\) 0.517492 + 2.93484i 0.0211618 + 0.120015i
\(599\) 36.3045 + 13.2138i 1.48336 + 0.539900i 0.951693 0.307051i \(-0.0993422\pi\)
0.531671 + 0.846951i \(0.321564\pi\)
\(600\) 0 0
\(601\) −1.31942 + 7.48281i −0.0538203 + 0.305230i −0.999821 0.0189352i \(-0.993972\pi\)
0.946000 + 0.324166i \(0.105083\pi\)
\(602\) 2.75599 4.77351i 0.112326 0.194554i
\(603\) 1.34150 + 16.7671i 0.0546302 + 0.682808i
\(604\) 17.4762 + 30.2697i 0.711098 + 1.23166i
\(605\) 0 0
\(606\) 19.6338 46.9067i 0.797570 1.90546i
\(607\) 0.651945 0.547047i 0.0264616 0.0222040i −0.629461 0.777032i \(-0.716724\pi\)
0.655923 + 0.754828i \(0.272280\pi\)
\(608\) 0.628391 0.527283i 0.0254846 0.0213841i
\(609\) 0.415777 0.993324i 0.0168482 0.0402515i
\(610\) 0 0
\(611\) −37.3087 64.6205i −1.50935 2.61427i
\(612\) −2.78749 34.8401i −0.112678 1.40833i
\(613\) 0.0839581 0.145420i 0.00339104 0.00587345i −0.864325 0.502934i \(-0.832254\pi\)
0.867716 + 0.497060i \(0.165587\pi\)
\(614\) −2.66275 + 15.1012i −0.107460 + 0.609434i
\(615\) 0 0
\(616\) 7.38308 + 2.68722i 0.297473 + 0.108271i
\(617\) −2.89015 16.3908i −0.116353 0.659871i −0.986071 0.166322i \(-0.946811\pi\)
0.869718 0.493548i \(-0.164300\pi\)
\(618\) 9.08348 + 5.83436i 0.365391 + 0.234692i
\(619\) −33.6283 28.2175i −1.35163 1.13416i −0.978470 0.206391i \(-0.933828\pi\)
−0.373165 0.927765i \(-0.621728\pi\)
\(620\) 0 0
\(621\) −1.04831 + 0.0340724i −0.0420674 + 0.00136728i
\(622\) 1.25698 0.0504001
\(623\) 1.63742 + 1.37396i 0.0656020 + 0.0550466i
\(624\) −1.50709 + 31.8066i −0.0603318 + 1.27328i
\(625\) 0 0
\(626\) −36.7333 13.3698i −1.46816 0.534366i
\(627\) −1.41832 4.55730i −0.0566423 0.182001i
\(628\) 2.95449 16.7558i 0.117897 0.668627i
\(629\) −9.46847 + 16.3999i −0.377533 + 0.653906i
\(630\) 0 0
\(631\) 6.62243 + 11.4704i 0.263635 + 0.456629i 0.967205 0.253997i \(-0.0817453\pi\)
−0.703570 + 0.710626i \(0.748412\pi\)
\(632\) −11.8237 + 4.30347i −0.470321 + 0.171183i
\(633\) 31.6927 4.05273i 1.25967 0.161081i
\(634\) 15.6036 13.0930i 0.619698 0.519989i
\(635\) 0 0
\(636\) 11.0451 + 14.5055i 0.437968 + 0.575182i
\(637\) 39.5729 14.4034i 1.56794 0.570682i
\(638\) 11.8236 + 20.4790i 0.468100 + 0.810773i
\(639\) 9.47927 + 0.900331i 0.374994 + 0.0356165i
\(640\) 0 0
\(641\) −7.29257 + 41.3582i −0.288039 + 1.63355i 0.406183 + 0.913792i \(0.366859\pi\)
−0.694223 + 0.719760i \(0.744252\pi\)
\(642\) −21.8581 4.93108i −0.862672 0.194614i
\(643\) −26.4485 9.62646i −1.04303 0.379631i −0.237000 0.971510i \(-0.576164\pi\)
−0.806027 + 0.591879i \(0.798386\pi\)
\(644\) −0.0451039 0.255797i −0.00177734 0.0100798i
\(645\) 0 0
\(646\) −2.92927 2.45795i −0.115251 0.0967069i
\(647\) −4.87520 −0.191664 −0.0958319 0.995398i \(-0.530551\pi\)
−0.0958319 + 0.995398i \(0.530551\pi\)
\(648\) −39.0461 7.48464i −1.53388 0.294024i
\(649\) 36.9819 1.45166
\(650\) 0 0
\(651\) −4.71873 + 2.43418i −0.184942 + 0.0954032i
\(652\) 11.0261 + 62.5322i 0.431816 + 2.44895i
\(653\) 3.30599 + 1.20328i 0.129373 + 0.0470880i 0.405895 0.913920i \(-0.366960\pi\)
−0.276522 + 0.961008i \(0.589182\pi\)
\(654\) −71.3727 16.1013i −2.79089 0.629611i
\(655\) 0 0
\(656\) −13.6639 + 23.6666i −0.533487 + 0.924027i
\(657\) −1.82459 3.98996i −0.0711839 0.155663i
\(658\) 4.95001 + 8.57367i 0.192972 + 0.334236i
\(659\) −3.85106 + 1.40167i −0.150016 + 0.0546013i −0.415937 0.909394i \(-0.636546\pi\)
0.265921 + 0.963995i \(0.414324\pi\)
\(660\) 0 0
\(661\) 10.8180 9.07740i 0.420773 0.353070i −0.407684 0.913123i \(-0.633664\pi\)
0.828457 + 0.560053i \(0.189219\pi\)
\(662\) 12.6868 10.6455i 0.493085 0.413748i
\(663\) −31.9600 + 4.08691i −1.24122 + 0.158722i
\(664\) −3.13529 + 1.14115i −0.121673 + 0.0442853i
\(665\) 0 0
\(666\) 31.6441 + 32.1177i 1.22618 + 1.24454i
\(667\) 0.186742 0.323446i 0.00723067 0.0125239i
\(668\) −13.3399 + 75.6542i −0.516136 + 2.92715i
\(669\) 1.60375 + 5.15311i 0.0620046 + 0.199231i
\(670\) 0 0
\(671\) −11.4720 65.0611i −0.442873 2.51166i
\(672\) −0.0434039 + 0.916026i −0.00167434 + 0.0353365i
\(673\) −31.7224 26.6182i −1.22281 1.02606i −0.998673 0.0514985i \(-0.983600\pi\)
−0.224134 0.974558i \(-0.571955\pi\)
\(674\) 50.7970 1.95663
\(675\) 0 0
\(676\) 93.4024 3.59240
\(677\) −23.8227 19.9896i −0.915581 0.768264i 0.0575915 0.998340i \(-0.481658\pi\)
−0.973173 + 0.230077i \(0.926102\pi\)
\(678\) −58.9711 37.8774i −2.26477 1.45467i
\(679\) 0.621884 + 3.52688i 0.0238657 + 0.135349i
\(680\) 0 0
\(681\) 8.19745 8.87951i 0.314127 0.340264i
\(682\) 20.2471 114.827i 0.775301 4.39695i
\(683\) −6.49887 + 11.2564i −0.248673 + 0.430713i −0.963158 0.268937i \(-0.913328\pi\)
0.714485 + 0.699651i \(0.246661\pi\)
\(684\) −4.92463 + 3.39403i −0.188298 + 0.129774i
\(685\) 0 0
\(686\) −10.5869 + 3.85332i −0.404210 + 0.147121i
\(687\) −6.77789 + 16.1929i −0.258593 + 0.617798i
\(688\) 15.6479 13.1302i 0.596571 0.500583i
\(689\) 12.8751 10.8035i 0.490504 0.411582i
\(690\) 0 0
\(691\) −44.3322 + 16.1356i −1.68648 + 0.613827i −0.994175 0.107782i \(-0.965625\pi\)
−0.692301 + 0.721609i \(0.743403\pi\)
\(692\) −6.41171 11.1054i −0.243737 0.422164i
\(693\) 4.81902 + 2.29088i 0.183059 + 0.0870233i
\(694\) 13.4668 23.3252i 0.511194 0.885413i
\(695\) 0 0
\(696\) 9.60289 10.4019i 0.363997 0.394283i
\(697\) −25.9846 9.45762i −0.984237 0.358233i
\(698\) 3.77738 + 21.4226i 0.142976 + 0.810856i
\(699\) −16.3613 10.5089i −0.618839 0.397483i
\(700\) 0 0
\(701\) 8.98862 0.339496 0.169748 0.985488i \(-0.445705\pi\)
0.169748 + 0.985488i \(0.445705\pi\)
\(702\) −10.8601 + 75.9418i −0.409887 + 2.86624i
\(703\) 3.24051 0.122218
\(704\) −39.8095 33.4041i −1.50038 1.25897i
\(705\) 0 0
\(706\) −4.00997 22.7417i −0.150917 0.855895i
\(707\) 3.83929 + 1.39739i 0.144391 + 0.0525542i
\(708\) −13.7710 44.2485i −0.517547 1.66296i
\(709\) −6.01200 + 34.0958i −0.225785 + 1.28049i 0.635392 + 0.772189i \(0.280838\pi\)
−0.861178 + 0.508304i \(0.830273\pi\)
\(710\) 0 0
\(711\) −8.27014 + 2.15026i −0.310154 + 0.0806411i
\(712\) 14.0506 + 24.3363i 0.526568 + 0.912043i
\(713\) −1.73050 + 0.629849i −0.0648076 + 0.0235880i
\(714\) 4.24036 0.542240i 0.158692 0.0202928i
\(715\) 0 0
\(716\) 36.3702 30.5182i 1.35922 1.14052i
\(717\) 15.0531 + 19.7692i 0.562169 + 0.738294i
\(718\) 57.5584 20.9495i 2.14806 0.781830i
\(719\) 11.7846 + 20.4116i 0.439493 + 0.761224i 0.997650 0.0685110i \(-0.0218248\pi\)
−0.558157 + 0.829735i \(0.688491\pi\)
\(720\) 0 0
\(721\) −0.433710 + 0.751207i −0.0161522 + 0.0279764i
\(722\) 7.85242 44.5333i 0.292237 1.65736i
\(723\) −17.1750 3.87458i −0.638743 0.144097i
\(724\) 16.7012 + 6.07874i 0.620695 + 0.225915i
\(725\) 0 0
\(726\) −63.2529 + 32.6293i −2.34753 + 1.21099i
\(727\) −20.7902 17.4450i −0.771064 0.647000i 0.169917 0.985458i \(-0.445650\pi\)
−0.940981 + 0.338459i \(0.890094\pi\)
\(728\) −9.07613 −0.336384
\(729\) −25.9178 7.56753i −0.959919 0.280279i
\(730\) 0 0
\(731\) 15.8336 + 13.2860i 0.585629 + 0.491401i
\(732\) −73.5733 + 37.9532i −2.71935 + 1.40279i
\(733\) 2.58612 + 14.6666i 0.0955205 + 0.541724i 0.994587 + 0.103911i \(0.0331356\pi\)
−0.899066 + 0.437813i \(0.855753\pi\)
\(734\) 60.9520 + 22.1847i 2.24978 + 0.818852i
\(735\) 0 0
\(736\) −0.0552319 + 0.313235i −0.00203587 + 0.0115460i
\(737\) 14.8395 25.7027i 0.546619 0.946771i
\(738\) −38.1628 + 53.6495i −1.40479 + 1.97487i
\(739\) −5.36887 9.29916i −0.197497 0.342075i 0.750219 0.661189i \(-0.229948\pi\)
−0.947716 + 0.319114i \(0.896615\pi\)
\(740\) 0 0
\(741\) 3.34017 + 4.38663i 0.122704 + 0.161147i
\(742\) −1.70824 + 1.43338i −0.0627114 + 0.0526211i
\(743\) 12.7210 10.6742i 0.466687 0.391597i −0.378897 0.925439i \(-0.623697\pi\)
0.845584 + 0.533842i \(0.179252\pi\)
\(744\) −69.2398 + 8.85410i −2.53846 + 0.324607i
\(745\) 0 0
\(746\) −30.4062 52.6651i −1.11325 1.92821i
\(747\) −2.19300 + 0.570186i −0.0802375 + 0.0208620i
\(748\) −30.8348 + 53.4074i −1.12743 + 1.95277i
\(749\) 0.312635 1.77304i 0.0114234 0.0647854i
\(750\) 0 0
\(751\) −4.89963 1.78332i −0.178790 0.0650743i 0.251074 0.967968i \(-0.419216\pi\)
−0.429864 + 0.902894i \(0.641439\pi\)
\(752\) 6.37092 + 36.1313i 0.232323 + 1.31757i
\(753\) 0.125655 2.65190i 0.00457911 0.0966407i
\(754\) −20.9258 17.5588i −0.762072 0.639455i
\(755\) 0 0
\(756\) 0.946549 6.61898i 0.0344257 0.240730i
\(757\) 43.6180 1.58532 0.792662 0.609661i \(-0.208694\pi\)
0.792662 + 0.609661i \(0.208694\pi\)
\(758\) −47.0240 39.4578i −1.70799 1.43317i
\(759\) 1.55712 + 1.00015i 0.0565200 + 0.0363031i
\(760\) 0 0
\(761\) 11.6568 + 4.24273i 0.422559 + 0.153799i 0.544542 0.838733i \(-0.316703\pi\)
−0.121984 + 0.992532i \(0.538926\pi\)
\(762\) 22.7111 24.6008i 0.822737 0.891192i
\(763\) 1.02084 5.78945i 0.0369567 0.209592i
\(764\) −27.1568 + 47.0369i −0.982497 + 1.70174i
\(765\) 0 0
\(766\) 11.9441 + 20.6878i 0.431559 + 0.747482i
\(767\) −40.1443 + 14.6113i −1.44953 + 0.527584i
\(768\) −20.0552 + 47.9133i −0.723679 + 1.72892i
\(769\) −30.8699 + 25.9030i −1.11320 + 0.934085i −0.998241 0.0592857i \(-0.981118\pi\)
−0.114958 + 0.993370i \(0.536673\pi\)
\(770\) 0 0
\(771\) 16.0308 38.2989i 0.577336 1.37930i
\(772\) −61.0231 + 22.2106i −2.19627 + 0.799376i
\(773\) −17.2390 29.8587i −0.620042 1.07394i −0.989477 0.144688i \(-0.953782\pi\)
0.369435 0.929257i \(-0.379551\pi\)
\(774\) 40.5210 27.9269i 1.45650 1.00381i
\(775\) 0 0
\(776\) −8.17574 + 46.3669i −0.293492 + 1.66448i
\(777\) −2.45736 + 2.66182i −0.0881573 + 0.0954923i
\(778\) 9.89201 + 3.60040i 0.354646 + 0.129081i
\(779\) 0.821681 + 4.65998i 0.0294398 + 0.166961i
\(780\) 0 0
\(781\) −12.8702 10.7994i −0.460531 0.386431i
\(782\) 1.48269 0.0530208
\(783\) 7.16030 6.41590i 0.255888 0.229286i
\(784\) −20.7064 −0.739513
\(785\) 0 0
\(786\) 2.14100 45.1852i 0.0763670 1.61170i
\(787\) −6.35385 36.0345i −0.226490 1.28449i −0.859816 0.510604i \(-0.829422\pi\)
0.633325 0.773886i \(-0.281689\pi\)
\(788\) −24.5677 8.94192i −0.875189 0.318543i
\(789\) −4.23302 13.6014i −0.150699 0.484221i
\(790\) 0 0
\(791\) 2.81570 4.87693i 0.100115 0.173404i
\(792\) 49.2328 + 49.9697i 1.74941 + 1.77560i
\(793\) 38.1583 + 66.0921i 1.35504 + 2.34700i
\(794\) 36.7732 13.3844i 1.30503 0.474993i
\(795\) 0 0
\(796\) 45.2965 38.0083i 1.60549 1.34717i
\(797\) −39.4838 + 33.1308i −1.39859 + 1.17355i −0.436866 + 0.899527i \(0.643911\pi\)
−0.961722 + 0.274027i \(0.911644\pi\)
\(798\) −0.443164 0.582006i −0.0156878 0.0206028i
\(799\) −34.8853 + 12.6972i −1.23415 + 0.449195i
\(800\) 0 0
\(801\) 7.93664 + 17.3556i 0.280427 + 0.613231i
\(802\) −0.773520 + 1.33978i −0.0273140 + 0.0473092i
\(803\) −1.34425 + 7.62359i −0.0474374 + 0.269031i
\(804\) −36.2789 8.18433i −1.27946 0.288639i
\(805\) 0 0
\(806\) 23.3890 + 132.646i 0.823842 + 4.67224i
\(807\) 3.16698 1.63370i 0.111483 0.0575091i
\(808\) 41.1469 + 34.5263i 1.44754 + 1.21463i
\(809\) −18.5065 −0.650654 −0.325327 0.945602i \(-0.605474\pi\)
−0.325327 + 0.945602i \(0.605474\pi\)
\(810\) 0 0
\(811\) 36.6261 1.28611 0.643057 0.765818i \(-0.277666\pi\)
0.643057 + 0.765818i \(0.277666\pi\)
\(812\) 1.82386 + 1.53040i 0.0640050 + 0.0537066i
\(813\) −23.7724 + 12.2631i −0.833736 + 0.430087i
\(814\) −13.8145 78.3456i −0.484196 2.74601i
\(815\) 0 0
\(816\) 15.4540 + 3.48634i 0.540999 + 0.122046i
\(817\) 0.614186 3.48322i 0.0214877 0.121863i
\(818\) 29.4446 50.9995i 1.02951 1.78316i
\(819\) −6.13622 0.582811i −0.214417 0.0203651i
\(820\) 0 0
\(821\) 20.6784 7.52630i 0.721679 0.262670i 0.0450409 0.998985i \(-0.485658\pi\)
0.676639 + 0.736315i \(0.263436\pi\)
\(822\) 33.3336 + 43.7769i 1.16264 + 1.52689i
\(823\) −23.2081 + 19.4739i −0.808984 + 0.678818i −0.950365 0.311137i \(-0.899290\pi\)
0.141381 + 0.989955i \(0.454846\pi\)
\(824\) −8.73576 + 7.33017i −0.304325 + 0.255359i
\(825\) 0 0
\(826\) 5.32623 1.93859i 0.185323 0.0674521i
\(827\) 8.94761 + 15.4977i 0.311139 + 0.538909i 0.978609 0.205728i \(-0.0659562\pi\)
−0.667470 + 0.744637i \(0.732623\pi\)
\(828\) 0.616839 2.23552i 0.0214366 0.0776896i
\(829\) −12.0856 + 20.9328i −0.419749 + 0.727026i −0.995914 0.0903070i \(-0.971215\pi\)
0.576165 + 0.817333i \(0.304549\pi\)
\(830\) 0 0
\(831\) −0.619634 1.99098i −0.0214949 0.0690664i
\(832\) 56.4115 + 20.5321i 1.95572 + 0.711823i
\(833\) −3.63830 20.6338i −0.126060 0.714920i
\(834\) −1.45185 + 30.6408i −0.0502734 + 1.06100i
\(835\) 0 0
\(836\) 10.5529 0.364981
\(837\) −47.3804 + 1.53996i −1.63771 + 0.0532289i
\(838\) 41.6039 1.43718
\(839\) 41.0703 + 34.4621i 1.41790 + 1.18976i 0.952452 + 0.304690i \(0.0985528\pi\)
0.465452 + 0.885073i \(0.345892\pi\)
\(840\) 0 0
\(841\) −4.44132 25.1880i −0.153149 0.868551i
\(842\) −51.2420 18.6505i −1.76591 0.642740i
\(843\) 32.6412 35.3571i 1.12422 1.21776i
\(844\) −12.2671 + 69.5703i −0.422252 + 2.39471i
\(845\) 0 0
\(846\) 7.04940 + 88.1086i 0.242364 + 3.02924i
\(847\) −2.85930 4.95245i −0.0982467 0.170168i
\(848\) −7.76561 + 2.82645i −0.266672 + 0.0970607i
\(849\) −15.1702 + 36.2428i −0.520640 + 1.24385i
\(850\) 0 0
\(851\) −0.962521 + 0.807651i −0.0329948 + 0.0276859i
\(852\) −8.12885 + 19.4205i −0.278490 + 0.665334i
\(853\) −25.1738 + 9.16250i −0.861933 + 0.313718i −0.734896 0.678180i \(-0.762769\pi\)
−0.127037 + 0.991898i \(0.540547\pi\)
\(854\) −5.06274 8.76892i −0.173243 0.300066i
\(855\) 0 0
\(856\) 11.8346 20.4982i 0.404499 0.700613i
\(857\) −2.59878 + 14.7384i −0.0887725 + 0.503454i 0.907706 + 0.419607i \(0.137832\pi\)
−0.996479 + 0.0838474i \(0.973279\pi\)
\(858\) 91.8162 99.4557i 3.13455 3.39536i
\(859\) 0.649627 + 0.236445i 0.0221650 + 0.00806740i 0.353079 0.935594i \(-0.385135\pi\)
−0.330914 + 0.943661i \(0.607357\pi\)
\(860\) 0 0
\(861\) −4.45092 2.85884i −0.151687 0.0974291i
\(862\) 19.0745 + 16.0054i 0.649679 + 0.545146i
\(863\) −48.5994 −1.65434 −0.827172 0.561949i \(-0.810052\pi\)
−0.827172 + 0.561949i \(0.810052\pi\)
\(864\) −3.86135 + 7.22002i −0.131366 + 0.245630i
\(865\) 0 0
\(866\) −20.3812 17.1018i −0.692581 0.581144i
\(867\) 0.634902 13.3994i 0.0215624 0.455067i
\(868\) −2.03855 11.5612i −0.0691929 0.392413i
\(869\) 14.1680 + 5.15673i 0.480617 + 0.174930i
\(870\) 0 0
\(871\) −5.95343 + 33.7636i −0.201724 + 1.14404i
\(872\) 38.6432 66.9320i 1.30862 2.26660i
\(873\) −8.50487 + 30.8229i −0.287846 + 1.04320i
\(874\) −0.126859 0.219727i −0.00429108 0.00743237i
\(875\) 0 0
\(876\) 9.62214 1.23044i 0.325102 0.0415726i
\(877\) −16.3136 + 13.6887i −0.550870 + 0.462235i −0.875236 0.483697i \(-0.839294\pi\)
0.324365 + 0.945932i \(0.394849\pi\)
\(878\) 45.5856 38.2508i 1.53844 1.29090i
\(879\) 17.5163 + 23.0041i 0.590810 + 0.775908i
\(880\) 0 0
\(881\) −21.0931 36.5344i −0.710646 1.23087i −0.964615 0.263662i \(-0.915070\pi\)
0.253969 0.967212i \(-0.418264\pi\)
\(882\) −49.6622 4.71686i −1.67221 0.158825i
\(883\) 25.4356 44.0558i 0.855976 1.48259i −0.0197597 0.999805i \(-0.506290\pi\)
0.875736 0.482790i \(-0.160377\pi\)
\(884\) 12.3706 70.1571i 0.416068 2.35964i
\(885\) 0 0
\(886\) −49.6647 18.0765i −1.66852 0.607291i
\(887\) 8.37721 + 47.5095i 0.281279 + 1.59521i 0.718281 + 0.695753i \(0.244929\pi\)
−0.437002 + 0.899461i \(0.643960\pi\)
\(888\) −42.3267 + 21.8345i −1.42039 + 0.732716i
\(889\) 2.06077 + 1.72919i 0.0691160 + 0.0579952i
\(890\) 0 0
\(891\) 30.0767 + 36.9451i 1.00761 + 1.23771i
\(892\) −11.9326 −0.399533
\(893\) 4.86646 + 4.08344i 0.162850 + 0.136647i
\(894\) −49.4514 + 25.5098i −1.65390 + 0.853175i
\(895\) 0 0
\(896\) −6.48946 2.36197i −0.216797 0.0789078i
\(897\) −2.08543 0.470462i −0.0696305 0.0157083i
\(898\) −0.0724092 + 0.410653i −0.00241633 + 0.0137037i
\(899\) 8.44014 14.6187i 0.281494 0.487563i
\(900\) 0 0
\(901\) −4.18104 7.24177i −0.139291 0.241258i
\(902\) 109.162 39.7315i 3.63468 1.32292i
\(903\) 2.39544 + 3.14593i 0.0797153 + 0.104690i
\(904\) 56.7137 47.5884i 1.88627 1.58277i
\(905\) 0 0
\(906\) −37.8602 + 4.84141i −1.25782 + 0.160845i
\(907\) 16.5183 6.01218i 0.548482 0.199631i −0.0528898 0.998600i \(-0.516843\pi\)
0.601372 + 0.798969i \(0.294621\pi\)
\(908\) 13.3599 + 23.1400i 0.443364 + 0.767928i
\(909\) 25.6017 + 25.9849i 0.849153 + 0.861864i
\(910\) 0 0
\(911\) −0.694543 + 3.93895i −0.0230112 + 0.130503i −0.994149 0.108015i \(-0.965551\pi\)
0.971138 + 0.238518i \(0.0766617\pi\)
\(912\) −0.805593 2.58850i −0.0266759 0.0857138i
\(913\) 3.75694 + 1.36741i 0.124336 + 0.0452548i
\(914\) 3.75834 + 21.3146i 0.124315 + 0.705024i
\(915\) 0 0
\(916\) −29.7321 24.9482i −0.982377 0.824312i
\(917\) 3.63460 0.120025
\(918\) 36.2708 + 11.8820i 1.19711 + 0.392166i
\(919\) 5.86587 0.193497 0.0967486 0.995309i \(-0.469156\pi\)
0.0967486 + 0.995309i \(0.469156\pi\)
\(920\) 0 0
\(921\) −9.25548 5.94483i −0.304978 0.195889i
\(922\) −6.82251 38.6924i −0.224688 1.27427i
\(923\) 18.2375 + 6.63791i 0.600295 + 0.218489i
\(924\) −8.00258 + 8.66842i −0.263265 + 0.285170i
\(925\) 0 0
\(926\) −16.6059 + 28.7623i −0.545705 + 0.945189i
\(927\) −6.37679 + 4.39485i −0.209441 + 0.144346i
\(928\) −1.45775 2.52490i −0.0478531 0.0828840i
\(929\) 30.1086 10.9586i 0.987832 0.359541i 0.202951 0.979189i \(-0.434947\pi\)
0.784880 + 0.619647i \(0.212724\pi\)
\(930\) 0 0
\(931\) −2.74654 + 2.30462i −0.0900141 + 0.0755308i
\(932\) 32.9355 27.6362i 1.07884 0.905253i
\(933\) −0.348163 + 0.831787i −0.0113983 + 0.0272315i
\(934\) −9.50610 + 3.45994i −0.311049 + 0.113213i
\(935\) 0 0
\(936\) −73.1855 34.7911i −2.39214 1.13718i
\(937\) 8.48960 14.7044i 0.277343 0.480373i −0.693380 0.720572i \(-0.743879\pi\)
0.970724 + 0.240199i \(0.0772128\pi\)
\(938\) 0.789885 4.47966i 0.0257907 0.146266i
\(939\) 19.0219 20.6046i 0.620755 0.672404i
\(940\) 0 0
\(941\) −5.92567 33.6061i −0.193171 1.09553i −0.914999 0.403456i \(-0.867809\pi\)
0.721828 0.692073i \(-0.243302\pi\)
\(942\) 15.6328 + 10.0410i 0.509345 + 0.327155i
\(943\) −1.40550 1.17935i −0.0457693 0.0384050i
\(944\) 21.0053 0.683665
\(945\) 0 0
\(946\) −86.8321 −2.82316
\(947\) 0.0711354 + 0.0596897i 0.00231159 + 0.00193966i 0.643943 0.765074i \(-0.277298\pi\)
−0.641631 + 0.767013i \(0.721742\pi\)
\(948\) 0.894216 18.8721i 0.0290428 0.612939i
\(949\) −1.55284 8.80661i −0.0504074 0.285875i
\(950\) 0 0
\(951\) 4.34215 + 13.9520i 0.140804 + 0.452426i
\(952\) −0.784128 + 4.44701i −0.0254137 + 0.144129i
\(953\) 24.7669 42.8976i 0.802279 1.38959i −0.115833 0.993269i \(-0.536954\pi\)
0.918113 0.396320i \(-0.129713\pi\)
\(954\) −19.2689 + 5.00998i −0.623854 + 0.162204i
\(955\) 0 0
\(956\) −51.6257 + 18.7902i −1.66970 + 0.607720i
\(957\) −16.8267 + 2.15173i −0.543930 + 0.0695554i
\(958\) −45.7955 + 38.4270i −1.47958 + 1.24152i
\(959\) −3.38667 + 2.84176i −0.109361 + 0.0917651i
\(960\) 0 0
\(961\) −49.0825 + 17.8646i −1.58331 + 0.576276i
\(962\) 45.9497 + 79.5872i 1.48148 + 2.56599i
\(963\) 9.31745 13.0985i 0.300251 0.422094i
\(964\) 19.4642 33.7129i 0.626898 1.08582i
\(965\) 0 0
\(966\) 0.276689 + 0.0624196i 0.00890233 + 0.00200832i
\(967\) 22.3307 + 8.12772i 0.718107 + 0.261370i 0.675122 0.737706i \(-0.264091\pi\)
0.0429853 + 0.999076i \(0.486313\pi\)
\(968\) −13.0550 74.0387i −0.419604 2.37969i
\(969\) 2.43788 1.25759i 0.0783161 0.0403998i
\(970\) 0 0
\(971\) 34.5957 1.11023 0.555115 0.831774i \(-0.312674\pi\)
0.555115 + 0.831774i \(0.312674\pi\)
\(972\) 33.0048 49.7439i 1.05863 1.59554i
\(973\) −2.46468 −0.0790141
\(974\) −26.2943 22.0635i −0.842523 0.706961i
\(975\) 0 0
\(976\) −6.51600 36.9541i −0.208572 1.18287i
\(977\) 27.4012 + 9.97323i 0.876643 + 0.319072i 0.740854 0.671666i \(-0.234421\pi\)
0.135789 + 0.990738i \(0.456643\pi\)
\(978\) −67.6396 15.2591i −2.16288 0.487933i
\(979\) 5.84723 33.1613i 0.186878 1.05984i
\(980\) 0 0
\(981\) 30.4240 42.7702i 0.971362 1.36555i
\(982\) 13.7891 + 23.8833i 0.440026 + 0.762148i
\(983\) −33.5226 + 12.2012i −1.06920 + 0.389158i −0.815879 0.578223i \(-0.803746\pi\)
−0.253325 + 0.967381i \(0.581524\pi\)
\(984\) −42.1315 55.3311i −1.34310 1.76389i
\(985\) 0 0
\(986\) −10.4111 + 8.73598i −0.331558 + 0.278210i
\(987\) −7.04459 + 0.900833i −0.224232 + 0.0286738i
\(988\) −11.4554 + 4.16941i −0.364443 + 0.132647i
\(989\) 0.685714 + 1.18769i 0.0218044 + 0.0377664i
\(990\) 0 0
\(991\) −14.8225 + 25.6734i −0.470853 + 0.815541i −0.999444 0.0333351i \(-0.989387\pi\)
0.528591 + 0.848877i \(0.322720\pi\)
\(992\) −2.49630 + 14.1572i −0.0792577 + 0.449493i
\(993\) 3.53046 + 11.3439i 0.112036 + 0.359989i
\(994\) −2.41970 0.880699i −0.0767482 0.0279341i
\(995\) 0 0
\(996\) 0.237120 5.00433i 0.00751342 0.158568i
\(997\) 39.6480 + 33.2686i 1.25566 + 1.05363i 0.996130 + 0.0878926i \(0.0280132\pi\)
0.259533 + 0.965734i \(0.416431\pi\)
\(998\) −91.4487 −2.89476
\(999\) −30.0184 + 12.0440i −0.949741 + 0.381054i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 675.2.l.f.151.1 yes 66
5.2 odd 4 675.2.u.e.124.21 132
5.3 odd 4 675.2.u.e.124.2 132
5.4 even 2 675.2.l.g.151.11 yes 66
27.22 even 9 inner 675.2.l.f.76.1 66
135.22 odd 36 675.2.u.e.49.2 132
135.49 even 18 675.2.l.g.76.11 yes 66
135.103 odd 36 675.2.u.e.49.21 132
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
675.2.l.f.76.1 66 27.22 even 9 inner
675.2.l.f.151.1 yes 66 1.1 even 1 trivial
675.2.l.g.76.11 yes 66 135.49 even 18
675.2.l.g.151.11 yes 66 5.4 even 2
675.2.u.e.49.2 132 135.22 odd 36
675.2.u.e.49.21 132 135.103 odd 36
675.2.u.e.124.2 132 5.3 odd 4
675.2.u.e.124.21 132 5.2 odd 4