Properties

Label 675.2.l.a.151.1
Level $675$
Weight $2$
Character 675.151
Analytic conductor $5.390$
Analytic rank $1$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [675,2,Mod(76,675)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(675, base_ring=CyclotomicField(18))
 
chi = DirichletCharacter(H, H._module([14, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("675.76");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 675 = 3^{3} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 675.l (of order \(9\), degree \(6\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.38990213644\)
Analytic rank: \(1\)
Dimension: \(6\)
Coefficient field: \(\Q(\zeta_{18})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - x^{3} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{4}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{9}]$

Embedding invariants

Embedding label 151.1
Root \(0.939693 - 0.342020i\) of defining polynomial
Character \(\chi\) \(=\) 675.151
Dual form 675.2.l.a.76.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.93969 - 1.62760i) q^{2} +(1.11334 + 1.32683i) q^{3} +(0.766044 + 4.34445i) q^{4} -4.38571i q^{6} +(0.532089 - 3.01763i) q^{7} +(3.05303 - 5.28801i) q^{8} +(-0.520945 + 2.95442i) q^{9} +O(q^{10})\) \(q+(-1.93969 - 1.62760i) q^{2} +(1.11334 + 1.32683i) q^{3} +(0.766044 + 4.34445i) q^{4} -4.38571i q^{6} +(0.532089 - 3.01763i) q^{7} +(3.05303 - 5.28801i) q^{8} +(-0.520945 + 2.95442i) q^{9} +(-5.29813 + 1.92836i) q^{11} +(-4.91147 + 5.85327i) q^{12} +(-3.23783 + 2.71686i) q^{13} +(-5.94356 + 4.98724i) q^{14} +(-6.23783 + 2.27038i) q^{16} +(-0.826352 - 1.43128i) q^{17} +(5.81908 - 4.88279i) q^{18} +(-0.120615 + 0.208911i) q^{19} +(4.59627 - 2.65366i) q^{21} +(13.4153 + 4.88279i) q^{22} +(-1.29426 - 7.34013i) q^{23} +(10.4153 - 1.83651i) q^{24} +10.7023 q^{26} +(-4.50000 + 2.59808i) q^{27} +13.5175 q^{28} +(-5.90033 - 4.95096i) q^{29} +(0.858441 + 4.86846i) q^{31} +(4.31908 + 1.57202i) q^{32} +(-8.45723 - 4.88279i) q^{33} +(-0.726682 + 4.12122i) q^{34} -13.2344 q^{36} +(-1.24510 - 2.15658i) q^{37} +(0.573978 - 0.208911i) q^{38} +(-7.20961 - 1.27125i) q^{39} +(-0.109470 + 0.0918566i) q^{41} +(-13.2344 - 2.33359i) q^{42} +(-0.705737 + 0.256867i) q^{43} +(-12.4363 - 21.5403i) q^{44} +(-9.43629 + 16.3441i) q^{46} +(-0.807934 + 4.58202i) q^{47} +(-9.95723 - 5.74881i) q^{48} +(-2.24510 - 0.817150i) q^{49} +(0.979055 - 2.68993i) q^{51} +(-14.2836 - 11.9854i) q^{52} -12.1061 q^{53} +(12.9572 + 2.28471i) q^{54} +(-14.3327 - 12.0266i) q^{56} +(-0.411474 + 0.0725540i) q^{57} +(3.38666 + 19.2067i) q^{58} +(4.45336 + 1.62089i) q^{59} +(2.41488 - 13.6955i) q^{61} +(6.25877 - 10.8405i) q^{62} +(8.63816 + 3.14403i) q^{63} +(0.819078 + 1.41868i) q^{64} +(8.45723 + 23.2361i) q^{66} +(-5.64543 + 4.73708i) q^{67} +(5.58512 - 4.68647i) q^{68} +(8.29813 - 9.88933i) q^{69} +(2.45084 + 4.24497i) q^{71} +(14.0326 + 11.7747i) q^{72} +(-0.113341 + 0.196312i) q^{73} +(-1.09492 + 6.20961i) q^{74} +(-1.00000 - 0.363970i) q^{76} +(3.00000 + 17.0138i) q^{77} +(11.9153 + 14.2002i) q^{78} +(-7.53596 - 6.32342i) q^{79} +(-8.45723 - 3.07818i) q^{81} +0.361844 q^{82} +(6.78493 + 5.69323i) q^{83} +(15.0496 + 17.9355i) q^{84} +(1.78699 + 0.650411i) q^{86} -13.3408i q^{87} +(-5.97818 + 33.9039i) q^{88} +(-3.33022 + 5.76811i) q^{89} +(6.47565 + 11.2162i) q^{91} +(30.8974 - 11.2457i) q^{92} +(-5.50387 + 6.55926i) q^{93} +(9.02481 - 7.57272i) q^{94} +(2.72281 + 7.48086i) q^{96} +(-8.95723 + 3.26017i) q^{97} +(3.02481 + 5.23913i) q^{98} +(-2.93717 - 16.6575i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 6 q^{2} - 6 q^{7} + 6 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 6 q - 6 q^{2} - 6 q^{7} + 6 q^{8} - 18 q^{11} - 9 q^{12} - 6 q^{14} - 18 q^{16} - 6 q^{17} + 18 q^{18} - 12 q^{19} + 36 q^{22} - 18 q^{23} + 18 q^{24} + 12 q^{26} - 27 q^{27} + 36 q^{28} - 21 q^{29} - 3 q^{31} + 9 q^{32} + 9 q^{34} - 18 q^{36} - 6 q^{37} - 12 q^{38} - 9 q^{39} - 18 q^{41} - 18 q^{42} + 6 q^{43} - 27 q^{44} - 9 q^{46} + 6 q^{47} - 9 q^{48} - 12 q^{49} + 9 q^{51} - 36 q^{52} - 48 q^{53} + 27 q^{54} - 48 q^{56} + 18 q^{57} + 27 q^{58} + 36 q^{61} + 15 q^{62} + 18 q^{63} - 12 q^{64} - 18 q^{67} + 12 q^{68} + 36 q^{69} + 3 q^{71} + 9 q^{72} + 6 q^{73} + 12 q^{74} - 6 q^{76} + 18 q^{77} + 27 q^{78} - 12 q^{79} + 36 q^{82} - 18 q^{83} + 36 q^{84} + 3 q^{86} + 18 q^{88} + 3 q^{89} + 63 q^{92} - 9 q^{93} + 27 q^{94} + 27 q^{96} - 3 q^{97} - 9 q^{98} - 27 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/675\mathbb{Z}\right)^\times\).

\(n\) \(326\) \(352\)
\(\chi(n)\) \(e\left(\frac{2}{9}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.93969 1.62760i −1.37157 1.15088i −0.972216 0.234087i \(-0.924790\pi\)
−0.399354 0.916797i \(-0.630766\pi\)
\(3\) 1.11334 + 1.32683i 0.642788 + 0.766044i
\(4\) 0.766044 + 4.34445i 0.383022 + 2.17223i
\(5\) 0 0
\(6\) 4.38571i 1.79046i
\(7\) 0.532089 3.01763i 0.201111 1.14056i −0.702333 0.711849i \(-0.747858\pi\)
0.903444 0.428707i \(-0.141031\pi\)
\(8\) 3.05303 5.28801i 1.07941 1.86959i
\(9\) −0.520945 + 2.95442i −0.173648 + 0.984808i
\(10\) 0 0
\(11\) −5.29813 + 1.92836i −1.59745 + 0.581423i −0.978903 0.204326i \(-0.934500\pi\)
−0.618545 + 0.785750i \(0.712277\pi\)
\(12\) −4.91147 + 5.85327i −1.41782 + 1.68969i
\(13\) −3.23783 + 2.71686i −0.898011 + 0.753521i −0.969801 0.243899i \(-0.921574\pi\)
0.0717893 + 0.997420i \(0.477129\pi\)
\(14\) −5.94356 + 4.98724i −1.58848 + 1.33290i
\(15\) 0 0
\(16\) −6.23783 + 2.27038i −1.55946 + 0.567596i
\(17\) −0.826352 1.43128i −0.200420 0.347137i 0.748244 0.663424i \(-0.230897\pi\)
−0.948664 + 0.316286i \(0.897564\pi\)
\(18\) 5.81908 4.88279i 1.37157 1.15088i
\(19\) −0.120615 + 0.208911i −0.0276709 + 0.0479274i −0.879529 0.475845i \(-0.842142\pi\)
0.851858 + 0.523772i \(0.175476\pi\)
\(20\) 0 0
\(21\) 4.59627 2.65366i 1.00299 0.579075i
\(22\) 13.4153 + 4.88279i 2.86016 + 1.04101i
\(23\) −1.29426 7.34013i −0.269872 1.53052i −0.754792 0.655964i \(-0.772262\pi\)
0.484920 0.874559i \(-0.338849\pi\)
\(24\) 10.4153 1.83651i 2.12602 0.374875i
\(25\) 0 0
\(26\) 10.7023 2.09890
\(27\) −4.50000 + 2.59808i −0.866025 + 0.500000i
\(28\) 13.5175 2.55458
\(29\) −5.90033 4.95096i −1.09566 0.919371i −0.0985378 0.995133i \(-0.531417\pi\)
−0.997126 + 0.0757623i \(0.975861\pi\)
\(30\) 0 0
\(31\) 0.858441 + 4.86846i 0.154181 + 0.874401i 0.959531 + 0.281602i \(0.0908659\pi\)
−0.805351 + 0.592799i \(0.798023\pi\)
\(32\) 4.31908 + 1.57202i 0.763512 + 0.277896i
\(33\) −8.45723 4.88279i −1.47222 0.849984i
\(34\) −0.726682 + 4.12122i −0.124625 + 0.706783i
\(35\) 0 0
\(36\) −13.2344 −2.20574
\(37\) −1.24510 2.15658i −0.204693 0.354539i 0.745342 0.666683i \(-0.232286\pi\)
−0.950035 + 0.312144i \(0.898953\pi\)
\(38\) 0.573978 0.208911i 0.0931115 0.0338898i
\(39\) −7.20961 1.27125i −1.15446 0.203563i
\(40\) 0 0
\(41\) −0.109470 + 0.0918566i −0.0170964 + 0.0143456i −0.651296 0.758824i \(-0.725774\pi\)
0.634199 + 0.773170i \(0.281330\pi\)
\(42\) −13.2344 2.33359i −2.04212 0.360080i
\(43\) −0.705737 + 0.256867i −0.107624 + 0.0391719i −0.395271 0.918565i \(-0.629349\pi\)
0.287647 + 0.957737i \(0.407127\pi\)
\(44\) −12.4363 21.5403i −1.87484 3.24732i
\(45\) 0 0
\(46\) −9.43629 + 16.3441i −1.39130 + 2.40981i
\(47\) −0.807934 + 4.58202i −0.117849 + 0.668356i 0.867451 + 0.497523i \(0.165757\pi\)
−0.985300 + 0.170833i \(0.945354\pi\)
\(48\) −9.95723 5.74881i −1.43720 0.829769i
\(49\) −2.24510 0.817150i −0.320729 0.116736i
\(50\) 0 0
\(51\) 0.979055 2.68993i 0.137095 0.376666i
\(52\) −14.2836 11.9854i −1.98078 1.66207i
\(53\) −12.1061 −1.66290 −0.831448 0.555602i \(-0.812488\pi\)
−0.831448 + 0.555602i \(0.812488\pi\)
\(54\) 12.9572 + 2.28471i 1.76326 + 0.310910i
\(55\) 0 0
\(56\) −14.3327 12.0266i −1.91529 1.60712i
\(57\) −0.411474 + 0.0725540i −0.0545011 + 0.00961001i
\(58\) 3.38666 + 19.2067i 0.444690 + 2.52196i
\(59\) 4.45336 + 1.62089i 0.579779 + 0.211022i 0.615228 0.788349i \(-0.289064\pi\)
−0.0354493 + 0.999371i \(0.511286\pi\)
\(60\) 0 0
\(61\) 2.41488 13.6955i 0.309193 1.75352i −0.293885 0.955841i \(-0.594948\pi\)
0.603078 0.797682i \(-0.293941\pi\)
\(62\) 6.25877 10.8405i 0.794865 1.37675i
\(63\) 8.63816 + 3.14403i 1.08831 + 0.396111i
\(64\) 0.819078 + 1.41868i 0.102385 + 0.177336i
\(65\) 0 0
\(66\) 8.45723 + 23.2361i 1.04101 + 2.86016i
\(67\) −5.64543 + 4.73708i −0.689699 + 0.578726i −0.918822 0.394671i \(-0.870859\pi\)
0.229123 + 0.973397i \(0.426414\pi\)
\(68\) 5.58512 4.68647i 0.677296 0.568318i
\(69\) 8.29813 9.88933i 0.998978 1.19054i
\(70\) 0 0
\(71\) 2.45084 + 4.24497i 0.290861 + 0.503786i 0.974014 0.226490i \(-0.0727250\pi\)
−0.683153 + 0.730276i \(0.739392\pi\)
\(72\) 14.0326 + 11.7747i 1.65375 + 1.38766i
\(73\) −0.113341 + 0.196312i −0.0132655 + 0.0229766i −0.872582 0.488468i \(-0.837556\pi\)
0.859316 + 0.511444i \(0.170889\pi\)
\(74\) −1.09492 + 6.20961i −0.127282 + 0.721853i
\(75\) 0 0
\(76\) −1.00000 0.363970i −0.114708 0.0417502i
\(77\) 3.00000 + 17.0138i 0.341882 + 1.93891i
\(78\) 11.9153 + 14.2002i 1.34915 + 1.60785i
\(79\) −7.53596 6.32342i −0.847862 0.711440i 0.111456 0.993769i \(-0.464449\pi\)
−0.959318 + 0.282329i \(0.908893\pi\)
\(80\) 0 0
\(81\) −8.45723 3.07818i −0.939693 0.342020i
\(82\) 0.361844 0.0399590
\(83\) 6.78493 + 5.69323i 0.744743 + 0.624913i 0.934107 0.356994i \(-0.116198\pi\)
−0.189364 + 0.981907i \(0.560643\pi\)
\(84\) 15.0496 + 17.9355i 1.64205 + 1.95692i
\(85\) 0 0
\(86\) 1.78699 + 0.650411i 0.192696 + 0.0701356i
\(87\) 13.3408i 1.43029i
\(88\) −5.97818 + 33.9039i −0.637276 + 3.61417i
\(89\) −3.33022 + 5.76811i −0.353003 + 0.611419i −0.986774 0.162102i \(-0.948173\pi\)
0.633771 + 0.773521i \(0.281506\pi\)
\(90\) 0 0
\(91\) 6.47565 + 11.2162i 0.678833 + 1.17577i
\(92\) 30.8974 11.2457i 3.22128 1.17245i
\(93\) −5.50387 + 6.55926i −0.570725 + 0.680163i
\(94\) 9.02481 7.57272i 0.930839 0.781066i
\(95\) 0 0
\(96\) 2.72281 + 7.48086i 0.277896 + 0.763512i
\(97\) −8.95723 + 3.26017i −0.909469 + 0.331020i −0.754041 0.656827i \(-0.771898\pi\)
−0.155428 + 0.987847i \(0.549676\pi\)
\(98\) 3.02481 + 5.23913i 0.305552 + 0.529232i
\(99\) −2.93717 16.6575i −0.295196 1.67414i
\(100\) 0 0
\(101\) −0.405078 + 2.29731i −0.0403067 + 0.228591i −0.998306 0.0581793i \(-0.981470\pi\)
0.957999 + 0.286770i \(0.0925816\pi\)
\(102\) −6.27719 + 3.62414i −0.621534 + 0.358843i
\(103\) −17.5141 6.37462i −1.72572 0.628110i −0.727408 0.686205i \(-0.759275\pi\)
−0.998311 + 0.0580946i \(0.981497\pi\)
\(104\) 4.48158 + 25.4163i 0.439455 + 2.49227i
\(105\) 0 0
\(106\) 23.4820 + 19.7038i 2.28078 + 1.91380i
\(107\) −10.4037 −1.00577 −0.502883 0.864354i \(-0.667728\pi\)
−0.502883 + 0.864354i \(0.667728\pi\)
\(108\) −14.7344 17.5598i −1.41782 1.68969i
\(109\) 0.147956 0.0141716 0.00708580 0.999975i \(-0.497745\pi\)
0.00708580 + 0.999975i \(0.497745\pi\)
\(110\) 0 0
\(111\) 1.47519 4.05304i 0.140018 0.384697i
\(112\) 3.53209 + 20.0315i 0.333751 + 1.89280i
\(113\) 6.65183 + 2.42107i 0.625751 + 0.227755i 0.635381 0.772199i \(-0.280843\pi\)
−0.00962978 + 0.999954i \(0.503065\pi\)
\(114\) 0.916222 + 0.528981i 0.0858120 + 0.0495436i
\(115\) 0 0
\(116\) 16.9893 29.4264i 1.57742 2.73217i
\(117\) −6.34002 10.9812i −0.586135 1.01522i
\(118\) −6.00000 10.3923i −0.552345 0.956689i
\(119\) −4.75877 + 1.73205i −0.436236 + 0.158777i
\(120\) 0 0
\(121\) 15.9251 13.3628i 1.44774 1.21480i
\(122\) −26.9748 + 22.6345i −2.44218 + 2.04923i
\(123\) −0.243756 0.0429807i −0.0219787 0.00387544i
\(124\) −20.4932 + 7.45891i −1.84034 + 0.669830i
\(125\) 0 0
\(126\) −11.6382 20.1579i −1.03681 1.79581i
\(127\) −0.121959 + 0.211239i −0.0108221 + 0.0187444i −0.871386 0.490599i \(-0.836778\pi\)
0.860564 + 0.509343i \(0.170112\pi\)
\(128\) 2.31655 13.1378i 0.204756 1.16123i
\(129\) −1.12654 0.650411i −0.0991867 0.0572655i
\(130\) 0 0
\(131\) 1.57263 + 8.91885i 0.137402 + 0.779243i 0.973157 + 0.230142i \(0.0739190\pi\)
−0.835755 + 0.549102i \(0.814970\pi\)
\(132\) 14.7344 40.4825i 1.28247 3.52355i
\(133\) 0.566237 + 0.475129i 0.0490990 + 0.0411989i
\(134\) 18.6604 1.61202
\(135\) 0 0
\(136\) −10.0915 −0.865341
\(137\) 9.50253 + 7.97357i 0.811856 + 0.681228i 0.951050 0.309037i \(-0.100007\pi\)
−0.139194 + 0.990265i \(0.544451\pi\)
\(138\) −32.1917 + 5.67626i −2.74034 + 0.483195i
\(139\) 3.21823 + 18.2515i 0.272966 + 1.54807i 0.745348 + 0.666675i \(0.232283\pi\)
−0.472382 + 0.881394i \(0.656606\pi\)
\(140\) 0 0
\(141\) −6.97906 + 4.02936i −0.587742 + 0.339333i
\(142\) 2.15523 12.2229i 0.180863 1.02572i
\(143\) 11.9153 20.6380i 0.996411 1.72583i
\(144\) −3.45811 19.6119i −0.288176 1.63433i
\(145\) 0 0
\(146\) 0.539363 0.196312i 0.0446380 0.0162469i
\(147\) −1.41534 3.88863i −0.116736 0.320729i
\(148\) 8.41534 7.06131i 0.691737 0.580436i
\(149\) −3.66044 + 3.07148i −0.299875 + 0.251625i −0.780292 0.625415i \(-0.784930\pi\)
0.480417 + 0.877040i \(0.340485\pi\)
\(150\) 0 0
\(151\) 5.25877 1.91404i 0.427953 0.155762i −0.119059 0.992887i \(-0.537988\pi\)
0.547011 + 0.837125i \(0.315765\pi\)
\(152\) 0.736482 + 1.27562i 0.0597366 + 0.103467i
\(153\) 4.65910 1.69577i 0.376666 0.137095i
\(154\) 21.8726 37.8844i 1.76254 3.05281i
\(155\) 0 0
\(156\) 32.2956i 2.58572i
\(157\) 18.8059 + 6.84478i 1.50087 + 0.546273i 0.956286 0.292432i \(-0.0944646\pi\)
0.544586 + 0.838705i \(0.316687\pi\)
\(158\) 4.32547 + 24.5310i 0.344116 + 1.95158i
\(159\) −13.4782 16.0627i −1.06889 1.27385i
\(160\) 0 0
\(161\) −22.8384 −1.79992
\(162\) 11.3944 + 19.7357i 0.895229 + 1.55058i
\(163\) −9.95811 −0.779979 −0.389990 0.920819i \(-0.627521\pi\)
−0.389990 + 0.920819i \(0.627521\pi\)
\(164\) −0.482926 0.405223i −0.0377102 0.0316426i
\(165\) 0 0
\(166\) −3.89440 22.0862i −0.302264 1.71422i
\(167\) 2.97178 + 1.08164i 0.229963 + 0.0836998i 0.454432 0.890782i \(-0.349842\pi\)
−0.224468 + 0.974481i \(0.572065\pi\)
\(168\) 32.4068i 2.50024i
\(169\) 0.844770 4.79093i 0.0649823 0.368533i
\(170\) 0 0
\(171\) −0.554378 0.465178i −0.0423943 0.0355731i
\(172\) −1.65657 2.86927i −0.126313 0.218780i
\(173\) 18.5608 6.75557i 1.41115 0.513616i 0.479682 0.877442i \(-0.340752\pi\)
0.931467 + 0.363826i \(0.118530\pi\)
\(174\) −21.7135 + 25.8771i −1.64609 + 1.96174i
\(175\) 0 0
\(176\) 28.6707 24.0576i 2.16114 1.81341i
\(177\) 2.80747 + 7.71345i 0.211022 + 0.579779i
\(178\) 15.8478 5.76811i 1.18784 0.432338i
\(179\) 4.05051 + 7.01568i 0.302749 + 0.524377i 0.976758 0.214347i \(-0.0687622\pi\)
−0.674009 + 0.738724i \(0.735429\pi\)
\(180\) 0 0
\(181\) 4.45723 7.72016i 0.331304 0.573835i −0.651464 0.758679i \(-0.725845\pi\)
0.982768 + 0.184845i \(0.0591782\pi\)
\(182\) 5.69459 32.2956i 0.422111 2.39391i
\(183\) 20.8601 12.0436i 1.54202 0.890287i
\(184\) −42.7661 15.5656i −3.15276 1.14751i
\(185\) 0 0
\(186\) 21.3516 3.76487i 1.56558 0.276054i
\(187\) 7.13816 + 5.98962i 0.521994 + 0.438005i
\(188\) −20.5253 −1.49696
\(189\) 5.44562 + 14.9617i 0.396111 + 1.08831i
\(190\) 0 0
\(191\) −4.27584 3.58786i −0.309389 0.259608i 0.474850 0.880067i \(-0.342502\pi\)
−0.784240 + 0.620458i \(0.786947\pi\)
\(192\) −0.970437 + 2.66625i −0.0700353 + 0.192420i
\(193\) −4.39780 24.9412i −0.316561 1.79531i −0.563331 0.826232i \(-0.690480\pi\)
0.246770 0.969074i \(-0.420631\pi\)
\(194\) 22.6805 + 8.25503i 1.62837 + 0.592677i
\(195\) 0 0
\(196\) 1.83022 10.3797i 0.130730 0.741408i
\(197\) 2.44104 4.22800i 0.173917 0.301233i −0.765869 0.642996i \(-0.777691\pi\)
0.939786 + 0.341764i \(0.111024\pi\)
\(198\) −21.4145 + 37.0909i −1.52186 + 2.63594i
\(199\) −8.68092 15.0358i −0.615374 1.06586i −0.990319 0.138812i \(-0.955672\pi\)
0.374944 0.927047i \(-0.377662\pi\)
\(200\) 0 0
\(201\) −12.5706 2.21653i −0.886660 0.156342i
\(202\) 4.52481 3.79677i 0.318365 0.267140i
\(203\) −18.0797 + 15.1706i −1.26894 + 1.06477i
\(204\) 12.4363 + 2.19285i 0.870714 + 0.153530i
\(205\) 0 0
\(206\) 23.5967 + 40.8707i 1.64406 + 2.84760i
\(207\) 22.3601 1.55413
\(208\) 14.0287 24.2984i 0.972714 1.68479i
\(209\) 0.236177 1.33943i 0.0163367 0.0926501i
\(210\) 0 0
\(211\) −10.7699 3.91993i −0.741432 0.269859i −0.0564359 0.998406i \(-0.517974\pi\)
−0.684996 + 0.728547i \(0.740196\pi\)
\(212\) −9.27379 52.5942i −0.636926 3.61219i
\(213\) −2.90373 + 7.97794i −0.198961 + 0.546640i
\(214\) 20.1800 + 16.9331i 1.37948 + 1.15752i
\(215\) 0 0
\(216\) 31.7281i 2.15882i
\(217\) 15.1480 1.02831
\(218\) −0.286989 0.240812i −0.0194373 0.0163099i
\(219\) −0.386659 + 0.0681784i −0.0261280 + 0.00460707i
\(220\) 0 0
\(221\) 6.56418 + 2.38917i 0.441554 + 0.160713i
\(222\) −9.45811 + 5.46064i −0.634787 + 0.366494i
\(223\) −0.0765042 + 0.433877i −0.00512310 + 0.0290545i −0.987262 0.159102i \(-0.949140\pi\)
0.982139 + 0.188157i \(0.0602512\pi\)
\(224\) 7.04189 12.1969i 0.470506 0.814940i
\(225\) 0 0
\(226\) −8.96198 15.5226i −0.596142 1.03255i
\(227\) 4.99273 1.81720i 0.331379 0.120612i −0.170972 0.985276i \(-0.554691\pi\)
0.502351 + 0.864664i \(0.332469\pi\)
\(228\) −0.630415 1.73205i −0.0417502 0.114708i
\(229\) 0.0603074 0.0506039i 0.00398522 0.00334400i −0.640793 0.767714i \(-0.721394\pi\)
0.644778 + 0.764370i \(0.276950\pi\)
\(230\) 0 0
\(231\) −19.2344 + 22.9227i −1.26553 + 1.50820i
\(232\) −44.1946 + 16.0855i −2.90152 + 1.05607i
\(233\) −0.187319 0.324446i −0.0122717 0.0212551i 0.859824 0.510590i \(-0.170573\pi\)
−0.872096 + 0.489335i \(0.837240\pi\)
\(234\) −5.57532 + 31.6192i −0.364470 + 2.06701i
\(235\) 0 0
\(236\) −3.63041 + 20.5891i −0.236320 + 1.34024i
\(237\) 17.0390i 1.10680i
\(238\) 12.0496 + 4.38571i 0.781061 + 0.284283i
\(239\) −1.88666 10.6998i −0.122038 0.692111i −0.983023 0.183481i \(-0.941263\pi\)
0.860985 0.508630i \(-0.169848\pi\)
\(240\) 0 0
\(241\) 20.4893 + 17.1926i 1.31983 + 1.10747i 0.986341 + 0.164719i \(0.0526717\pi\)
0.333493 + 0.942753i \(0.391773\pi\)
\(242\) −52.6391 −3.38377
\(243\) −5.33157 14.6484i −0.342020 0.939693i
\(244\) 61.3492 3.92748
\(245\) 0 0
\(246\) 0.402856 + 0.480105i 0.0256852 + 0.0306104i
\(247\) −0.177052 1.00411i −0.0112655 0.0638900i
\(248\) 28.3653 + 10.3241i 1.80120 + 0.655583i
\(249\) 15.3409i 0.972193i
\(250\) 0 0
\(251\) 2.99660 5.19026i 0.189143 0.327606i −0.755821 0.654778i \(-0.772762\pi\)
0.944965 + 0.327172i \(0.106096\pi\)
\(252\) −7.04189 + 39.9365i −0.443597 + 2.51577i
\(253\) 21.0116 + 36.3932i 1.32099 + 2.28802i
\(254\) 0.580375 0.211239i 0.0364159 0.0132543i
\(255\) 0 0
\(256\) −23.3666 + 19.6069i −1.46042 + 1.22543i
\(257\) 4.84524 4.06564i 0.302238 0.253607i −0.479037 0.877795i \(-0.659014\pi\)
0.781275 + 0.624187i \(0.214570\pi\)
\(258\) 1.12654 + 3.09516i 0.0701356 + 0.192696i
\(259\) −7.17024 + 2.60976i −0.445537 + 0.162162i
\(260\) 0 0
\(261\) 17.7010 14.8529i 1.09566 0.919371i
\(262\) 11.4659 19.8594i 0.708363 1.22692i
\(263\) 0.0812519 0.460802i 0.00501021 0.0284143i −0.982200 0.187837i \(-0.939852\pi\)
0.987210 + 0.159423i \(0.0509634\pi\)
\(264\) −51.6404 + 29.8146i −3.17825 + 1.83496i
\(265\) 0 0
\(266\) −0.325008 1.84321i −0.0199275 0.113014i
\(267\) −11.3610 + 2.00324i −0.695280 + 0.122597i
\(268\) −24.9047 20.8975i −1.52129 1.27652i
\(269\) 1.84524 0.112506 0.0562530 0.998417i \(-0.482085\pi\)
0.0562530 + 0.998417i \(0.482085\pi\)
\(270\) 0 0
\(271\) −4.12567 −0.250616 −0.125308 0.992118i \(-0.539992\pi\)
−0.125308 + 0.992118i \(0.539992\pi\)
\(272\) 8.40420 + 7.05196i 0.509579 + 0.427588i
\(273\) −7.67230 + 21.0795i −0.464349 + 1.27579i
\(274\) −5.45424 30.9325i −0.329503 1.86870i
\(275\) 0 0
\(276\) 49.3205 + 28.4752i 2.96874 + 1.71401i
\(277\) −0.0106775 + 0.0605553i −0.000641550 + 0.00363841i −0.985127 0.171829i \(-0.945032\pi\)
0.984485 + 0.175467i \(0.0561436\pi\)
\(278\) 23.4636 40.6402i 1.40726 2.43744i
\(279\) −14.8307 −0.887890
\(280\) 0 0
\(281\) 5.68479 2.06910i 0.339126 0.123432i −0.166843 0.985984i \(-0.553357\pi\)
0.505969 + 0.862552i \(0.331135\pi\)
\(282\) 20.0954 + 3.54336i 1.19666 + 0.211004i
\(283\) −6.40033 + 5.37051i −0.380460 + 0.319244i −0.812883 0.582427i \(-0.802103\pi\)
0.432423 + 0.901671i \(0.357659\pi\)
\(284\) −16.5646 + 13.8994i −0.982931 + 0.824777i
\(285\) 0 0
\(286\) −56.7024 + 20.6380i −3.35288 + 1.22035i
\(287\) 0.218941 + 0.379217i 0.0129237 + 0.0223844i
\(288\) −6.89440 + 11.9415i −0.406256 + 0.703657i
\(289\) 7.13429 12.3569i 0.419664 0.726879i
\(290\) 0 0
\(291\) −14.2981 8.25503i −0.838171 0.483918i
\(292\) −0.939693 0.342020i −0.0549914 0.0200152i
\(293\) 2.08600 + 11.8303i 0.121865 + 0.691133i 0.983120 + 0.182960i \(0.0585679\pi\)
−0.861255 + 0.508173i \(0.830321\pi\)
\(294\) −3.58378 + 9.84635i −0.209010 + 0.574251i
\(295\) 0 0
\(296\) −15.2053 −0.883792
\(297\) 18.8316 22.4426i 1.09272 1.30225i
\(298\) 12.0993 0.700891
\(299\) 24.1327 + 20.2497i 1.39563 + 1.17107i
\(300\) 0 0
\(301\) 0.399615 + 2.26633i 0.0230334 + 0.130629i
\(302\) −13.3157 4.84651i −0.766231 0.278885i
\(303\) −3.49912 + 2.02022i −0.201019 + 0.116059i
\(304\) 0.278066 1.57699i 0.0159482 0.0904467i
\(305\) 0 0
\(306\) −11.7973 4.29385i −0.674404 0.245463i
\(307\) 5.39053 + 9.33667i 0.307654 + 0.532872i 0.977849 0.209313i \(-0.0671228\pi\)
−0.670195 + 0.742185i \(0.733789\pi\)
\(308\) −71.6177 + 26.0667i −4.08080 + 1.48529i
\(309\) −11.0412 30.3354i −0.628110 1.72572i
\(310\) 0 0
\(311\) −11.8341 + 9.92998i −0.671050 + 0.563078i −0.913376 0.407117i \(-0.866534\pi\)
0.242326 + 0.970195i \(0.422090\pi\)
\(312\) −28.7335 + 34.2433i −1.62672 + 1.93865i
\(313\) −4.35117 + 1.58370i −0.245942 + 0.0895157i −0.462050 0.886854i \(-0.652886\pi\)
0.216108 + 0.976370i \(0.430664\pi\)
\(314\) −25.3371 43.8851i −1.42985 2.47658i
\(315\) 0 0
\(316\) 21.6989 37.5836i 1.22066 2.11425i
\(317\) −1.35029 + 7.65787i −0.0758398 + 0.430109i 0.923120 + 0.384512i \(0.125630\pi\)
−0.998960 + 0.0455972i \(0.985481\pi\)
\(318\) 53.0937i 2.97734i
\(319\) 40.8080 + 14.8529i 2.28481 + 0.831602i
\(320\) 0 0
\(321\) −11.5829 13.8040i −0.646494 0.770462i
\(322\) 44.2995 + 37.1717i 2.46872 + 2.07150i
\(323\) 0.398681 0.0221832
\(324\) 6.89440 39.1001i 0.383022 2.17223i
\(325\) 0 0
\(326\) 19.3157 + 16.2078i 1.06980 + 0.897666i
\(327\) 0.164725 + 0.196312i 0.00910933 + 0.0108561i
\(328\) 0.151522 + 0.859322i 0.00836638 + 0.0474481i
\(329\) 13.3969 + 4.87608i 0.738596 + 0.268827i
\(330\) 0 0
\(331\) 1.31655 7.46654i 0.0723642 0.410398i −0.927010 0.375036i \(-0.877630\pi\)
0.999375 0.0353621i \(-0.0112585\pi\)
\(332\) −19.5364 + 33.8381i −1.07220 + 1.85711i
\(333\) 7.02007 2.55510i 0.384697 0.140018i
\(334\) −4.00387 6.93491i −0.219082 0.379461i
\(335\) 0 0
\(336\) −22.6459 + 26.9883i −1.23543 + 1.47233i
\(337\) −12.6741 + 10.6348i −0.690403 + 0.579317i −0.919025 0.394198i \(-0.871022\pi\)
0.228622 + 0.973515i \(0.426578\pi\)
\(338\) −9.43629 + 7.91799i −0.513266 + 0.430682i
\(339\) 4.19341 + 11.5213i 0.227755 + 0.625751i
\(340\) 0 0
\(341\) −13.9363 24.1384i −0.754692 1.30717i
\(342\) 0.318201 + 1.80460i 0.0172063 + 0.0975819i
\(343\) 7.06418 12.2355i 0.381430 0.660656i
\(344\) −0.796322 + 4.51617i −0.0429348 + 0.243495i
\(345\) 0 0
\(346\) −46.9975 17.1057i −2.52660 0.919608i
\(347\) 2.63697 + 14.9550i 0.141560 + 0.802828i 0.970065 + 0.242846i \(0.0780808\pi\)
−0.828505 + 0.559982i \(0.810808\pi\)
\(348\) 57.9586 10.2197i 3.10691 0.547832i
\(349\) 10.8191 + 9.07828i 0.579132 + 0.485949i 0.884662 0.466233i \(-0.154389\pi\)
−0.305530 + 0.952182i \(0.598834\pi\)
\(350\) 0 0
\(351\) 7.51161 20.6380i 0.400940 1.10157i
\(352\) −25.9145 −1.38125
\(353\) −3.19072 2.67733i −0.169825 0.142500i 0.553914 0.832574i \(-0.313134\pi\)
−0.723739 + 0.690074i \(0.757578\pi\)
\(354\) 7.10876 19.5311i 0.377826 1.03807i
\(355\) 0 0
\(356\) −27.6104 10.0494i −1.46335 0.532615i
\(357\) −7.59627 4.38571i −0.402037 0.232116i
\(358\) 3.56196 20.2009i 0.188255 1.06765i
\(359\) 3.29679 5.71021i 0.173998 0.301373i −0.765816 0.643060i \(-0.777665\pi\)
0.939814 + 0.341686i \(0.110998\pi\)
\(360\) 0 0
\(361\) 9.47090 + 16.4041i 0.498469 + 0.863373i
\(362\) −21.2110 + 7.72016i −1.11482 + 0.405762i
\(363\) 35.4602 + 6.25259i 1.86118 + 0.328176i
\(364\) −43.7674 + 36.7252i −2.29404 + 1.92493i
\(365\) 0 0
\(366\) −60.0642 10.5909i −3.13961 0.553598i
\(367\) 11.9243 4.34008i 0.622442 0.226550i −0.0114966 0.999934i \(-0.503660\pi\)
0.633938 + 0.773384i \(0.281437\pi\)
\(368\) 24.7383 + 42.8480i 1.28957 + 2.23361i
\(369\) −0.214355 0.371274i −0.0111589 0.0193278i
\(370\) 0 0
\(371\) −6.44150 + 36.5316i −0.334426 + 1.89663i
\(372\) −32.7126 18.8866i −1.69607 0.979226i
\(373\) 7.17530 + 2.61159i 0.371523 + 0.135223i 0.521032 0.853537i \(-0.325547\pi\)
−0.149509 + 0.988760i \(0.547769\pi\)
\(374\) −4.09714 23.2361i −0.211858 1.20151i
\(375\) 0 0
\(376\) 21.7631 + 18.2614i 1.12235 + 0.941761i
\(377\) 32.5553 1.67668
\(378\) 13.7888 37.8844i 0.709219 1.94856i
\(379\) −27.0838 −1.39120 −0.695600 0.718429i \(-0.744861\pi\)
−0.695600 + 0.718429i \(0.744861\pi\)
\(380\) 0 0
\(381\) −0.416060 + 0.0733626i −0.0213154 + 0.00375848i
\(382\) 2.45424 + 13.9187i 0.125570 + 0.712142i
\(383\) −9.67664 3.52201i −0.494453 0.179966i 0.0827443 0.996571i \(-0.473632\pi\)
−0.577198 + 0.816605i \(0.695854\pi\)
\(384\) 20.0107 11.5532i 1.02117 0.589572i
\(385\) 0 0
\(386\) −32.0638 + 55.5361i −1.63200 + 2.82671i
\(387\) −0.391245 2.21886i −0.0198881 0.112791i
\(388\) −21.0253 36.4169i −1.06740 1.84879i
\(389\) −3.89780 + 1.41868i −0.197626 + 0.0719302i −0.438937 0.898518i \(-0.644645\pi\)
0.241311 + 0.970448i \(0.422423\pi\)
\(390\) 0 0
\(391\) −9.43629 + 7.91799i −0.477214 + 0.400430i
\(392\) −11.1755 + 9.37732i −0.564446 + 0.473626i
\(393\) −10.0829 + 12.0163i −0.508615 + 0.606144i
\(394\) −11.6163 + 4.22800i −0.585222 + 0.213004i
\(395\) 0 0
\(396\) 70.1177 25.5208i 3.52355 1.28247i
\(397\) −11.0530 + 19.1444i −0.554736 + 0.960831i 0.443188 + 0.896429i \(0.353847\pi\)
−0.997924 + 0.0644021i \(0.979486\pi\)
\(398\) −7.63387 + 43.2939i −0.382652 + 2.17012i
\(399\) 1.28028i 0.0640942i
\(400\) 0 0
\(401\) −2.92855 16.6086i −0.146245 0.829395i −0.966359 0.257196i \(-0.917201\pi\)
0.820115 0.572199i \(-0.193910\pi\)
\(402\) 20.7754 + 24.7592i 1.03618 + 1.23488i
\(403\) −16.0064 13.4310i −0.797335 0.669044i
\(404\) −10.2909 −0.511989
\(405\) 0 0
\(406\) 59.7606 2.96587
\(407\) 10.7554 + 9.02482i 0.533124 + 0.447344i
\(408\) −11.2353 13.3897i −0.556230 0.662889i
\(409\) −6.09199 34.5494i −0.301229 1.70836i −0.640743 0.767755i \(-0.721374\pi\)
0.339514 0.940601i \(-0.389737\pi\)
\(410\) 0 0
\(411\) 21.4855i 1.05980i
\(412\) 14.2777 80.9726i 0.703410 3.98923i
\(413\) 7.26083 12.5761i 0.357282 0.618831i
\(414\) −43.3717 36.3932i −2.13160 1.78863i
\(415\) 0 0
\(416\) −18.2554 + 6.64441i −0.895043 + 0.325769i
\(417\) −20.6336 + 24.5901i −1.01043 + 1.20418i
\(418\) −2.63816 + 2.21368i −0.129036 + 0.108274i
\(419\) 12.7665 10.7124i 0.623685 0.523334i −0.275275 0.961366i \(-0.588769\pi\)
0.898959 + 0.438032i \(0.144324\pi\)
\(420\) 0 0
\(421\) 25.7841 9.38463i 1.25664 0.457379i 0.373998 0.927429i \(-0.377987\pi\)
0.882639 + 0.470051i \(0.155764\pi\)
\(422\) 14.5103 + 25.1325i 0.706349 + 1.22343i
\(423\) −13.1163 4.77396i −0.637738 0.232118i
\(424\) −36.9602 + 64.0170i −1.79495 + 3.10894i
\(425\) 0 0
\(426\) 18.6172 10.7487i 0.902007 0.520774i
\(427\) −40.0428 14.5744i −1.93781 0.705304i
\(428\) −7.96972 45.1985i −0.385231 2.18475i
\(429\) 40.6489 7.16750i 1.96255 0.346050i
\(430\) 0 0
\(431\) −14.9436 −0.719806 −0.359903 0.932990i \(-0.617190\pi\)
−0.359903 + 0.932990i \(0.617190\pi\)
\(432\) 22.1716 26.4231i 1.06673 1.27128i
\(433\) −23.3919 −1.12414 −0.562071 0.827089i \(-0.689995\pi\)
−0.562071 + 0.827089i \(0.689995\pi\)
\(434\) −29.3824 24.6547i −1.41040 1.18347i
\(435\) 0 0
\(436\) 0.113341 + 0.642788i 0.00542804 + 0.0307839i
\(437\) 1.68954 + 0.614942i 0.0808217 + 0.0294167i
\(438\) 0.860967 + 0.497079i 0.0411386 + 0.0237514i
\(439\) −4.55959 + 25.8587i −0.217617 + 1.23417i 0.658689 + 0.752415i \(0.271111\pi\)
−0.876306 + 0.481754i \(0.840000\pi\)
\(440\) 0 0
\(441\) 3.58378 6.20729i 0.170656 0.295585i
\(442\) −8.84389 15.3181i −0.420661 0.728606i
\(443\) 29.8251 10.8554i 1.41703 0.515757i 0.483846 0.875153i \(-0.339239\pi\)
0.933185 + 0.359396i \(0.117017\pi\)
\(444\) 18.7383 + 3.30407i 0.889280 + 0.156804i
\(445\) 0 0
\(446\) 0.854570 0.717070i 0.0404651 0.0339542i
\(447\) −8.15064 1.43718i −0.385512 0.0679762i
\(448\) 4.71688 1.71680i 0.222852 0.0811114i
\(449\) 9.23695 + 15.9989i 0.435919 + 0.755033i 0.997370 0.0724765i \(-0.0230902\pi\)
−0.561452 + 0.827510i \(0.689757\pi\)
\(450\) 0 0
\(451\) 0.402856 0.697767i 0.0189697 0.0328566i
\(452\) −5.42262 + 30.7532i −0.255059 + 1.44651i
\(453\) 8.39440 + 4.84651i 0.394403 + 0.227709i
\(454\) −12.6420 4.60132i −0.593320 0.215951i
\(455\) 0 0
\(456\) −0.872578 + 2.39739i −0.0408622 + 0.112268i
\(457\) −8.18732 6.86998i −0.382987 0.321364i 0.430887 0.902406i \(-0.358201\pi\)
−0.813874 + 0.581042i \(0.802645\pi\)
\(458\) −0.199340 −0.00931457
\(459\) 7.43717 + 4.29385i 0.347137 + 0.200420i
\(460\) 0 0
\(461\) 21.1689 + 17.7628i 0.985934 + 0.827297i 0.984974 0.172703i \(-0.0552500\pi\)
0.000959987 1.00000i \(0.499694\pi\)
\(462\) 74.6177 13.1571i 3.47153 0.612125i
\(463\) 0.800660 + 4.54077i 0.0372098 + 0.211027i 0.997744 0.0671350i \(-0.0213858\pi\)
−0.960534 + 0.278162i \(0.910275\pi\)
\(464\) 48.0458 + 17.4872i 2.23047 + 0.811825i
\(465\) 0 0
\(466\) −0.164725 + 0.934204i −0.00763075 + 0.0432762i
\(467\) −9.77513 + 16.9310i −0.452339 + 0.783474i −0.998531 0.0541859i \(-0.982744\pi\)
0.546192 + 0.837660i \(0.316077\pi\)
\(468\) 42.8508 35.9561i 1.98078 1.66207i
\(469\) 11.2909 + 19.5563i 0.521363 + 0.903028i
\(470\) 0 0
\(471\) 11.8555 + 32.5727i 0.546273 + 1.50087i
\(472\) 22.1676 18.6008i 1.02034 0.856171i
\(473\) 3.24376 2.72183i 0.149148 0.125150i
\(474\) −27.7327 + 33.0505i −1.27380 + 1.51806i
\(475\) 0 0
\(476\) −11.1702 19.3474i −0.511987 0.886788i
\(477\) 6.30659 35.7664i 0.288759 1.63763i
\(478\) −13.7554 + 23.8250i −0.629156 + 1.08973i
\(479\) −0.449493 + 2.54920i −0.0205379 + 0.116476i −0.993353 0.115106i \(-0.963279\pi\)
0.972815 + 0.231582i \(0.0743902\pi\)
\(480\) 0 0
\(481\) 9.89053 + 3.59986i 0.450969 + 0.164139i
\(482\) −11.7604 66.6967i −0.535672 3.03795i
\(483\) −25.4270 30.3027i −1.15697 1.37882i
\(484\) 70.2534 + 58.9496i 3.19333 + 2.67953i
\(485\) 0 0
\(486\) −13.5000 + 37.0909i −0.612372 + 1.68248i
\(487\) −40.7870 −1.84824 −0.924119 0.382105i \(-0.875199\pi\)
−0.924119 + 0.382105i \(0.875199\pi\)
\(488\) −65.0490 54.5826i −2.94463 2.47084i
\(489\) −11.0868 13.2127i −0.501361 0.597499i
\(490\) 0 0
\(491\) −37.9761 13.8222i −1.71384 0.623786i −0.716561 0.697525i \(-0.754285\pi\)
−0.997278 + 0.0737387i \(0.976507\pi\)
\(492\) 1.09191i 0.0492271i
\(493\) −2.21048 + 12.5363i −0.0995552 + 0.564606i
\(494\) −1.29086 + 2.23583i −0.0580785 + 0.100595i
\(495\) 0 0
\(496\) −16.4081 28.4196i −0.736744 1.27608i
\(497\) 14.1138 5.13701i 0.633091 0.230426i
\(498\) 24.9688 29.7567i 1.11888 1.33343i
\(499\) −10.2226 + 8.57775i −0.457625 + 0.383993i −0.842256 0.539077i \(-0.818773\pi\)
0.384631 + 0.923070i \(0.374329\pi\)
\(500\) 0 0
\(501\) 1.87346 + 5.14728i 0.0836998 + 0.229963i
\(502\) −14.2601 + 5.19026i −0.636460 + 0.231653i
\(503\) 9.02822 + 15.6373i 0.402548 + 0.697234i 0.994033 0.109082i \(-0.0347912\pi\)
−0.591484 + 0.806316i \(0.701458\pi\)
\(504\) 42.9982 36.0798i 1.91529 1.60712i
\(505\) 0 0
\(506\) 18.4773 104.790i 0.821416 4.65848i
\(507\) 7.29726 4.21307i 0.324083 0.187109i
\(508\) −1.01114 0.368026i −0.0448623 0.0163285i
\(509\) 4.18779 + 23.7501i 0.185620 + 1.05271i 0.925156 + 0.379588i \(0.123934\pi\)
−0.739535 + 0.673118i \(0.764955\pi\)
\(510\) 0 0
\(511\) 0.532089 + 0.446476i 0.0235382 + 0.0197509i
\(512\) 50.5553 2.23425
\(513\) 1.25347i 0.0553418i
\(514\) −16.0155 −0.706413
\(515\) 0 0
\(516\) 1.96270 5.39246i 0.0864029 0.237390i
\(517\) −4.55525 25.8341i −0.200340 1.13618i
\(518\) 18.1557 + 6.60813i 0.797716 + 0.290345i
\(519\) 29.6279 + 17.1057i 1.30052 + 0.750857i
\(520\) 0 0
\(521\) 20.6682 35.7983i 0.905490 1.56835i 0.0852310 0.996361i \(-0.472837\pi\)
0.820259 0.571993i \(-0.193829\pi\)
\(522\) −58.5090 −2.56087
\(523\) 3.27332 + 5.66955i 0.143132 + 0.247912i 0.928675 0.370896i \(-0.120949\pi\)
−0.785542 + 0.618808i \(0.787616\pi\)
\(524\) −37.5428 + 13.6645i −1.64007 + 0.596935i
\(525\) 0 0
\(526\) −0.907604 + 0.761570i −0.0395734 + 0.0332060i
\(527\) 6.25877 5.25173i 0.272636 0.228769i
\(528\) 63.8405 + 11.2568i 2.77830 + 0.489890i
\(529\) −30.5895 + 11.1337i −1.32998 + 0.484072i
\(530\) 0 0
\(531\) −7.10876 + 12.3127i −0.308494 + 0.534327i
\(532\) −1.63041 + 2.82396i −0.0706875 + 0.122434i
\(533\) 0.104885 0.594831i 0.00454306 0.0257650i
\(534\) 25.2973 + 14.6054i 1.09472 + 0.632037i
\(535\) 0 0
\(536\) 7.81403 + 44.3155i 0.337514 + 1.91414i
\(537\) −4.79901 + 13.1852i −0.207093 + 0.568982i
\(538\) −3.57919 3.00330i −0.154310 0.129481i
\(539\) 13.4706 0.580220
\(540\) 0 0
\(541\) −30.3560 −1.30511 −0.652553 0.757743i \(-0.726302\pi\)
−0.652553 + 0.757743i \(0.726302\pi\)
\(542\) 8.00253 + 6.71492i 0.343738 + 0.288430i
\(543\) 15.2057 2.68118i 0.652541 0.115061i
\(544\) −1.31908 7.48086i −0.0565550 0.320739i
\(545\) 0 0
\(546\) 49.1908 28.4003i 2.10517 1.21542i
\(547\) 6.71641 38.0907i 0.287173 1.62864i −0.410245 0.911975i \(-0.634557\pi\)
0.697418 0.716664i \(-0.254332\pi\)
\(548\) −27.3614 + 47.3914i −1.16882 + 2.02446i
\(549\) 39.2041 + 14.2691i 1.67319 + 0.608992i
\(550\) 0 0
\(551\) 1.74598 0.635484i 0.0743811 0.0270725i
\(552\) −26.9604 74.0731i −1.14751 3.15276i
\(553\) −23.0915 + 19.3761i −0.981951 + 0.823955i
\(554\) 0.119271 0.100080i 0.00506732 0.00425199i
\(555\) 0 0
\(556\) −76.8273 + 27.9629i −3.25821 + 1.18589i
\(557\) −7.43676 12.8808i −0.315105 0.545779i 0.664354 0.747418i \(-0.268707\pi\)
−0.979460 + 0.201639i \(0.935373\pi\)
\(558\) 28.7670 + 24.1384i 1.21780 + 1.02186i
\(559\) 1.58718 2.74908i 0.0671306 0.116274i
\(560\) 0 0
\(561\) 16.1396i 0.681414i
\(562\) −14.3944 5.23913i −0.607191 0.220999i
\(563\) 5.08677 + 28.8485i 0.214382 + 1.21582i 0.881976 + 0.471294i \(0.156213\pi\)
−0.667594 + 0.744525i \(0.732676\pi\)
\(564\) −22.8516 27.2335i −0.962227 1.14674i
\(565\) 0 0
\(566\) 21.1557 0.889240
\(567\) −13.7888 + 23.8829i −0.579075 + 1.00299i
\(568\) 29.9299 1.25583
\(569\) −24.4127 20.4847i −1.02343 0.858761i −0.0333769 0.999443i \(-0.510626\pi\)
−0.990055 + 0.140682i \(0.955071\pi\)
\(570\) 0 0
\(571\) −2.78817 15.8125i −0.116681 0.661733i −0.985904 0.167312i \(-0.946491\pi\)
0.869223 0.494421i \(-0.164620\pi\)
\(572\) 98.7884 + 35.9561i 4.13055 + 1.50340i
\(573\) 9.66782i 0.403879i
\(574\) 0.192533 1.09191i 0.00803619 0.0455755i
\(575\) 0 0
\(576\) −4.61809 + 1.68085i −0.192420 + 0.0700353i
\(577\) 1.13429 + 1.96464i 0.0472209 + 0.0817890i 0.888670 0.458548i \(-0.151630\pi\)
−0.841449 + 0.540337i \(0.818297\pi\)
\(578\) −33.9504 + 12.3569i −1.41215 + 0.513981i
\(579\) 28.1964 33.6032i 1.17180 1.39650i
\(580\) 0 0
\(581\) 20.7902 17.4451i 0.862524 0.723744i
\(582\) 14.2981 + 39.2838i 0.592677 + 1.62837i
\(583\) 64.1396 23.3449i 2.65639 0.966847i
\(584\) 0.692066 + 1.19869i 0.0286379 + 0.0496023i
\(585\) 0 0
\(586\) 15.2087 26.3423i 0.628267 1.08819i
\(587\) −5.78564 + 32.8120i −0.238799 + 1.35430i 0.595664 + 0.803234i \(0.296889\pi\)
−0.834463 + 0.551064i \(0.814222\pi\)
\(588\) 15.8097 9.12776i 0.651983 0.376422i
\(589\) −1.12061 0.407870i −0.0461741 0.0168060i
\(590\) 0 0
\(591\) 8.32753 1.46837i 0.342549 0.0604006i
\(592\) 12.6630 + 10.6255i 0.520445 + 0.436705i
\(593\) −24.7793 −1.01756 −0.508782 0.860895i \(-0.669904\pi\)
−0.508782 + 0.860895i \(0.669904\pi\)
\(594\) −73.0549 + 12.8816i −2.99748 + 0.528536i
\(595\) 0 0
\(596\) −16.1480 13.5497i −0.661446 0.555019i
\(597\) 10.2851 28.2581i 0.420941 1.15653i
\(598\) −13.8516 78.5565i −0.566435 3.21241i
\(599\) −35.9368 13.0799i −1.46834 0.534431i −0.520688 0.853747i \(-0.674324\pi\)
−0.947648 + 0.319316i \(0.896547\pi\)
\(600\) 0 0
\(601\) 7.80747 44.2783i 0.318473 1.80615i −0.233575 0.972339i \(-0.575042\pi\)
0.552048 0.833812i \(-0.313847\pi\)
\(602\) 2.91353 5.04639i 0.118747 0.205675i
\(603\) −11.0544 19.1467i −0.450169 0.779716i
\(604\) 12.3439 + 21.3802i 0.502266 + 0.869950i
\(605\) 0 0
\(606\) 10.0753 + 1.77655i 0.409282 + 0.0721675i
\(607\) 12.1374 10.1845i 0.492644 0.413377i −0.362329 0.932050i \(-0.618018\pi\)
0.854973 + 0.518673i \(0.173574\pi\)
\(608\) −0.849356 + 0.712694i −0.0344459 + 0.0289036i
\(609\) −40.2576 7.09851i −1.63132 0.287646i
\(610\) 0 0
\(611\) −9.83275 17.0308i −0.397790 0.688993i
\(612\) 10.9363 + 18.9422i 0.442073 + 0.765693i
\(613\) −10.4076 + 18.0265i −0.420359 + 0.728083i −0.995974 0.0896372i \(-0.971429\pi\)
0.575615 + 0.817721i \(0.304763\pi\)
\(614\) 4.74035 26.8839i 0.191305 1.08494i
\(615\) 0 0
\(616\) 99.1285 + 36.0798i 3.99400 + 1.45370i
\(617\) −5.19728 29.4752i −0.209235 1.18663i −0.890635 0.454718i \(-0.849740\pi\)
0.681401 0.731911i \(-0.261371\pi\)
\(618\) −27.9572 + 76.8119i −1.12460 + 3.08983i
\(619\) −2.69775 2.26368i −0.108432 0.0909850i 0.586960 0.809616i \(-0.300325\pi\)
−0.695392 + 0.718631i \(0.744769\pi\)
\(620\) 0 0
\(621\) 24.8944 + 29.6680i 0.998978 + 1.19054i
\(622\) 39.1165 1.56843
\(623\) 15.6340 + 13.1185i 0.626364 + 0.525582i
\(624\) 47.8585 8.43874i 1.91587 0.337820i
\(625\) 0 0
\(626\) 11.0175 + 4.01006i 0.440349 + 0.160274i
\(627\) 2.04013 1.17787i 0.0814751 0.0470397i
\(628\) −15.3307 + 86.9447i −0.611761 + 3.46947i
\(629\) −2.05778 + 3.56418i −0.0820491 + 0.142113i
\(630\) 0 0
\(631\) −9.53730 16.5191i −0.379674 0.657615i 0.611341 0.791368i \(-0.290631\pi\)
−0.991015 + 0.133753i \(0.957297\pi\)
\(632\) −56.4458 + 20.5446i −2.24529 + 0.817221i
\(633\) −6.78952 18.6540i −0.269859 0.741432i
\(634\) 15.0831 12.6562i 0.599025 0.502642i
\(635\) 0 0
\(636\) 59.4586 70.8600i 2.35769 2.80978i
\(637\) 9.48932 3.45383i 0.375981 0.136846i
\(638\) −54.9805 95.2289i −2.17670 3.77015i
\(639\) −13.8182 + 5.02941i −0.546640 + 0.198961i
\(640\) 0 0
\(641\) 1.60711 9.11435i 0.0634769 0.359995i −0.936480 0.350721i \(-0.885937\pi\)
0.999957 0.00927459i \(-0.00295224\pi\)
\(642\) 45.6277i 1.80078i
\(643\) −26.8542 9.77411i −1.05902 0.385453i −0.246963 0.969025i \(-0.579433\pi\)
−0.812062 + 0.583571i \(0.801655\pi\)
\(644\) −17.4953 99.2205i −0.689410 3.90984i
\(645\) 0 0
\(646\) −0.773318 0.648891i −0.0304258 0.0255303i
\(647\) −21.6928 −0.852833 −0.426417 0.904527i \(-0.640224\pi\)
−0.426417 + 0.904527i \(0.640224\pi\)
\(648\) −42.0977 + 35.3241i −1.65375 + 1.38766i
\(649\) −26.7202 −1.04886
\(650\) 0 0
\(651\) 16.8648 + 20.0987i 0.660985 + 0.787731i
\(652\) −7.62836 43.2626i −0.298749 1.69429i
\(653\) −29.0574 10.5760i −1.13710 0.413872i −0.296237 0.955115i \(-0.595732\pi\)
−0.840866 + 0.541243i \(0.817954\pi\)
\(654\) 0.648891i 0.0253737i
\(655\) 0 0
\(656\) 0.474308 0.821525i 0.0185186 0.0320752i
\(657\) −0.520945 0.437124i −0.0203240 0.0170538i
\(658\) −18.0496 31.2629i −0.703648 1.21875i
\(659\) −35.7581 + 13.0149i −1.39294 + 0.506987i −0.926074 0.377343i \(-0.876838\pi\)
−0.466862 + 0.884330i \(0.654616\pi\)
\(660\) 0 0
\(661\) −20.7271 + 17.3921i −0.806193 + 0.676476i −0.949696 0.313174i \(-0.898608\pi\)
0.143503 + 0.989650i \(0.454163\pi\)
\(662\) −14.7062 + 12.3400i −0.571573 + 0.479607i
\(663\) 4.13816 + 11.3695i 0.160713 + 0.441554i
\(664\) 50.8205 18.4971i 1.97222 0.717828i
\(665\) 0 0
\(666\) −17.7754 6.46973i −0.688784 0.250697i
\(667\) −28.7041 + 49.7170i −1.11143 + 1.92505i
\(668\) −2.42262 + 13.7394i −0.0937339 + 0.531591i
\(669\) −0.660855 + 0.381545i −0.0255501 + 0.0147514i
\(670\) 0 0
\(671\) 13.6155 + 77.2171i 0.525619 + 2.98093i
\(672\) 24.0232 4.23594i 0.926716 0.163405i
\(673\) 23.6097 + 19.8109i 0.910087 + 0.763653i 0.972135 0.234420i \(-0.0753190\pi\)
−0.0620488 + 0.998073i \(0.519763\pi\)
\(674\) 41.8931 1.61366
\(675\) 0 0
\(676\) 21.4611 0.825427
\(677\) −35.7178 29.9708i −1.37275 1.15187i −0.971810 0.235766i \(-0.924240\pi\)
−0.400937 0.916105i \(-0.631315\pi\)
\(678\) 10.6181 29.1730i 0.407785 1.12038i
\(679\) 5.07192 + 28.7643i 0.194642 + 1.10387i
\(680\) 0 0
\(681\) 7.96972 + 4.60132i 0.305400 + 0.176323i
\(682\) −12.2554 + 69.5036i −0.469282 + 2.66143i
\(683\) −20.7224 + 35.8923i −0.792921 + 1.37338i 0.131231 + 0.991352i \(0.458107\pi\)
−0.924151 + 0.382027i \(0.875226\pi\)
\(684\) 1.59627 2.76481i 0.0610348 0.105715i
\(685\) 0 0
\(686\) −33.6168 + 12.2355i −1.28350 + 0.467154i
\(687\) 0.134285 + 0.0236781i 0.00512330 + 0.000903377i
\(688\) 3.81908 3.20459i 0.145601 0.122174i
\(689\) 39.1973 32.8905i 1.49330 1.25303i
\(690\) 0 0
\(691\) −4.99185 + 1.81688i −0.189899 + 0.0691175i −0.435219 0.900325i \(-0.643329\pi\)
0.245320 + 0.969442i \(0.421107\pi\)
\(692\) 43.5676 + 75.4614i 1.65619 + 2.86861i
\(693\) −51.8289 −1.96882
\(694\) 19.2258 33.3001i 0.729802 1.26405i
\(695\) 0 0
\(696\) −70.5464 40.7300i −2.67406 1.54387i
\(697\) 0.221934 + 0.0807773i 0.00840634 + 0.00305966i
\(698\) −6.20991 35.2182i −0.235049 1.33303i
\(699\) 0.221934 0.609758i 0.00839431 0.0230632i
\(700\) 0 0
\(701\) 9.66962 0.365216 0.182608 0.983186i \(-0.441546\pi\)
0.182608 + 0.983186i \(0.441546\pi\)
\(702\) −48.1605 + 27.8055i −1.81770 + 1.04945i
\(703\) 0.600710 0.0226562
\(704\) −7.07532 5.93690i −0.266661 0.223755i
\(705\) 0 0
\(706\) 1.83140 + 10.3864i 0.0689258 + 0.390898i
\(707\) 6.71688 + 2.44474i 0.252614 + 0.0919441i
\(708\) −31.3601 + 18.1058i −1.17858 + 0.680456i
\(709\) 4.07057 23.0854i 0.152874 0.866989i −0.807830 0.589415i \(-0.799358\pi\)
0.960704 0.277575i \(-0.0895305\pi\)
\(710\) 0 0
\(711\) 22.6079 18.9703i 0.847862 0.711440i
\(712\) 20.3346 + 35.2205i 0.762070 + 1.31994i
\(713\) 34.6241 12.6021i 1.29668 0.471954i
\(714\) 7.59627 + 20.8706i 0.284283 + 0.781061i
\(715\) 0 0
\(716\) −27.3764 + 22.9716i −1.02311 + 0.858488i
\(717\) 12.0963 14.4158i 0.451743 0.538367i
\(718\) −15.6887 + 5.71021i −0.585496 + 0.213103i
\(719\) 13.1133 + 22.7130i 0.489045 + 0.847051i 0.999921 0.0126038i \(-0.00401201\pi\)
−0.510875 + 0.859655i \(0.670679\pi\)
\(720\) 0 0
\(721\) −28.5553 + 49.4592i −1.06346 + 1.84196i
\(722\) 8.32857 47.2337i 0.309957 1.75786i
\(723\) 46.3270i 1.72292i
\(724\) 36.9543 + 13.4503i 1.37340 + 0.499875i
\(725\) 0 0
\(726\) −58.6052 69.8430i −2.17504 2.59212i
\(727\) 14.6061 + 12.2559i 0.541709 + 0.454548i 0.872122 0.489289i \(-0.162744\pi\)
−0.330413 + 0.943836i \(0.607188\pi\)
\(728\) 79.0815 2.93096
\(729\) 13.5000 23.3827i 0.500000 0.866025i
\(730\) 0 0
\(731\) 0.950837 + 0.797847i 0.0351680 + 0.0295094i
\(732\) 68.3025 + 81.3998i 2.52453 + 3.00862i
\(733\) −1.17128 6.64268i −0.0432624 0.245353i 0.955506 0.294972i \(-0.0953104\pi\)
−0.998768 + 0.0496191i \(0.984199\pi\)
\(734\) −30.1933 10.9895i −1.11446 0.405629i
\(735\) 0 0
\(736\) 5.94878 33.7372i 0.219275 1.24357i
\(737\) 20.7754 35.9841i 0.765273 1.32549i
\(738\) −0.188501 + 1.06904i −0.00693881 + 0.0393519i
\(739\) 18.0069 + 31.1888i 0.662393 + 1.14730i 0.979985 + 0.199071i \(0.0637925\pi\)
−0.317592 + 0.948228i \(0.602874\pi\)
\(740\) 0 0
\(741\) 1.13516 1.35283i 0.0417012 0.0496976i
\(742\) 71.9532 60.3759i 2.64148 2.21647i
\(743\) −27.4709 + 23.0508i −1.00781 + 0.845653i −0.988047 0.154152i \(-0.950735\pi\)
−0.0197626 + 0.999805i \(0.506291\pi\)
\(744\) 17.8819 + 49.1301i 0.655583 + 1.80120i
\(745\) 0 0
\(746\) −9.66725 16.7442i −0.353943 0.613048i
\(747\) −20.3548 + 17.0797i −0.744743 + 0.624913i
\(748\) −20.5535 + 35.5997i −0.751510 + 1.30165i
\(749\) −5.53571 + 31.3946i −0.202270 + 1.14713i
\(750\) 0 0
\(751\) 45.0899 + 16.4114i 1.64535 + 0.598860i 0.987963 0.154689i \(-0.0494376\pi\)
0.657392 + 0.753549i \(0.271660\pi\)
\(752\) −5.36319 30.4162i −0.195575 1.10916i
\(753\) 10.2228 1.80256i 0.372540 0.0656888i
\(754\) −63.1473 52.9869i −2.29969 1.92967i
\(755\) 0 0
\(756\) −60.8289 + 35.1196i −2.21233 + 1.27729i
\(757\) −24.2172 −0.880189 −0.440094 0.897952i \(-0.645055\pi\)
−0.440094 + 0.897952i \(0.645055\pi\)
\(758\) 52.5342 + 44.0814i 1.90813 + 1.60111i
\(759\) −24.8944 + 68.3968i −0.903609 + 2.48265i
\(760\) 0 0
\(761\) 42.1391 + 15.3374i 1.52754 + 0.555979i 0.963018 0.269438i \(-0.0868379\pi\)
0.564523 + 0.825417i \(0.309060\pi\)
\(762\) 0.926433 + 0.534876i 0.0335611 + 0.0193765i
\(763\) 0.0787257 0.446476i 0.00285006 0.0161635i
\(764\) 12.3118 21.3247i 0.445425 0.771499i
\(765\) 0 0
\(766\) 13.0373 + 22.5813i 0.471057 + 0.815895i
\(767\) −18.8229 + 6.85099i −0.679657 + 0.247375i
\(768\) −52.0301 9.17431i −1.87747 0.331049i
\(769\) 0.682733 0.572881i 0.0246200 0.0206586i −0.630395 0.776275i \(-0.717107\pi\)
0.655015 + 0.755616i \(0.272662\pi\)
\(770\) 0 0
\(771\) 10.7888 + 1.90236i 0.388549 + 0.0685117i
\(772\) 104.987 38.2121i 3.77856 1.37528i
\(773\) −15.3701 26.6217i