Properties

Label 675.2.k.c.199.6
Level $675$
Weight $2$
Character 675.199
Analytic conductor $5.390$
Analytic rank $0$
Dimension $16$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [675,2,Mod(199,675)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(675, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([2, 3]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("675.199");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 675 = 3^{3} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 675.k (of order \(6\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.38990213644\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 12x^{14} + 102x^{12} - 406x^{10} + 1167x^{8} - 1842x^{6} + 2023x^{4} - 441x^{2} + 81 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 3^{2} \)
Twist minimal: no (minimal twist has level 225)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 199.6
Root \(1.27588 - 0.736627i\) of defining polynomial
Character \(\chi\) \(=\) 675.199
Dual form 675.2.k.c.424.6

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.27588 - 0.736627i) q^{2} +(0.0852394 - 0.147639i) q^{4} +(-3.34791 + 1.93291i) q^{7} +2.69535i q^{8} +(0.130139 + 0.225407i) q^{11} +(3.53235 + 2.03940i) q^{13} +(-2.84768 + 4.93232i) q^{14} +(2.15595 + 3.73421i) q^{16} +3.26028i q^{17} -4.24928 q^{19} +(0.332082 + 0.191728i) q^{22} +(7.53039 + 4.34768i) q^{23} +6.00912 q^{26} +0.659042i q^{28} +(-2.11105 - 3.65644i) q^{29} +(-1.32643 + 2.29744i) q^{31} +(0.832959 + 0.480909i) q^{32} +(2.40161 + 4.15971i) q^{34} +2.27559i q^{37} +(-5.42156 + 3.13014i) q^{38} +(2.82093 - 4.88599i) q^{41} +(-7.85712 + 4.53631i) q^{43} +0.0443719 q^{44} +12.8105 q^{46} +(-1.23745 + 0.714441i) q^{47} +(3.97232 - 6.88026i) q^{49} +(0.602191 - 0.347675i) q^{52} -11.3816i q^{53} +(-5.20988 - 9.02378i) q^{56} +(-5.38687 - 3.11011i) q^{58} +(3.56212 - 6.16977i) q^{59} +(-1.26244 - 2.18660i) q^{61} +3.90833i q^{62} -7.20679 q^{64} +(9.77361 + 5.64280i) q^{67} +(0.481344 + 0.277904i) q^{68} +8.38158 q^{71} +0.403568i q^{73} +(1.67626 + 2.90337i) q^{74} +(-0.362207 + 0.627360i) q^{76} +(-0.871386 - 0.503095i) q^{77} +(-1.52125 - 2.63488i) q^{79} -8.31189i q^{82} +(-3.96660 + 2.29012i) q^{83} +(-6.68314 + 11.5755i) q^{86} +(-0.607551 + 0.350770i) q^{88} +7.17772 q^{89} -15.7680 q^{91} +(1.28377 - 0.741187i) q^{92} +(-1.05255 + 1.82308i) q^{94} +(-2.69777 + 1.55756i) q^{97} -11.7045i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 8 q^{4} - 2 q^{11} - 6 q^{14} - 8 q^{16} - 8 q^{19} + 40 q^{26} - 2 q^{29} + 8 q^{31} + 18 q^{34} - 10 q^{41} + 88 q^{44} - 6 q^{49} - 60 q^{56} - 34 q^{59} + 26 q^{61} - 76 q^{64} + 32 q^{71} - 80 q^{74}+ \cdots + 6 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/675\mathbb{Z}\right)^\times\).

\(n\) \(326\) \(352\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.27588 0.736627i 0.902180 0.520874i 0.0242735 0.999705i \(-0.492273\pi\)
0.877907 + 0.478831i \(0.158939\pi\)
\(3\) 0 0
\(4\) 0.0852394 0.147639i 0.0426197 0.0738195i
\(5\) 0 0
\(6\) 0 0
\(7\) −3.34791 + 1.93291i −1.26539 + 0.730573i −0.974112 0.226066i \(-0.927414\pi\)
−0.291278 + 0.956639i \(0.594080\pi\)
\(8\) 2.69535i 0.952950i
\(9\) 0 0
\(10\) 0 0
\(11\) 0.130139 + 0.225407i 0.0392384 + 0.0679628i 0.884978 0.465634i \(-0.154174\pi\)
−0.845739 + 0.533596i \(0.820840\pi\)
\(12\) 0 0
\(13\) 3.53235 + 2.03940i 0.979697 + 0.565629i 0.902179 0.431362i \(-0.141967\pi\)
0.0775187 + 0.996991i \(0.475300\pi\)
\(14\) −2.84768 + 4.93232i −0.761073 + 1.31822i
\(15\) 0 0
\(16\) 2.15595 + 3.73421i 0.538987 + 0.933553i
\(17\) 3.26028i 0.790734i 0.918523 + 0.395367i \(0.129383\pi\)
−0.918523 + 0.395367i \(0.870617\pi\)
\(18\) 0 0
\(19\) −4.24928 −0.974853 −0.487426 0.873164i \(-0.662064\pi\)
−0.487426 + 0.873164i \(0.662064\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0.332082 + 0.191728i 0.0708002 + 0.0408765i
\(23\) 7.53039 + 4.34768i 1.57020 + 0.906553i 0.996144 + 0.0877339i \(0.0279625\pi\)
0.574052 + 0.818819i \(0.305371\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 6.00912 1.17849
\(27\) 0 0
\(28\) 0.659042i 0.124547i
\(29\) −2.11105 3.65644i −0.392012 0.678984i 0.600703 0.799472i \(-0.294887\pi\)
−0.992715 + 0.120488i \(0.961554\pi\)
\(30\) 0 0
\(31\) −1.32643 + 2.29744i −0.238233 + 0.412632i −0.960207 0.279288i \(-0.909902\pi\)
0.721974 + 0.691920i \(0.243235\pi\)
\(32\) 0.832959 + 0.480909i 0.147248 + 0.0850135i
\(33\) 0 0
\(34\) 2.40161 + 4.15971i 0.411873 + 0.713384i
\(35\) 0 0
\(36\) 0 0
\(37\) 2.27559i 0.374104i 0.982350 + 0.187052i \(0.0598933\pi\)
−0.982350 + 0.187052i \(0.940107\pi\)
\(38\) −5.42156 + 3.13014i −0.879493 + 0.507776i
\(39\) 0 0
\(40\) 0 0
\(41\) 2.82093 4.88599i 0.440555 0.763064i −0.557176 0.830395i \(-0.688115\pi\)
0.997731 + 0.0673308i \(0.0214483\pi\)
\(42\) 0 0
\(43\) −7.85712 + 4.53631i −1.19820 + 0.691780i −0.960153 0.279474i \(-0.909840\pi\)
−0.238046 + 0.971254i \(0.576507\pi\)
\(44\) 0.0443719 0.00668931
\(45\) 0 0
\(46\) 12.8105 1.88880
\(47\) −1.23745 + 0.714441i −0.180500 + 0.104212i −0.587528 0.809204i \(-0.699899\pi\)
0.407027 + 0.913416i \(0.366565\pi\)
\(48\) 0 0
\(49\) 3.97232 6.88026i 0.567474 0.982894i
\(50\) 0 0
\(51\) 0 0
\(52\) 0.602191 0.347675i 0.0835089 0.0482139i
\(53\) 11.3816i 1.56338i −0.623667 0.781690i \(-0.714358\pi\)
0.623667 0.781690i \(-0.285642\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) −5.20988 9.02378i −0.696200 1.20585i
\(57\) 0 0
\(58\) −5.38687 3.11011i −0.707331 0.408378i
\(59\) 3.56212 6.16977i 0.463748 0.803235i −0.535396 0.844601i \(-0.679838\pi\)
0.999144 + 0.0413660i \(0.0131710\pi\)
\(60\) 0 0
\(61\) −1.26244 2.18660i −0.161638 0.279966i 0.773818 0.633408i \(-0.218344\pi\)
−0.935456 + 0.353442i \(0.885011\pi\)
\(62\) 3.90833i 0.496358i
\(63\) 0 0
\(64\) −7.20679 −0.900848
\(65\) 0 0
\(66\) 0 0
\(67\) 9.77361 + 5.64280i 1.19404 + 0.689377i 0.959219 0.282662i \(-0.0912176\pi\)
0.234817 + 0.972040i \(0.424551\pi\)
\(68\) 0.481344 + 0.277904i 0.0583716 + 0.0337008i
\(69\) 0 0
\(70\) 0 0
\(71\) 8.38158 0.994711 0.497355 0.867547i \(-0.334305\pi\)
0.497355 + 0.867547i \(0.334305\pi\)
\(72\) 0 0
\(73\) 0.403568i 0.0472340i 0.999721 + 0.0236170i \(0.00751823\pi\)
−0.999721 + 0.0236170i \(0.992482\pi\)
\(74\) 1.67626 + 2.90337i 0.194861 + 0.337509i
\(75\) 0 0
\(76\) −0.362207 + 0.627360i −0.0415480 + 0.0719632i
\(77\) −0.871386 0.503095i −0.0993036 0.0573330i
\(78\) 0 0
\(79\) −1.52125 2.63488i −0.171154 0.296447i 0.767670 0.640846i \(-0.221416\pi\)
−0.938824 + 0.344399i \(0.888083\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 8.31189i 0.917895i
\(83\) −3.96660 + 2.29012i −0.435391 + 0.251373i −0.701641 0.712531i \(-0.747549\pi\)
0.266250 + 0.963904i \(0.414215\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) −6.68314 + 11.5755i −0.720661 + 1.24822i
\(87\) 0 0
\(88\) −0.607551 + 0.350770i −0.0647652 + 0.0373922i
\(89\) 7.17772 0.760837 0.380419 0.924814i \(-0.375780\pi\)
0.380419 + 0.924814i \(0.375780\pi\)
\(90\) 0 0
\(91\) −15.7680 −1.65293
\(92\) 1.28377 0.741187i 0.133843 0.0772741i
\(93\) 0 0
\(94\) −1.05255 + 1.82308i −0.108563 + 0.188036i
\(95\) 0 0
\(96\) 0 0
\(97\) −2.69777 + 1.55756i −0.273917 + 0.158146i −0.630666 0.776054i \(-0.717218\pi\)
0.356749 + 0.934200i \(0.383885\pi\)
\(98\) 11.7045i 1.18233i
\(99\) 0 0
\(100\) 0 0
\(101\) 1.92286 + 3.33049i 0.191332 + 0.331396i 0.945692 0.325065i \(-0.105386\pi\)
−0.754360 + 0.656461i \(0.772053\pi\)
\(102\) 0 0
\(103\) 3.64318 + 2.10339i 0.358974 + 0.207254i 0.668630 0.743595i \(-0.266881\pi\)
−0.309657 + 0.950848i \(0.600214\pi\)
\(104\) −5.49691 + 9.52092i −0.539016 + 0.933603i
\(105\) 0 0
\(106\) −8.38398 14.5215i −0.814324 1.41045i
\(107\) 1.62655i 0.157245i −0.996904 0.0786223i \(-0.974948\pi\)
0.996904 0.0786223i \(-0.0250521\pi\)
\(108\) 0 0
\(109\) 12.9021 1.23580 0.617900 0.786256i \(-0.287984\pi\)
0.617900 + 0.786256i \(0.287984\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) −14.4358 8.33452i −1.36406 0.787539i
\(113\) 1.15102 + 0.664539i 0.108278 + 0.0625146i 0.553161 0.833074i \(-0.313421\pi\)
−0.444883 + 0.895589i \(0.646755\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) −0.719778 −0.0668297
\(117\) 0 0
\(118\) 10.4958i 0.966217i
\(119\) −6.30184 10.9151i −0.577689 1.00059i
\(120\) 0 0
\(121\) 5.46613 9.46761i 0.496921 0.860692i
\(122\) −3.22142 1.85989i −0.291654 0.168386i
\(123\) 0 0
\(124\) 0.226128 + 0.391665i 0.0203069 + 0.0351725i
\(125\) 0 0
\(126\) 0 0
\(127\) 1.65285i 0.146667i 0.997307 + 0.0733335i \(0.0233637\pi\)
−0.997307 + 0.0733335i \(0.976636\pi\)
\(128\) −10.8609 + 6.27053i −0.959975 + 0.554242i
\(129\) 0 0
\(130\) 0 0
\(131\) −6.58886 + 11.4122i −0.575672 + 0.997092i 0.420297 + 0.907387i \(0.361926\pi\)
−0.995968 + 0.0897057i \(0.971407\pi\)
\(132\) 0 0
\(133\) 14.2262 8.21350i 1.23357 0.712201i
\(134\) 16.6266 1.43632
\(135\) 0 0
\(136\) −8.78759 −0.753530
\(137\) 17.5741 10.1464i 1.50146 0.866867i 0.501459 0.865181i \(-0.332797\pi\)
0.999999 0.00168578i \(-0.000536601\pi\)
\(138\) 0 0
\(139\) 1.53440 2.65766i 0.130146 0.225420i −0.793587 0.608457i \(-0.791789\pi\)
0.923733 + 0.383038i \(0.125122\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 10.6939 6.17410i 0.897409 0.518119i
\(143\) 1.06162i 0.0887774i
\(144\) 0 0
\(145\) 0 0
\(146\) 0.297279 + 0.514902i 0.0246030 + 0.0426136i
\(147\) 0 0
\(148\) 0.335965 + 0.193970i 0.0276162 + 0.0159442i
\(149\) −2.03081 + 3.51747i −0.166371 + 0.288162i −0.937141 0.348951i \(-0.886538\pi\)
0.770771 + 0.637113i \(0.219871\pi\)
\(150\) 0 0
\(151\) 6.80994 + 11.7952i 0.554185 + 0.959876i 0.997966 + 0.0637412i \(0.0203032\pi\)
−0.443782 + 0.896135i \(0.646363\pi\)
\(152\) 11.4533i 0.928986i
\(153\) 0 0
\(154\) −1.48237 −0.119453
\(155\) 0 0
\(156\) 0 0
\(157\) 1.78627 + 1.03131i 0.142560 + 0.0823071i 0.569584 0.821933i \(-0.307104\pi\)
−0.427023 + 0.904241i \(0.640438\pi\)
\(158\) −3.88185 2.24119i −0.308823 0.178299i
\(159\) 0 0
\(160\) 0 0
\(161\) −33.6147 −2.64921
\(162\) 0 0
\(163\) 3.50525i 0.274552i −0.990533 0.137276i \(-0.956165\pi\)
0.990533 0.137276i \(-0.0438347\pi\)
\(164\) −0.480909 0.832959i −0.0375527 0.0650431i
\(165\) 0 0
\(166\) −3.37393 + 5.84381i −0.261868 + 0.453568i
\(167\) −17.7837 10.2674i −1.37615 0.794518i −0.384453 0.923145i \(-0.625610\pi\)
−0.991693 + 0.128626i \(0.958943\pi\)
\(168\) 0 0
\(169\) 1.81833 + 3.14944i 0.139871 + 0.242264i
\(170\) 0 0
\(171\) 0 0
\(172\) 1.54669i 0.117934i
\(173\) 6.71323 3.87589i 0.510397 0.294678i −0.222600 0.974910i \(-0.571454\pi\)
0.732997 + 0.680232i \(0.238121\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) −0.561145 + 0.971932i −0.0422979 + 0.0732622i
\(177\) 0 0
\(178\) 9.15788 5.28731i 0.686412 0.396300i
\(179\) −10.7632 −0.804477 −0.402238 0.915535i \(-0.631768\pi\)
−0.402238 + 0.915535i \(0.631768\pi\)
\(180\) 0 0
\(181\) −7.84572 −0.583168 −0.291584 0.956545i \(-0.594182\pi\)
−0.291584 + 0.956545i \(0.594182\pi\)
\(182\) −20.1180 + 11.6151i −1.49124 + 0.860970i
\(183\) 0 0
\(184\) −11.7185 + 20.2970i −0.863900 + 1.49632i
\(185\) 0 0
\(186\) 0 0
\(187\) −0.734890 + 0.424289i −0.0537405 + 0.0310271i
\(188\) 0.243594i 0.0177659i
\(189\) 0 0
\(190\) 0 0
\(191\) −2.86627 4.96453i −0.207396 0.359221i 0.743497 0.668739i \(-0.233166\pi\)
−0.950894 + 0.309518i \(0.899832\pi\)
\(192\) 0 0
\(193\) 7.34595 + 4.24119i 0.528773 + 0.305287i 0.740517 0.672038i \(-0.234581\pi\)
−0.211744 + 0.977325i \(0.567914\pi\)
\(194\) −2.29468 + 3.97450i −0.164748 + 0.285352i
\(195\) 0 0
\(196\) −0.677196 1.17294i −0.0483712 0.0837813i
\(197\) 10.6266i 0.757110i 0.925579 + 0.378555i \(0.123579\pi\)
−0.925579 + 0.378555i \(0.876421\pi\)
\(198\) 0 0
\(199\) 18.5784 1.31699 0.658495 0.752585i \(-0.271193\pi\)
0.658495 + 0.752585i \(0.271193\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 4.90666 + 2.83286i 0.345231 + 0.199319i
\(203\) 14.1352 + 8.16095i 0.992095 + 0.572786i
\(204\) 0 0
\(205\) 0 0
\(206\) 6.19767 0.431812
\(207\) 0 0
\(208\) 17.5874i 1.21947i
\(209\) −0.552997 0.957820i −0.0382516 0.0662538i
\(210\) 0 0
\(211\) −5.22666 + 9.05283i −0.359818 + 0.623223i −0.987930 0.154900i \(-0.950494\pi\)
0.628112 + 0.778123i \(0.283828\pi\)
\(212\) −1.68037 0.970160i −0.115408 0.0666308i
\(213\) 0 0
\(214\) −1.19816 2.07528i −0.0819046 0.141863i
\(215\) 0 0
\(216\) 0 0
\(217\) 10.2555i 0.696187i
\(218\) 16.4615 9.50407i 1.11492 0.643697i
\(219\) 0 0
\(220\) 0 0
\(221\) −6.64902 + 11.5164i −0.447261 + 0.774680i
\(222\) 0 0
\(223\) 3.40452 1.96560i 0.227983 0.131626i −0.381658 0.924304i \(-0.624647\pi\)
0.609641 + 0.792677i \(0.291313\pi\)
\(224\) −3.71822 −0.248434
\(225\) 0 0
\(226\) 1.95807 0.130249
\(227\) 4.18411 2.41570i 0.277709 0.160335i −0.354677 0.934989i \(-0.615409\pi\)
0.632386 + 0.774654i \(0.282076\pi\)
\(228\) 0 0
\(229\) −9.42648 + 16.3271i −0.622919 + 1.07893i 0.366020 + 0.930607i \(0.380720\pi\)
−0.988939 + 0.148321i \(0.952613\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 9.85539 5.69001i 0.647038 0.373568i
\(233\) 11.9021i 0.779735i 0.920871 + 0.389867i \(0.127479\pi\)
−0.920871 + 0.389867i \(0.872521\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) −0.607266 1.05181i −0.0395296 0.0684673i
\(237\) 0 0
\(238\) −16.0807 9.28421i −1.04236 0.601806i
\(239\) 10.8147 18.7317i 0.699547 1.21165i −0.269076 0.963119i \(-0.586718\pi\)
0.968624 0.248533i \(-0.0799483\pi\)
\(240\) 0 0
\(241\) −1.94916 3.37604i −0.125556 0.217470i 0.796394 0.604778i \(-0.206738\pi\)
−0.921950 + 0.387308i \(0.873405\pi\)
\(242\) 16.1060i 1.03533i
\(243\) 0 0
\(244\) −0.430437 −0.0275559
\(245\) 0 0
\(246\) 0 0
\(247\) −15.0100 8.66600i −0.955061 0.551405i
\(248\) −6.19240 3.57518i −0.393218 0.227024i
\(249\) 0 0
\(250\) 0 0
\(251\) 30.1033 1.90010 0.950052 0.312092i \(-0.101030\pi\)
0.950052 + 0.312092i \(0.101030\pi\)
\(252\) 0 0
\(253\) 2.26321i 0.142287i
\(254\) 1.21754 + 2.10883i 0.0763950 + 0.132320i
\(255\) 0 0
\(256\) −2.03131 + 3.51832i −0.126957 + 0.219895i
\(257\) 14.2151 + 8.20707i 0.886711 + 0.511943i 0.872865 0.487961i \(-0.162259\pi\)
0.0138459 + 0.999904i \(0.495593\pi\)
\(258\) 0 0
\(259\) −4.39851 7.61845i −0.273310 0.473388i
\(260\) 0 0
\(261\) 0 0
\(262\) 19.4141i 1.19941i
\(263\) −22.3497 + 12.9036i −1.37814 + 0.795670i −0.991936 0.126743i \(-0.959548\pi\)
−0.386206 + 0.922413i \(0.626214\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 12.1006 20.9588i 0.741934 1.28507i
\(267\) 0 0
\(268\) 1.66619 0.961978i 0.101779 0.0587621i
\(269\) −12.5206 −0.763392 −0.381696 0.924288i \(-0.624660\pi\)
−0.381696 + 0.924288i \(0.624660\pi\)
\(270\) 0 0
\(271\) 19.6462 1.19342 0.596710 0.802457i \(-0.296474\pi\)
0.596710 + 0.802457i \(0.296474\pi\)
\(272\) −12.1746 + 7.02899i −0.738191 + 0.426195i
\(273\) 0 0
\(274\) 14.9483 25.8911i 0.903057 1.56414i
\(275\) 0 0
\(276\) 0 0
\(277\) 18.0394 10.4150i 1.08388 0.625779i 0.151941 0.988390i \(-0.451448\pi\)
0.931941 + 0.362610i \(0.118114\pi\)
\(278\) 4.52112i 0.271159i
\(279\) 0 0
\(280\) 0 0
\(281\) 2.36221 + 4.09146i 0.140917 + 0.244076i 0.927842 0.372973i \(-0.121661\pi\)
−0.786925 + 0.617049i \(0.788328\pi\)
\(282\) 0 0
\(283\) −20.0506 11.5762i −1.19189 0.688136i −0.233152 0.972440i \(-0.574904\pi\)
−0.958734 + 0.284304i \(0.908237\pi\)
\(284\) 0.714441 1.23745i 0.0423943 0.0734291i
\(285\) 0 0
\(286\) 0.782020 + 1.35450i 0.0462418 + 0.0800932i
\(287\) 21.8105i 1.28743i
\(288\) 0 0
\(289\) 6.37059 0.374740
\(290\) 0 0
\(291\) 0 0
\(292\) 0.0595824 + 0.0343999i 0.00348679 + 0.00201310i
\(293\) −14.6179 8.43963i −0.853985 0.493049i 0.00800832 0.999968i \(-0.497451\pi\)
−0.861993 + 0.506919i \(0.830784\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) −6.13350 −0.356503
\(297\) 0 0
\(298\) 5.98380i 0.346632i
\(299\) 17.7333 + 30.7150i 1.02554 + 1.77630i
\(300\) 0 0
\(301\) 17.5366 30.3743i 1.01079 1.75074i
\(302\) 17.3773 + 10.0328i 0.999949 + 0.577321i
\(303\) 0 0
\(304\) −9.16123 15.8677i −0.525433 0.910076i
\(305\) 0 0
\(306\) 0 0
\(307\) 22.7177i 1.29657i 0.761398 + 0.648285i \(0.224513\pi\)
−0.761398 + 0.648285i \(0.775487\pi\)
\(308\) −0.148553 + 0.0857671i −0.00846459 + 0.00488703i
\(309\) 0 0
\(310\) 0 0
\(311\) 15.7968 27.3608i 0.895754 1.55149i 0.0628843 0.998021i \(-0.479970\pi\)
0.832869 0.553470i \(-0.186697\pi\)
\(312\) 0 0
\(313\) −26.4134 + 15.2498i −1.49298 + 0.861970i −0.999968 0.00805392i \(-0.997436\pi\)
−0.493009 + 0.870024i \(0.664103\pi\)
\(314\) 3.03875 0.171487
\(315\) 0 0
\(316\) −0.518682 −0.0291781
\(317\) 19.1296 11.0445i 1.07443 0.620320i 0.145039 0.989426i \(-0.453669\pi\)
0.929387 + 0.369106i \(0.120336\pi\)
\(318\) 0 0
\(319\) 0.549459 0.951691i 0.0307638 0.0532845i
\(320\) 0 0
\(321\) 0 0
\(322\) −42.8882 + 24.7615i −2.39007 + 1.37991i
\(323\) 13.8538i 0.770849i
\(324\) 0 0
\(325\) 0 0
\(326\) −2.58206 4.47226i −0.143007 0.247696i
\(327\) 0 0
\(328\) 13.1695 + 7.60339i 0.727162 + 0.419827i
\(329\) 2.76191 4.78377i 0.152269 0.263738i
\(330\) 0 0
\(331\) 14.8024 + 25.6385i 0.813612 + 1.40922i 0.910321 + 0.413904i \(0.135835\pi\)
−0.0967089 + 0.995313i \(0.530832\pi\)
\(332\) 0.780834i 0.0428538i
\(333\) 0 0
\(334\) −30.2531 −1.65538
\(335\) 0 0
\(336\) 0 0
\(337\) 10.8522 + 6.26553i 0.591158 + 0.341305i 0.765555 0.643370i \(-0.222464\pi\)
−0.174397 + 0.984675i \(0.555798\pi\)
\(338\) 4.63992 + 2.67886i 0.252379 + 0.145711i
\(339\) 0 0
\(340\) 0 0
\(341\) −0.690479 −0.0373915
\(342\) 0 0
\(343\) 3.65180i 0.197179i
\(344\) −12.2269 21.1777i −0.659232 1.14182i
\(345\) 0 0
\(346\) 5.71017 9.89030i 0.306980 0.531706i
\(347\) 14.8068 + 8.54872i 0.794872 + 0.458919i 0.841675 0.539985i \(-0.181570\pi\)
−0.0468031 + 0.998904i \(0.514903\pi\)
\(348\) 0 0
\(349\) −9.20231 15.9389i −0.492588 0.853188i 0.507375 0.861725i \(-0.330616\pi\)
−0.999964 + 0.00853709i \(0.997283\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0.250340i 0.0133432i
\(353\) 27.4693 15.8594i 1.46204 0.844110i 0.462936 0.886391i \(-0.346796\pi\)
0.999106 + 0.0422810i \(0.0134625\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0.611825 1.05971i 0.0324267 0.0561646i
\(357\) 0 0
\(358\) −13.7325 + 7.92844i −0.725783 + 0.419031i
\(359\) −11.4533 −0.604483 −0.302241 0.953231i \(-0.597735\pi\)
−0.302241 + 0.953231i \(0.597735\pi\)
\(360\) 0 0
\(361\) −0.943580 −0.0496621
\(362\) −10.0102 + 5.77937i −0.526122 + 0.303757i
\(363\) 0 0
\(364\) −1.34405 + 2.32797i −0.0704475 + 0.122019i
\(365\) 0 0
\(366\) 0 0
\(367\) −2.15846 + 1.24619i −0.112671 + 0.0650506i −0.555276 0.831666i \(-0.687388\pi\)
0.442606 + 0.896716i \(0.354054\pi\)
\(368\) 37.4934i 1.95448i
\(369\) 0 0
\(370\) 0 0
\(371\) 21.9996 + 38.1045i 1.14216 + 1.97829i
\(372\) 0 0
\(373\) 13.0227 + 7.51868i 0.674292 + 0.389303i 0.797701 0.603053i \(-0.206049\pi\)
−0.123409 + 0.992356i \(0.539383\pi\)
\(374\) −0.625086 + 1.08268i −0.0323224 + 0.0559841i
\(375\) 0 0
\(376\) −1.92567 3.33536i −0.0993088 0.172008i
\(377\) 17.2211i 0.886932i
\(378\) 0 0
\(379\) −6.27273 −0.322208 −0.161104 0.986937i \(-0.551505\pi\)
−0.161104 + 0.986937i \(0.551505\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) −7.31402 4.22275i −0.374218 0.216055i
\(383\) −19.2161 11.0944i −0.981894 0.566897i −0.0790528 0.996870i \(-0.525190\pi\)
−0.902842 + 0.429973i \(0.858523\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 12.4967 0.636065
\(387\) 0 0
\(388\) 0.531061i 0.0269605i
\(389\) 15.0461 + 26.0606i 0.762869 + 1.32133i 0.941366 + 0.337387i \(0.109543\pi\)
−0.178498 + 0.983940i \(0.557124\pi\)
\(390\) 0 0
\(391\) −14.1746 + 24.5512i −0.716842 + 1.24161i
\(392\) 18.5447 + 10.7068i 0.936649 + 0.540774i
\(393\) 0 0
\(394\) 7.82781 + 13.5582i 0.394359 + 0.683050i
\(395\) 0 0
\(396\) 0 0
\(397\) 29.2313i 1.46708i −0.679648 0.733538i \(-0.737868\pi\)
0.679648 0.733538i \(-0.262132\pi\)
\(398\) 23.7038 13.6854i 1.18816 0.685986i
\(399\) 0 0
\(400\) 0 0
\(401\) 12.1171 20.9874i 0.605098 1.04806i −0.386938 0.922106i \(-0.626467\pi\)
0.992036 0.125954i \(-0.0401993\pi\)
\(402\) 0 0
\(403\) −9.37080 + 5.41024i −0.466793 + 0.269503i
\(404\) 0.655614 0.0326180
\(405\) 0 0
\(406\) 24.0463 1.19340
\(407\) −0.512934 + 0.296142i −0.0254252 + 0.0146792i
\(408\) 0 0
\(409\) 1.16995 2.02642i 0.0578504 0.100200i −0.835650 0.549263i \(-0.814909\pi\)
0.893500 + 0.449063i \(0.148242\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0.621086 0.358584i 0.0305987 0.0176662i
\(413\) 27.5411i 1.35521i
\(414\) 0 0
\(415\) 0 0
\(416\) 1.96153 + 3.39748i 0.0961721 + 0.166575i
\(417\) 0 0
\(418\) −1.41111 0.814706i −0.0690197 0.0398486i
\(419\) −11.4212 + 19.7821i −0.557964 + 0.966421i 0.439703 + 0.898143i \(0.355084\pi\)
−0.997666 + 0.0682778i \(0.978250\pi\)
\(420\) 0 0
\(421\) −5.93792 10.2848i −0.289396 0.501249i 0.684269 0.729229i \(-0.260121\pi\)
−0.973666 + 0.227980i \(0.926788\pi\)
\(422\) 15.4004i 0.749679i
\(423\) 0 0
\(424\) 30.6773 1.48982
\(425\) 0 0
\(426\) 0 0
\(427\) 8.45303 + 4.88036i 0.409071 + 0.236177i
\(428\) −0.240142 0.138646i −0.0116077 0.00670172i
\(429\) 0 0
\(430\) 0 0
\(431\) −8.86916 −0.427212 −0.213606 0.976920i \(-0.568521\pi\)
−0.213606 + 0.976920i \(0.568521\pi\)
\(432\) 0 0
\(433\) 9.37059i 0.450322i 0.974322 + 0.225161i \(0.0722908\pi\)
−0.974322 + 0.225161i \(0.927709\pi\)
\(434\) −7.55446 13.0847i −0.362626 0.628086i
\(435\) 0 0
\(436\) 1.09977 1.90486i 0.0526695 0.0912262i
\(437\) −31.9988 18.4745i −1.53071 0.883756i
\(438\) 0 0
\(439\) 9.71155 + 16.8209i 0.463507 + 0.802817i 0.999133 0.0416380i \(-0.0132576\pi\)
−0.535626 + 0.844455i \(0.679924\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 19.5914i 0.931868i
\(443\) −9.42172 + 5.43963i −0.447639 + 0.258445i −0.706833 0.707381i \(-0.749877\pi\)
0.259193 + 0.965825i \(0.416543\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 2.89583 5.01572i 0.137121 0.237501i
\(447\) 0 0
\(448\) 24.1276 13.9301i 1.13992 0.658136i
\(449\) 1.34014 0.0632451 0.0316225 0.999500i \(-0.489933\pi\)
0.0316225 + 0.999500i \(0.489933\pi\)
\(450\) 0 0
\(451\) 1.46845 0.0691467
\(452\) 0.196224 0.113290i 0.00922959 0.00532871i
\(453\) 0 0
\(454\) 3.55894 6.16426i 0.167029 0.289303i
\(455\) 0 0
\(456\) 0 0
\(457\) −17.4169 + 10.0556i −0.814728 + 0.470383i −0.848595 0.529043i \(-0.822551\pi\)
0.0338671 + 0.999426i \(0.489218\pi\)
\(458\) 27.7752i 1.29785i
\(459\) 0 0
\(460\) 0 0
\(461\) −16.8766 29.2312i −0.786024 1.36143i −0.928386 0.371618i \(-0.878803\pi\)
0.142362 0.989815i \(-0.454530\pi\)
\(462\) 0 0
\(463\) 4.54262 + 2.62268i 0.211114 + 0.121886i 0.601829 0.798625i \(-0.294439\pi\)
−0.390715 + 0.920512i \(0.627772\pi\)
\(464\) 9.10262 15.7662i 0.422578 0.731927i
\(465\) 0 0
\(466\) 8.76744 + 15.1856i 0.406144 + 0.703462i
\(467\) 14.2120i 0.657652i 0.944390 + 0.328826i \(0.106653\pi\)
−0.944390 + 0.328826i \(0.893347\pi\)
\(468\) 0 0
\(469\) −43.6282 −2.01456
\(470\) 0 0
\(471\) 0 0
\(472\) 16.6297 + 9.60115i 0.765443 + 0.441929i
\(473\) −2.04503 1.18070i −0.0940307 0.0542887i
\(474\) 0 0
\(475\) 0 0
\(476\) −2.14866 −0.0984837
\(477\) 0 0
\(478\) 31.8657i 1.45750i
\(479\) −10.2417 17.7391i −0.467954 0.810519i 0.531376 0.847136i \(-0.321675\pi\)
−0.999329 + 0.0366168i \(0.988342\pi\)
\(480\) 0 0
\(481\) −4.64084 + 8.03817i −0.211604 + 0.366509i
\(482\) −4.97377 2.87161i −0.226549 0.130798i
\(483\) 0 0
\(484\) −0.931859 1.61403i −0.0423572 0.0733649i
\(485\) 0 0
\(486\) 0 0
\(487\) 31.3554i 1.42085i −0.703772 0.710425i \(-0.748503\pi\)
0.703772 0.710425i \(-0.251497\pi\)
\(488\) 5.89366 3.40271i 0.266793 0.154033i
\(489\) 0 0
\(490\) 0 0
\(491\) −5.19604 + 8.99980i −0.234494 + 0.406155i −0.959125 0.282981i \(-0.908677\pi\)
0.724632 + 0.689136i \(0.242010\pi\)
\(492\) 0 0
\(493\) 11.9210 6.88260i 0.536896 0.309977i
\(494\) −25.5345 −1.14885
\(495\) 0 0
\(496\) −11.4388 −0.513618
\(497\) −28.0607 + 16.2009i −1.25870 + 0.726709i
\(498\) 0 0
\(499\) −1.91285 + 3.31316i −0.0856310 + 0.148317i −0.905660 0.424005i \(-0.860624\pi\)
0.820029 + 0.572322i \(0.193957\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 38.4081 22.1749i 1.71424 0.989715i
\(503\) 1.00236i 0.0446931i −0.999750 0.0223466i \(-0.992886\pi\)
0.999750 0.0223466i \(-0.00711372\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 1.66714 + 2.88757i 0.0741134 + 0.128368i
\(507\) 0 0
\(508\) 0.244026 + 0.140888i 0.0108269 + 0.00625090i
\(509\) −2.28161 + 3.95187i −0.101131 + 0.175163i −0.912151 0.409855i \(-0.865579\pi\)
0.811020 + 0.585018i \(0.198913\pi\)
\(510\) 0 0
\(511\) −0.780062 1.35111i −0.0345079 0.0597695i
\(512\) 19.0969i 0.843971i
\(513\) 0 0
\(514\) 24.1822 1.06663
\(515\) 0 0
\(516\) 0 0
\(517\) −0.322080 0.185953i −0.0141651 0.00817822i
\(518\) −11.2239 6.48013i −0.493151 0.284721i
\(519\) 0 0
\(520\) 0 0
\(521\) −39.3708 −1.72486 −0.862432 0.506173i \(-0.831060\pi\)
−0.862432 + 0.506173i \(0.831060\pi\)
\(522\) 0 0
\(523\) 10.3998i 0.454749i −0.973807 0.227375i \(-0.926986\pi\)
0.973807 0.227375i \(-0.0730142\pi\)
\(524\) 1.12326 + 1.94555i 0.0490699 + 0.0849916i
\(525\) 0 0
\(526\) −19.0103 + 32.9268i −0.828888 + 1.43568i
\(527\) −7.49029 4.32452i −0.326282 0.188379i
\(528\) 0 0
\(529\) 26.3046 + 45.5608i 1.14368 + 1.98091i
\(530\) 0 0
\(531\) 0 0
\(532\) 2.80046i 0.121415i
\(533\) 19.9290 11.5060i 0.863222 0.498381i
\(534\) 0 0
\(535\) 0 0
\(536\) −15.2093 + 26.3433i −0.656942 + 1.13786i
\(537\) 0 0
\(538\) −15.9747 + 9.22298i −0.688717 + 0.397631i
\(539\) 2.06781 0.0890670
\(540\) 0 0
\(541\) 13.7093 0.589408 0.294704 0.955589i \(-0.404779\pi\)
0.294704 + 0.955589i \(0.404779\pi\)
\(542\) 25.0661 14.4719i 1.07668 0.621622i
\(543\) 0 0
\(544\) −1.56790 + 2.71568i −0.0672230 + 0.116434i
\(545\) 0 0
\(546\) 0 0
\(547\) −19.7322 + 11.3924i −0.843686 + 0.487102i −0.858515 0.512788i \(-0.828613\pi\)
0.0148294 + 0.999890i \(0.495279\pi\)
\(548\) 3.45950i 0.147783i
\(549\) 0 0
\(550\) 0 0
\(551\) 8.97044 + 15.5373i 0.382154 + 0.661910i
\(552\) 0 0
\(553\) 10.1860 + 5.88089i 0.433153 + 0.250081i
\(554\) 15.3440 26.5766i 0.651905 1.12913i
\(555\) 0 0
\(556\) −0.261583 0.453075i −0.0110936 0.0192146i
\(557\) 18.2341i 0.772605i −0.922372 0.386303i \(-0.873752\pi\)
0.922372 0.386303i \(-0.126248\pi\)
\(558\) 0 0
\(559\) −37.0054 −1.56516
\(560\) 0 0
\(561\) 0 0
\(562\) 6.02776 + 3.48013i 0.254266 + 0.146800i
\(563\) 20.8809 + 12.0556i 0.880025 + 0.508083i 0.870667 0.491873i \(-0.163688\pi\)
0.00935862 + 0.999956i \(0.497021\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) −34.1095 −1.43373
\(567\) 0 0
\(568\) 22.5913i 0.947910i
\(569\) 16.0024 + 27.7170i 0.670857 + 1.16196i 0.977661 + 0.210186i \(0.0674069\pi\)
−0.306804 + 0.951773i \(0.599260\pi\)
\(570\) 0 0
\(571\) 9.89042 17.1307i 0.413901 0.716898i −0.581411 0.813610i \(-0.697499\pi\)
0.995312 + 0.0967121i \(0.0308326\pi\)
\(572\) 0.156737 + 0.0904921i 0.00655350 + 0.00378367i
\(573\) 0 0
\(574\) 16.0662 + 27.8274i 0.670589 + 1.16150i
\(575\) 0 0
\(576\) 0 0
\(577\) 35.4119i 1.47422i 0.675775 + 0.737108i \(0.263809\pi\)
−0.675775 + 0.737108i \(0.736191\pi\)
\(578\) 8.12808 4.69275i 0.338084 0.195193i
\(579\) 0 0
\(580\) 0 0
\(581\) 8.85321 15.3342i 0.367293 0.636170i
\(582\) 0 0
\(583\) 2.56549 1.48119i 0.106252 0.0613445i
\(584\) −1.08776 −0.0450117
\(585\) 0 0
\(586\) −24.8675 −1.02726
\(587\) −28.0463 + 16.1925i −1.15759 + 0.668338i −0.950726 0.310031i \(-0.899661\pi\)
−0.206868 + 0.978369i \(0.566327\pi\)
\(588\) 0 0
\(589\) 5.63636 9.76247i 0.232242 0.402255i
\(590\) 0 0
\(591\) 0 0
\(592\) −8.49752 + 4.90605i −0.349246 + 0.201637i
\(593\) 29.2504i 1.20117i −0.799561 0.600585i \(-0.794934\pi\)
0.799561 0.600585i \(-0.205066\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0.346210 + 0.599654i 0.0141813 + 0.0245628i
\(597\) 0 0
\(598\) 45.2510 + 26.1257i 1.85045 + 1.06836i
\(599\) −2.03081 + 3.51747i −0.0829767 + 0.143720i −0.904527 0.426416i \(-0.859776\pi\)
0.821551 + 0.570136i \(0.193109\pi\)
\(600\) 0 0
\(601\) −23.4538 40.6232i −0.956700 1.65705i −0.730429 0.682989i \(-0.760680\pi\)
−0.226271 0.974064i \(-0.572653\pi\)
\(602\) 51.6717i 2.10598i
\(603\) 0 0
\(604\) 2.32190 0.0944768
\(605\) 0 0
\(606\) 0 0
\(607\) −35.4608 20.4733i −1.43931 0.830987i −0.441509 0.897257i \(-0.645557\pi\)
−0.997802 + 0.0662702i \(0.978890\pi\)
\(608\) −3.53948 2.04352i −0.143545 0.0828756i
\(609\) 0 0
\(610\) 0 0
\(611\) −5.82813 −0.235781
\(612\) 0 0
\(613\) 33.3827i 1.34831i −0.738588 0.674157i \(-0.764507\pi\)
0.738588 0.674157i \(-0.235493\pi\)
\(614\) 16.7345 + 28.9850i 0.675350 + 1.16974i
\(615\) 0 0
\(616\) 1.35602 2.34869i 0.0546355 0.0946314i
\(617\) −1.94752 1.12440i −0.0784040 0.0452666i 0.460285 0.887771i \(-0.347747\pi\)
−0.538689 + 0.842504i \(0.681080\pi\)
\(618\) 0 0
\(619\) −17.1467 29.6990i −0.689184 1.19370i −0.972102 0.234558i \(-0.924636\pi\)
0.282918 0.959144i \(-0.408698\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 46.5454i 1.86630i
\(623\) −24.0303 + 13.8739i −0.962756 + 0.555847i
\(624\) 0 0
\(625\) 0 0
\(626\) −22.4669 + 38.9137i −0.897956 + 1.55531i
\(627\) 0 0
\(628\) 0.304522 0.175816i 0.0121517 0.00701581i
\(629\) −7.41904 −0.295817
\(630\) 0 0
\(631\) −18.7552 −0.746633 −0.373316 0.927704i \(-0.621779\pi\)
−0.373316 + 0.927704i \(0.621779\pi\)
\(632\) 7.10193 4.10030i 0.282499 0.163101i
\(633\) 0 0
\(634\) 16.2713 28.1828i 0.646218 1.11928i
\(635\) 0 0
\(636\) 0 0
\(637\) 28.0632 16.2023i 1.11191 0.641959i
\(638\) 1.61899i 0.0640963i
\(639\) 0 0
\(640\) 0 0
\(641\) 10.3175 + 17.8704i 0.407517 + 0.705840i 0.994611 0.103679i \(-0.0330614\pi\)
−0.587094 + 0.809519i \(0.699728\pi\)
\(642\) 0 0
\(643\) −23.5506 13.5970i −0.928746 0.536212i −0.0423312 0.999104i \(-0.513478\pi\)
−0.886415 + 0.462892i \(0.846812\pi\)
\(644\) −2.86530 + 4.96285i −0.112909 + 0.195564i
\(645\) 0 0
\(646\) −10.2051 17.6758i −0.401515 0.695445i
\(647\) 16.7316i 0.657787i 0.944367 + 0.328893i \(0.106676\pi\)
−0.944367 + 0.328893i \(0.893324\pi\)
\(648\) 0 0
\(649\) 1.85428 0.0727869
\(650\) 0 0
\(651\) 0 0
\(652\) −0.517511 0.298785i −0.0202673 0.0117013i
\(653\) −39.6060 22.8666i −1.54990 0.894837i −0.998148 0.0608319i \(-0.980625\pi\)
−0.551756 0.834006i \(-0.686042\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 24.3271 0.949814
\(657\) 0 0
\(658\) 8.13799i 0.317252i
\(659\) −9.30543 16.1175i −0.362488 0.627848i 0.625882 0.779918i \(-0.284739\pi\)
−0.988370 + 0.152070i \(0.951406\pi\)
\(660\) 0 0
\(661\) −8.39799 + 14.5457i −0.326644 + 0.565764i −0.981844 0.189692i \(-0.939251\pi\)
0.655200 + 0.755456i \(0.272584\pi\)
\(662\) 37.7720 + 21.8077i 1.46805 + 0.847579i
\(663\) 0 0
\(664\) −6.17267 10.6914i −0.239546 0.414906i
\(665\) 0 0
\(666\) 0 0
\(667\) 36.7126i 1.42152i
\(668\) −3.03175 + 1.75038i −0.117302 + 0.0677243i
\(669\) 0 0
\(670\) 0 0
\(671\) 0.328584 0.569124i 0.0126848 0.0219708i
\(672\) 0 0
\(673\) 43.2562 24.9740i 1.66740 0.962676i 0.698374 0.715733i \(-0.253907\pi\)
0.969030 0.246944i \(-0.0794262\pi\)
\(674\) 18.4614 0.711108
\(675\) 0 0
\(676\) 0.619973 0.0238451
\(677\) 9.37998 5.41553i 0.360502 0.208136i −0.308799 0.951127i \(-0.599927\pi\)
0.669301 + 0.742991i \(0.266594\pi\)
\(678\) 0 0
\(679\) 6.02125 10.4291i 0.231074 0.400232i
\(680\) 0 0
\(681\) 0 0
\(682\) −0.880965 + 0.508625i −0.0337339 + 0.0194763i
\(683\) 0.429870i 0.0164485i −0.999966 0.00822426i \(-0.997382\pi\)
0.999966 0.00822426i \(-0.00261789\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 2.69001 + 4.65924i 0.102705 + 0.177891i
\(687\) 0 0
\(688\) −33.8791 19.5601i −1.29163 0.745721i
\(689\) 23.2116 40.2037i 0.884293 1.53164i
\(690\) 0 0
\(691\) −17.3518 30.0542i −0.660093 1.14331i −0.980591 0.196065i \(-0.937184\pi\)
0.320498 0.947249i \(-0.396150\pi\)
\(692\) 1.32151i 0.0502364i
\(693\) 0 0
\(694\) 25.1889 0.956157
\(695\) 0 0
\(696\) 0 0
\(697\) 15.9297 + 9.19701i 0.603380 + 0.348362i
\(698\) −23.4820 13.5573i −0.888807 0.513153i
\(699\) 0 0
\(700\) 0 0
\(701\) −1.84808 −0.0698010 −0.0349005 0.999391i \(-0.511111\pi\)
−0.0349005 + 0.999391i \(0.511111\pi\)
\(702\) 0 0
\(703\) 9.66962i 0.364696i
\(704\) −0.937884 1.62446i −0.0353478 0.0612242i
\(705\) 0 0
\(706\) 23.3649 40.4692i 0.879351 1.52308i
\(707\) −12.8751 7.43344i −0.484218 0.279563i
\(708\) 0 0
\(709\) −3.15338 5.46181i −0.118428 0.205123i 0.800717 0.599043i \(-0.204452\pi\)
−0.919145 + 0.393920i \(0.871119\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 19.3465i 0.725040i
\(713\) −19.9770 + 11.5337i −0.748145 + 0.431942i
\(714\) 0 0
\(715\) 0 0
\(716\) −0.917446 + 1.58906i −0.0342866 + 0.0593861i
\(717\) 0 0
\(718\) −14.6130 + 8.43682i −0.545352 + 0.314859i
\(719\) 18.0129 0.671770 0.335885 0.941903i \(-0.390965\pi\)
0.335885 + 0.941903i \(0.390965\pi\)
\(720\) 0 0
\(721\) −16.2627 −0.605655
\(722\) −1.20389 + 0.695067i −0.0448042 + 0.0258677i
\(723\) 0 0
\(724\) −0.668765 + 1.15833i −0.0248544 + 0.0430491i
\(725\) 0 0
\(726\) 0 0
\(727\) −22.7612 + 13.1412i −0.844165 + 0.487379i −0.858678 0.512516i \(-0.828714\pi\)
0.0145126 + 0.999895i \(0.495380\pi\)
\(728\) 42.5002i 1.57516i
\(729\) 0 0
\(730\) 0 0
\(731\) −14.7896 25.6164i −0.547014 0.947456i
\(732\) 0 0
\(733\) −41.2777 23.8317i −1.52462 0.880243i −0.999574 0.0291714i \(-0.990713\pi\)
−0.525050 0.851071i \(-0.675954\pi\)
\(734\) −1.83595 + 3.17997i −0.0677663 + 0.117375i
\(735\) 0 0
\(736\) 4.18167 + 7.24287i 0.154138 + 0.266976i
\(737\) 2.93739i 0.108200i
\(738\) 0 0
\(739\) 10.0273 0.368859 0.184429 0.982846i \(-0.440956\pi\)
0.184429 + 0.982846i \(0.440956\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 56.1376 + 32.4110i 2.06088 + 1.18985i
\(743\) 7.16433 + 4.13633i 0.262834 + 0.151747i 0.625627 0.780123i \(-0.284843\pi\)
−0.362793 + 0.931870i \(0.618177\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 22.1539 0.811111
\(747\) 0 0
\(748\) 0.144665i 0.00528946i
\(749\) 3.14398 + 5.44554i 0.114879 + 0.198976i
\(750\) 0 0
\(751\) 2.89880 5.02087i 0.105779 0.183214i −0.808277 0.588802i \(-0.799600\pi\)
0.914056 + 0.405588i \(0.132933\pi\)
\(752\) −5.33575 3.08060i −0.194575 0.112338i
\(753\) 0 0
\(754\) −12.6855 21.9720i −0.461980 0.800173i
\(755\) 0 0
\(756\) 0 0
\(757\) 25.2804i 0.918830i 0.888222 + 0.459415i \(0.151941\pi\)
−0.888222 + 0.459415i \(0.848059\pi\)
\(758\) −8.00322 + 4.62066i −0.290690 + 0.167830i
\(759\) 0 0
\(760\) 0 0
\(761\) 9.73190 16.8561i 0.352781 0.611035i −0.633954 0.773370i \(-0.718569\pi\)
0.986736 + 0.162335i \(0.0519027\pi\)
\(762\) 0 0
\(763\) −43.1951 + 24.9387i −1.56377 + 0.902843i
\(764\) −0.977278 −0.0353567
\(765\) 0 0
\(766\) −32.6897 −1.18113
\(767\) 25.1653 14.5292i 0.908666 0.524618i
\(768\) 0 0
\(769\) −24.6715 + 42.7324i −0.889678 + 1.54097i −0.0494224 + 0.998778i \(0.515738\pi\)
−0.840256 + 0.542190i \(0.817595\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 1.25233 0.723033i 0.0450723 0.0260225i
\(773\) 20.8502i 0.749930i −0.927039 0.374965i \(-0.877655\pi\)
0.927039 0.374965i \(-0.122345\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) −4.19816 7.27143i −0.150705 0.261029i
\(777\) 0 0
\(778\) 38.3940 + 22.1668i 1.37649 + 0.794717i
\(779\) −11.9869 + 20.7620i −0.429476 + 0.743875i
\(780\) 0 0
\(781\) 1.09077 + 1.88927i 0.0390308 + 0.0676034i
\(782\) 41.7657i 1.49354i
\(783\) 0 0
\(784\) 34.2564 1.22344
\(785\) 0 0
\(786\) 0 0
\(787\) −38.2682 22.0941i −1.36411 0.787571i −0.373945 0.927451i \(-0.621995\pi\)
−0.990169 + 0.139880i \(0.955328\pi\)
\(788\) 1.56889 + 0.905801i 0.0558895 + 0.0322678i
\(789\) 0 0
\(790\) 0 0
\(791\) −5.13799 −0.182686
\(792\) 0 0
\(793\) 10.2985i 0.365709i
\(794\) −21.5326 37.2955i −0.764162 1.32357i
\(795\) 0 0
\(796\) 1.58362 2.74290i 0.0561297 0.0972196i
\(797\) −26.8792 15.5187i −0.952110 0.549701i −0.0583744 0.998295i \(-0.518592\pi\)
−0.893736 + 0.448594i \(0.851925\pi\)
\(798\) 0 0
\(799\) −2.32928 4.03443i −0.0824039 0.142728i
\(800\) 0 0
\(801\) 0 0
\(802\) 35.7031i 1.26072i
\(803\) −0.0909671 + 0.0525199i −0.00321016 + 0.00185339i
\(804\) 0 0
\(805\) 0 0
\(806\) −7.97065 + 13.8056i −0.280754 + 0.486281i
\(807\) 0 0
\(808\) −8.97683 + 5.18278i −0.315804 + 0.182329i
\(809\) 14.6229 0.514114 0.257057 0.966396i \(-0.417247\pi\)
0.257057 + 0.966396i \(0.417247\pi\)
\(810\) 0 0
\(811\) 26.7177 0.938187 0.469093 0.883149i \(-0.344581\pi\)
0.469093 + 0.883149i \(0.344581\pi\)
\(812\) 2.40975 1.39127i 0.0845656 0.0488240i
\(813\) 0 0
\(814\) −0.436293 + 0.755682i −0.0152921 + 0.0264866i
\(815\) 0 0
\(816\) 0 0
\(817\) 33.3871 19.2761i 1.16807 0.674384i
\(818\) 3.44727i 0.120531i
\(819\) 0 0
\(820\) 0 0
\(821\) −9.29903 16.1064i −0.324538 0.562117i 0.656881 0.753995i \(-0.271876\pi\)
−0.981419 + 0.191878i \(0.938542\pi\)
\(822\) 0 0
\(823\) 2.65181 + 1.53102i 0.0924362 + 0.0533680i 0.545506 0.838107i \(-0.316338\pi\)
−0.453069 + 0.891475i \(0.649671\pi\)
\(824\) −5.66938 + 9.81966i −0.197502 + 0.342084i
\(825\) 0 0
\(826\) 20.2875 + 35.1390i 0.705892 + 1.22264i
\(827\) 7.27526i 0.252985i 0.991968 + 0.126493i \(0.0403720\pi\)
−0.991968 + 0.126493i \(0.959628\pi\)
\(828\) 0 0
\(829\) −10.5211 −0.365411 −0.182706 0.983168i \(-0.558486\pi\)
−0.182706 + 0.983168i \(0.558486\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) −25.4569 14.6975i −0.882559 0.509546i
\(833\) 22.4315 + 12.9509i 0.777207 + 0.448721i
\(834\) 0 0
\(835\) 0 0
\(836\) −0.188549 −0.00652109
\(837\) 0 0
\(838\) 33.6528i 1.16252i
\(839\) −7.59033 13.1468i −0.262047 0.453879i 0.704739 0.709467i \(-0.251064\pi\)
−0.966786 + 0.255588i \(0.917731\pi\)
\(840\) 0 0
\(841\) 5.58695 9.67689i 0.192654 0.333686i
\(842\) −15.1521 8.74806i −0.522176 0.301478i
\(843\) 0 0
\(844\) 0.891034 + 1.54332i 0.0306707 + 0.0531232i
\(845\) 0 0
\(846\) 0 0
\(847\) 42.2622i 1.45215i
\(848\) 42.5012 24.5381i 1.45950 0.842641i
\(849\) 0 0
\(850\) 0 0
\(851\) −9.89351 + 17.1361i −0.339145 + 0.587417i
\(852\) 0 0
\(853\) 9.08131 5.24309i 0.310938 0.179520i −0.336408 0.941716i \(-0.609212\pi\)
0.647346 + 0.762196i \(0.275879\pi\)
\(854\) 14.3800 0.492074
\(855\) 0 0
\(856\) 4.38412 0.149846
\(857\) −7.65631 + 4.42038i −0.261535 + 0.150997i −0.625034 0.780597i \(-0.714915\pi\)
0.363500 + 0.931594i \(0.381582\pi\)
\(858\) 0 0
\(859\) −1.03416 + 1.79121i −0.0352849 + 0.0611153i −0.883129 0.469131i \(-0.844567\pi\)
0.847844 + 0.530246i \(0.177901\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) −11.3159 + 6.53326i −0.385423 + 0.222524i
\(863\) 22.4434i 0.763984i 0.924166 + 0.381992i \(0.124762\pi\)
−0.924166 + 0.381992i \(0.875238\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 6.90263 + 11.9557i 0.234561 + 0.406271i
\(867\) 0 0
\(868\) −1.51411 0.874171i −0.0513922 0.0296713i
\(869\) 0.395947 0.685801i 0.0134316 0.0232642i
\(870\) 0 0
\(871\) 23.0159 + 39.8647i 0.779863 + 1.35076i
\(872\) 34.7758i 1.17766i
\(873\) 0 0
\(874\) −54.4353 −1.84130
\(875\) 0 0
\(876\) 0 0
\(877\) 24.1562 + 13.9466i 0.815697 + 0.470943i 0.848930 0.528505i \(-0.177247\pi\)
−0.0332332 + 0.999448i \(0.510580\pi\)
\(878\) 24.7815 + 14.3076i 0.836334 + 0.482857i
\(879\) 0 0
\(880\) 0 0
\(881\) 9.22153 0.310681 0.155341 0.987861i \(-0.450353\pi\)
0.155341 + 0.987861i \(0.450353\pi\)
\(882\) 0 0
\(883\) 49.2436i 1.65718i 0.559858 + 0.828589i \(0.310856\pi\)
−0.559858 + 0.828589i \(0.689144\pi\)
\(884\) 1.13352 + 1.96331i 0.0381243 + 0.0660333i
\(885\) 0 0
\(886\) −8.01396 + 13.8806i −0.269234 + 0.466328i
\(887\) −9.32542 5.38403i −0.313117 0.180778i 0.335203 0.942146i \(-0.391195\pi\)
−0.648320 + 0.761368i \(0.724528\pi\)
\(888\) 0 0
\(889\) −3.19482 5.53360i −0.107151 0.185591i
\(890\) 0 0
\(891\) 0 0
\(892\) 0.670187i 0.0224395i
\(893\) 5.25827 3.03586i 0.175961 0.101591i
\(894\) 0 0
\(895\) 0 0
\(896\) 24.2408 41.9863i 0.809829 1.40266i
\(897\) 0 0
\(898\) 1.70985 0.987183i 0.0570585 0.0329427i
\(899\) 11.2006 0.373561
\(900\) 0 0
\(901\) 37.1071 1.23622
\(902\) 1.87356 1.08170i 0.0623828 0.0360167i
\(903\) 0 0
\(904\) −1.79116 + 3.10239i −0.0595733 + 0.103184i
\(905\) 0 0
\(906\) 0 0
\(907\) 27.6871 15.9852i 0.919336 0.530779i 0.0359130 0.999355i \(-0.488566\pi\)
0.883423 + 0.468576i \(0.155233\pi\)
\(908\) 0.823651i 0.0273338i
\(909\) 0 0
\(910\) 0 0
\(911\) −5.04010 8.72970i −0.166986 0.289228i 0.770373 0.637594i \(-0.220070\pi\)
−0.937359 + 0.348366i \(0.886737\pi\)
\(912\) 0 0
\(913\) −1.03242 0.596067i −0.0341681 0.0197269i
\(914\) −14.8145 + 25.6595i −0.490021 + 0.848741i
\(915\) 0 0
\(916\) 1.60702 + 2.78343i 0.0530973 + 0.0919672i
\(917\) 50.9428i 1.68228i
\(918\) 0 0
\(919\) 29.7976 0.982932 0.491466 0.870897i \(-0.336461\pi\)
0.491466 + 0.870897i \(0.336461\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) −43.0650 24.8636i −1.41827 0.818839i
\(923\) 29.6067 + 17.0934i 0.974516 + 0.562637i
\(924\) 0 0
\(925\) 0 0
\(926\) 7.72776 0.253950
\(927\) 0 0
\(928\) 4.06089i 0.133305i
\(929\) 6.19275 + 10.7262i 0.203178 + 0.351914i 0.949551 0.313614i \(-0.101540\pi\)
−0.746373 + 0.665528i \(0.768206\pi\)
\(930\) 0 0
\(931\) −16.8795 + 29.2362i −0.553204 + 0.958177i
\(932\) 1.75722 + 1.01453i 0.0575597 + 0.0332321i
\(933\) 0 0
\(934\) 10.4689 + 18.1327i 0.342554 + 0.593321i
\(935\) 0 0
\(936\) 0 0
\(937\) 44.4280i 1.45140i 0.688012 + 0.725699i \(0.258484\pi\)
−0.688012 + 0.725699i \(0.741516\pi\)
\(938\) −55.6641 + 32.1377i −1.81750 + 1.04933i
\(939\) 0 0
\(940\) 0 0
\(941\) 7.66617 13.2782i 0.249910 0.432857i −0.713591 0.700563i \(-0.752932\pi\)
0.963501 + 0.267706i \(0.0862656\pi\)
\(942\) 0 0
\(943\) 42.4854 24.5290i 1.38352 0.798773i
\(944\) 30.7189 0.999816
\(945\) 0 0
\(946\) −3.47894 −0.113110
\(947\) −18.7925 + 10.8498i −0.610673 + 0.352572i −0.773229 0.634127i \(-0.781360\pi\)
0.162556 + 0.986699i \(0.448026\pi\)
\(948\) 0 0
\(949\) −0.823037 + 1.42554i −0.0267169 + 0.0462751i
\(950\) 0 0
\(951\) 0 0
\(952\) 29.4200 16.9857i 0.953509 0.550508i
\(953\) 36.9099i 1.19563i 0.801634 + 0.597815i \(0.203964\pi\)
−0.801634 + 0.597815i \(0.796036\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) −1.84368 3.19336i −0.0596290 0.103281i
\(957\) 0 0
\(958\) −26.1342 15.0886i −0.844357 0.487490i
\(959\) −39.2243 + 67.9385i −1.26662 + 2.19385i
\(960\) 0 0
\(961\) 11.9812 + 20.7520i 0.386490 + 0.669420i
\(962\) 13.6743i 0.440876i
\(963\) 0 0
\(964\) −0.664581 −0.0214047
\(965\) 0 0
\(966\) 0 0
\(967\) 18.4794 + 10.6691i 0.594258 + 0.343095i 0.766779 0.641911i \(-0.221858\pi\)
−0.172521 + 0.985006i \(0.555191\pi\)
\(968\) 25.5185 + 14.7331i 0.820197 + 0.473541i
\(969\) 0 0
\(970\) 0 0
\(971\) 42.5851 1.36662 0.683311 0.730128i \(-0.260540\pi\)
0.683311 + 0.730128i \(0.260540\pi\)
\(972\) 0 0
\(973\) 11.8635i 0.380325i
\(974\) −23.0973 40.0057i −0.740085 1.28186i
\(975\) 0 0
\(976\) 5.44349 9.42840i 0.174242 0.301796i
\(977\) 42.3826 + 24.4696i 1.35594 + 0.782852i 0.989074 0.147423i \(-0.0470977\pi\)
0.366865 + 0.930274i \(0.380431\pi\)
\(978\) 0 0
\(979\) 0.934101 + 1.61791i 0.0298540 + 0.0517087i
\(980\) 0 0
\(981\) 0 0
\(982\) 15.3102i 0.488567i
\(983\) −31.2712 + 18.0545i −0.997398 + 0.575848i −0.907477 0.420101i \(-0.861995\pi\)
−0.0899205 + 0.995949i \(0.528661\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 10.1398 17.5627i 0.322918 0.559310i
\(987\) 0 0
\(988\) −2.55888 + 1.47737i −0.0814088 + 0.0470014i
\(989\) −78.8896 −2.50854
\(990\) 0 0
\(991\) 32.0054 1.01669 0.508343 0.861155i \(-0.330258\pi\)
0.508343 + 0.861155i \(0.330258\pi\)
\(992\) −2.20972 + 1.27578i −0.0701586 + 0.0405061i
\(993\) 0 0
\(994\) −23.8680 + 41.3406i −0.757048 + 1.31125i
\(995\) 0 0
\(996\) 0 0
\(997\) −44.8324 + 25.8840i −1.41986 + 0.819754i −0.996286 0.0861095i \(-0.972557\pi\)
−0.423570 + 0.905863i \(0.639223\pi\)
\(998\) 5.63624i 0.178412i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 675.2.k.c.199.6 16
3.2 odd 2 225.2.k.c.49.3 16
5.2 odd 4 675.2.e.e.226.3 8
5.3 odd 4 675.2.e.c.226.2 8
5.4 even 2 inner 675.2.k.c.199.3 16
9.2 odd 6 225.2.k.c.124.6 16
9.4 even 3 2025.2.b.o.649.6 8
9.5 odd 6 2025.2.b.n.649.3 8
9.7 even 3 inner 675.2.k.c.424.3 16
15.2 even 4 225.2.e.c.76.2 8
15.8 even 4 225.2.e.e.76.3 yes 8
15.14 odd 2 225.2.k.c.49.6 16
45.2 even 12 225.2.e.c.151.2 yes 8
45.4 even 6 2025.2.b.o.649.3 8
45.7 odd 12 675.2.e.e.451.3 8
45.13 odd 12 2025.2.a.z.1.3 4
45.14 odd 6 2025.2.b.n.649.6 8
45.22 odd 12 2025.2.a.p.1.2 4
45.23 even 12 2025.2.a.q.1.2 4
45.29 odd 6 225.2.k.c.124.3 16
45.32 even 12 2025.2.a.y.1.3 4
45.34 even 6 inner 675.2.k.c.424.6 16
45.38 even 12 225.2.e.e.151.3 yes 8
45.43 odd 12 675.2.e.c.451.2 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
225.2.e.c.76.2 8 15.2 even 4
225.2.e.c.151.2 yes 8 45.2 even 12
225.2.e.e.76.3 yes 8 15.8 even 4
225.2.e.e.151.3 yes 8 45.38 even 12
225.2.k.c.49.3 16 3.2 odd 2
225.2.k.c.49.6 16 15.14 odd 2
225.2.k.c.124.3 16 45.29 odd 6
225.2.k.c.124.6 16 9.2 odd 6
675.2.e.c.226.2 8 5.3 odd 4
675.2.e.c.451.2 8 45.43 odd 12
675.2.e.e.226.3 8 5.2 odd 4
675.2.e.e.451.3 8 45.7 odd 12
675.2.k.c.199.3 16 5.4 even 2 inner
675.2.k.c.199.6 16 1.1 even 1 trivial
675.2.k.c.424.3 16 9.7 even 3 inner
675.2.k.c.424.6 16 45.34 even 6 inner
2025.2.a.p.1.2 4 45.22 odd 12
2025.2.a.q.1.2 4 45.23 even 12
2025.2.a.y.1.3 4 45.32 even 12
2025.2.a.z.1.3 4 45.13 odd 12
2025.2.b.n.649.3 8 9.5 odd 6
2025.2.b.n.649.6 8 45.14 odd 6
2025.2.b.o.649.3 8 45.4 even 6
2025.2.b.o.649.6 8 9.4 even 3