Properties

Label 675.2.l.a.526.1
Level $675$
Weight $2$
Character 675.526
Analytic conductor $5.390$
Analytic rank $1$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [675,2,Mod(76,675)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(675, base_ring=CyclotomicField(18))
 
chi = DirichletCharacter(H, H._module([14, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("675.76");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 675 = 3^{3} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 675.l (of order \(9\), degree \(6\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.38990213644\)
Analytic rank: \(1\)
Dimension: \(6\)
Coefficient field: \(\Q(\zeta_{18})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - x^{3} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{4}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{9}]$

Embedding invariants

Embedding label 526.1
Root \(-0.766044 + 0.642788i\) of defining polynomial
Character \(\chi\) \(=\) 675.526
Dual form 675.2.l.a.376.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.233956 - 1.32683i) q^{2} +(-1.70574 - 0.300767i) q^{3} +(0.173648 - 0.0632028i) q^{4} +2.33359i q^{6} +(-0.652704 - 0.237565i) q^{7} +(-1.47178 - 2.54920i) q^{8} +(2.81908 + 1.02606i) q^{9} +O(q^{10})\) \(q+(-0.233956 - 1.32683i) q^{2} +(-1.70574 - 0.300767i) q^{3} +(0.173648 - 0.0632028i) q^{4} +2.33359i q^{6} +(-0.652704 - 0.237565i) q^{7} +(-1.47178 - 2.54920i) q^{8} +(2.81908 + 1.02606i) q^{9} +(-3.52094 + 2.95442i) q^{11} +(-0.315207 + 0.0555796i) q^{12} +(0.245100 - 1.39003i) q^{13} +(-0.162504 + 0.921605i) q^{14} +(-2.75490 + 2.31164i) q^{16} +(-1.93969 + 3.35965i) q^{17} +(0.701867 - 3.98048i) q^{18} +(-3.53209 - 6.11776i) q^{19} +(1.04189 + 0.601535i) q^{21} +(4.74376 + 3.98048i) q^{22} +(-3.59240 + 1.30753i) q^{23} +(1.74376 + 4.79093i) q^{24} -1.90167 q^{26} +(-4.50000 - 2.59808i) q^{27} -0.128356 q^{28} +(0.851167 + 4.82721i) q^{29} +(0.786989 - 0.286441i) q^{31} +(-0.798133 - 0.669713i) q^{32} +(6.89440 - 3.98048i) q^{33} +(4.91147 + 1.78763i) q^{34} +0.554378 q^{36} +(-3.99273 + 6.91560i) q^{37} +(-7.29086 + 6.11776i) q^{38} +(-0.836152 + 2.29731i) q^{39} +(-1.36571 + 7.74535i) q^{41} +(0.554378 - 1.52314i) q^{42} +(1.59240 - 1.33618i) q^{43} +(-0.424678 + 0.735564i) q^{44} +(2.57532 + 4.46059i) q^{46} +(6.46451 + 2.35289i) q^{47} +(5.39440 - 3.11446i) q^{48} +(-4.99273 - 4.18939i) q^{49} +(4.31908 - 5.14728i) q^{51} +(-0.0452926 - 0.256867i) q^{52} -3.05644 q^{53} +(-2.39440 + 6.57856i) q^{54} +(0.355037 + 2.01352i) q^{56} +(4.18479 + 11.4976i) q^{57} +(6.20574 - 2.25870i) q^{58} +(-6.82295 - 5.72513i) q^{59} +(8.12449 + 2.95707i) q^{61} +(-0.564178 - 0.977185i) q^{62} +(-1.59627 - 1.33943i) q^{63} +(-4.29813 + 7.44459i) q^{64} +(-6.89440 - 8.21643i) q^{66} +(-1.64156 + 9.30975i) q^{67} +(-0.124485 + 0.705990i) q^{68} +(6.52094 - 1.14982i) q^{69} +(2.90033 - 5.02352i) q^{71} +(-1.53343 - 8.69653i) q^{72} +(2.70574 + 4.68647i) q^{73} +(10.1099 + 3.67972i) q^{74} +(-1.00000 - 0.839100i) q^{76} +(3.00000 - 1.09191i) q^{77} +(3.24376 + 0.571962i) q^{78} +(-2.27584 - 12.9070i) q^{79} +(6.89440 + 5.78509i) q^{81} +10.5963 q^{82} +(0.197119 + 1.11792i) q^{83} +(0.218941 + 0.0386052i) q^{84} +(-2.14543 - 1.80023i) q^{86} -8.48995i q^{87} +(12.7135 + 4.62733i) q^{88} +(-0.368241 - 0.637812i) q^{89} +(-0.490200 + 0.849051i) q^{91} +(-0.541174 + 0.454099i) q^{92} +(-1.42855 + 0.251892i) q^{93} +(1.60947 - 9.12776i) q^{94} +(1.15998 + 1.38241i) q^{96} +(6.39440 - 5.36554i) q^{97} +(-4.39053 + 7.60462i) q^{98} +(-12.9572 + 4.71605i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 6 q^{2} - 6 q^{7} + 6 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 6 q - 6 q^{2} - 6 q^{7} + 6 q^{8} - 18 q^{11} - 9 q^{12} - 6 q^{14} - 18 q^{16} - 6 q^{17} + 18 q^{18} - 12 q^{19} + 36 q^{22} - 18 q^{23} + 18 q^{24} + 12 q^{26} - 27 q^{27} + 36 q^{28} - 21 q^{29} - 3 q^{31} + 9 q^{32} + 9 q^{34} - 18 q^{36} - 6 q^{37} - 12 q^{38} - 9 q^{39} - 18 q^{41} - 18 q^{42} + 6 q^{43} - 27 q^{44} - 9 q^{46} + 6 q^{47} - 9 q^{48} - 12 q^{49} + 9 q^{51} - 36 q^{52} - 48 q^{53} + 27 q^{54} - 48 q^{56} + 18 q^{57} + 27 q^{58} + 36 q^{61} + 15 q^{62} + 18 q^{63} - 12 q^{64} - 18 q^{67} + 12 q^{68} + 36 q^{69} + 3 q^{71} + 9 q^{72} + 6 q^{73} + 12 q^{74} - 6 q^{76} + 18 q^{77} + 27 q^{78} - 12 q^{79} + 36 q^{82} - 18 q^{83} + 36 q^{84} + 3 q^{86} + 18 q^{88} + 3 q^{89} + 63 q^{92} - 9 q^{93} + 27 q^{94} + 27 q^{96} - 3 q^{97} - 9 q^{98} - 27 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/675\mathbb{Z}\right)^\times\).

\(n\) \(326\) \(352\)
\(\chi(n)\) \(e\left(\frac{4}{9}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.233956 1.32683i −0.165432 0.938209i −0.948618 0.316423i \(-0.897518\pi\)
0.783187 0.621786i \(-0.213593\pi\)
\(3\) −1.70574 0.300767i −0.984808 0.173648i
\(4\) 0.173648 0.0632028i 0.0868241 0.0316014i
\(5\) 0 0
\(6\) 2.33359i 0.952682i
\(7\) −0.652704 0.237565i −0.246699 0.0897910i 0.215711 0.976457i \(-0.430793\pi\)
−0.462410 + 0.886666i \(0.653015\pi\)
\(8\) −1.47178 2.54920i −0.520353 0.901278i
\(9\) 2.81908 + 1.02606i 0.939693 + 0.342020i
\(10\) 0 0
\(11\) −3.52094 + 2.95442i −1.06160 + 0.890792i −0.994266 0.106938i \(-0.965895\pi\)
−0.0673390 + 0.997730i \(0.521451\pi\)
\(12\) −0.315207 + 0.0555796i −0.0909926 + 0.0160444i
\(13\) 0.245100 1.39003i 0.0679785 0.385525i −0.931769 0.363052i \(-0.881735\pi\)
0.999747 0.0224733i \(-0.00715409\pi\)
\(14\) −0.162504 + 0.921605i −0.0434310 + 0.246309i
\(15\) 0 0
\(16\) −2.75490 + 2.31164i −0.688725 + 0.577909i
\(17\) −1.93969 + 3.35965i −0.470445 + 0.814834i −0.999429 0.0337978i \(-0.989240\pi\)
0.528984 + 0.848632i \(0.322573\pi\)
\(18\) 0.701867 3.98048i 0.165432 0.938209i
\(19\) −3.53209 6.11776i −0.810317 1.40351i −0.912642 0.408759i \(-0.865962\pi\)
0.102326 0.994751i \(-0.467372\pi\)
\(20\) 0 0
\(21\) 1.04189 + 0.601535i 0.227359 + 0.131266i
\(22\) 4.74376 + 3.98048i 1.01137 + 0.848642i
\(23\) −3.59240 + 1.30753i −0.749066 + 0.272638i −0.688213 0.725509i \(-0.741604\pi\)
−0.0608535 + 0.998147i \(0.519382\pi\)
\(24\) 1.74376 + 4.79093i 0.355943 + 0.977944i
\(25\) 0 0
\(26\) −1.90167 −0.372949
\(27\) −4.50000 2.59808i −0.866025 0.500000i
\(28\) −0.128356 −0.0242569
\(29\) 0.851167 + 4.82721i 0.158058 + 0.896390i 0.955937 + 0.293572i \(0.0948442\pi\)
−0.797879 + 0.602817i \(0.794045\pi\)
\(30\) 0 0
\(31\) 0.786989 0.286441i 0.141347 0.0514462i −0.270378 0.962754i \(-0.587149\pi\)
0.411725 + 0.911308i \(0.364926\pi\)
\(32\) −0.798133 0.669713i −0.141091 0.118390i
\(33\) 6.89440 3.98048i 1.20016 0.692913i
\(34\) 4.91147 + 1.78763i 0.842311 + 0.306576i
\(35\) 0 0
\(36\) 0.554378 0.0923963
\(37\) −3.99273 + 6.91560i −0.656400 + 1.13692i 0.325141 + 0.945666i \(0.394588\pi\)
−0.981541 + 0.191253i \(0.938745\pi\)
\(38\) −7.29086 + 6.11776i −1.18273 + 0.992431i
\(39\) −0.836152 + 2.29731i −0.133891 + 0.367864i
\(40\) 0 0
\(41\) −1.36571 + 7.74535i −0.213289 + 1.20962i 0.670563 + 0.741853i \(0.266053\pi\)
−0.883851 + 0.467768i \(0.845058\pi\)
\(42\) 0.554378 1.52314i 0.0855423 0.235026i
\(43\) 1.59240 1.33618i 0.242838 0.203765i −0.513243 0.858243i \(-0.671556\pi\)
0.756081 + 0.654478i \(0.227112\pi\)
\(44\) −0.424678 + 0.735564i −0.0640226 + 0.110890i
\(45\) 0 0
\(46\) 2.57532 + 4.46059i 0.379711 + 0.657678i
\(47\) 6.46451 + 2.35289i 0.942945 + 0.343204i 0.767328 0.641255i \(-0.221586\pi\)
0.175617 + 0.984459i \(0.443808\pi\)
\(48\) 5.39440 3.11446i 0.778615 0.449533i
\(49\) −4.99273 4.18939i −0.713247 0.598485i
\(50\) 0 0
\(51\) 4.31908 5.14728i 0.604792 0.720763i
\(52\) −0.0452926 0.256867i −0.00628096 0.0356211i
\(53\) −3.05644 −0.419834 −0.209917 0.977719i \(-0.567319\pi\)
−0.209917 + 0.977719i \(0.567319\pi\)
\(54\) −2.39440 + 6.57856i −0.325837 + 0.895229i
\(55\) 0 0
\(56\) 0.355037 + 2.01352i 0.0474438 + 0.269067i
\(57\) 4.18479 + 11.4976i 0.554289 + 1.52290i
\(58\) 6.20574 2.25870i 0.814853 0.296582i
\(59\) −6.82295 5.72513i −0.888272 0.745349i 0.0795906 0.996828i \(-0.474639\pi\)
−0.967863 + 0.251479i \(0.919083\pi\)
\(60\) 0 0
\(61\) 8.12449 + 2.95707i 1.04023 + 0.378614i 0.804969 0.593317i \(-0.202182\pi\)
0.235265 + 0.971931i \(0.424404\pi\)
\(62\) −0.564178 0.977185i −0.0716506 0.124103i
\(63\) −1.59627 1.33943i −0.201111 0.168752i
\(64\) −4.29813 + 7.44459i −0.537267 + 0.930573i
\(65\) 0 0
\(66\) −6.89440 8.21643i −0.848642 1.01137i
\(67\) −1.64156 + 9.30975i −0.200548 + 1.13737i 0.703744 + 0.710453i \(0.251510\pi\)
−0.904293 + 0.426913i \(0.859601\pi\)
\(68\) −0.124485 + 0.705990i −0.0150960 + 0.0856139i
\(69\) 6.52094 1.14982i 0.785029 0.138422i
\(70\) 0 0
\(71\) 2.90033 5.02352i 0.344206 0.596182i −0.641003 0.767538i \(-0.721482\pi\)
0.985209 + 0.171356i \(0.0548149\pi\)
\(72\) −1.53343 8.69653i −0.180717 1.02490i
\(73\) 2.70574 + 4.68647i 0.316683 + 0.548510i 0.979794 0.200011i \(-0.0640977\pi\)
−0.663111 + 0.748521i \(0.730764\pi\)
\(74\) 10.1099 + 3.67972i 1.17526 + 0.427758i
\(75\) 0 0
\(76\) −1.00000 0.839100i −0.114708 0.0962513i
\(77\) 3.00000 1.09191i 0.341882 0.124435i
\(78\) 3.24376 + 0.571962i 0.367283 + 0.0647619i
\(79\) −2.27584 12.9070i −0.256053 1.45215i −0.793356 0.608757i \(-0.791668\pi\)
0.537304 0.843389i \(-0.319443\pi\)
\(80\) 0 0
\(81\) 6.89440 + 5.78509i 0.766044 + 0.642788i
\(82\) 10.5963 1.17016
\(83\) 0.197119 + 1.11792i 0.0216366 + 0.122707i 0.993713 0.111957i \(-0.0357120\pi\)
−0.972076 + 0.234665i \(0.924601\pi\)
\(84\) 0.218941 + 0.0386052i 0.0238884 + 0.00421217i
\(85\) 0 0
\(86\) −2.14543 1.80023i −0.231348 0.194124i
\(87\) 8.48995i 0.910218i
\(88\) 12.7135 + 4.62733i 1.35526 + 0.493275i
\(89\) −0.368241 0.637812i −0.0390335 0.0676079i 0.845849 0.533423i \(-0.179095\pi\)
−0.884882 + 0.465815i \(0.845761\pi\)
\(90\) 0 0
\(91\) −0.490200 + 0.849051i −0.0513869 + 0.0890047i
\(92\) −0.541174 + 0.454099i −0.0564213 + 0.0473431i
\(93\) −1.42855 + 0.251892i −0.148134 + 0.0261199i
\(94\) 1.60947 9.12776i 0.166004 0.941457i
\(95\) 0 0
\(96\) 1.15998 + 1.38241i 0.118390 + 0.141091i
\(97\) 6.39440 5.36554i 0.649253 0.544788i −0.257591 0.966254i \(-0.582929\pi\)
0.906844 + 0.421466i \(0.138484\pi\)
\(98\) −4.39053 + 7.60462i −0.443510 + 0.768183i
\(99\) −12.9572 + 4.71605i −1.30225 + 0.473981i
\(100\) 0 0
\(101\) −11.6099 4.22567i −1.15523 0.420470i −0.307840 0.951438i \(-0.599606\pi\)
−0.847392 + 0.530968i \(0.821828\pi\)
\(102\) −7.84002 4.52644i −0.776278 0.448184i
\(103\) 6.43763 + 5.40182i 0.634319 + 0.532257i 0.902268 0.431176i \(-0.141901\pi\)
−0.267949 + 0.963433i \(0.586346\pi\)
\(104\) −3.90420 + 1.42101i −0.382838 + 0.139342i
\(105\) 0 0
\(106\) 0.715070 + 4.05537i 0.0694538 + 0.393892i
\(107\) −13.9581 −1.34938 −0.674691 0.738101i \(-0.735723\pi\)
−0.674691 + 0.738101i \(0.735723\pi\)
\(108\) −0.945622 0.166739i −0.0909926 0.0160444i
\(109\) −15.5817 −1.49246 −0.746229 0.665689i \(-0.768138\pi\)
−0.746229 + 0.665689i \(0.768138\pi\)
\(110\) 0 0
\(111\) 8.89053 10.5953i 0.843852 1.00566i
\(112\) 2.34730 0.854346i 0.221799 0.0807281i
\(113\) −13.1532 11.0368i −1.23735 1.03826i −0.997727 0.0673899i \(-0.978533\pi\)
−0.239619 0.970867i \(-0.577023\pi\)
\(114\) 14.2763 8.24243i 1.33710 0.771975i
\(115\) 0 0
\(116\) 0.452896 + 0.784440i 0.0420504 + 0.0728334i
\(117\) 2.11721 3.66712i 0.195736 0.339025i
\(118\) −6.00000 + 10.3923i −0.552345 + 0.956689i
\(119\) 2.06418 1.73205i 0.189223 0.158777i
\(120\) 0 0
\(121\) 1.75830 9.97184i 0.159846 0.906531i
\(122\) 2.02276 11.4716i 0.183132 1.03859i
\(123\) 4.65910 12.8008i 0.420097 1.15421i
\(124\) 0.118555 0.0994798i 0.0106466 0.00893355i
\(125\) 0 0
\(126\) −1.40373 + 2.43134i −0.125055 + 0.216601i
\(127\) −11.1839 19.3711i −0.992412 1.71891i −0.602690 0.797975i \(-0.705904\pi\)
−0.389722 0.920933i \(-0.627429\pi\)
\(128\) 8.92514 + 3.24849i 0.788879 + 0.287128i
\(129\) −3.11809 + 1.80023i −0.274532 + 0.158501i
\(130\) 0 0
\(131\) −13.9427 + 5.07472i −1.21818 + 0.443381i −0.869533 0.493874i \(-0.835580\pi\)
−0.348645 + 0.937255i \(0.613358\pi\)
\(132\) 0.945622 1.12695i 0.0823059 0.0980883i
\(133\) 0.852044 + 4.83218i 0.0738816 + 0.419003i
\(134\) 12.7365 1.10026
\(135\) 0 0
\(136\) 11.4192 0.979190
\(137\) −2.22328 12.6088i −0.189947 1.07725i −0.919432 0.393249i \(-0.871351\pi\)
0.729485 0.683997i \(-0.239760\pi\)
\(138\) −3.05122 8.38316i −0.259737 0.713622i
\(139\) 10.7258 3.90387i 0.909751 0.331122i 0.155597 0.987821i \(-0.450270\pi\)
0.754153 + 0.656698i \(0.228048\pi\)
\(140\) 0 0
\(141\) −10.3191 5.95772i −0.869023 0.501731i
\(142\) −7.34389 2.67296i −0.616286 0.224310i
\(143\) 3.24376 + 5.61835i 0.271256 + 0.469830i
\(144\) −10.1382 + 3.68999i −0.844846 + 0.307499i
\(145\) 0 0
\(146\) 5.58512 4.68647i 0.462228 0.387855i
\(147\) 7.25624 + 8.64766i 0.598485 + 0.713247i
\(148\) −0.256244 + 1.45323i −0.0210631 + 0.119455i
\(149\) 2.26352 12.8370i 0.185435 1.05165i −0.739961 0.672650i \(-0.765156\pi\)
0.925396 0.379002i \(-0.123733\pi\)
\(150\) 0 0
\(151\) −1.56418 + 1.31250i −0.127291 + 0.106810i −0.704211 0.709991i \(-0.748699\pi\)
0.576920 + 0.816801i \(0.304255\pi\)
\(152\) −10.3969 + 18.0080i −0.843302 + 1.46064i
\(153\) −8.91534 + 7.48086i −0.720763 + 0.604792i
\(154\) −2.15064 3.72503i −0.173304 0.300171i
\(155\) 0 0
\(156\) 0.451771i 0.0361706i
\(157\) 8.87804 + 7.44956i 0.708545 + 0.594540i 0.924190 0.381932i \(-0.124741\pi\)
−0.215646 + 0.976472i \(0.569186\pi\)
\(158\) −16.5929 + 6.03931i −1.32006 + 0.480462i
\(159\) 5.21348 + 0.919277i 0.413456 + 0.0729034i
\(160\) 0 0
\(161\) 2.65539 0.209274
\(162\) 6.06283 10.5011i 0.476341 0.825047i
\(163\) −16.6382 −1.30320 −0.651600 0.758562i \(-0.725902\pi\)
−0.651600 + 0.758562i \(0.725902\pi\)
\(164\) 0.252374 + 1.43128i 0.0197071 + 0.111764i
\(165\) 0 0
\(166\) 1.43717 0.523086i 0.111546 0.0405993i
\(167\) 0.0812519 + 0.0681784i 0.00628746 + 0.00527581i 0.645926 0.763400i \(-0.276471\pi\)
−0.639638 + 0.768676i \(0.720916\pi\)
\(168\) 3.54131i 0.273218i
\(169\) 10.3439 + 3.76487i 0.795684 + 0.289605i
\(170\) 0 0
\(171\) −3.68004 20.8706i −0.281420 1.59601i
\(172\) 0.192066 0.332669i 0.0146449 0.0253658i
\(173\) 5.88532 4.93837i 0.447452 0.375457i −0.391037 0.920375i \(-0.627884\pi\)
0.838489 + 0.544918i \(0.183439\pi\)
\(174\) −11.2647 + 1.98627i −0.853975 + 0.150579i
\(175\) 0 0
\(176\) 2.87030 16.2783i 0.216357 1.22702i
\(177\) 9.91622 + 11.8177i 0.745349 + 0.888272i
\(178\) −0.760115 + 0.637812i −0.0569730 + 0.0478060i
\(179\) 11.2515 19.4882i 0.840976 1.45661i −0.0480938 0.998843i \(-0.515315\pi\)
0.889070 0.457771i \(-0.151352\pi\)
\(180\) 0 0
\(181\) −10.8944 18.8697i −0.809774 1.40257i −0.913020 0.407914i \(-0.866256\pi\)
0.103246 0.994656i \(-0.467077\pi\)
\(182\) 1.24123 + 0.451771i 0.0920061 + 0.0334875i
\(183\) −12.9688 7.48757i −0.958685 0.553497i
\(184\) 8.62037 + 7.23335i 0.635502 + 0.533249i
\(185\) 0 0
\(186\) 0.668434 + 1.83651i 0.0490119 + 0.134659i
\(187\) −3.09627 17.5598i −0.226421 1.28410i
\(188\) 1.27126 0.0927161
\(189\) 2.31996 + 2.76481i 0.168752 + 0.201111i
\(190\) 0 0
\(191\) 1.81180 + 10.2753i 0.131098 + 0.743491i 0.977498 + 0.210944i \(0.0676539\pi\)
−0.846401 + 0.532547i \(0.821235\pi\)
\(192\) 9.57057 11.4058i 0.690697 0.823140i
\(193\) −9.37211 + 3.41117i −0.674619 + 0.245541i −0.656536 0.754295i \(-0.727979\pi\)
−0.0180838 + 0.999836i \(0.505757\pi\)
\(194\) −8.61515 7.22897i −0.618532 0.519010i
\(195\) 0 0
\(196\) −1.13176 0.411927i −0.0808399 0.0294233i
\(197\) 8.38578 + 14.5246i 0.597462 + 1.03483i 0.993194 + 0.116469i \(0.0371575\pi\)
−0.395732 + 0.918366i \(0.629509\pi\)
\(198\) 9.28880 + 16.0887i 0.660126 + 1.14337i
\(199\) −13.7981 + 23.8991i −0.978124 + 1.69416i −0.308908 + 0.951092i \(0.599963\pi\)
−0.669216 + 0.743068i \(0.733370\pi\)
\(200\) 0 0
\(201\) 5.60014 15.3863i 0.395003 1.08526i
\(202\) −2.89053 + 16.3930i −0.203377 + 1.15341i
\(203\) 0.591214 3.35294i 0.0414951 0.235330i
\(204\) 0.424678 1.16679i 0.0297334 0.0816918i
\(205\) 0 0
\(206\) 5.66116 9.80542i 0.394432 0.683176i
\(207\) −11.4688 −0.797140
\(208\) 2.53802 + 4.39598i 0.175980 + 0.304806i
\(209\) 30.5107 + 11.1050i 2.11047 + 0.768149i
\(210\) 0 0
\(211\) −6.10220 5.12035i −0.420093 0.352499i 0.408106 0.912935i \(-0.366189\pi\)
−0.828198 + 0.560435i \(0.810634\pi\)
\(212\) −0.530745 + 0.193175i −0.0364517 + 0.0132673i
\(213\) −6.45811 + 7.69648i −0.442502 + 0.527354i
\(214\) 3.26558 + 18.5200i 0.223230 + 1.26600i
\(215\) 0 0
\(216\) 15.2952i 1.04071i
\(217\) −0.581719 −0.0394896
\(218\) 3.64543 + 20.6743i 0.246900 + 1.40024i
\(219\) −3.20574 8.80769i −0.216624 0.595169i
\(220\) 0 0
\(221\) 4.19459 + 3.51968i 0.282159 + 0.236759i
\(222\) −16.1382 9.31737i −1.08312 0.625341i
\(223\) 19.5141 + 7.10257i 1.30676 + 0.475623i 0.899194 0.437551i \(-0.144154\pi\)
0.407570 + 0.913174i \(0.366376\pi\)
\(224\) 0.361844 + 0.626733i 0.0241767 + 0.0418753i
\(225\) 0 0
\(226\) −11.5667 + 20.0341i −0.769406 + 1.33265i
\(227\) −1.23783 + 1.03866i −0.0821574 + 0.0689382i −0.682941 0.730473i \(-0.739300\pi\)
0.600784 + 0.799411i \(0.294855\pi\)
\(228\) 1.45336 + 1.73205i 0.0962513 + 0.114708i
\(229\) 1.76604 10.0157i 0.116704 0.661858i −0.869189 0.494480i \(-0.835359\pi\)
0.985893 0.167379i \(-0.0535303\pi\)
\(230\) 0 0
\(231\) −5.44562 + 0.960210i −0.358296 + 0.0631772i
\(232\) 11.0528 9.27439i 0.725651 0.608893i
\(233\) 10.4966 18.1806i 0.687655 1.19105i −0.284940 0.958545i \(-0.591974\pi\)
0.972595 0.232508i \(-0.0746931\pi\)
\(234\) −5.36097 1.95123i −0.350457 0.127556i
\(235\) 0 0
\(236\) −1.54664 0.562930i −0.100677 0.0366436i
\(237\) 22.7004i 1.47455i
\(238\) −2.78106 2.33359i −0.180269 0.151264i
\(239\) −4.70574 + 1.71275i −0.304389 + 0.110788i −0.489699 0.871892i \(-0.662893\pi\)
0.185310 + 0.982680i \(0.440671\pi\)
\(240\) 0 0
\(241\) 3.95290 + 22.4180i 0.254628 + 1.44407i 0.797025 + 0.603947i \(0.206406\pi\)
−0.542396 + 0.840123i \(0.682483\pi\)
\(242\) −13.6423 −0.876959
\(243\) −10.0201 11.9415i −0.642788 0.766044i
\(244\) 1.59770 0.102282
\(245\) 0 0
\(246\) −18.0744 3.18701i −1.15238 0.203196i
\(247\) −9.36959 + 3.41025i −0.596172 + 0.216989i
\(248\) −1.88847 1.58461i −0.119918 0.100623i
\(249\) 1.96616i 0.124600i
\(250\) 0 0
\(251\) −7.30928 12.6600i −0.461358 0.799095i 0.537671 0.843154i \(-0.319304\pi\)
−0.999029 + 0.0440598i \(0.985971\pi\)
\(252\) −0.361844 0.131701i −0.0227940 0.00829635i
\(253\) 8.78564 15.2172i 0.552349 0.956696i
\(254\) −23.0856 + 19.3711i −1.44852 + 1.21545i
\(255\) 0 0
\(256\) −0.763356 + 4.32921i −0.0477098 + 0.270575i
\(257\) −0.0368366 + 0.208911i −0.00229781 + 0.0130315i −0.985935 0.167129i \(-0.946550\pi\)
0.983637 + 0.180160i \(0.0576616\pi\)
\(258\) 3.11809 + 3.71599i 0.194124 + 0.231348i
\(259\) 4.24897 3.56531i 0.264018 0.221538i
\(260\) 0 0
\(261\) −2.55350 + 14.4816i −0.158058 + 0.896390i
\(262\) 9.99525 + 17.3123i 0.617509 + 1.06956i
\(263\) −1.55303 0.565258i −0.0957641 0.0348553i 0.293694 0.955900i \(-0.405115\pi\)
−0.389458 + 0.921044i \(0.627338\pi\)
\(264\) −20.2941 11.7168i −1.24902 0.721119i
\(265\) 0 0
\(266\) 6.21213 2.26103i 0.380890 0.138633i
\(267\) 0.436289 + 1.19869i 0.0267005 + 0.0733589i
\(268\) 0.303348 + 1.72037i 0.0185299 + 0.105088i
\(269\) −3.03684 −0.185159 −0.0925796 0.995705i \(-0.529511\pi\)
−0.0925796 + 0.995705i \(0.529511\pi\)
\(270\) 0 0
\(271\) 15.9145 0.966735 0.483368 0.875418i \(-0.339413\pi\)
0.483368 + 0.875418i \(0.339413\pi\)
\(272\) −2.42262 13.7394i −0.146893 0.833071i
\(273\) 1.09152 1.30082i 0.0660617 0.0787293i
\(274\) −16.2096 + 5.89981i −0.979258 + 0.356421i
\(275\) 0 0
\(276\) 1.05968 0.611806i 0.0637851 0.0368264i
\(277\) −16.5471 6.02265i −0.994219 0.361866i −0.206867 0.978369i \(-0.566327\pi\)
−0.787353 + 0.616503i \(0.788549\pi\)
\(278\) −7.68913 13.3180i −0.461163 0.798758i
\(279\) 2.51249 0.150419
\(280\) 0 0
\(281\) 6.72668 5.64436i 0.401280 0.336714i −0.419708 0.907659i \(-0.637868\pi\)
0.820988 + 0.570945i \(0.193423\pi\)
\(282\) −5.49067 + 15.0855i −0.326964 + 0.898327i
\(283\) 0.351167 1.99157i 0.0208747 0.118386i −0.972590 0.232527i \(-0.925300\pi\)
0.993465 + 0.114141i \(0.0364116\pi\)
\(284\) 0.186137 1.05563i 0.0110452 0.0626403i
\(285\) 0 0
\(286\) 6.69569 5.61835i 0.395924 0.332220i
\(287\) 2.73143 4.73097i 0.161231 0.279261i
\(288\) −1.56283 2.70691i −0.0920909 0.159506i
\(289\) 0.975185 + 1.68907i 0.0573638 + 0.0993571i
\(290\) 0 0
\(291\) −12.5209 + 7.22897i −0.733991 + 0.423770i
\(292\) 0.766044 + 0.642788i 0.0448294 + 0.0376163i
\(293\) 18.4081 6.69999i 1.07541 0.391418i 0.257213 0.966355i \(-0.417196\pi\)
0.818198 + 0.574937i \(0.194973\pi\)
\(294\) 9.77631 11.6510i 0.570166 0.679497i
\(295\) 0 0
\(296\) 23.5057 1.36624
\(297\) 23.5201 4.14722i 1.36477 0.240646i
\(298\) −17.5621 −1.01735
\(299\) 0.937004 + 5.31402i 0.0541884 + 0.307317i
\(300\) 0 0
\(301\) −1.35679 + 0.493832i −0.0782042 + 0.0284640i
\(302\) 2.10741 + 1.76833i 0.121268 + 0.101756i
\(303\) 18.5326 + 10.6998i 1.06467 + 0.614686i
\(304\) 23.8726 + 8.68891i 1.36919 + 0.498343i
\(305\) 0 0
\(306\) 12.0116 + 10.0789i 0.686658 + 0.576175i
\(307\) 4.13429 7.16079i 0.235956 0.408688i −0.723594 0.690226i \(-0.757511\pi\)
0.959550 + 0.281538i \(0.0908445\pi\)
\(308\) 0.451933 0.379217i 0.0257513 0.0216079i
\(309\) −9.35622 11.1503i −0.532257 0.634319i
\(310\) 0 0
\(311\) −4.79679 + 27.2039i −0.272001 + 1.54259i 0.476329 + 0.879267i \(0.341967\pi\)
−0.748330 + 0.663327i \(0.769144\pi\)
\(312\) 7.08693 1.24962i 0.401219 0.0707457i
\(313\) 1.95084 1.63695i 0.110268 0.0925257i −0.585987 0.810321i \(-0.699293\pi\)
0.696255 + 0.717795i \(0.254848\pi\)
\(314\) 7.80722 13.5225i 0.440587 0.763119i
\(315\) 0 0
\(316\) −1.21095 2.09743i −0.0681214 0.117990i
\(317\) 26.9834 + 9.82115i 1.51554 + 0.551611i 0.960029 0.279900i \(-0.0903012\pi\)
0.555509 + 0.831510i \(0.312523\pi\)
\(318\) 7.13246i 0.399968i
\(319\) −17.2585 14.4816i −0.966292 0.810815i
\(320\) 0 0
\(321\) 23.8089 + 4.19815i 1.32888 + 0.234318i
\(322\) −0.621244 3.52325i −0.0346206 0.196343i
\(323\) 27.4047 1.52484
\(324\) 1.56283 + 0.568825i 0.0868241 + 0.0316014i
\(325\) 0 0
\(326\) 3.89259 + 22.0760i 0.215591 + 1.22267i
\(327\) 26.5783 + 4.68647i 1.46978 + 0.259163i
\(328\) 21.7545 7.91799i 1.20119 0.437198i
\(329\) −3.66044 3.07148i −0.201807 0.169336i
\(330\) 0 0
\(331\) 7.92514 + 2.88452i 0.435605 + 0.158547i 0.550509 0.834829i \(-0.314434\pi\)
−0.114904 + 0.993377i \(0.536656\pi\)
\(332\) 0.104885 + 0.181666i 0.00575630 + 0.00997021i
\(333\) −18.3516 + 15.3988i −1.00566 + 0.843852i
\(334\) 0.0714517 0.123758i 0.00390966 0.00677174i
\(335\) 0 0
\(336\) −4.26083 + 0.751299i −0.232447 + 0.0409867i
\(337\) 2.82042 15.9954i 0.153638 0.871325i −0.806382 0.591395i \(-0.798577\pi\)
0.960020 0.279931i \(-0.0903114\pi\)
\(338\) 2.57532 14.6054i 0.140079 0.794428i
\(339\) 19.1163 + 22.7820i 1.03826 + 1.23735i
\(340\) 0 0
\(341\) −1.92468 + 3.33364i −0.104227 + 0.180527i
\(342\) −26.8307 + 9.76557i −1.45084 + 0.528062i
\(343\) 4.69459 + 8.13127i 0.253484 + 0.439047i
\(344\) −5.74985 2.09277i −0.310011 0.112835i
\(345\) 0 0
\(346\) −7.92926 6.65344i −0.426280 0.357691i
\(347\) 11.7788 4.28715i 0.632321 0.230146i −0.00592013 0.999982i \(-0.501884\pi\)
0.638241 + 0.769836i \(0.279662\pi\)
\(348\) −0.536588 1.47426i −0.0287641 0.0790288i
\(349\) 5.70187 + 32.3369i 0.305214 + 1.73095i 0.622496 + 0.782623i \(0.286119\pi\)
−0.317282 + 0.948331i \(0.602770\pi\)
\(350\) 0 0
\(351\) −4.71436 + 5.61835i −0.251634 + 0.299885i
\(352\) 4.78880 0.255244
\(353\) −2.81268 15.9515i −0.149704 0.849013i −0.963469 0.267819i \(-0.913697\pi\)
0.813765 0.581194i \(-0.197414\pi\)
\(354\) 13.3601 15.9219i 0.710081 0.846241i
\(355\) 0 0
\(356\) −0.104256 0.0874810i −0.00552555 0.00463649i
\(357\) −4.04189 + 2.33359i −0.213919 + 0.123506i
\(358\) −28.4898 10.3694i −1.50573 0.548042i
\(359\) −6.13088 10.6190i −0.323576 0.560449i 0.657647 0.753326i \(-0.271552\pi\)
−0.981223 + 0.192877i \(0.938218\pi\)
\(360\) 0 0
\(361\) −15.4513 + 26.7624i −0.813227 + 1.40855i
\(362\) −22.4880 + 18.8697i −1.18194 + 0.991767i
\(363\) −5.99841 + 16.4805i −0.314835 + 0.865001i
\(364\) −0.0314599 + 0.178418i −0.00164895 + 0.00935165i
\(365\) 0 0
\(366\) −6.90058 + 18.9592i −0.360699 + 0.991012i
\(367\) −24.2743 + 20.3685i −1.26711 + 1.06323i −0.272218 + 0.962235i \(0.587757\pi\)
−0.994887 + 0.100992i \(0.967798\pi\)
\(368\) 6.87417 11.9064i 0.358341 0.620665i
\(369\) −11.7973 + 20.4334i −0.614141 + 1.06372i
\(370\) 0 0
\(371\) 1.99495 + 0.726102i 0.103573 + 0.0376973i
\(372\) −0.232145 + 0.134029i −0.0120361 + 0.00694907i
\(373\) −27.6955 23.2393i −1.43402 1.20329i −0.943288 0.331975i \(-0.892285\pi\)
−0.490732 0.871311i \(-0.663271\pi\)
\(374\) −22.5744 + 8.21643i −1.16730 + 0.424861i
\(375\) 0 0
\(376\) −3.51636 19.9423i −0.181342 1.02844i
\(377\) 6.91859 0.356325
\(378\) 3.12567 3.72503i 0.160767 0.191595i
\(379\) −13.7237 −0.704939 −0.352469 0.935823i \(-0.614658\pi\)
−0.352469 + 0.935823i \(0.614658\pi\)
\(380\) 0 0
\(381\) 13.2506 + 36.4058i 0.678850 + 1.86512i
\(382\) 13.2096 4.80790i 0.675862 0.245994i
\(383\) 17.5437 + 14.7209i 0.896441 + 0.752203i 0.969492 0.245125i \(-0.0788289\pi\)
−0.0730503 + 0.997328i \(0.523273\pi\)
\(384\) −14.2469 8.22546i −0.727035 0.419754i
\(385\) 0 0
\(386\) 6.71869 + 11.6371i 0.341972 + 0.592314i
\(387\) 5.86009 2.13290i 0.297885 0.108421i
\(388\) 0.771259 1.33586i 0.0391547 0.0678180i
\(389\) −8.87211 + 7.44459i −0.449834 + 0.377455i −0.839374 0.543554i \(-0.817078\pi\)
0.389540 + 0.921009i \(0.372634\pi\)
\(390\) 0 0
\(391\) 2.57532 14.6054i 0.130240 0.738626i
\(392\) −3.33140 + 18.8933i −0.168261 + 0.954257i
\(393\) 25.3089 4.46264i 1.27666 0.225110i
\(394\) 17.3097 14.5246i 0.872052 0.731739i
\(395\) 0 0
\(396\) −1.95193 + 1.63787i −0.0980883 + 0.0823059i
\(397\) −6.52822 11.3072i −0.327642 0.567492i 0.654402 0.756147i \(-0.272921\pi\)
−0.982043 + 0.188655i \(0.939587\pi\)
\(398\) 34.9381 + 12.7164i 1.75129 + 0.637417i
\(399\) 8.49870i 0.425467i
\(400\) 0 0
\(401\) 0.932419 0.339373i 0.0465628 0.0169475i −0.318634 0.947878i \(-0.603224\pi\)
0.365197 + 0.930930i \(0.381002\pi\)
\(402\) −21.7251 3.83072i −1.08355 0.191059i
\(403\) −0.205270 1.16415i −0.0102252 0.0579902i
\(404\) −2.28312 −0.113589
\(405\) 0 0
\(406\) −4.58710 −0.227654
\(407\) −6.37346 36.1457i −0.315920 1.79167i
\(408\) −19.4782 3.43453i −0.964314 0.170034i
\(409\) 29.7999 10.8463i 1.47351 0.536315i 0.524461 0.851435i \(-0.324267\pi\)
0.949052 + 0.315120i \(0.102045\pi\)
\(410\) 0 0
\(411\) 22.1760i 1.09386i
\(412\) 1.45929 + 0.531139i 0.0718942 + 0.0261674i
\(413\) 3.09327 + 5.35771i 0.152210 + 0.263636i
\(414\) 2.68320 + 15.2172i 0.131872 + 0.747884i
\(415\) 0 0
\(416\) −1.12654 + 0.945283i −0.0552334 + 0.0463463i
\(417\) −19.4696 + 3.43301i −0.953428 + 0.168115i
\(418\) 7.59627 43.0806i 0.371546 2.10714i
\(419\) −2.20708 + 12.5170i −0.107823 + 0.611494i 0.882232 + 0.470815i \(0.156040\pi\)
−0.990055 + 0.140680i \(0.955071\pi\)
\(420\) 0 0
\(421\) −2.83544 + 2.37921i −0.138191 + 0.115956i −0.709263 0.704944i \(-0.750972\pi\)
0.571072 + 0.820900i \(0.306528\pi\)
\(422\) −5.36618 + 9.29450i −0.261222 + 0.452449i
\(423\) 15.8097 + 13.2660i 0.768696 + 0.645013i
\(424\) 4.49841 + 7.79147i 0.218462 + 0.378387i
\(425\) 0 0
\(426\) 11.7228 + 6.76817i 0.567972 + 0.327919i
\(427\) −4.60039 3.86018i −0.222628 0.186807i
\(428\) −2.42380 + 0.882191i −0.117159 + 0.0426423i
\(429\) −3.84318 10.5590i −0.185550 0.509795i
\(430\) 0 0
\(431\) −9.16250 −0.441342 −0.220671 0.975348i \(-0.570825\pi\)
−0.220671 + 0.975348i \(0.570825\pi\)
\(432\) 18.4029 3.24492i 0.885408 0.156121i
\(433\) −29.7861 −1.43143 −0.715715 0.698393i \(-0.753899\pi\)
−0.715715 + 0.698393i \(0.753899\pi\)
\(434\) 0.136096 + 0.771841i 0.00653283 + 0.0370495i
\(435\) 0 0
\(436\) −2.70574 + 0.984808i −0.129581 + 0.0471637i
\(437\) 20.6878 + 17.3591i 0.989631 + 0.830399i
\(438\) −10.9363 + 6.31407i −0.522556 + 0.301698i
\(439\) −11.2604 4.09846i −0.537430 0.195609i 0.0590226 0.998257i \(-0.481202\pi\)
−0.596453 + 0.802648i \(0.703424\pi\)
\(440\) 0 0
\(441\) −9.77631 16.9331i −0.465539 0.806337i
\(442\) 3.68866 6.38895i 0.175452 0.303891i
\(443\) −27.5061 + 23.0804i −1.30686 + 1.09658i −0.317940 + 0.948111i \(0.602991\pi\)
−0.988917 + 0.148472i \(0.952565\pi\)
\(444\) 0.874171 2.40176i 0.0414863 0.113983i
\(445\) 0 0
\(446\) 4.85844 27.5536i 0.230054 1.30470i
\(447\) −7.72193 + 21.2158i −0.365235 + 1.00347i
\(448\) 4.57398 3.83802i 0.216100 0.181330i
\(449\) −16.2777 + 28.1937i −0.768190 + 1.33054i 0.170353 + 0.985383i \(0.445509\pi\)
−0.938543 + 0.345161i \(0.887824\pi\)
\(450\) 0 0
\(451\) −18.0744 31.3059i −0.851092 1.47414i
\(452\) −2.98158 1.08521i −0.140242 0.0510438i
\(453\) 3.06283 1.76833i 0.143904 0.0830833i
\(454\) 1.66772 + 1.39938i 0.0782699 + 0.0656762i
\(455\) 0 0
\(456\) 23.1506 27.5899i 1.08413 1.29201i
\(457\) 2.49660 + 14.1589i 0.116786 + 0.662325i 0.985850 + 0.167627i \(0.0536104\pi\)
−0.869065 + 0.494699i \(0.835278\pi\)
\(458\) −13.7023 −0.640268
\(459\) 17.4572 10.0789i 0.814834 0.470445i
\(460\) 0 0
\(461\) 2.09920 + 11.9052i 0.0977696 + 0.554479i 0.993863 + 0.110614i \(0.0352819\pi\)
−0.896094 + 0.443865i \(0.853607\pi\)
\(462\) 2.54807 + 7.00076i 0.118547 + 0.325705i
\(463\) −12.7023 + 4.62327i −0.590328 + 0.214862i −0.619873 0.784702i \(-0.712816\pi\)
0.0295460 + 0.999563i \(0.490594\pi\)
\(464\) −13.5036 11.3309i −0.626890 0.526023i
\(465\) 0 0
\(466\) −26.5783 9.67372i −1.23122 0.448126i
\(467\) −8.68257 15.0387i −0.401781 0.695906i 0.592160 0.805821i \(-0.298276\pi\)
−0.993941 + 0.109915i \(0.964942\pi\)
\(468\) 0.135878 0.770602i 0.00628096 0.0356211i
\(469\) 3.28312 5.68653i 0.151600 0.262579i
\(470\) 0 0
\(471\) −12.9030 15.3772i −0.594540 0.708545i
\(472\) −4.55262 + 25.8192i −0.209551 + 1.18843i
\(473\) −1.65910 + 9.40923i −0.0762855 + 0.432637i
\(474\) 30.1195 5.31088i 1.38343 0.243937i
\(475\) 0 0
\(476\) 0.248970 0.431229i 0.0114115 0.0197654i
\(477\) −8.61633 3.13609i −0.394515 0.143592i
\(478\) 3.37346 + 5.84300i 0.154298 + 0.267252i
\(479\) 6.75150 + 2.45734i 0.308484 + 0.112279i 0.491623 0.870808i \(-0.336404\pi\)
−0.183139 + 0.983087i \(0.558626\pi\)
\(480\) 0 0
\(481\) 8.63429 + 7.24503i 0.393690 + 0.330345i
\(482\) 28.8200 10.4896i 1.31272 0.477789i
\(483\) −4.52940 0.798656i −0.206095 0.0363401i
\(484\) −0.324921 1.84272i −0.0147692 0.0837600i
\(485\) 0 0
\(486\) −13.5000 + 16.0887i −0.612372 + 0.729797i
\(487\) 13.9394 0.631657 0.315828 0.948816i \(-0.397718\pi\)
0.315828 + 0.948816i \(0.397718\pi\)
\(488\) −4.41930 25.0631i −0.200052 1.13455i
\(489\) 28.3803 + 5.00422i 1.28340 + 0.226298i
\(490\) 0 0
\(491\) −16.6291 13.9534i −0.750459 0.629710i 0.185165 0.982707i \(-0.440718\pi\)
−0.935624 + 0.352997i \(0.885163\pi\)
\(492\) 2.51730i 0.113489i
\(493\) −17.8687 6.50368i −0.804766 0.292911i
\(494\) 6.71688 + 11.6340i 0.302207 + 0.523438i
\(495\) 0 0
\(496\) −1.50593 + 2.60835i −0.0676182 + 0.117118i
\(497\) −3.08647 + 2.58985i −0.138447 + 0.116171i
\(498\) −2.60876 + 0.459994i −0.116901 + 0.0206128i
\(499\) 0.726377 4.11949i 0.0325171 0.184414i −0.964223 0.265092i \(-0.914598\pi\)
0.996740 + 0.0806786i \(0.0257087\pi\)
\(500\) 0 0
\(501\) −0.118089 0.140732i −0.00527581 0.00628746i
\(502\) −15.0876 + 12.6600i −0.673395 + 0.565045i
\(503\) 11.9187 20.6439i 0.531431 0.920465i −0.467896 0.883783i \(-0.654988\pi\)
0.999327 0.0366816i \(-0.0116787\pi\)
\(504\) −1.06511 + 6.04055i −0.0474438 + 0.269067i
\(505\) 0 0
\(506\) −22.2460 8.09689i −0.988957 0.359951i
\(507\) −16.5116 9.53298i −0.733306 0.423375i
\(508\) −3.16637 2.65690i −0.140485 0.117881i
\(509\) −20.8773 + 7.59873i −0.925371 + 0.336808i −0.760373 0.649486i \(-0.774984\pi\)
−0.164998 + 0.986294i \(0.552762\pi\)
\(510\) 0 0
\(511\) −0.652704 3.70167i −0.0288739 0.163752i
\(512\) 24.9186 1.10126
\(513\) 36.7065i 1.62063i
\(514\) 0.285807 0.0126064
\(515\) 0 0
\(516\) −0.427671 + 0.509678i −0.0188272 + 0.0224373i
\(517\) −29.7126 + 10.8145i −1.30676 + 0.475621i
\(518\) −5.72462 4.80353i −0.251525 0.211055i
\(519\) −11.5241 + 6.65344i −0.505852 + 0.292054i
\(520\) 0 0
\(521\) 6.59358 + 11.4204i 0.288870 + 0.500337i 0.973540 0.228515i \(-0.0733872\pi\)
−0.684670 + 0.728853i \(0.740054\pi\)
\(522\) 19.8120 0.867149
\(523\) 8.91147 15.4351i 0.389672 0.674931i −0.602734 0.797942i \(-0.705922\pi\)
0.992405 + 0.123011i \(0.0392552\pi\)
\(524\) −2.10039 + 1.76243i −0.0917558 + 0.0769922i
\(525\) 0 0
\(526\) −0.386659 + 2.19285i −0.0168591 + 0.0956129i
\(527\) −0.564178 + 3.19961i −0.0245760 + 0.139377i
\(528\) −9.79196 + 26.9032i −0.426140 + 1.17081i
\(529\) −6.42333 + 5.38982i −0.279275 + 0.234340i
\(530\) 0 0
\(531\) −13.3601 23.1404i −0.579779 1.00421i
\(532\) 0.453363 + 0.785248i 0.0196558 + 0.0340448i
\(533\) 10.4315 + 3.79677i 0.451840 + 0.164456i
\(534\) 1.48839 0.859322i 0.0644089 0.0371865i
\(535\) 0 0
\(536\) 26.1484 9.51725i 1.12944 0.411082i
\(537\) −25.0535 + 29.8576i −1.08114 + 1.28845i
\(538\) 0.710485 + 4.02936i 0.0306312 + 0.173718i
\(539\) 29.9564 1.29031
\(540\) 0 0
\(541\) 8.78375 0.377643 0.188821 0.982011i \(-0.439533\pi\)
0.188821 + 0.982011i \(0.439533\pi\)
\(542\) −3.72328 21.1158i −0.159928 0.907000i
\(543\) 12.9076 + 35.4633i 0.553918 + 1.52188i
\(544\) 3.79813 1.38241i 0.162844 0.0592702i
\(545\) 0 0
\(546\) −1.98133 1.14392i −0.0847932 0.0489554i
\(547\) 20.9547 + 7.62689i 0.895959 + 0.326102i 0.748632 0.662986i \(-0.230711\pi\)
0.147326 + 0.989088i \(0.452933\pi\)
\(548\) −1.18298 2.04898i −0.0505345 0.0875283i
\(549\) 19.8694 + 16.6724i 0.848006 + 0.711562i
\(550\) 0 0
\(551\) 26.5253 22.2574i 1.13001 0.948195i
\(552\) −12.5285 14.9309i −0.533249 0.635502i
\(553\) −1.58079 + 8.96508i −0.0672218 + 0.381234i
\(554\) −4.11974 + 23.3642i −0.175031 + 0.992649i
\(555\) 0 0
\(556\) 1.61578 1.35580i 0.0685244 0.0574988i
\(557\) 18.9561 32.8328i 0.803194 1.39117i −0.114310 0.993445i \(-0.536466\pi\)
0.917504 0.397727i \(-0.130201\pi\)
\(558\) −0.587811 3.33364i −0.0248840 0.141124i
\(559\) −1.46703 2.54098i −0.0620489 0.107472i
\(560\) 0 0
\(561\) 30.8837i 1.30391i
\(562\) −9.06283 7.60462i −0.382293 0.320782i
\(563\) −34.3803 + 12.5134i −1.44896 + 0.527377i −0.942300 0.334770i \(-0.891341\pi\)
−0.506658 + 0.862147i \(0.669119\pi\)
\(564\) −2.16843 0.382353i −0.0913075 0.0161000i
\(565\) 0 0
\(566\) −2.72462 −0.114524
\(567\) −3.12567 5.41381i −0.131266 0.227359i
\(568\) −17.0746 −0.716435
\(569\) −0.440103 2.49595i −0.0184501 0.104636i 0.974192 0.225721i \(-0.0724737\pi\)
−0.992642 + 0.121085i \(0.961363\pi\)
\(570\) 0 0
\(571\) 20.5205 7.46886i 0.858758 0.312562i 0.125152 0.992138i \(-0.460058\pi\)
0.733606 + 0.679575i \(0.237836\pi\)
\(572\) 0.918368 + 0.770602i 0.0383989 + 0.0322205i
\(573\) 18.0718i 0.754961i
\(574\) −6.91622 2.51730i −0.288678 0.105070i
\(575\) 0 0
\(576\) −19.7554 + 16.5767i −0.823140 + 0.690697i
\(577\) −5.02481 + 8.70323i −0.209186 + 0.362320i −0.951458 0.307778i \(-0.900415\pi\)
0.742272 + 0.670098i \(0.233748\pi\)
\(578\) 2.01296 1.68907i 0.0837279 0.0702561i
\(579\) 17.0123 2.99973i 0.707008 0.124665i
\(580\) 0 0
\(581\) 0.136917 0.776497i 0.00568029 0.0322145i
\(582\) 12.5209 + 14.9219i 0.519010 + 0.618532i
\(583\) 10.7615 9.03001i 0.445698 0.373985i
\(584\) 7.96451 13.7949i 0.329574 0.570838i
\(585\) 0 0
\(586\) −13.1964 22.8568i −0.545138 0.944207i
\(587\) 5.79726 + 2.11003i 0.239278 + 0.0870902i 0.458876 0.888500i \(-0.348252\pi\)
−0.219598 + 0.975591i \(0.570474\pi\)
\(588\) 1.80659 + 1.04303i 0.0745025 + 0.0430140i
\(589\) −4.53209 3.80287i −0.186741 0.156695i
\(590\) 0 0
\(591\) −9.93541 27.2973i −0.408688 1.12286i
\(592\) −4.98680 28.2815i −0.204956 1.16236i
\(593\) 21.7965 0.895077 0.447538 0.894265i \(-0.352301\pi\)
0.447538 + 0.894265i \(0.352301\pi\)
\(594\) −11.0053 30.2368i −0.451553 1.24063i
\(595\) 0 0
\(596\) −0.418281 2.37219i −0.0171335 0.0971687i
\(597\) 30.7240 36.6155i 1.25745 1.49857i
\(598\) 6.83157 2.48649i 0.279364 0.101680i
\(599\) −9.54395 8.00832i −0.389955 0.327211i 0.426641 0.904421i \(-0.359697\pi\)
−0.816596 + 0.577210i \(0.804141\pi\)
\(600\) 0 0
\(601\) 14.9162 + 5.42906i 0.608445 + 0.221456i 0.627823 0.778356i \(-0.283946\pi\)
−0.0193775 + 0.999812i \(0.506168\pi\)
\(602\) 0.972659 + 1.68469i 0.0396426 + 0.0686630i
\(603\) −14.1800 + 24.5606i −0.577456 + 1.00018i
\(604\) −0.188663 + 0.326774i −0.00767659 + 0.0132962i
\(605\) 0 0
\(606\) 9.86097 27.0928i 0.400574 1.10057i
\(607\) 6.89811 39.1211i 0.279986 1.58788i −0.442680 0.896680i \(-0.645972\pi\)
0.722666 0.691198i \(-0.242917\pi\)
\(608\) −1.27807 + 7.24827i −0.0518324 + 0.293956i
\(609\) −2.01691 + 5.54142i −0.0817294 + 0.224550i
\(610\) 0 0
\(611\) 4.85504 8.40917i 0.196414 0.340199i
\(612\) −1.07532 + 1.86251i −0.0434673 + 0.0752876i
\(613\) −9.88666 17.1242i −0.399318 0.691640i 0.594324 0.804226i \(-0.297420\pi\)
−0.993642 + 0.112586i \(0.964087\pi\)
\(614\) −10.4684 3.81018i −0.422469 0.153766i
\(615\) 0 0
\(616\) −7.19884 6.04055i −0.290050 0.243381i
\(617\) −16.0449 + 5.83986i −0.645943 + 0.235104i −0.644156 0.764895i \(-0.722791\pi\)
−0.00178707 + 0.999998i \(0.500569\pi\)
\(618\) −12.6056 + 15.0228i −0.507072 + 0.604304i
\(619\) 0.835847 + 4.74033i 0.0335955 + 0.190530i 0.996987 0.0775689i \(-0.0247158\pi\)
−0.963391 + 0.268099i \(0.913605\pi\)
\(620\) 0 0
\(621\) 19.5628 + 3.44946i 0.785029 + 0.138422i
\(622\) 37.2172 1.49227
\(623\) 0.0888306 + 0.503783i 0.00355892 + 0.0201836i
\(624\) −3.00703 8.26173i −0.120377 0.330734i
\(625\) 0 0
\(626\) −2.62836 2.20545i −0.105050 0.0881476i
\(627\) −48.7033 28.1188i −1.94502 1.12296i
\(628\) 2.01249 + 0.732486i 0.0803070 + 0.0292294i
\(629\) −15.4893 26.8283i −0.617600 1.06971i
\(630\) 0 0
\(631\) −11.9277 + 20.6593i −0.474833 + 0.822435i −0.999585 0.0288204i \(-0.990825\pi\)
0.524752 + 0.851255i \(0.324158\pi\)
\(632\) −29.5529 + 24.7978i −1.17555 + 0.986404i
\(633\) 8.86871 + 10.5693i 0.352499 + 0.420093i
\(634\) 6.71806 38.1000i 0.266808 1.51315i
\(635\) 0 0
\(636\) 0.963412 0.169875i 0.0382018 0.00673600i
\(637\) −7.04710 + 5.91322i −0.279216 + 0.234290i
\(638\) −15.1769 + 26.2871i −0.600859 + 1.04072i
\(639\) 13.3307 11.1858i 0.527354 0.442502i
\(640\) 0 0
\(641\) 41.6159 + 15.1470i 1.64373 + 0.598269i 0.987685 0.156453i \(-0.0500060\pi\)
0.656045 + 0.754722i \(0.272228\pi\)
\(642\) 32.5724i 1.28553i
\(643\) 5.55484 + 4.66107i 0.219062 + 0.183815i 0.745714 0.666266i \(-0.232109\pi\)
−0.526652 + 0.850081i \(0.676553\pi\)
\(644\) 0.461104 0.167828i 0.0181700 0.00661335i
\(645\) 0 0
\(646\) −6.41147 36.3613i −0.252256 1.43062i
\(647\) 26.8239 1.05456 0.527278 0.849693i \(-0.323213\pi\)
0.527278 + 0.849693i \(0.323213\pi\)
\(648\) 4.60030 26.0896i 0.180717 1.02490i
\(649\) 40.9377 1.60694
\(650\) 0 0
\(651\) 0.992259 + 0.174962i 0.0388897 + 0.00685730i
\(652\) −2.88919 + 1.05158i −0.113149 + 0.0411830i
\(653\) −6.07604 5.09840i −0.237774 0.199516i 0.516113 0.856521i \(-0.327379\pi\)
−0.753886 + 0.657005i \(0.771823\pi\)
\(654\) 36.3613i 1.42184i
\(655\) 0 0
\(656\) −14.1420 24.4947i −0.552153 0.956358i
\(657\) 2.81908 + 15.9878i 0.109983 + 0.623743i
\(658\) −3.21894 + 5.57537i −0.125487 + 0.217351i
\(659\) −33.9302 + 28.4708i −1.32173 + 1.10907i −0.335798 + 0.941934i \(0.609006\pi\)
−0.985935 + 0.167132i \(0.946550\pi\)
\(660\) 0 0
\(661\) −0.707796 + 4.01411i −0.0275301 + 0.156131i −0.995474 0.0950363i \(-0.969703\pi\)
0.967944 + 0.251167i \(0.0808144\pi\)
\(662\) 1.97313 11.1902i 0.0766877 0.434918i
\(663\) −6.09627 7.26525i −0.236759 0.282159i
\(664\) 2.55968 2.14783i 0.0993348 0.0833518i
\(665\) 0 0
\(666\) 24.7251 + 20.7468i 0.958078 + 0.803923i
\(667\) −9.36942 16.2283i −0.362786 0.628363i
\(668\) 0.0184183 + 0.00670372i 0.000712626 + 0.000259375i
\(669\) −31.1498 17.9843i −1.20432 0.695314i
\(670\) 0 0
\(671\) −37.3423 + 13.5915i −1.44158 + 0.524693i
\(672\) −0.428710 1.17787i −0.0165379 0.0454374i
\(673\) 1.09863 + 6.23064i 0.0423491 + 0.240174i 0.998633 0.0522655i \(-0.0166442\pi\)
−0.956284 + 0.292439i \(0.905533\pi\)
\(674\) −21.8830 −0.842902
\(675\) 0 0
\(676\) 2.03415 0.0782365
\(677\) −6.81252 38.6357i −0.261826 1.48489i −0.777922 0.628360i \(-0.783726\pi\)
0.516096 0.856531i \(-0.327385\pi\)
\(678\) 25.7554 30.6941i 0.989129 1.17880i
\(679\) −5.44831 + 1.98302i −0.209087 + 0.0761014i
\(680\) 0 0
\(681\) 2.42380 1.39938i 0.0928802 0.0536244i
\(682\) 4.87346 + 1.77379i 0.186614 + 0.0679220i
\(683\) 17.2533 + 29.8836i 0.660179 + 1.14346i 0.980568 + 0.196178i \(0.0628531\pi\)
−0.320389 + 0.947286i \(0.603814\pi\)
\(684\) −1.95811 3.39155i −0.0748702 0.129679i
\(685\) 0 0
\(686\) 9.69047 8.13127i 0.369984 0.310453i
\(687\) −6.02481 + 16.5530i −0.229861 + 0.631538i
\(688\) −1.29813 + 7.36208i −0.0494909 + 0.280677i
\(689\) −0.749132 + 4.24854i −0.0285397 + 0.161857i
\(690\) 0 0
\(691\) 23.2704 19.5262i 0.885247 0.742810i −0.0820040 0.996632i \(-0.526132\pi\)
0.967251 + 0.253822i \(0.0816876\pi\)
\(692\) 0.709856 1.22951i 0.0269847 0.0467388i
\(693\) 9.57760 0.363823
\(694\) −8.44403 14.6255i −0.320531 0.555176i
\(695\) 0 0
\(696\) −21.6426 + 12.4953i −0.820360 + 0.473635i
\(697\) −23.3726 19.6119i −0.885300 0.742855i
\(698\) 41.5715 15.1308i 1.57350 0.572709i
\(699\) −23.3726 + 27.8544i −0.884032 + 1.05355i
\(700\) 0 0
\(701\) −14.3952 −0.543698 −0.271849 0.962340i \(-0.587635\pi\)
−0.271849 + 0.962340i \(0.587635\pi\)
\(702\) 8.55753 + 4.94069i 0.322983 + 0.186474i
\(703\) 56.4107 2.12757
\(704\) −6.86097 38.9105i −0.258582 1.46649i
\(705\) 0 0
\(706\) −20.5069 + 7.46389i −0.771786 + 0.280907i
\(707\) 6.57398 + 5.51622i 0.247240 + 0.207459i
\(708\) 2.46884 + 1.42539i 0.0927849 + 0.0535694i
\(709\) −14.1001 5.13203i −0.529542 0.192737i 0.0633920 0.997989i \(-0.479808\pi\)
−0.592934 + 0.805251i \(0.702030\pi\)
\(710\) 0 0
\(711\) 6.82753 38.7209i 0.256053 1.45215i
\(712\) −1.08394 + 1.87744i −0.0406224 + 0.0703600i
\(713\) −2.45265 + 2.05802i −0.0918524 + 0.0770733i
\(714\) 4.04189 + 4.81694i 0.151264 + 0.180269i
\(715\) 0 0
\(716\) 0.722096 4.09521i 0.0269860 0.153045i
\(717\) 8.54189 1.50617i 0.319003 0.0562488i
\(718\) −12.6552 + 10.6190i −0.472289 + 0.396298i
\(719\) 10.2943 17.8302i 0.383911 0.664954i −0.607706 0.794162i \(-0.707910\pi\)
0.991617 + 0.129208i \(0.0412435\pi\)
\(720\) 0 0
\(721\) −2.91859 5.05514i −0.108694 0.188263i
\(722\) 39.1241 + 14.2400i 1.45605 + 0.529958i
\(723\) 39.4281i 1.46635i
\(724\) −3.08441 2.58812i −0.114631 0.0961869i
\(725\) 0 0
\(726\) 23.2701 + 4.10315i 0.863636 + 0.152282i
\(727\) 5.55644 + 31.5121i 0.206077 + 1.16872i 0.895736 + 0.444586i \(0.146649\pi\)
−0.689659 + 0.724134i \(0.742240\pi\)
\(728\) 2.88587 0.106957
\(729\) 13.5000 + 23.3827i 0.500000 + 0.866025i
\(730\) 0 0
\(731\) 1.40033 + 7.94166i 0.0517931 + 0.293733i
\(732\) −2.72525 0.480535i −0.100728 0.0177611i
\(733\) −38.8105 + 14.1259i −1.43350 + 0.521751i −0.937932 0.346819i \(-0.887262\pi\)
−0.495567 + 0.868570i \(0.665040\pi\)
\(734\) 32.7046 + 27.4424i 1.20715 + 1.01292i
\(735\) 0 0
\(736\) 3.74288 + 1.36230i 0.137964 + 0.0502149i
\(737\) −21.7251 37.6290i −0.800254 1.38608i
\(738\) 29.8717 + 10.8724i 1.09959 + 0.400219i
\(739\) −12.1755 + 21.0885i −0.447882 + 0.775754i −0.998248 0.0591697i \(-0.981155\pi\)
0.550366 + 0.834923i \(0.314488\pi\)
\(740\) 0 0
\(741\) 17.0077 2.99892i 0.624795 0.110168i
\(742\) 0.496683 2.81683i 0.0182338 0.103409i
\(743\) −2.54870 + 14.4544i −0.0935026 + 0.530280i 0.901693 + 0.432376i \(0.142325\pi\)
−0.995196 + 0.0979034i \(0.968786\pi\)
\(744\) 2.74463 + 3.27093i 0.100623 + 0.119918i
\(745\) 0 0
\(746\) −24.3550 + 42.1842i −0.891701 + 1.54447i
\(747\) −0.591357 + 3.35375i −0.0216366 + 0.122707i
\(748\) −1.64749 2.85353i −0.0602382 0.104336i
\(749\) 9.11051 + 3.31595i 0.332891 + 0.121162i
\(750\) 0 0
\(751\) 6.54260 + 5.48990i 0.238743 + 0.200329i 0.754307 0.656522i \(-0.227973\pi\)
−0.515564 + 0.856851i \(0.672418\pi\)
\(752\) −23.2481 + 8.46161i −0.847771 + 0.308563i
\(753\) 8.65998 + 23.7931i 0.315587 + 0.867069i
\(754\) −1.61864 9.17977i −0.0589475 0.334308i
\(755\) 0 0
\(756\) 0.577600 + 0.333477i 0.0210071 + 0.0121285i
\(757\) 17.3337 0.630003 0.315002 0.949091i \(-0.397995\pi\)
0.315002 + 0.949091i \(0.397995\pi\)
\(758\) 3.21073 + 18.2090i 0.116619 + 0.661380i
\(759\) −19.5628 + 23.3141i −0.710086 + 0.846247i
\(760\) 0 0
\(761\) 3.14227 + 2.63668i 0.113907 + 0.0955796i 0.697962 0.716135i \(-0.254090\pi\)
−0.584055 + 0.811714i \(0.698535\pi\)
\(762\) 45.2041 26.0986i 1.63757 0.945453i
\(763\) 10.1702 + 3.70167i 0.368188 + 0.134009i
\(764\) 0.964041 + 1.66977i 0.0348778 + 0.0604101i
\(765\) 0 0
\(766\) 15.4277 26.7215i 0.557424 0.965487i
\(767\) −9.63041 + 8.08088i −0.347734 + 0.291784i
\(768\) 2.60417 7.15490i 0.0939699 0.258180i
\(769\) −0.930770 + 5.27866i −0.0335644 + 0.190353i −0.996980 0.0776587i \(-0.975256\pi\)
0.963416 + 0.268012i \(0.0863667\pi\)
\(770\) 0 0
\(771\) 0.125667 0.345268i 0.00452579 0.0124345i
\(772\) −1.41185 + 1.18469i −0.0508138 + 0.0426378i
\(773\)