Properties

Label 675.2.f.g.107.2
Level $675$
Weight $2$
Character 675.107
Analytic conductor $5.390$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [675,2,Mod(107,675)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("675.107"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(675, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([2, 1])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 675 = 3^{3} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 675.f (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,0,0,0,0,-8,0,0,0,0,0,16,0,0,-16,0,0,0,0,0,8,0,0,0,0,0,-40, 0,0,16] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(31)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.38990213644\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(i)\)
Coefficient field: 8.0.33973862400.8
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 44x^{4} + 100 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 135)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 107.2
Root \(-0.880486 + 0.880486i\) of defining polynomial
Character \(\chi\) \(=\) 675.107
Dual form 675.2.f.g.593.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.880486 + 0.880486i) q^{2} +0.449490i q^{4} +(0.224745 + 0.224745i) q^{7} +(-2.15674 - 2.15674i) q^{8} -3.91771i q^{11} +(3.22474 - 3.22474i) q^{13} -0.395769 q^{14} +2.89898 q^{16} +(3.91771 - 3.91771i) q^{17} +3.00000i q^{19} +(3.44949 + 3.44949i) q^{22} +(0.880486 + 0.880486i) q^{23} +5.67868i q^{26} +(-0.101021 + 0.101021i) q^{28} -7.43966 q^{29} +9.34847 q^{31} +(1.76097 - 1.76097i) q^{32} +6.89898i q^{34} +(-1.67423 - 1.67423i) q^{37} +(-2.64146 - 2.64146i) q^{38} +1.36520i q^{41} +(1.44949 - 1.44949i) q^{43} +1.76097 q^{44} -1.55051 q^{46} +(-3.52194 + 3.52194i) q^{47} -6.89898i q^{49} +(1.44949 + 1.44949i) q^{52} +(5.19397 + 5.19397i) q^{53} -0.969433i q^{56} +(6.55051 - 6.55051i) q^{58} +13.9099 q^{59} -1.00000 q^{61} +(-8.23119 + 8.23119i) q^{62} +8.89898i q^{64} +(3.77526 + 3.77526i) q^{67} +(1.76097 + 1.76097i) q^{68} -9.20063i q^{71} +(-4.67423 + 4.67423i) q^{73} +2.94828 q^{74} -1.34847 q^{76} +(0.880486 - 0.880486i) q^{77} -5.44949i q^{79} +(-1.20204 - 1.20204i) q^{82} +(3.03723 + 3.03723i) q^{83} +2.55251i q^{86} +(-8.44949 + 8.44949i) q^{88} +5.28291 q^{89} +1.44949 q^{91} +(-0.395769 + 0.395769i) q^{92} -6.20204i q^{94} +(-10.1237 - 10.1237i) q^{97} +(6.07445 + 6.07445i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 8 q^{7} + 16 q^{13} - 16 q^{16} + 8 q^{22} - 40 q^{28} + 16 q^{31} + 16 q^{37} - 8 q^{43} - 32 q^{46} - 8 q^{52} + 72 q^{58} - 8 q^{61} + 40 q^{67} - 8 q^{73} + 48 q^{76} - 88 q^{82} - 48 q^{88} - 8 q^{91}+ \cdots - 32 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/675\mathbb{Z}\right)^\times\).

\(n\) \(326\) \(352\)
\(\chi(n)\) \(-1\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.880486 + 0.880486i −0.622597 + 0.622597i −0.946195 0.323597i \(-0.895108\pi\)
0.323597 + 0.946195i \(0.395108\pi\)
\(3\) 0 0
\(4\) 0.449490i 0.224745i
\(5\) 0 0
\(6\) 0 0
\(7\) 0.224745 + 0.224745i 0.0849456 + 0.0849456i 0.748303 0.663357i \(-0.230869\pi\)
−0.663357 + 0.748303i \(0.730869\pi\)
\(8\) −2.15674 2.15674i −0.762523 0.762523i
\(9\) 0 0
\(10\) 0 0
\(11\) 3.91771i 1.18123i −0.806952 0.590617i \(-0.798884\pi\)
0.806952 0.590617i \(-0.201116\pi\)
\(12\) 0 0
\(13\) 3.22474 3.22474i 0.894383 0.894383i −0.100549 0.994932i \(-0.532060\pi\)
0.994932 + 0.100549i \(0.0320599\pi\)
\(14\) −0.395769 −0.105774
\(15\) 0 0
\(16\) 2.89898 0.724745
\(17\) 3.91771 3.91771i 0.950185 0.950185i −0.0486320 0.998817i \(-0.515486\pi\)
0.998817 + 0.0486320i \(0.0154861\pi\)
\(18\) 0 0
\(19\) 3.00000i 0.688247i 0.938924 + 0.344124i \(0.111824\pi\)
−0.938924 + 0.344124i \(0.888176\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 3.44949 + 3.44949i 0.735434 + 0.735434i
\(23\) 0.880486 + 0.880486i 0.183594 + 0.183594i 0.792920 0.609326i \(-0.208560\pi\)
−0.609326 + 0.792920i \(0.708560\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 5.67868i 1.11368i
\(27\) 0 0
\(28\) −0.101021 + 0.101021i −0.0190911 + 0.0190911i
\(29\) −7.43966 −1.38151 −0.690755 0.723089i \(-0.742722\pi\)
−0.690755 + 0.723089i \(0.742722\pi\)
\(30\) 0 0
\(31\) 9.34847 1.67903 0.839517 0.543333i \(-0.182838\pi\)
0.839517 + 0.543333i \(0.182838\pi\)
\(32\) 1.76097 1.76097i 0.311299 0.311299i
\(33\) 0 0
\(34\) 6.89898i 1.18317i
\(35\) 0 0
\(36\) 0 0
\(37\) −1.67423 1.67423i −0.275242 0.275242i 0.555964 0.831206i \(-0.312349\pi\)
−0.831206 + 0.555964i \(0.812349\pi\)
\(38\) −2.64146 2.64146i −0.428501 0.428501i
\(39\) 0 0
\(40\) 0 0
\(41\) 1.36520i 0.213209i 0.994302 + 0.106604i \(0.0339978\pi\)
−0.994302 + 0.106604i \(0.966002\pi\)
\(42\) 0 0
\(43\) 1.44949 1.44949i 0.221045 0.221045i −0.587893 0.808938i \(-0.700043\pi\)
0.808938 + 0.587893i \(0.200043\pi\)
\(44\) 1.76097 0.265476
\(45\) 0 0
\(46\) −1.55051 −0.228610
\(47\) −3.52194 + 3.52194i −0.513728 + 0.513728i −0.915667 0.401938i \(-0.868337\pi\)
0.401938 + 0.915667i \(0.368337\pi\)
\(48\) 0 0
\(49\) 6.89898i 0.985568i
\(50\) 0 0
\(51\) 0 0
\(52\) 1.44949 + 1.44949i 0.201008 + 0.201008i
\(53\) 5.19397 + 5.19397i 0.713446 + 0.713446i 0.967255 0.253808i \(-0.0816832\pi\)
−0.253808 + 0.967255i \(0.581683\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0.969433i 0.129546i
\(57\) 0 0
\(58\) 6.55051 6.55051i 0.860124 0.860124i
\(59\) 13.9099 1.81091 0.905456 0.424440i \(-0.139529\pi\)
0.905456 + 0.424440i \(0.139529\pi\)
\(60\) 0 0
\(61\) −1.00000 −0.128037 −0.0640184 0.997949i \(-0.520392\pi\)
−0.0640184 + 0.997949i \(0.520392\pi\)
\(62\) −8.23119 + 8.23119i −1.04536 + 1.04536i
\(63\) 0 0
\(64\) 8.89898i 1.11237i
\(65\) 0 0
\(66\) 0 0
\(67\) 3.77526 + 3.77526i 0.461221 + 0.461221i 0.899056 0.437835i \(-0.144254\pi\)
−0.437835 + 0.899056i \(0.644254\pi\)
\(68\) 1.76097 + 1.76097i 0.213549 + 0.213549i
\(69\) 0 0
\(70\) 0 0
\(71\) 9.20063i 1.09191i −0.837813 0.545957i \(-0.816166\pi\)
0.837813 0.545957i \(-0.183834\pi\)
\(72\) 0 0
\(73\) −4.67423 + 4.67423i −0.547078 + 0.547078i −0.925594 0.378517i \(-0.876434\pi\)
0.378517 + 0.925594i \(0.376434\pi\)
\(74\) 2.94828 0.342731
\(75\) 0 0
\(76\) −1.34847 −0.154680
\(77\) 0.880486 0.880486i 0.100341 0.100341i
\(78\) 0 0
\(79\) 5.44949i 0.613115i −0.951852 0.306558i \(-0.900823\pi\)
0.951852 0.306558i \(-0.0991773\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) −1.20204 1.20204i −0.132743 0.132743i
\(83\) 3.03723 + 3.03723i 0.333379 + 0.333379i 0.853868 0.520489i \(-0.174250\pi\)
−0.520489 + 0.853868i \(0.674250\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 2.55251i 0.275244i
\(87\) 0 0
\(88\) −8.44949 + 8.44949i −0.900719 + 0.900719i
\(89\) 5.28291 0.559988 0.279994 0.960002i \(-0.409668\pi\)
0.279994 + 0.960002i \(0.409668\pi\)
\(90\) 0 0
\(91\) 1.44949 0.151948
\(92\) −0.395769 + 0.395769i −0.0412618 + 0.0412618i
\(93\) 0 0
\(94\) 6.20204i 0.639692i
\(95\) 0 0
\(96\) 0 0
\(97\) −10.1237 10.1237i −1.02791 1.02791i −0.999599 0.0283093i \(-0.990988\pi\)
−0.0283093 0.999599i \(-0.509012\pi\)
\(98\) 6.07445 + 6.07445i 0.613612 + 0.613612i
\(99\) 0 0
\(100\) 0 0
\(101\) 13.1183i 1.30532i 0.757649 + 0.652662i \(0.226348\pi\)
−0.757649 + 0.652662i \(0.773652\pi\)
\(102\) 0 0
\(103\) 7.57321 7.57321i 0.746211 0.746211i −0.227554 0.973765i \(-0.573073\pi\)
0.973765 + 0.227554i \(0.0730730\pi\)
\(104\) −13.9099 −1.36398
\(105\) 0 0
\(106\) −9.14643 −0.888380
\(107\) 1.27626 1.27626i 0.123380 0.123380i −0.642721 0.766101i \(-0.722194\pi\)
0.766101 + 0.642721i \(0.222194\pi\)
\(108\) 0 0
\(109\) 7.34847i 0.703856i −0.936027 0.351928i \(-0.885526\pi\)
0.936027 0.351928i \(-0.114474\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0.651531 + 0.651531i 0.0615639 + 0.0615639i
\(113\) −4.40243 4.40243i −0.414146 0.414146i 0.469034 0.883180i \(-0.344602\pi\)
−0.883180 + 0.469034i \(0.844602\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 3.34405i 0.310487i
\(117\) 0 0
\(118\) −12.2474 + 12.2474i −1.12747 + 1.12747i
\(119\) 1.76097 0.161428
\(120\) 0 0
\(121\) −4.34847 −0.395315
\(122\) 0.880486 0.880486i 0.0797154 0.0797154i
\(123\) 0 0
\(124\) 4.20204i 0.377354i
\(125\) 0 0
\(126\) 0 0
\(127\) −7.00000 7.00000i −0.621150 0.621150i 0.324676 0.945825i \(-0.394745\pi\)
−0.945825 + 0.324676i \(0.894745\pi\)
\(128\) −4.31348 4.31348i −0.381262 0.381262i
\(129\) 0 0
\(130\) 0 0
\(131\) 7.83542i 0.684584i 0.939594 + 0.342292i \(0.111203\pi\)
−0.939594 + 0.342292i \(0.888797\pi\)
\(132\) 0 0
\(133\) −0.674235 + 0.674235i −0.0584636 + 0.0584636i
\(134\) −6.64812 −0.574310
\(135\) 0 0
\(136\) −16.8990 −1.44908
\(137\) 10.8727 10.8727i 0.928913 0.928913i −0.0687225 0.997636i \(-0.521892\pi\)
0.997636 + 0.0687225i \(0.0218923\pi\)
\(138\) 0 0
\(139\) 9.24745i 0.784358i −0.919889 0.392179i \(-0.871721\pi\)
0.919889 0.392179i \(-0.128279\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 8.10102 + 8.10102i 0.679823 + 0.679823i
\(143\) −12.6336 12.6336i −1.05648 1.05648i
\(144\) 0 0
\(145\) 0 0
\(146\) 8.23119i 0.681218i
\(147\) 0 0
\(148\) 0.752551 0.752551i 0.0618593 0.0618593i
\(149\) −9.59640 −0.786167 −0.393084 0.919503i \(-0.628592\pi\)
−0.393084 + 0.919503i \(0.628592\pi\)
\(150\) 0 0
\(151\) −5.65153 −0.459915 −0.229958 0.973201i \(-0.573859\pi\)
−0.229958 + 0.973201i \(0.573859\pi\)
\(152\) 6.47022 6.47022i 0.524804 0.524804i
\(153\) 0 0
\(154\) 1.55051i 0.124944i
\(155\) 0 0
\(156\) 0 0
\(157\) 4.44949 + 4.44949i 0.355108 + 0.355108i 0.862006 0.506898i \(-0.169208\pi\)
−0.506898 + 0.862006i \(0.669208\pi\)
\(158\) 4.79820 + 4.79820i 0.381724 + 0.381724i
\(159\) 0 0
\(160\) 0 0
\(161\) 0.395769i 0.0311910i
\(162\) 0 0
\(163\) −3.32577 + 3.32577i −0.260494 + 0.260494i −0.825255 0.564761i \(-0.808968\pi\)
0.564761 + 0.825255i \(0.308968\pi\)
\(164\) −0.613644 −0.0479176
\(165\) 0 0
\(166\) −5.34847 −0.415122
\(167\) −5.67868 + 5.67868i −0.439430 + 0.439430i −0.891820 0.452390i \(-0.850571\pi\)
0.452390 + 0.891820i \(0.350571\pi\)
\(168\) 0 0
\(169\) 7.79796i 0.599843i
\(170\) 0 0
\(171\) 0 0
\(172\) 0.651531 + 0.651531i 0.0496788 + 0.0496788i
\(173\) −0.791539 0.791539i −0.0601796 0.0601796i 0.676376 0.736556i \(-0.263549\pi\)
−0.736556 + 0.676376i \(0.763549\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 11.3574i 0.856094i
\(177\) 0 0
\(178\) −4.65153 + 4.65153i −0.348647 + 0.348647i
\(179\) −6.47022 −0.483607 −0.241804 0.970325i \(-0.577739\pi\)
−0.241804 + 0.970325i \(0.577739\pi\)
\(180\) 0 0
\(181\) −8.34847 −0.620537 −0.310268 0.950649i \(-0.600419\pi\)
−0.310268 + 0.950649i \(0.600419\pi\)
\(182\) −1.27626 + 1.27626i −0.0946023 + 0.0946023i
\(183\) 0 0
\(184\) 3.79796i 0.279989i
\(185\) 0 0
\(186\) 0 0
\(187\) −15.3485 15.3485i −1.12239 1.12239i
\(188\) −1.58308 1.58308i −0.115458 0.115458i
\(189\) 0 0
\(190\) 0 0
\(191\) 10.3879i 0.751645i −0.926692 0.375822i \(-0.877360\pi\)
0.926692 0.375822i \(-0.122640\pi\)
\(192\) 0 0
\(193\) −13.1237 + 13.1237i −0.944666 + 0.944666i −0.998547 0.0538810i \(-0.982841\pi\)
0.0538810 + 0.998547i \(0.482841\pi\)
\(194\) 17.8276 1.27995
\(195\) 0 0
\(196\) 3.10102 0.221501
\(197\) −2.55251 + 2.55251i −0.181859 + 0.181859i −0.792165 0.610307i \(-0.791046\pi\)
0.610307 + 0.792165i \(0.291046\pi\)
\(198\) 0 0
\(199\) 4.34847i 0.308255i 0.988051 + 0.154127i \(0.0492566\pi\)
−0.988051 + 0.154127i \(0.950743\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) −11.5505 11.5505i −0.812691 0.812691i
\(203\) −1.67202 1.67202i −0.117353 0.117353i
\(204\) 0 0
\(205\) 0 0
\(206\) 13.3362i 0.929178i
\(207\) 0 0
\(208\) 9.34847 9.34847i 0.648200 0.648200i
\(209\) 11.7531 0.812981
\(210\) 0 0
\(211\) 12.3485 0.850104 0.425052 0.905169i \(-0.360256\pi\)
0.425052 + 0.905169i \(0.360256\pi\)
\(212\) −2.33464 + 2.33464i −0.160343 + 0.160343i
\(213\) 0 0
\(214\) 2.24745i 0.153632i
\(215\) 0 0
\(216\) 0 0
\(217\) 2.10102 + 2.10102i 0.142627 + 0.142627i
\(218\) 6.47022 + 6.47022i 0.438219 + 0.438219i
\(219\) 0 0
\(220\) 0 0
\(221\) 25.2672i 1.69966i
\(222\) 0 0
\(223\) 6.10102 6.10102i 0.408555 0.408555i −0.472680 0.881234i \(-0.656713\pi\)
0.881234 + 0.472680i \(0.156713\pi\)
\(224\) 0.791539 0.0528869
\(225\) 0 0
\(226\) 7.75255 0.515692
\(227\) −7.35071 + 7.35071i −0.487884 + 0.487884i −0.907638 0.419754i \(-0.862116\pi\)
0.419754 + 0.907638i \(0.362116\pi\)
\(228\) 0 0
\(229\) 3.55051i 0.234624i −0.993095 0.117312i \(-0.962572\pi\)
0.993095 0.117312i \(-0.0374278\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 16.0454 + 16.0454i 1.05343 + 1.05343i
\(233\) −9.20063 9.20063i −0.602753 0.602753i 0.338289 0.941042i \(-0.390152\pi\)
−0.941042 + 0.338289i \(0.890152\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 6.25235i 0.406993i
\(237\) 0 0
\(238\) −1.55051 + 1.55051i −0.100505 + 0.100505i
\(239\) −26.6324 −1.72271 −0.861355 0.508004i \(-0.830384\pi\)
−0.861355 + 0.508004i \(0.830384\pi\)
\(240\) 0 0
\(241\) −13.0000 −0.837404 −0.418702 0.908124i \(-0.637515\pi\)
−0.418702 + 0.908124i \(0.637515\pi\)
\(242\) 3.82877 3.82877i 0.246122 0.246122i
\(243\) 0 0
\(244\) 0.449490i 0.0287756i
\(245\) 0 0
\(246\) 0 0
\(247\) 9.67423 + 9.67423i 0.615557 + 0.615557i
\(248\) −20.1622 20.1622i −1.28030 1.28030i
\(249\) 0 0
\(250\) 0 0
\(251\) 9.02273i 0.569510i 0.958600 + 0.284755i \(0.0919122\pi\)
−0.958600 + 0.284755i \(0.908088\pi\)
\(252\) 0 0
\(253\) 3.44949 3.44949i 0.216868 0.216868i
\(254\) 12.3268 0.773452
\(255\) 0 0
\(256\) −10.2020 −0.637628
\(257\) −5.67868 + 5.67868i −0.354227 + 0.354227i −0.861679 0.507453i \(-0.830587\pi\)
0.507453 + 0.861679i \(0.330587\pi\)
\(258\) 0 0
\(259\) 0.752551i 0.0467613i
\(260\) 0 0
\(261\) 0 0
\(262\) −6.89898 6.89898i −0.426220 0.426220i
\(263\) 17.4318 + 17.4318i 1.07489 + 1.07489i 0.996959 + 0.0779335i \(0.0248322\pi\)
0.0779335 + 0.996959i \(0.475168\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 1.18731i 0.0727985i
\(267\) 0 0
\(268\) −1.69694 + 1.69694i −0.103657 + 0.103657i
\(269\) −5.28291 −0.322105 −0.161052 0.986946i \(-0.551489\pi\)
−0.161052 + 0.986946i \(0.551489\pi\)
\(270\) 0 0
\(271\) 19.6969 1.19650 0.598252 0.801308i \(-0.295862\pi\)
0.598252 + 0.801308i \(0.295862\pi\)
\(272\) 11.3574 11.3574i 0.688642 0.688642i
\(273\) 0 0
\(274\) 19.1464i 1.15668i
\(275\) 0 0
\(276\) 0 0
\(277\) −2.10102 2.10102i −0.126238 0.126238i 0.641165 0.767403i \(-0.278451\pi\)
−0.767403 + 0.641165i \(0.778451\pi\)
\(278\) 8.14225 + 8.14225i 0.488340 + 0.488340i
\(279\) 0 0
\(280\) 0 0
\(281\) 26.0588i 1.55454i 0.629169 + 0.777268i \(0.283395\pi\)
−0.629169 + 0.777268i \(0.716605\pi\)
\(282\) 0 0
\(283\) 9.89898 9.89898i 0.588433 0.588433i −0.348774 0.937207i \(-0.613402\pi\)
0.937207 + 0.348774i \(0.113402\pi\)
\(284\) 4.13559 0.245402
\(285\) 0 0
\(286\) 22.2474 1.31552
\(287\) −0.306822 + 0.306822i −0.0181111 + 0.0181111i
\(288\) 0 0
\(289\) 13.6969i 0.805702i
\(290\) 0 0
\(291\) 0 0
\(292\) −2.10102 2.10102i −0.122953 0.122953i
\(293\) 17.9165 + 17.9165i 1.04670 + 1.04670i 0.998855 + 0.0478403i \(0.0152338\pi\)
0.0478403 + 0.998855i \(0.484766\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 7.22178i 0.419757i
\(297\) 0 0
\(298\) 8.44949 8.44949i 0.489466 0.489466i
\(299\) 5.67868 0.328407
\(300\) 0 0
\(301\) 0.651531 0.0375536
\(302\) 4.97609 4.97609i 0.286342 0.286342i
\(303\) 0 0
\(304\) 8.69694i 0.498804i
\(305\) 0 0
\(306\) 0 0
\(307\) 21.3485 + 21.3485i 1.21842 + 1.21842i 0.968185 + 0.250237i \(0.0805085\pi\)
0.250237 + 0.968185i \(0.419492\pi\)
\(308\) 0.395769 + 0.395769i 0.0225510 + 0.0225510i
\(309\) 0 0
\(310\) 0 0
\(311\) 26.0588i 1.47766i 0.673893 + 0.738829i \(0.264621\pi\)
−0.673893 + 0.738829i \(0.735379\pi\)
\(312\) 0 0
\(313\) 5.12372 5.12372i 0.289610 0.289610i −0.547316 0.836926i \(-0.684350\pi\)
0.836926 + 0.547316i \(0.184350\pi\)
\(314\) −7.83542 −0.442179
\(315\) 0 0
\(316\) 2.44949 0.137795
\(317\) −4.70925 + 4.70925i −0.264498 + 0.264498i −0.826878 0.562381i \(-0.809886\pi\)
0.562381 + 0.826878i \(0.309886\pi\)
\(318\) 0 0
\(319\) 29.1464i 1.63189i
\(320\) 0 0
\(321\) 0 0
\(322\) −0.348469 0.348469i −0.0194194 0.0194194i
\(323\) 11.7531 + 11.7531i 0.653962 + 0.653962i
\(324\) 0 0
\(325\) 0 0
\(326\) 5.85658i 0.324366i
\(327\) 0 0
\(328\) 2.94439 2.94439i 0.162577 0.162577i
\(329\) −1.58308 −0.0872779
\(330\) 0 0
\(331\) 24.3485 1.33831 0.669156 0.743122i \(-0.266656\pi\)
0.669156 + 0.743122i \(0.266656\pi\)
\(332\) −1.36520 + 1.36520i −0.0749252 + 0.0749252i
\(333\) 0 0
\(334\) 10.0000i 0.547176i
\(335\) 0 0
\(336\) 0 0
\(337\) −16.9217 16.9217i −0.921783 0.921783i 0.0753726 0.997155i \(-0.475985\pi\)
−0.997155 + 0.0753726i \(0.975985\pi\)
\(338\) 6.86599 + 6.86599i 0.373461 + 0.373461i
\(339\) 0 0
\(340\) 0 0
\(341\) 36.6246i 1.98333i
\(342\) 0 0
\(343\) 3.12372 3.12372i 0.168665 0.168665i
\(344\) −6.25235 −0.337104
\(345\) 0 0
\(346\) 1.39388 0.0749353
\(347\) 8.71591 8.71591i 0.467895 0.467895i −0.433337 0.901232i \(-0.642664\pi\)
0.901232 + 0.433337i \(0.142664\pi\)
\(348\) 0 0
\(349\) 0.797959i 0.0427138i −0.999772 0.0213569i \(-0.993201\pi\)
0.999772 0.0213569i \(-0.00679862\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) −6.89898 6.89898i −0.367717 0.367717i
\(353\) −17.8276 17.8276i −0.948867 0.948867i 0.0498880 0.998755i \(-0.484114\pi\)
−0.998755 + 0.0498880i \(0.984114\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 2.37462i 0.125854i
\(357\) 0 0
\(358\) 5.69694 5.69694i 0.301093 0.301093i
\(359\) 29.9765 1.58210 0.791049 0.611752i \(-0.209535\pi\)
0.791049 + 0.611752i \(0.209535\pi\)
\(360\) 0 0
\(361\) 10.0000 0.526316
\(362\) 7.35071 7.35071i 0.386345 0.386345i
\(363\) 0 0
\(364\) 0.651531i 0.0341495i
\(365\) 0 0
\(366\) 0 0
\(367\) 17.9217 + 17.9217i 0.935504 + 0.935504i 0.998043 0.0625383i \(-0.0199196\pi\)
−0.0625383 + 0.998043i \(0.519920\pi\)
\(368\) 2.55251 + 2.55251i 0.133059 + 0.133059i
\(369\) 0 0
\(370\) 0 0
\(371\) 2.33464i 0.121208i
\(372\) 0 0
\(373\) −23.4722 + 23.4722i −1.21534 + 1.21534i −0.246100 + 0.969245i \(0.579149\pi\)
−0.969245 + 0.246100i \(0.920851\pi\)
\(374\) 27.0282 1.39760
\(375\) 0 0
\(376\) 15.1918 0.783459
\(377\) −23.9910 + 23.9910i −1.23560 + 1.23560i
\(378\) 0 0
\(379\) 29.6969i 1.52543i 0.646735 + 0.762715i \(0.276134\pi\)
−0.646735 + 0.762715i \(0.723866\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 9.14643 + 9.14643i 0.467972 + 0.467972i
\(383\) −1.76097 1.76097i −0.0899814 0.0899814i 0.660683 0.750665i \(-0.270267\pi\)
−0.750665 + 0.660683i \(0.770267\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 23.1105i 1.17629i
\(387\) 0 0
\(388\) 4.55051 4.55051i 0.231017 0.231017i
\(389\) −6.25235 −0.317007 −0.158503 0.987358i \(-0.550667\pi\)
−0.158503 + 0.987358i \(0.550667\pi\)
\(390\) 0 0
\(391\) 6.89898 0.348896
\(392\) −14.8793 + 14.8793i −0.751519 + 0.751519i
\(393\) 0 0
\(394\) 4.49490i 0.226450i
\(395\) 0 0
\(396\) 0 0
\(397\) 6.34847 + 6.34847i 0.318621 + 0.318621i 0.848237 0.529617i \(-0.177664\pi\)
−0.529617 + 0.848237i \(0.677664\pi\)
\(398\) −3.82877 3.82877i −0.191919 0.191919i
\(399\) 0 0
\(400\) 0 0
\(401\) 14.3056i 0.714390i 0.934030 + 0.357195i \(0.116267\pi\)
−0.934030 + 0.357195i \(0.883733\pi\)
\(402\) 0 0
\(403\) 30.1464 30.1464i 1.50170 1.50170i
\(404\) −5.89656 −0.293365
\(405\) 0 0
\(406\) 2.94439 0.146127
\(407\) −6.55917 + 6.55917i −0.325126 + 0.325126i
\(408\) 0 0
\(409\) 22.1010i 1.09283i 0.837516 + 0.546413i \(0.184007\pi\)
−0.837516 + 0.546413i \(0.815993\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 3.40408 + 3.40408i 0.167707 + 0.167707i
\(413\) 3.12617 + 3.12617i 0.153829 + 0.153829i
\(414\) 0 0
\(415\) 0 0
\(416\) 11.3574i 0.556841i
\(417\) 0 0
\(418\) −10.3485 + 10.3485i −0.506160 + 0.506160i
\(419\) −4.31348 −0.210727 −0.105364 0.994434i \(-0.533601\pi\)
−0.105364 + 0.994434i \(0.533601\pi\)
\(420\) 0 0
\(421\) −37.7423 −1.83945 −0.919725 0.392564i \(-0.871588\pi\)
−0.919725 + 0.392564i \(0.871588\pi\)
\(422\) −10.8727 + 10.8727i −0.529272 + 0.529272i
\(423\) 0 0
\(424\) 22.4041i 1.08804i
\(425\) 0 0
\(426\) 0 0
\(427\) −0.224745 0.224745i −0.0108762 0.0108762i
\(428\) 0.573664 + 0.573664i 0.0277291 + 0.0277291i
\(429\) 0 0
\(430\) 0 0
\(431\) 11.9310i 0.574698i 0.957826 + 0.287349i \(0.0927739\pi\)
−0.957826 + 0.287349i \(0.907226\pi\)
\(432\) 0 0
\(433\) 23.0000 23.0000i 1.10531 1.10531i 0.111551 0.993759i \(-0.464418\pi\)
0.993759 0.111551i \(-0.0355818\pi\)
\(434\) −3.69984 −0.177598
\(435\) 0 0
\(436\) 3.30306 0.158188
\(437\) −2.64146 + 2.64146i −0.126358 + 0.126358i
\(438\) 0 0
\(439\) 0.247449i 0.0118101i 0.999983 + 0.00590504i \(0.00187964\pi\)
−0.999983 + 0.00590504i \(0.998120\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 22.2474 + 22.2474i 1.05820 + 1.05820i
\(443\) −16.6403 16.6403i −0.790604 0.790604i 0.190989 0.981592i \(-0.438831\pi\)
−0.981592 + 0.190989i \(0.938831\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 10.7437i 0.508730i
\(447\) 0 0
\(448\) −2.00000 + 2.00000i −0.0944911 + 0.0944911i
\(449\) 15.8487 0.747948 0.373974 0.927439i \(-0.377995\pi\)
0.373974 + 0.927439i \(0.377995\pi\)
\(450\) 0 0
\(451\) 5.34847 0.251850
\(452\) 1.97885 1.97885i 0.0930771 0.0930771i
\(453\) 0 0
\(454\) 12.9444i 0.607510i
\(455\) 0 0
\(456\) 0 0
\(457\) −15.4495 15.4495i −0.722697 0.722697i 0.246457 0.969154i \(-0.420734\pi\)
−0.969154 + 0.246457i \(0.920734\pi\)
\(458\) 3.12617 + 3.12617i 0.146077 + 0.146077i
\(459\) 0 0
\(460\) 0 0
\(461\) 8.01332i 0.373217i −0.982434 0.186609i \(-0.940250\pi\)
0.982434 0.186609i \(-0.0597497\pi\)
\(462\) 0 0
\(463\) −23.4722 + 23.4722i −1.09085 + 1.09085i −0.0954070 + 0.995438i \(0.530415\pi\)
−0.995438 + 0.0954070i \(0.969585\pi\)
\(464\) −21.5674 −1.00124
\(465\) 0 0
\(466\) 16.2020 0.750545
\(467\) 27.4240 27.4240i 1.26903 1.26903i 0.322441 0.946589i \(-0.395497\pi\)
0.946589 0.322441i \(-0.104503\pi\)
\(468\) 0 0
\(469\) 1.69694i 0.0783573i
\(470\) 0 0
\(471\) 0 0
\(472\) −30.0000 30.0000i −1.38086 1.38086i
\(473\) −5.67868 5.67868i −0.261106 0.261106i
\(474\) 0 0
\(475\) 0 0
\(476\) 0.791539i 0.0362801i
\(477\) 0 0
\(478\) 23.4495 23.4495i 1.07255 1.07255i
\(479\) −38.6035 −1.76384 −0.881919 0.471402i \(-0.843748\pi\)
−0.881919 + 0.471402i \(0.843748\pi\)
\(480\) 0 0
\(481\) −10.7980 −0.492345
\(482\) 11.4463 11.4463i 0.521365 0.521365i
\(483\) 0 0
\(484\) 1.95459i 0.0888451i
\(485\) 0 0
\(486\) 0 0
\(487\) −9.32577 9.32577i −0.422591 0.422591i 0.463504 0.886095i \(-0.346592\pi\)
−0.886095 + 0.463504i \(0.846592\pi\)
\(488\) 2.15674 + 2.15674i 0.0976311 + 0.0976311i
\(489\) 0 0
\(490\) 0 0
\(491\) 22.1411i 0.999213i −0.866253 0.499606i \(-0.833478\pi\)
0.866253 0.499606i \(-0.166522\pi\)
\(492\) 0 0
\(493\) −29.1464 + 29.1464i −1.31269 + 1.31269i
\(494\) −17.0361 −0.766488
\(495\) 0 0
\(496\) 27.1010 1.21687
\(497\) 2.06779 2.06779i 0.0927532 0.0927532i
\(498\) 0 0
\(499\) 12.4949i 0.559348i 0.960095 + 0.279674i \(0.0902265\pi\)
−0.960095 + 0.279674i \(0.909774\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) −7.94439 7.94439i −0.354575 0.354575i
\(503\) −18.3123 18.3123i −0.816505 0.816505i 0.169094 0.985600i \(-0.445916\pi\)
−0.985600 + 0.169094i \(0.945916\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 6.07445i 0.270042i
\(507\) 0 0
\(508\) 3.14643 3.14643i 0.139600 0.139600i
\(509\) 20.3801 0.903332 0.451666 0.892187i \(-0.350830\pi\)
0.451666 + 0.892187i \(0.350830\pi\)
\(510\) 0 0
\(511\) −2.10102 −0.0929437
\(512\) 17.6097 17.6097i 0.778247 0.778247i
\(513\) 0 0
\(514\) 10.0000i 0.441081i
\(515\) 0 0
\(516\) 0 0
\(517\) 13.7980 + 13.7980i 0.606834 + 0.606834i
\(518\) 0.662611 + 0.662611i 0.0291134 + 0.0291134i
\(519\) 0 0
\(520\) 0 0
\(521\) 24.8715i 1.08964i 0.838553 + 0.544820i \(0.183402\pi\)
−0.838553 + 0.544820i \(0.816598\pi\)
\(522\) 0 0
\(523\) −19.6742 + 19.6742i −0.860294 + 0.860294i −0.991372 0.131078i \(-0.958156\pi\)
0.131078 + 0.991372i \(0.458156\pi\)
\(524\) −3.52194 −0.153857
\(525\) 0 0
\(526\) −30.6969 −1.33845
\(527\) 36.6246 36.6246i 1.59539 1.59539i
\(528\) 0 0
\(529\) 21.4495i 0.932587i
\(530\) 0 0
\(531\) 0 0
\(532\) −0.303062 0.303062i −0.0131394 0.0131394i
\(533\) 4.40243 + 4.40243i 0.190690 + 0.190690i
\(534\) 0 0
\(535\) 0 0
\(536\) 16.2845i 0.703383i
\(537\) 0 0
\(538\) 4.65153 4.65153i 0.200542 0.200542i
\(539\) −27.0282 −1.16419
\(540\) 0 0
\(541\) −17.0454 −0.732839 −0.366420 0.930450i \(-0.619417\pi\)
−0.366420 + 0.930450i \(0.619417\pi\)
\(542\) −17.3429 + 17.3429i −0.744940 + 0.744940i
\(543\) 0 0
\(544\) 13.7980i 0.591583i
\(545\) 0 0
\(546\) 0 0
\(547\) 20.9217 + 20.9217i 0.894547 + 0.894547i 0.994947 0.100401i \(-0.0320124\pi\)
−0.100401 + 0.994947i \(0.532012\pi\)
\(548\) 4.88715 + 4.88715i 0.208768 + 0.208768i
\(549\) 0 0
\(550\) 0 0
\(551\) 22.3190i 0.950820i
\(552\) 0 0
\(553\) 1.22474 1.22474i 0.0520814 0.0520814i
\(554\) 3.69984 0.157191
\(555\) 0 0
\(556\) 4.15663 0.176281
\(557\) 10.3879 10.3879i 0.440151 0.440151i −0.451912 0.892063i \(-0.649258\pi\)
0.892063 + 0.451912i \(0.149258\pi\)
\(558\) 0 0
\(559\) 9.34847i 0.395398i
\(560\) 0 0
\(561\) 0 0
\(562\) −22.9444 22.9444i −0.967851 0.967851i
\(563\) −18.7970 18.7970i −0.792200 0.792200i 0.189651 0.981851i \(-0.439264\pi\)
−0.981851 + 0.189651i \(0.939264\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 17.4318i 0.732714i
\(567\) 0 0
\(568\) −19.8434 + 19.8434i −0.832609 + 0.832609i
\(569\) 9.59640 0.402302 0.201151 0.979560i \(-0.435532\pi\)
0.201151 + 0.979560i \(0.435532\pi\)
\(570\) 0 0
\(571\) −5.65153 −0.236509 −0.118255 0.992983i \(-0.537730\pi\)
−0.118255 + 0.992983i \(0.537730\pi\)
\(572\) 5.67868 5.67868i 0.237438 0.237438i
\(573\) 0 0
\(574\) 0.540305i 0.0225519i
\(575\) 0 0
\(576\) 0 0
\(577\) 13.3258 + 13.3258i 0.554759 + 0.554759i 0.927811 0.373052i \(-0.121689\pi\)
−0.373052 + 0.927811i \(0.621689\pi\)
\(578\) 12.0600 + 12.0600i 0.501628 + 0.501628i
\(579\) 0 0
\(580\) 0 0
\(581\) 1.36520i 0.0566381i
\(582\) 0 0
\(583\) 20.3485 20.3485i 0.842747 0.842747i
\(584\) 20.1622 0.834319
\(585\) 0 0
\(586\) −31.5505 −1.30334
\(587\) −12.6336 + 12.6336i −0.521445 + 0.521445i −0.918008 0.396562i \(-0.870203\pi\)
0.396562 + 0.918008i \(0.370203\pi\)
\(588\) 0 0
\(589\) 28.0454i 1.15559i
\(590\) 0 0
\(591\) 0 0
\(592\) −4.85357 4.85357i −0.199481 0.199481i
\(593\) −6.55917 6.55917i −0.269353 0.269353i 0.559487 0.828839i \(-0.310998\pi\)
−0.828839 + 0.559487i \(0.810998\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 4.31348i 0.176687i
\(597\) 0 0
\(598\) −5.00000 + 5.00000i −0.204465 + 0.204465i
\(599\) 12.7226 0.519830 0.259915 0.965631i \(-0.416305\pi\)
0.259915 + 0.965631i \(0.416305\pi\)
\(600\) 0 0
\(601\) −20.6515 −0.842394 −0.421197 0.906969i \(-0.638390\pi\)
−0.421197 + 0.906969i \(0.638390\pi\)
\(602\) −0.573664 + 0.573664i −0.0233808 + 0.0233808i
\(603\) 0 0
\(604\) 2.54031i 0.103364i
\(605\) 0 0
\(606\) 0 0
\(607\) 6.77526 + 6.77526i 0.274999 + 0.274999i 0.831109 0.556110i \(-0.187707\pi\)
−0.556110 + 0.831109i \(0.687707\pi\)
\(608\) 5.28291 + 5.28291i 0.214250 + 0.214250i
\(609\) 0 0
\(610\) 0 0
\(611\) 22.7147i 0.918940i
\(612\) 0 0
\(613\) −10.3712 + 10.3712i −0.418888 + 0.418888i −0.884820 0.465933i \(-0.845719\pi\)
0.465933 + 0.884820i \(0.345719\pi\)
\(614\) −37.5940 −1.51717
\(615\) 0 0
\(616\) −3.79796 −0.153024
\(617\) −25.3562 + 25.3562i −1.02080 + 1.02080i −0.0210229 + 0.999779i \(0.506692\pi\)
−0.999779 + 0.0210229i \(0.993308\pi\)
\(618\) 0 0
\(619\) 5.44949i 0.219033i −0.993985 0.109517i \(-0.965070\pi\)
0.993985 0.109517i \(-0.0349303\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) −22.9444 22.9444i −0.919986 0.919986i
\(623\) 1.18731 + 1.18731i 0.0475685 + 0.0475685i
\(624\) 0 0
\(625\) 0 0
\(626\) 9.02273i 0.360621i
\(627\) 0 0
\(628\) −2.00000 + 2.00000i −0.0798087 + 0.0798087i
\(629\) −13.1183 −0.523062
\(630\) 0 0
\(631\) −13.0000 −0.517522 −0.258761 0.965941i \(-0.583314\pi\)
−0.258761 + 0.965941i \(0.583314\pi\)
\(632\) −11.7531 + 11.7531i −0.467515 + 0.467515i
\(633\) 0 0
\(634\) 8.29286i 0.329351i
\(635\) 0 0
\(636\) 0 0
\(637\) −22.2474 22.2474i −0.881476 0.881476i
\(638\) −25.6630 25.6630i −1.01601 1.01601i
\(639\) 0 0
\(640\) 0 0
\(641\) 28.6113i 1.13008i −0.825064 0.565039i \(-0.808861\pi\)
0.825064 0.565039i \(-0.191139\pi\)
\(642\) 0 0
\(643\) −9.44949 + 9.44949i −0.372651 + 0.372651i −0.868442 0.495791i \(-0.834878\pi\)
0.495791 + 0.868442i \(0.334878\pi\)
\(644\) −0.177894 −0.00701002
\(645\) 0 0
\(646\) −20.6969 −0.814310
\(647\) −15.7598 + 15.7598i −0.619582 + 0.619582i −0.945424 0.325843i \(-0.894352\pi\)
0.325843 + 0.945424i \(0.394352\pi\)
\(648\) 0 0
\(649\) 54.4949i 2.13911i
\(650\) 0 0
\(651\) 0 0
\(652\) −1.49490 1.49490i −0.0585447 0.0585447i
\(653\) 28.2155 + 28.2155i 1.10416 + 1.10416i 0.993903 + 0.110256i \(0.0351669\pi\)
0.110256 + 0.993903i \(0.464833\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 3.95769i 0.154522i
\(657\) 0 0
\(658\) 1.39388 1.39388i 0.0543390 0.0543390i
\(659\) 17.2539 0.672118 0.336059 0.941841i \(-0.390906\pi\)
0.336059 + 0.941841i \(0.390906\pi\)
\(660\) 0 0
\(661\) −42.3939 −1.64893 −0.824465 0.565912i \(-0.808524\pi\)
−0.824465 + 0.565912i \(0.808524\pi\)
\(662\) −21.4385 + 21.4385i −0.833230 + 0.833230i
\(663\) 0 0
\(664\) 13.1010i 0.508418i
\(665\) 0 0
\(666\) 0 0
\(667\) −6.55051 6.55051i −0.253637 0.253637i
\(668\) −2.55251 2.55251i −0.0987596 0.0987596i
\(669\) 0 0
\(670\) 0 0
\(671\) 3.91771i 0.151242i
\(672\) 0 0
\(673\) −21.5732 + 21.5732i −0.831586 + 0.831586i −0.987734 0.156147i \(-0.950092\pi\)
0.156147 + 0.987734i \(0.450092\pi\)
\(674\) 29.7986 1.14780
\(675\) 0 0
\(676\) 3.50510 0.134812
\(677\) −3.52194 + 3.52194i −0.135359 + 0.135359i −0.771540 0.636181i \(-0.780513\pi\)
0.636181 + 0.771540i \(0.280513\pi\)
\(678\) 0 0
\(679\) 4.55051i 0.174633i
\(680\) 0 0
\(681\) 0 0
\(682\) 32.2474 + 32.2474i 1.23482 + 1.23482i
\(683\) 27.5129 + 27.5129i 1.05275 + 1.05275i 0.998529 + 0.0542243i \(0.0172686\pi\)
0.0542243 + 0.998529i \(0.482731\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 5.50079i 0.210021i
\(687\) 0 0
\(688\) 4.20204 4.20204i 0.160201 0.160201i
\(689\) 33.4984 1.27619
\(690\) 0 0
\(691\) 18.0454 0.686480 0.343240 0.939248i \(-0.388476\pi\)
0.343240 + 0.939248i \(0.388476\pi\)
\(692\) 0.355788 0.355788i 0.0135250 0.0135250i
\(693\) 0 0
\(694\) 15.3485i 0.582620i
\(695\) 0 0
\(696\) 0 0
\(697\) 5.34847 + 5.34847i 0.202588 + 0.202588i
\(698\) 0.702591 + 0.702591i 0.0265935 + 0.0265935i
\(699\) 0 0
\(700\) 0 0
\(701\) 1.36520i 0.0515630i 0.999668 + 0.0257815i \(0.00820741\pi\)
−0.999668 + 0.0257815i \(0.991793\pi\)
\(702\) 0 0
\(703\) 5.02270 5.02270i 0.189435 0.189435i
\(704\) 34.8636 1.31397
\(705\) 0 0
\(706\) 31.3939 1.18152
\(707\) −2.94828 + 2.94828i −0.110881 + 0.110881i
\(708\) 0 0
\(709\) 35.9444i 1.34992i 0.737854 + 0.674960i \(0.235839\pi\)
−0.737854 + 0.674960i \(0.764161\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) −11.3939 11.3939i −0.427004 0.427004i
\(713\) 8.23119 + 8.23119i 0.308261 + 0.308261i
\(714\) 0 0
\(715\) 0 0
\(716\) 2.90830i 0.108688i
\(717\) 0 0
\(718\) −26.3939 + 26.3939i −0.985011 + 0.985011i
\(719\) 24.6936 0.920915 0.460458 0.887682i \(-0.347685\pi\)
0.460458 + 0.887682i \(0.347685\pi\)
\(720\) 0 0
\(721\) 3.40408 0.126775
\(722\) −8.80486 + 8.80486i −0.327683 + 0.327683i
\(723\) 0 0
\(724\) 3.75255i 0.139462i
\(725\) 0 0
\(726\) 0 0
\(727\) −22.7980 22.7980i −0.845529 0.845529i 0.144042 0.989572i \(-0.453990\pi\)
−0.989572 + 0.144042i \(0.953990\pi\)
\(728\) −3.12617 3.12617i −0.115864 0.115864i
\(729\) 0 0
\(730\) 0 0
\(731\) 11.3574i 0.420067i
\(732\) 0 0
\(733\) −9.44949 + 9.44949i −0.349025 + 0.349025i −0.859746 0.510721i \(-0.829378\pi\)
0.510721 + 0.859746i \(0.329378\pi\)
\(734\) −31.5596 −1.16489
\(735\) 0 0
\(736\) 3.10102 0.114305
\(737\) 14.7904 14.7904i 0.544810 0.544810i
\(738\) 0 0
\(739\) 49.3485i 1.81531i 0.419714 + 0.907656i \(0.362130\pi\)
−0.419714 + 0.907656i \(0.637870\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) −2.05561 2.05561i −0.0754639 0.0754639i
\(743\) 20.5580 + 20.5580i 0.754200 + 0.754200i 0.975260 0.221060i \(-0.0709518\pi\)
−0.221060 + 0.975260i \(0.570952\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 41.3339i 1.51334i
\(747\) 0 0
\(748\) 6.89898 6.89898i 0.252252 0.252252i
\(749\) 0.573664 0.0209612
\(750\) 0 0
\(751\) 8.30306 0.302983 0.151492 0.988459i \(-0.451592\pi\)
0.151492 + 0.988459i \(0.451592\pi\)
\(752\) −10.2100 + 10.2100i −0.372322 + 0.372322i
\(753\) 0 0
\(754\) 42.2474i 1.53856i
\(755\) 0 0
\(756\) 0 0
\(757\) 23.6742 + 23.6742i 0.860455 + 0.860455i 0.991391 0.130936i \(-0.0417983\pi\)
−0.130936 + 0.991391i \(0.541798\pi\)
\(758\) −26.1477 26.1477i −0.949728 0.949728i
\(759\) 0 0
\(760\) 0 0
\(761\) 9.20063i 0.333522i −0.985997 0.166761i \(-0.946669\pi\)
0.985997 0.166761i \(-0.0533309\pi\)
\(762\) 0 0
\(763\) 1.65153 1.65153i 0.0597894 0.0597894i
\(764\) 4.66927 0.168928
\(765\) 0 0
\(766\) 3.10102 0.112044
\(767\) 44.8558 44.8558i 1.61965 1.61965i
\(768\) 0 0
\(769\) 44.6413i 1.60981i −0.593405 0.804904i \(-0.702217\pi\)
0.593405 0.804904i \(-0.297783\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −5.89898 5.89898i −0.212309 0.212309i
\(773\) 27.5129 + 27.5129i 0.989571 + 0.989571i 0.999946 0.0103748i \(-0.00330245\pi\)
−0.0103748 + 0.999946i \(0.503302\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 43.6685i 1.56761i
\(777\) 0 0
\(778\) 5.50510 5.50510i 0.197367 0.197367i
\(779\) −4.09561 −0.146740
\(780\) 0 0
\(781\) −36.0454 −1.28981
\(782\) −6.07445 + 6.07445i −0.217222 + 0.217222i
\(783\) 0 0
\(784\) 20.0000i 0.714286i
\(785\) 0 0
\(786\) 0 0
\(787\) −2.52781 2.52781i −0.0901066 0.0901066i 0.660617 0.750723i \(-0.270295\pi\)
−0.750723 + 0.660617i \(0.770295\pi\)
\(788\) −1.14733 1.14733i −0.0408718 0.0408718i
\(789\) 0 0
\(790\) 0 0
\(791\) 1.97885i 0.0703597i
\(792\) 0 0
\(793\) −3.22474 + 3.22474i −0.114514 + 0.114514i
\(794\) −11.1795 −0.396745
\(795\) 0 0
\(796\) −1.95459 −0.0692787
\(797\) 10.1701 10.1701i 0.360242 0.360242i −0.503660 0.863902i \(-0.668014\pi\)
0.863902 + 0.503660i \(0.168014\pi\)
\(798\) 0 0
\(799\) 27.5959i 0.976273i
\(800\) 0 0
\(801\) 0 0
\(802\) −12.5959 12.5959i −0.444777 0.444777i
\(803\) 18.3123 + 18.3123i 0.646227 + 0.646227i
\(804\) 0 0
\(805\) 0 0
\(806\) 53.0870i 1.86991i
\(807\) 0 0
\(808\) 28.2929 28.2929i 0.995339 0.995339i
\(809\) −26.4146 −0.928687 −0.464343 0.885655i \(-0.653710\pi\)
−0.464343 + 0.885655i \(0.653710\pi\)
\(810\) 0 0
\(811\) −32.0454 −1.12527 −0.562633 0.826707i \(-0.690212\pi\)
−0.562633 + 0.826707i \(0.690212\pi\)
\(812\) 0.751558 0.751558i 0.0263745 0.0263745i
\(813\) 0 0
\(814\) 11.5505i 0.404845i
\(815\) 0 0
\(816\) 0 0
\(817\) 4.34847 + 4.34847i 0.152134 + 0.152134i
\(818\) −19.4596 19.4596i −0.680390 0.680390i
\(819\) 0 0
\(820\) 0 0
\(821\) 2.55251i 0.0890832i 0.999008 + 0.0445416i \(0.0141827\pi\)
−0.999008 + 0.0445416i \(0.985817\pi\)
\(822\) 0 0
\(823\) 23.9217 23.9217i 0.833857 0.833857i −0.154185 0.988042i \(-0.549275\pi\)
0.988042 + 0.154185i \(0.0492750\pi\)
\(824\) −32.6669 −1.13801
\(825\) 0 0
\(826\) −5.50510 −0.191547
\(827\) −23.6842 + 23.6842i −0.823579 + 0.823579i −0.986619 0.163040i \(-0.947870\pi\)
0.163040 + 0.986619i \(0.447870\pi\)
\(828\) 0 0
\(829\) 39.7423i 1.38031i 0.723662 + 0.690154i \(0.242457\pi\)
−0.723662 + 0.690154i \(0.757543\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 28.6969 + 28.6969i 0.994887 + 0.994887i
\(833\) −27.0282 27.0282i −0.936472 0.936472i
\(834\) 0 0
\(835\) 0 0
\(836\) 5.28291i 0.182713i
\(837\) 0 0
\(838\) 3.79796 3.79796i 0.131198 0.131198i
\(839\) 27.8198 0.960445 0.480222 0.877147i \(-0.340556\pi\)
0.480222 + 0.877147i \(0.340556\pi\)
\(840\) 0 0
\(841\) 26.3485 0.908568
\(842\) 33.2316 33.2316i 1.14524 1.14524i
\(843\) 0 0
\(844\) 5.55051i 0.191056i
\(845\) 0 0
\(846\) 0 0
\(847\) −0.977296 0.977296i −0.0335803 0.0335803i
\(848\) 15.0572 + 15.0572i 0.517067 + 0.517067i
\(849\) 0 0
\(850\) 0 0
\(851\) 2.94828i 0.101066i
\(852\) 0 0
\(853\) 4.07832 4.07832i 0.139639 0.139639i −0.633832 0.773471i \(-0.718519\pi\)
0.773471 + 0.633832i \(0.218519\pi\)
\(854\) 0.395769 0.0135429
\(855\) 0 0
\(856\) −5.50510 −0.188161
\(857\) 21.4385 21.4385i 0.732325 0.732325i −0.238755 0.971080i \(-0.576739\pi\)
0.971080 + 0.238755i \(0.0767394\pi\)
\(858\) 0 0
\(859\) 18.5505i 0.632935i −0.948603 0.316468i \(-0.897503\pi\)
0.948603 0.316468i \(-0.102497\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) −10.5051 10.5051i −0.357805 0.357805i
\(863\) 19.5886 + 19.5886i 0.666802 + 0.666802i 0.956974 0.290172i \(-0.0937126\pi\)
−0.290172 + 0.956974i \(0.593713\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 40.5023i 1.37633i
\(867\) 0 0
\(868\) −0.944387 + 0.944387i −0.0320546 + 0.0320546i
\(869\) −21.3495 −0.724233
\(870\) 0 0
\(871\) 24.3485 0.825016
\(872\) −15.8487 + 15.8487i −0.536706 + 0.536706i
\(873\) 0 0
\(874\) 4.65153i 0.157340i
\(875\) 0 0
\(876\) 0 0
\(877\) −8.22474 8.22474i −0.277730 0.277730i 0.554472 0.832202i \(-0.312920\pi\)
−0.832202 + 0.554472i \(0.812920\pi\)
\(878\) −0.217875 0.217875i −0.00735293 0.00735293i
\(879\) 0 0
\(880\) 0 0
\(881\) 16.8582i 0.567966i −0.958829 0.283983i \(-0.908344\pi\)
0.958829 0.283983i \(-0.0916559\pi\)
\(882\) 0 0
\(883\) −13.9773 + 13.9773i −0.470373 + 0.470373i −0.902035 0.431662i \(-0.857927\pi\)
0.431662 + 0.902035i \(0.357927\pi\)
\(884\) 11.3574 0.381990
\(885\) 0 0
\(886\) 29.3031 0.984456
\(887\) −33.2806 + 33.2806i −1.11745 + 1.11745i −0.125338 + 0.992114i \(0.540001\pi\)
−0.992114 + 0.125338i \(0.959999\pi\)
\(888\) 0 0
\(889\) 3.14643i 0.105528i
\(890\) 0 0
\(891\) 0 0
\(892\) 2.74235 + 2.74235i 0.0918205 + 0.0918205i
\(893\) −10.5658 10.5658i −0.353572 0.353572i
\(894\) 0 0
\(895\) 0 0
\(896\) 1.93887i 0.0647730i
\(897\) 0 0
\(898\) −13.9546 + 13.9546i −0.465671 + 0.465671i
\(899\) −69.5494 −2.31960
\(900\) 0 0
\(901\) 40.6969 1.35581
\(902\) −4.70925 + 4.70925i −0.156801 + 0.156801i
\(903\) 0 0
\(904\) 18.9898i 0.631591i
\(905\) 0 0
\(906\) 0 0
\(907\) 19.8763 + 19.8763i 0.659981 + 0.659981i 0.955375 0.295394i \(-0.0954511\pi\)
−0.295394 + 0.955375i \(0.595451\pi\)
\(908\) −3.30407 3.30407i −0.109649 0.109649i
\(909\) 0 0
\(910\) 0 0
\(911\) 38.9992i 1.29210i 0.763294 + 0.646051i \(0.223581\pi\)
−0.763294 + 0.646051i \(0.776419\pi\)
\(912\) 0 0
\(913\) 11.8990 11.8990i 0.393799 0.393799i
\(914\) 27.2061 0.899898
\(915\) 0 0
\(916\) 1.59592 0.0527306
\(917\) −1.76097 + 1.76097i −0.0581524 + 0.0581524i
\(918\) 0 0
\(919\) 13.3485i 0.440325i 0.975463 + 0.220163i \(0.0706588\pi\)
−0.975463 + 0.220163i \(0.929341\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 7.05561 + 7.05561i 0.232364 + 0.232364i
\(923\) −29.6697 29.6697i −0.976589 0.976589i
\(924\) 0 0
\(925\) 0 0
\(926\) 41.3339i 1.35832i
\(927\) 0 0
\(928\) −13.1010 + 13.1010i −0.430062 + 0.430062i
\(929\) −15.0972 −0.495323 −0.247661 0.968847i \(-0.579662\pi\)
−0.247661 + 0.968847i \(0.579662\pi\)
\(930\) 0 0
\(931\) 20.6969 0.678315
\(932\) 4.13559 4.13559i 0.135466 0.135466i
\(933\) 0 0
\(934\) 48.2929i 1.58019i
\(935\) 0 0
\(936\) 0 0
\(937\) −32.7196 32.7196i −1.06890 1.06890i −0.997443 0.0714607i \(-0.977234\pi\)
−0.0714607 0.997443i \(-0.522766\pi\)
\(938\) −1.49413 1.49413i −0.0487851 0.0487851i
\(939\) 0 0
\(940\) 0 0
\(941\) 22.1411i 0.721778i −0.932609 0.360889i \(-0.882473\pi\)
0.932609 0.360889i \(-0.117527\pi\)
\(942\) 0 0
\(943\) −1.20204 + 1.20204i −0.0391438 + 0.0391438i
\(944\) 40.3244 1.31245
\(945\) 0 0
\(946\) 10.0000 0.325128
\(947\) −4.70925 + 4.70925i −0.153030 + 0.153030i −0.779470 0.626440i \(-0.784511\pi\)
0.626440 + 0.779470i \(0.284511\pi\)
\(948\) 0 0
\(949\) 30.1464i 0.978594i
\(950\) 0 0
\(951\) 0 0
\(952\) −3.79796 3.79796i −0.123093 0.123093i
\(953\) −10.3879 10.3879i −0.336498 0.336498i 0.518549 0.855048i \(-0.326472\pi\)
−0.855048 + 0.518549i \(0.826472\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 11.9710i 0.387170i
\(957\) 0 0
\(958\) 33.9898 33.9898i 1.09816 1.09816i
\(959\) 4.88715 0.157814
\(960\) 0 0
\(961\) 56.3939 1.81916
\(962\) 9.50745 9.50745i 0.306532 0.306532i
\(963\) 0 0
\(964\) 5.84337i 0.188202i
\(965\) 0 0
\(966\) 0 0
\(967\) 42.4722 + 42.4722i 1.36581 + 1.36581i 0.866314 + 0.499499i \(0.166483\pi\)
0.499499 + 0.866314i \(0.333517\pi\)
\(968\) 9.37852 + 9.37852i 0.301437 + 0.301437i
\(969\) 0 0
\(970\) 0 0
\(971\) 47.3683i 1.52012i −0.649852 0.760061i \(-0.725169\pi\)
0.649852 0.760061i \(-0.274831\pi\)
\(972\) 0 0
\(973\) 2.07832 2.07832i 0.0666278 0.0666278i
\(974\) 16.4224 0.526208
\(975\) 0 0
\(976\) −2.89898 −0.0927941
\(977\) 25.7520 25.7520i 0.823878 0.823878i −0.162784 0.986662i \(-0.552047\pi\)
0.986662 + 0.162784i \(0.0520472\pi\)
\(978\) 0 0
\(979\) 20.6969i 0.661477i
\(980\) 0 0
\(981\) 0 0
\(982\) 19.4949 + 19.4949i 0.622107 + 0.622107i
\(983\) −4.62030 4.62030i −0.147365 0.147365i 0.629575 0.776940i \(-0.283229\pi\)
−0.776940 + 0.629575i \(0.783229\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 51.3260i 1.63455i
\(987\) 0 0
\(988\) −4.34847 + 4.34847i −0.138343 + 0.138343i
\(989\) 2.55251 0.0811651
\(990\) 0 0
\(991\) −14.9546 −0.475048 −0.237524 0.971382i \(-0.576336\pi\)
−0.237524 + 0.971382i \(0.576336\pi\)
\(992\) 16.4624 16.4624i 0.522681 0.522681i
\(993\) 0 0
\(994\) 3.64133i 0.115496i
\(995\) 0 0
\(996\) 0 0
\(997\) 9.89898 + 9.89898i 0.313504 + 0.313504i 0.846265 0.532762i \(-0.178846\pi\)
−0.532762 + 0.846265i \(0.678846\pi\)
\(998\) −11.0016 11.0016i −0.348249 0.348249i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 675.2.f.g.107.2 8
3.2 odd 2 inner 675.2.f.g.107.3 8
5.2 odd 4 135.2.f.b.53.2 8
5.3 odd 4 inner 675.2.f.g.593.3 8
5.4 even 2 135.2.f.b.107.3 yes 8
15.2 even 4 135.2.f.b.53.3 yes 8
15.8 even 4 inner 675.2.f.g.593.2 8
15.14 odd 2 135.2.f.b.107.2 yes 8
20.7 even 4 2160.2.w.a.593.2 8
20.19 odd 2 2160.2.w.a.1457.3 8
45.2 even 12 405.2.m.b.53.3 16
45.4 even 6 405.2.m.b.107.3 16
45.7 odd 12 405.2.m.b.53.2 16
45.14 odd 6 405.2.m.b.107.2 16
45.22 odd 12 405.2.m.b.188.3 16
45.29 odd 6 405.2.m.b.377.3 16
45.32 even 12 405.2.m.b.188.2 16
45.34 even 6 405.2.m.b.377.2 16
60.47 odd 4 2160.2.w.a.593.3 8
60.59 even 2 2160.2.w.a.1457.2 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
135.2.f.b.53.2 8 5.2 odd 4
135.2.f.b.53.3 yes 8 15.2 even 4
135.2.f.b.107.2 yes 8 15.14 odd 2
135.2.f.b.107.3 yes 8 5.4 even 2
405.2.m.b.53.2 16 45.7 odd 12
405.2.m.b.53.3 16 45.2 even 12
405.2.m.b.107.2 16 45.14 odd 6
405.2.m.b.107.3 16 45.4 even 6
405.2.m.b.188.2 16 45.32 even 12
405.2.m.b.188.3 16 45.22 odd 12
405.2.m.b.377.2 16 45.34 even 6
405.2.m.b.377.3 16 45.29 odd 6
675.2.f.g.107.2 8 1.1 even 1 trivial
675.2.f.g.107.3 8 3.2 odd 2 inner
675.2.f.g.593.2 8 15.8 even 4 inner
675.2.f.g.593.3 8 5.3 odd 4 inner
2160.2.w.a.593.2 8 20.7 even 4
2160.2.w.a.593.3 8 60.47 odd 4
2160.2.w.a.1457.2 8 60.59 even 2
2160.2.w.a.1457.3 8 20.19 odd 2