Properties

Label 675.2.e.e.451.1
Level $675$
Weight $2$
Character 675.451
Analytic conductor $5.390$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [675,2,Mod(226,675)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(675, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([2, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("675.226");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 675 = 3^{3} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 675.e (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.38990213644\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{3})\)
Coefficient field: 8.0.1223810289.2
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 2x^{7} + 8x^{6} - 2x^{5} + 23x^{4} - 8x^{3} + 37x^{2} + 15x + 9 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{4}]\)
Coefficient ring index: \( 3 \)
Twist minimal: no (minimal twist has level 225)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 451.1
Root \(-0.816862 + 1.41485i\) of defining polynomial
Character \(\chi\) \(=\) 675.451
Dual form 675.2.e.e.226.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.816862 + 1.41485i) q^{2} +(-0.334526 - 0.579416i) q^{4} +(0.252674 - 0.437645i) q^{7} -2.17440 q^{8} +(1.55010 - 2.68485i) q^{11} +(-3.11964 - 5.40337i) q^{13} +(0.412800 + 0.714990i) q^{14} +(2.44524 - 4.23527i) q^{16} -6.10020 q^{17} -5.57022 q^{19} +(2.53244 + 4.38631i) q^{22} +(1.91280 + 3.31307i) q^{23} +10.1932 q^{26} -0.338104 q^{28} +(1.22966 - 2.12984i) q^{29} +(-2.11429 - 3.66206i) q^{31} +(1.82044 + 3.15309i) q^{32} +(4.98302 - 8.63085i) q^{34} -6.72677 q^{37} +(4.55010 - 7.88101i) q^{38} +(-2.72092 - 4.71278i) q^{41} +(0.663704 - 1.14957i) q^{43} -2.07420 q^{44} -6.24997 q^{46} +(1.85396 - 3.21115i) q^{47} +(3.37231 + 5.84101i) q^{49} +(-2.08720 + 3.61514i) q^{52} +2.54205 q^{53} +(-0.549415 + 0.951614i) q^{56} +(2.00893 + 3.47956i) q^{58} +(1.44116 + 2.49616i) q^{59} +(1.42173 - 2.46250i) q^{61} +6.90833 q^{62} +3.83276 q^{64} +(1.20326 + 2.08411i) q^{67} +(2.04068 + 3.53456i) q^{68} -5.54205 q^{71} +11.7988 q^{73} +(5.49484 - 9.51734i) q^{74} +(1.86338 + 3.22748i) q^{76} +(-0.783341 - 1.35679i) q^{77} +(-1.70149 + 2.94707i) q^{79} +8.89047 q^{82} +(6.95059 - 12.0388i) q^{83} +(1.08431 + 1.87808i) q^{86} +(-3.37054 + 5.83795i) q^{88} -3.38513 q^{89} -3.15301 q^{91} +(1.27976 - 2.21661i) q^{92} +(3.02886 + 5.24614i) q^{94} +(5.53779 - 9.59173i) q^{97} -11.0188 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 2 q^{2} - 4 q^{4} + q^{7} - 18 q^{8} - q^{11} - 2 q^{13} + 3 q^{14} - 4 q^{16} - 22 q^{17} + 4 q^{19} - 3 q^{22} + 15 q^{23} + 20 q^{26} - 8 q^{28} + q^{29} + 4 q^{31} + 10 q^{32} - 9 q^{34} - 2 q^{37}+ \cdots - 26 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/675\mathbb{Z}\right)^\times\).

\(n\) \(326\) \(352\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.816862 + 1.41485i −0.577608 + 1.00045i 0.418144 + 0.908381i \(0.362681\pi\)
−0.995753 + 0.0920666i \(0.970653\pi\)
\(3\) 0 0
\(4\) −0.334526 0.579416i −0.167263 0.289708i
\(5\) 0 0
\(6\) 0 0
\(7\) 0.252674 0.437645i 0.0955019 0.165414i −0.814316 0.580422i \(-0.802888\pi\)
0.909818 + 0.415008i \(0.136221\pi\)
\(8\) −2.17440 −0.768767
\(9\) 0 0
\(10\) 0 0
\(11\) 1.55010 2.68485i 0.467373 0.809514i −0.531932 0.846787i \(-0.678534\pi\)
0.999305 + 0.0372730i \(0.0118671\pi\)
\(12\) 0 0
\(13\) −3.11964 5.40337i −0.865232 1.49863i −0.866817 0.498627i \(-0.833838\pi\)
0.00158518 0.999999i \(-0.499495\pi\)
\(14\) 0.412800 + 0.714990i 0.110325 + 0.191089i
\(15\) 0 0
\(16\) 2.44524 4.23527i 0.611309 1.05882i
\(17\) −6.10020 −1.47952 −0.739758 0.672873i \(-0.765060\pi\)
−0.739758 + 0.672873i \(0.765060\pi\)
\(18\) 0 0
\(19\) −5.57022 −1.27790 −0.638948 0.769250i \(-0.720630\pi\)
−0.638948 + 0.769250i \(0.720630\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 2.53244 + 4.38631i 0.539917 + 0.935164i
\(23\) 1.91280 + 3.31307i 0.398846 + 0.690822i 0.993584 0.113098i \(-0.0360774\pi\)
−0.594738 + 0.803920i \(0.702744\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 10.1932 1.99906
\(27\) 0 0
\(28\) −0.338104 −0.0638957
\(29\) 1.22966 2.12984i 0.228342 0.395501i −0.728975 0.684541i \(-0.760003\pi\)
0.957317 + 0.289040i \(0.0933361\pi\)
\(30\) 0 0
\(31\) −2.11429 3.66206i −0.379738 0.657725i 0.611286 0.791409i \(-0.290652\pi\)
−0.991024 + 0.133685i \(0.957319\pi\)
\(32\) 1.82044 + 3.15309i 0.321811 + 0.557394i
\(33\) 0 0
\(34\) 4.98302 8.63085i 0.854581 1.48018i
\(35\) 0 0
\(36\) 0 0
\(37\) −6.72677 −1.10587 −0.552937 0.833223i \(-0.686493\pi\)
−0.552937 + 0.833223i \(0.686493\pi\)
\(38\) 4.55010 7.88101i 0.738124 1.27847i
\(39\) 0 0
\(40\) 0 0
\(41\) −2.72092 4.71278i −0.424937 0.736012i 0.571478 0.820618i \(-0.306370\pi\)
−0.996415 + 0.0846053i \(0.973037\pi\)
\(42\) 0 0
\(43\) 0.663704 1.14957i 0.101214 0.175308i −0.810971 0.585086i \(-0.801061\pi\)
0.912185 + 0.409779i \(0.134394\pi\)
\(44\) −2.07420 −0.312697
\(45\) 0 0
\(46\) −6.24997 −0.921508
\(47\) 1.85396 3.21115i 0.270428 0.468395i −0.698544 0.715568i \(-0.746168\pi\)
0.968971 + 0.247173i \(0.0795015\pi\)
\(48\) 0 0
\(49\) 3.37231 + 5.84101i 0.481759 + 0.834431i
\(50\) 0 0
\(51\) 0 0
\(52\) −2.08720 + 3.61514i −0.289443 + 0.501329i
\(53\) 2.54205 0.349177 0.174589 0.984641i \(-0.444140\pi\)
0.174589 + 0.984641i \(0.444140\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) −0.549415 + 0.951614i −0.0734187 + 0.127165i
\(57\) 0 0
\(58\) 2.00893 + 3.47956i 0.263785 + 0.456889i
\(59\) 1.44116 + 2.49616i 0.187623 + 0.324973i 0.944457 0.328634i \(-0.106588\pi\)
−0.756834 + 0.653607i \(0.773255\pi\)
\(60\) 0 0
\(61\) 1.42173 2.46250i 0.182033 0.315291i −0.760539 0.649292i \(-0.775065\pi\)
0.942573 + 0.334001i \(0.108399\pi\)
\(62\) 6.90833 0.877358
\(63\) 0 0
\(64\) 3.83276 0.479095
\(65\) 0 0
\(66\) 0 0
\(67\) 1.20326 + 2.08411i 0.147002 + 0.254614i 0.930118 0.367261i \(-0.119704\pi\)
−0.783116 + 0.621875i \(0.786371\pi\)
\(68\) 2.04068 + 3.53456i 0.247468 + 0.428628i
\(69\) 0 0
\(70\) 0 0
\(71\) −5.54205 −0.657720 −0.328860 0.944379i \(-0.606664\pi\)
−0.328860 + 0.944379i \(0.606664\pi\)
\(72\) 0 0
\(73\) 11.7988 1.38095 0.690473 0.723359i \(-0.257403\pi\)
0.690473 + 0.723359i \(0.257403\pi\)
\(74\) 5.49484 9.51734i 0.638762 1.10637i
\(75\) 0 0
\(76\) 1.86338 + 3.22748i 0.213745 + 0.370217i
\(77\) −0.783341 1.35679i −0.0892700 0.154620i
\(78\) 0 0
\(79\) −1.70149 + 2.94707i −0.191433 + 0.331571i −0.945725 0.324967i \(-0.894647\pi\)
0.754293 + 0.656538i \(0.227980\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 8.89047 0.981789
\(83\) 6.95059 12.0388i 0.762926 1.32143i −0.178410 0.983956i \(-0.557095\pi\)
0.941336 0.337470i \(-0.109571\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 1.08431 + 1.87808i 0.116924 + 0.202518i
\(87\) 0 0
\(88\) −3.37054 + 5.83795i −0.359301 + 0.622327i
\(89\) −3.38513 −0.358823 −0.179411 0.983774i \(-0.557419\pi\)
−0.179411 + 0.983774i \(0.557419\pi\)
\(90\) 0 0
\(91\) −3.15301 −0.330525
\(92\) 1.27976 2.21661i 0.133425 0.231098i
\(93\) 0 0
\(94\) 3.02886 + 5.24614i 0.312403 + 0.541098i
\(95\) 0 0
\(96\) 0 0
\(97\) 5.53779 9.59173i 0.562277 0.973892i −0.435020 0.900421i \(-0.643259\pi\)
0.997297 0.0734716i \(-0.0234078\pi\)
\(98\) −11.0188 −1.11307
\(99\) 0 0
\(100\) 0 0
\(101\) −8.68451 + 15.0420i −0.864141 + 1.49674i 0.00375621 + 0.999993i \(0.498804\pi\)
−0.867897 + 0.496744i \(0.834529\pi\)
\(102\) 0 0
\(103\) 0.416378 + 0.721188i 0.0410269 + 0.0710608i 0.885810 0.464049i \(-0.153604\pi\)
−0.844783 + 0.535109i \(0.820270\pi\)
\(104\) 6.78334 + 11.7491i 0.665161 + 1.15209i
\(105\) 0 0
\(106\) −2.07650 + 3.59661i −0.201688 + 0.349334i
\(107\) −11.0684 −1.07002 −0.535012 0.844844i \(-0.679693\pi\)
−0.535012 + 0.844844i \(0.679693\pi\)
\(108\) 0 0
\(109\) −4.65836 −0.446190 −0.223095 0.974797i \(-0.571616\pi\)
−0.223095 + 0.974797i \(0.571616\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) −1.23570 2.14029i −0.116762 0.202238i
\(113\) 5.99711 + 10.3873i 0.564160 + 0.977155i 0.997127 + 0.0757447i \(0.0241334\pi\)
−0.432967 + 0.901410i \(0.642533\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) −1.64542 −0.152773
\(117\) 0 0
\(118\) −4.70892 −0.433491
\(119\) −1.54136 + 2.66972i −0.141297 + 0.244733i
\(120\) 0 0
\(121\) 0.694371 + 1.20269i 0.0631246 + 0.109335i
\(122\) 2.32271 + 4.02305i 0.210288 + 0.364230i
\(123\) 0 0
\(124\) −1.41457 + 2.45011i −0.127032 + 0.220026i
\(125\) 0 0
\(126\) 0 0
\(127\) −3.22858 −0.286490 −0.143245 0.989687i \(-0.545754\pi\)
−0.143245 + 0.989687i \(0.545754\pi\)
\(128\) −6.77171 + 11.7289i −0.598540 + 1.03670i
\(129\) 0 0
\(130\) 0 0
\(131\) −4.69256 8.12776i −0.409991 0.710125i 0.584897 0.811107i \(-0.301135\pi\)
−0.994888 + 0.100982i \(0.967802\pi\)
\(132\) 0 0
\(133\) −1.40745 + 2.43778i −0.122042 + 0.211382i
\(134\) −3.93159 −0.339637
\(135\) 0 0
\(136\) 13.2643 1.13740
\(137\) 1.15478 2.00013i 0.0986593 0.170883i −0.812471 0.583002i \(-0.801878\pi\)
0.911130 + 0.412119i \(0.135211\pi\)
\(138\) 0 0
\(139\) −5.44701 9.43449i −0.462009 0.800223i 0.537052 0.843549i \(-0.319538\pi\)
−0.999061 + 0.0433260i \(0.986205\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 4.52709 7.84115i 0.379905 0.658014i
\(143\) −19.3430 −1.61754
\(144\) 0 0
\(145\) 0 0
\(146\) −9.63799 + 16.6935i −0.797646 + 1.38156i
\(147\) 0 0
\(148\) 2.25028 + 3.89760i 0.184972 + 0.320381i
\(149\) −8.17151 14.1535i −0.669436 1.15950i −0.978062 0.208314i \(-0.933202\pi\)
0.308626 0.951183i \(-0.400131\pi\)
\(150\) 0 0
\(151\) −11.3913 + 19.7304i −0.927015 + 1.60564i −0.138727 + 0.990331i \(0.544301\pi\)
−0.788288 + 0.615306i \(0.789032\pi\)
\(152\) 12.1119 0.982404
\(153\) 0 0
\(154\) 2.55953 0.206252
\(155\) 0 0
\(156\) 0 0
\(157\) −6.23035 10.7913i −0.497236 0.861238i 0.502759 0.864427i \(-0.332318\pi\)
−0.999995 + 0.00318877i \(0.998985\pi\)
\(158\) −2.77976 4.81469i −0.221146 0.383036i
\(159\) 0 0
\(160\) 0 0
\(161\) 1.93326 0.152362
\(162\) 0 0
\(163\) −7.57384 −0.593229 −0.296614 0.954997i \(-0.595858\pi\)
−0.296614 + 0.954997i \(0.595858\pi\)
\(164\) −1.82044 + 3.15309i −0.142152 + 0.246215i
\(165\) 0 0
\(166\) 11.3553 + 19.6680i 0.881345 + 1.52653i
\(167\) −1.48837 2.57793i −0.115174 0.199486i 0.802676 0.596416i \(-0.203409\pi\)
−0.917849 + 0.396929i \(0.870076\pi\)
\(168\) 0 0
\(169\) −12.9643 + 22.4548i −0.997252 + 1.72729i
\(170\) 0 0
\(171\) 0 0
\(172\) −0.888105 −0.0677174
\(173\) −7.92649 + 13.7291i −0.602640 + 1.04380i 0.389780 + 0.920908i \(0.372551\pi\)
−0.992420 + 0.122895i \(0.960782\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) −7.58073 13.1302i −0.571419 0.989727i
\(177\) 0 0
\(178\) 2.76518 4.78943i 0.207259 0.358983i
\(179\) −17.0841 −1.27693 −0.638463 0.769653i \(-0.720429\pi\)
−0.638463 + 0.769653i \(0.720429\pi\)
\(180\) 0 0
\(181\) 13.3690 0.993712 0.496856 0.867833i \(-0.334488\pi\)
0.496856 + 0.867833i \(0.334488\pi\)
\(182\) 2.57557 4.46102i 0.190914 0.330673i
\(183\) 0 0
\(184\) −4.15919 7.20393i −0.306620 0.531081i
\(185\) 0 0
\(186\) 0 0
\(187\) −9.45593 + 16.3782i −0.691486 + 1.19769i
\(188\) −2.48079 −0.180930
\(189\) 0 0
\(190\) 0 0
\(191\) 12.6686 21.9427i 0.916669 1.58772i 0.112230 0.993682i \(-0.464201\pi\)
0.804439 0.594035i \(-0.202466\pi\)
\(192\) 0 0
\(193\) 4.77976 + 8.27879i 0.344055 + 0.595921i 0.985182 0.171515i \(-0.0548660\pi\)
−0.641127 + 0.767435i \(0.721533\pi\)
\(194\) 9.04721 + 15.6702i 0.649552 + 1.12506i
\(195\) 0 0
\(196\) 2.25625 3.90794i 0.161161 0.279139i
\(197\) 2.06841 0.147368 0.0736842 0.997282i \(-0.476524\pi\)
0.0736842 + 0.997282i \(0.476524\pi\)
\(198\) 0 0
\(199\) 13.0970 0.928419 0.464210 0.885725i \(-0.346338\pi\)
0.464210 + 0.885725i \(0.346338\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) −14.1881 24.5745i −0.998271 1.72906i
\(203\) −0.621407 1.07631i −0.0436142 0.0755421i
\(204\) 0 0
\(205\) 0 0
\(206\) −1.36049 −0.0947900
\(207\) 0 0
\(208\) −30.5130 −2.11570
\(209\) −8.63441 + 14.9552i −0.597255 + 1.03448i
\(210\) 0 0
\(211\) −5.55595 9.62318i −0.382487 0.662487i 0.608930 0.793224i \(-0.291599\pi\)
−0.991417 + 0.130737i \(0.958266\pi\)
\(212\) −0.850382 1.47291i −0.0584045 0.101160i
\(213\) 0 0
\(214\) 9.04136 15.6601i 0.618055 1.07050i
\(215\) 0 0
\(216\) 0 0
\(217\) −2.13690 −0.145063
\(218\) 3.80523 6.59086i 0.257723 0.446389i
\(219\) 0 0
\(220\) 0 0
\(221\) 19.0304 + 32.9617i 1.28012 + 2.21724i
\(222\) 0 0
\(223\) 1.94701 3.37231i 0.130381 0.225827i −0.793442 0.608645i \(-0.791713\pi\)
0.923824 + 0.382819i \(0.125047\pi\)
\(224\) 1.83991 0.122934
\(225\) 0 0
\(226\) −19.5952 −1.30346
\(227\) 6.40406 11.0922i 0.425053 0.736213i −0.571373 0.820691i \(-0.693589\pi\)
0.996425 + 0.0844781i \(0.0269223\pi\)
\(228\) 0 0
\(229\) −3.32647 5.76162i −0.219820 0.380739i 0.734933 0.678140i \(-0.237214\pi\)
−0.954753 + 0.297401i \(0.903880\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) −2.67378 + 4.63112i −0.175542 + 0.304048i
\(233\) 3.65836 0.239667 0.119833 0.992794i \(-0.461764\pi\)
0.119833 + 0.992794i \(0.461764\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0.964212 1.67006i 0.0627648 0.108712i
\(237\) 0 0
\(238\) −2.51816 4.36158i −0.163228 0.282720i
\(239\) −7.84576 13.5893i −0.507500 0.879016i −0.999962 0.00868195i \(-0.997236\pi\)
0.492462 0.870334i \(-0.336097\pi\)
\(240\) 0 0
\(241\) −5.61248 + 9.72110i −0.361532 + 0.626191i −0.988213 0.153084i \(-0.951079\pi\)
0.626681 + 0.779276i \(0.284413\pi\)
\(242\) −2.26882 −0.145845
\(243\) 0 0
\(244\) −1.90242 −0.121790
\(245\) 0 0
\(246\) 0 0
\(247\) 17.3771 + 30.0980i 1.10568 + 1.91509i
\(248\) 4.59731 + 7.96278i 0.291930 + 0.505637i
\(249\) 0 0
\(250\) 0 0
\(251\) −6.94042 −0.438075 −0.219038 0.975716i \(-0.570292\pi\)
−0.219038 + 0.975716i \(0.570292\pi\)
\(252\) 0 0
\(253\) 11.8601 0.745640
\(254\) 2.63730 4.56794i 0.165479 0.286618i
\(255\) 0 0
\(256\) −7.23035 12.5233i −0.451897 0.782708i
\(257\) 9.16635 + 15.8766i 0.571781 + 0.990354i 0.996383 + 0.0849739i \(0.0270807\pi\)
−0.424602 + 0.905380i \(0.639586\pi\)
\(258\) 0 0
\(259\) −1.69968 + 2.94393i −0.105613 + 0.182927i
\(260\) 0 0
\(261\) 0 0
\(262\) 15.3327 0.947257
\(263\) 8.03832 13.9228i 0.495664 0.858515i −0.504323 0.863515i \(-0.668258\pi\)
0.999988 + 0.00499942i \(0.00159137\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) −2.29939 3.98265i −0.140984 0.244192i
\(267\) 0 0
\(268\) 0.805043 1.39438i 0.0491758 0.0851751i
\(269\) 18.2004 1.10970 0.554849 0.831951i \(-0.312776\pi\)
0.554849 + 0.831951i \(0.312776\pi\)
\(270\) 0 0
\(271\) −2.48571 −0.150996 −0.0754979 0.997146i \(-0.524055\pi\)
−0.0754979 + 0.997146i \(0.524055\pi\)
\(272\) −14.9164 + 25.8360i −0.904442 + 1.56654i
\(273\) 0 0
\(274\) 1.88659 + 3.26766i 0.113973 + 0.197407i
\(275\) 0 0
\(276\) 0 0
\(277\) −3.83363 + 6.64004i −0.230341 + 0.398962i −0.957908 0.287074i \(-0.907317\pi\)
0.727568 + 0.686036i \(0.240651\pi\)
\(278\) 17.7978 1.06744
\(279\) 0 0
\(280\) 0 0
\(281\) 0.136615 0.236624i 0.00814978 0.0141158i −0.861922 0.507041i \(-0.830739\pi\)
0.870072 + 0.492925i \(0.164072\pi\)
\(282\) 0 0
\(283\) −1.68544 2.91928i −0.100189 0.173533i 0.811573 0.584251i \(-0.198611\pi\)
−0.911763 + 0.410718i \(0.865278\pi\)
\(284\) 1.85396 + 3.21115i 0.110012 + 0.190547i
\(285\) 0 0
\(286\) 15.8006 27.3674i 0.934307 1.61827i
\(287\) −2.75003 −0.162329
\(288\) 0 0
\(289\) 20.2125 1.18897
\(290\) 0 0
\(291\) 0 0
\(292\) −3.94701 6.83642i −0.230981 0.400071i
\(293\) −2.82202 4.88788i −0.164864 0.285553i 0.771743 0.635935i \(-0.219385\pi\)
−0.936607 + 0.350382i \(0.886052\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 14.6267 0.850159
\(297\) 0 0
\(298\) 26.7000 1.54669
\(299\) 11.9345 20.6711i 0.690189 1.19544i
\(300\) 0 0
\(301\) −0.335402 0.580933i −0.0193322 0.0334844i
\(302\) −18.6103 32.2340i −1.07090 1.85486i
\(303\) 0 0
\(304\) −13.6205 + 23.5914i −0.781190 + 1.35306i
\(305\) 0 0
\(306\) 0 0
\(307\) 5.44105 0.310537 0.155269 0.987872i \(-0.450376\pi\)
0.155269 + 0.987872i \(0.450376\pi\)
\(308\) −0.524096 + 0.907761i −0.0298632 + 0.0517245i
\(309\) 0 0
\(310\) 0 0
\(311\) −9.53985 16.5235i −0.540955 0.936962i −0.998849 0.0479550i \(-0.984730\pi\)
0.457895 0.889007i \(-0.348604\pi\)
\(312\) 0 0
\(313\) 4.57116 7.91747i 0.258377 0.447522i −0.707430 0.706783i \(-0.750146\pi\)
0.965807 + 0.259261i \(0.0834790\pi\)
\(314\) 20.3573 1.14883
\(315\) 0 0
\(316\) 2.27677 0.128078
\(317\) 7.11836 12.3294i 0.399807 0.692486i −0.593895 0.804543i \(-0.702410\pi\)
0.993702 + 0.112056i \(0.0357437\pi\)
\(318\) 0 0
\(319\) −3.81220 6.60292i −0.213442 0.369693i
\(320\) 0 0
\(321\) 0 0
\(322\) −1.57921 + 2.73527i −0.0880057 + 0.152430i
\(323\) 33.9795 1.89067
\(324\) 0 0
\(325\) 0 0
\(326\) 6.18678 10.7158i 0.342654 0.593494i
\(327\) 0 0
\(328\) 5.91638 + 10.2475i 0.326677 + 0.565822i
\(329\) −0.936896 1.62275i −0.0516527 0.0894652i
\(330\) 0 0
\(331\) 6.10001 10.5655i 0.335287 0.580734i −0.648253 0.761425i \(-0.724500\pi\)
0.983540 + 0.180691i \(0.0578334\pi\)
\(332\) −9.30061 −0.510437
\(333\) 0 0
\(334\) 4.86317 0.266101
\(335\) 0 0
\(336\) 0 0
\(337\) −2.29493 3.97494i −0.125013 0.216529i 0.796725 0.604342i \(-0.206564\pi\)
−0.921738 + 0.387813i \(0.873231\pi\)
\(338\) −21.1800 36.6849i −1.15204 1.99540i
\(339\) 0 0
\(340\) 0 0
\(341\) −13.1094 −0.709917
\(342\) 0 0
\(343\) 6.94582 0.375039
\(344\) −1.44316 + 2.49962i −0.0778099 + 0.134771i
\(345\) 0 0
\(346\) −12.9497 22.4295i −0.696180 1.20582i
\(347\) 16.7301 + 28.9775i 0.898121 + 1.55559i 0.829894 + 0.557921i \(0.188401\pi\)
0.0682272 + 0.997670i \(0.478266\pi\)
\(348\) 0 0
\(349\) 14.0408 24.3193i 0.751586 1.30178i −0.195468 0.980710i \(-0.562623\pi\)
0.947054 0.321074i \(-0.104044\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 11.2875 0.601624
\(353\) −0.920851 + 1.59496i −0.0490119 + 0.0848912i −0.889491 0.456954i \(-0.848941\pi\)
0.840479 + 0.541845i \(0.182274\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 1.13241 + 1.96140i 0.0600178 + 0.103954i
\(357\) 0 0
\(358\) 13.9553 24.1714i 0.737563 1.27750i
\(359\) 12.1119 0.639241 0.319621 0.947546i \(-0.396445\pi\)
0.319621 + 0.947546i \(0.396445\pi\)
\(360\) 0 0
\(361\) 12.0274 0.633020
\(362\) −10.9206 + 18.9151i −0.573976 + 0.994156i
\(363\) 0 0
\(364\) 1.05476 + 1.82690i 0.0552846 + 0.0957558i
\(365\) 0 0
\(366\) 0 0
\(367\) 7.28688 12.6212i 0.380372 0.658824i −0.610743 0.791829i \(-0.709129\pi\)
0.991115 + 0.133005i \(0.0424626\pi\)
\(368\) 18.7090 0.975274
\(369\) 0 0
\(370\) 0 0
\(371\) 0.642310 1.11251i 0.0333471 0.0577589i
\(372\) 0 0
\(373\) 4.72323 + 8.18087i 0.244560 + 0.423590i 0.962008 0.273022i \(-0.0880233\pi\)
−0.717448 + 0.696612i \(0.754690\pi\)
\(374\) −15.4484 26.7574i −0.798817 1.38359i
\(375\) 0 0
\(376\) −4.03125 + 6.98233i −0.207896 + 0.360086i
\(377\) −15.3444 −0.790276
\(378\) 0 0
\(379\) −28.5541 −1.46673 −0.733363 0.679837i \(-0.762051\pi\)
−0.733363 + 0.679837i \(0.762051\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 20.6970 + 35.8483i 1.05895 + 1.83416i
\(383\) 0.732704 + 1.26908i 0.0374394 + 0.0648470i 0.884138 0.467226i \(-0.154747\pi\)
−0.846699 + 0.532073i \(0.821413\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) −15.6176 −0.794916
\(387\) 0 0
\(388\) −7.41014 −0.376193
\(389\) −6.45506 + 11.1805i −0.327284 + 0.566873i −0.981972 0.189026i \(-0.939467\pi\)
0.654688 + 0.755900i \(0.272800\pi\)
\(390\) 0 0
\(391\) −11.6685 20.2104i −0.590100 1.02208i
\(392\) −7.33276 12.7007i −0.370360 0.641483i
\(393\) 0 0
\(394\) −1.68961 + 2.92649i −0.0851212 + 0.147434i
\(395\) 0 0
\(396\) 0 0
\(397\) −0.868386 −0.0435831 −0.0217915 0.999763i \(-0.506937\pi\)
−0.0217915 + 0.999763i \(0.506937\pi\)
\(398\) −10.6984 + 18.5302i −0.536263 + 0.928834i
\(399\) 0 0
\(400\) 0 0
\(401\) 16.7063 + 28.9361i 0.834270 + 1.44500i 0.894623 + 0.446822i \(0.147444\pi\)
−0.0603527 + 0.998177i \(0.519223\pi\)
\(402\) 0 0
\(403\) −13.1916 + 22.8486i −0.657122 + 1.13817i
\(404\) 11.6208 0.578156
\(405\) 0 0
\(406\) 2.03042 0.100768
\(407\) −10.4272 + 18.0604i −0.516856 + 0.895221i
\(408\) 0 0
\(409\) −2.52767 4.37806i −0.124985 0.216481i 0.796742 0.604320i \(-0.206555\pi\)
−0.921727 + 0.387839i \(0.873222\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0.278579 0.482512i 0.0137246 0.0237717i
\(413\) 1.45658 0.0716734
\(414\) 0 0
\(415\) 0 0
\(416\) 11.3582 19.6730i 0.556883 0.964549i
\(417\) 0 0
\(418\) −14.1062 24.4327i −0.689959 1.19504i
\(419\) 5.47880 + 9.48955i 0.267657 + 0.463595i 0.968256 0.249960i \(-0.0804174\pi\)
−0.700600 + 0.713555i \(0.747084\pi\)
\(420\) 0 0
\(421\) 5.31932 9.21333i 0.259248 0.449030i −0.706793 0.707421i \(-0.749859\pi\)
0.966041 + 0.258390i \(0.0831921\pi\)
\(422\) 18.1538 0.883711
\(423\) 0 0
\(424\) −5.52744 −0.268436
\(425\) 0 0
\(426\) 0 0
\(427\) −0.718467 1.24442i −0.0347691 0.0602218i
\(428\) 3.70267 + 6.41322i 0.178975 + 0.309995i
\(429\) 0 0
\(430\) 0 0
\(431\) 37.3529 1.79923 0.899613 0.436687i \(-0.143848\pi\)
0.899613 + 0.436687i \(0.143848\pi\)
\(432\) 0 0
\(433\) −17.2125 −0.827179 −0.413589 0.910464i \(-0.635725\pi\)
−0.413589 + 0.910464i \(0.635725\pi\)
\(434\) 1.74556 3.02339i 0.0837894 0.145127i
\(435\) 0 0
\(436\) 1.55834 + 2.69913i 0.0746310 + 0.129265i
\(437\) −10.6547 18.4545i −0.509684 0.882799i
\(438\) 0 0
\(439\) 15.8744 27.4952i 0.757642 1.31228i −0.186408 0.982473i \(-0.559684\pi\)
0.944050 0.329803i \(-0.106982\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) −62.1809 −2.95764
\(443\) −0.177979 + 0.308268i −0.00845603 + 0.0146463i −0.870222 0.492659i \(-0.836025\pi\)
0.861766 + 0.507305i \(0.169358\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 3.18087 + 5.50943i 0.150619 + 0.260879i
\(447\) 0 0
\(448\) 0.968438 1.67738i 0.0457544 0.0792490i
\(449\) 7.85632 0.370762 0.185381 0.982667i \(-0.440648\pi\)
0.185381 + 0.982667i \(0.440648\pi\)
\(450\) 0 0
\(451\) −16.8708 −0.794416
\(452\) 4.01238 6.94964i 0.188726 0.326884i
\(453\) 0 0
\(454\) 10.4625 + 18.1215i 0.491028 + 0.850485i
\(455\) 0 0
\(456\) 0 0
\(457\) −10.7455 + 18.6118i −0.502654 + 0.870622i 0.497341 + 0.867555i \(0.334310\pi\)
−0.999995 + 0.00306742i \(0.999024\pi\)
\(458\) 10.8691 0.507879
\(459\) 0 0
\(460\) 0 0
\(461\) 20.4964 35.5007i 0.954611 1.65343i 0.219355 0.975645i \(-0.429605\pi\)
0.735256 0.677789i \(-0.237062\pi\)
\(462\) 0 0
\(463\) −21.0669 36.4890i −0.979063 1.69579i −0.665816 0.746116i \(-0.731916\pi\)
−0.313248 0.949671i \(-0.601417\pi\)
\(464\) −6.01363 10.4159i −0.279176 0.483546i
\(465\) 0 0
\(466\) −2.98837 + 5.17601i −0.138434 + 0.239774i
\(467\) 22.5376 1.04292 0.521459 0.853276i \(-0.325388\pi\)
0.521459 + 0.853276i \(0.325388\pi\)
\(468\) 0 0
\(469\) 1.21613 0.0561557
\(470\) 0 0
\(471\) 0 0
\(472\) −3.13366 5.42766i −0.144238 0.249828i
\(473\) −2.05762 3.56390i −0.0946093 0.163868i
\(474\) 0 0
\(475\) 0 0
\(476\) 2.06251 0.0945348
\(477\) 0 0
\(478\) 25.6356 1.17255
\(479\) −16.6440 + 28.8282i −0.760483 + 1.31720i 0.182119 + 0.983277i \(0.441704\pi\)
−0.942602 + 0.333919i \(0.891629\pi\)
\(480\) 0 0
\(481\) 20.9851 + 36.3472i 0.956837 + 1.65729i
\(482\) −9.16924 15.8816i −0.417647 0.723387i
\(483\) 0 0
\(484\) 0.464570 0.804660i 0.0211168 0.0365754i
\(485\) 0 0
\(486\) 0 0
\(487\) 23.7703 1.07713 0.538566 0.842583i \(-0.318966\pi\)
0.538566 + 0.842583i \(0.318966\pi\)
\(488\) −3.09140 + 5.35447i −0.139941 + 0.242385i
\(489\) 0 0
\(490\) 0 0
\(491\) −2.30281 3.98859i −0.103925 0.180003i 0.809374 0.587294i \(-0.199807\pi\)
−0.913298 + 0.407291i \(0.866473\pi\)
\(492\) 0 0
\(493\) −7.50118 + 12.9924i −0.337836 + 0.585150i
\(494\) −56.7787 −2.55459
\(495\) 0 0
\(496\) −20.6797 −0.928548
\(497\) −1.40033 + 2.42545i −0.0628135 + 0.108796i
\(498\) 0 0
\(499\) 9.44878 + 16.3658i 0.422985 + 0.732632i 0.996230 0.0867522i \(-0.0276488\pi\)
−0.573245 + 0.819384i \(0.694316\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 5.66936 9.81962i 0.253036 0.438271i
\(503\) −35.7581 −1.59438 −0.797188 0.603731i \(-0.793680\pi\)
−0.797188 + 0.603731i \(0.793680\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) −9.68809 + 16.7803i −0.430688 + 0.745974i
\(507\) 0 0
\(508\) 1.08004 + 1.87069i 0.0479192 + 0.0829985i
\(509\) 12.2034 + 21.1368i 0.540904 + 0.936874i 0.998852 + 0.0478949i \(0.0152513\pi\)
−0.457948 + 0.888979i \(0.651415\pi\)
\(510\) 0 0
\(511\) 2.98125 5.16368i 0.131883 0.228428i
\(512\) −3.46207 −0.153003
\(513\) 0 0
\(514\) −29.9506 −1.32106
\(515\) 0 0
\(516\) 0 0
\(517\) −5.74765 9.95523i −0.252782 0.437830i
\(518\) −2.77681 4.80957i −0.122006 0.211321i
\(519\) 0 0
\(520\) 0 0
\(521\) −33.3968 −1.46314 −0.731571 0.681766i \(-0.761212\pi\)
−0.731571 + 0.681766i \(0.761212\pi\)
\(522\) 0 0
\(523\) −37.3654 −1.63388 −0.816938 0.576726i \(-0.804330\pi\)
−0.816938 + 0.576726i \(0.804330\pi\)
\(524\) −3.13957 + 5.43789i −0.137153 + 0.237555i
\(525\) 0 0
\(526\) 13.1324 + 22.7460i 0.572600 + 0.991772i
\(527\) 12.8976 + 22.3393i 0.561828 + 0.973115i
\(528\) 0 0
\(529\) 4.18239 7.24412i 0.181843 0.314962i
\(530\) 0 0
\(531\) 0 0
\(532\) 1.88332 0.0816521
\(533\) −16.9766 + 29.4043i −0.735338 + 1.27364i
\(534\) 0 0
\(535\) 0 0
\(536\) −2.61637 4.53168i −0.113010 0.195739i
\(537\) 0 0
\(538\) −14.8672 + 25.7508i −0.640971 + 1.11019i
\(539\) 20.9097 0.900645
\(540\) 0 0
\(541\) 28.2560 1.21482 0.607409 0.794389i \(-0.292209\pi\)
0.607409 + 0.794389i \(0.292209\pi\)
\(542\) 2.03048 3.51689i 0.0872165 0.151063i
\(543\) 0 0
\(544\) −11.1051 19.2345i −0.476125 0.824673i
\(545\) 0 0
\(546\) 0 0
\(547\) 19.2726 33.3811i 0.824036 1.42727i −0.0786172 0.996905i \(-0.525050\pi\)
0.902654 0.430368i \(-0.141616\pi\)
\(548\) −1.54521 −0.0660082
\(549\) 0 0
\(550\) 0 0
\(551\) −6.84949 + 11.8637i −0.291798 + 0.505409i
\(552\) 0 0
\(553\) 0.859845 + 1.48929i 0.0365643 + 0.0633313i
\(554\) −6.26309 10.8480i −0.266093 0.460887i
\(555\) 0 0
\(556\) −3.64433 + 6.31217i −0.154554 + 0.267696i
\(557\) 27.4125 1.16151 0.580753 0.814080i \(-0.302758\pi\)
0.580753 + 0.814080i \(0.302758\pi\)
\(558\) 0 0
\(559\) −8.28206 −0.350294
\(560\) 0 0
\(561\) 0 0
\(562\) 0.223191 + 0.386579i 0.00941476 + 0.0163068i
\(563\) −13.8196 23.9363i −0.582427 1.00879i −0.995191 0.0979551i \(-0.968770\pi\)
0.412764 0.910838i \(-0.364563\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 5.50710 0.231481
\(567\) 0 0
\(568\) 12.0506 0.505634
\(569\) −7.35807 + 12.7446i −0.308467 + 0.534280i −0.978027 0.208478i \(-0.933149\pi\)
0.669561 + 0.742757i \(0.266482\pi\)
\(570\) 0 0
\(571\) 14.1503 + 24.5090i 0.592172 + 1.02567i 0.993939 + 0.109930i \(0.0350627\pi\)
−0.401768 + 0.915742i \(0.631604\pi\)
\(572\) 6.47074 + 11.2077i 0.270555 + 0.468616i
\(573\) 0 0
\(574\) 2.24639 3.89087i 0.0937626 0.162402i
\(575\) 0 0
\(576\) 0 0
\(577\) −40.7976 −1.69843 −0.849214 0.528049i \(-0.822924\pi\)
−0.849214 + 0.528049i \(0.822924\pi\)
\(578\) −16.5108 + 28.5975i −0.686759 + 1.18950i
\(579\) 0 0
\(580\) 0 0
\(581\) −3.51247 6.08377i −0.145722 0.252397i
\(582\) 0 0
\(583\) 3.94044 6.82504i 0.163196 0.282664i
\(584\) −25.6553 −1.06162
\(585\) 0 0
\(586\) 9.22080 0.380908
\(587\) 1.39016 2.40784i 0.0573782 0.0993820i −0.835910 0.548867i \(-0.815059\pi\)
0.893288 + 0.449485i \(0.148393\pi\)
\(588\) 0 0
\(589\) 11.7771 + 20.3985i 0.485265 + 0.840504i
\(590\) 0 0
\(591\) 0 0
\(592\) −16.4485 + 28.4897i −0.676031 + 1.17092i
\(593\) 14.8084 0.608109 0.304055 0.952655i \(-0.401659\pi\)
0.304055 + 0.952655i \(0.401659\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) −5.46717 + 9.46941i −0.223944 + 0.387882i
\(597\) 0 0
\(598\) 19.4976 + 33.7709i 0.797318 + 1.38100i
\(599\) −8.17151 14.1535i −0.333879 0.578295i 0.649390 0.760456i \(-0.275024\pi\)
−0.983269 + 0.182160i \(0.941691\pi\)
\(600\) 0 0
\(601\) 3.31185 5.73630i 0.135093 0.233988i −0.790540 0.612411i \(-0.790200\pi\)
0.925633 + 0.378422i \(0.123533\pi\)
\(602\) 1.09591 0.0446658
\(603\) 0 0
\(604\) 15.2428 0.620221
\(605\) 0 0
\(606\) 0 0
\(607\) −15.1547 26.2487i −0.615110 1.06540i −0.990365 0.138480i \(-0.955778\pi\)
0.375256 0.926921i \(-0.377555\pi\)
\(608\) −10.1403 17.5634i −0.411242 0.712291i
\(609\) 0 0
\(610\) 0 0
\(611\) −23.1347 −0.935931
\(612\) 0 0
\(613\) 14.7803 0.596969 0.298484 0.954415i \(-0.403519\pi\)
0.298484 + 0.954415i \(0.403519\pi\)
\(614\) −4.44459 + 7.69825i −0.179369 + 0.310676i
\(615\) 0 0
\(616\) 1.70330 + 2.95020i 0.0686278 + 0.118867i
\(617\) −16.9256 29.3160i −0.681399 1.18022i −0.974554 0.224152i \(-0.928039\pi\)
0.293155 0.956065i \(-0.405295\pi\)
\(618\) 0 0
\(619\) −5.84433 + 10.1227i −0.234903 + 0.406865i −0.959245 0.282577i \(-0.908811\pi\)
0.724341 + 0.689442i \(0.242144\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 31.1709 1.24984
\(623\) −0.855334 + 1.48148i −0.0342682 + 0.0593543i
\(624\) 0 0
\(625\) 0 0
\(626\) 7.46800 + 12.9350i 0.298481 + 0.516985i
\(627\) 0 0
\(628\) −4.16843 + 7.21993i −0.166338 + 0.288107i
\(629\) 41.0347 1.63616
\(630\) 0 0
\(631\) −38.1357 −1.51816 −0.759078 0.650999i \(-0.774350\pi\)
−0.759078 + 0.650999i \(0.774350\pi\)
\(632\) 3.69972 6.40810i 0.147167 0.254901i
\(633\) 0 0
\(634\) 11.6294 + 20.1428i 0.461864 + 0.799972i
\(635\) 0 0
\(636\) 0 0
\(637\) 21.0408 36.4437i 0.833666 1.44395i
\(638\) 12.4562 0.493144
\(639\) 0 0
\(640\) 0 0
\(641\) −17.3827 + 30.1077i −0.686576 + 1.18918i 0.286363 + 0.958121i \(0.407554\pi\)
−0.972939 + 0.231063i \(0.925780\pi\)
\(642\) 0 0
\(643\) −1.34258 2.32541i −0.0529461 0.0917053i 0.838338 0.545151i \(-0.183528\pi\)
−0.891284 + 0.453446i \(0.850194\pi\)
\(644\) −0.646726 1.12016i −0.0254846 0.0441406i
\(645\) 0 0
\(646\) −27.7565 + 48.0757i −1.09207 + 1.89151i
\(647\) −40.5103 −1.59262 −0.796311 0.604887i \(-0.793218\pi\)
−0.796311 + 0.604887i \(0.793218\pi\)
\(648\) 0 0
\(649\) 8.93578 0.350760
\(650\) 0 0
\(651\) 0 0
\(652\) 2.53365 + 4.38841i 0.0992253 + 0.171863i
\(653\) 6.66772 + 11.5488i 0.260928 + 0.451941i 0.966489 0.256709i \(-0.0826381\pi\)
−0.705561 + 0.708650i \(0.749305\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) −26.6132 −1.03907
\(657\) 0 0
\(658\) 3.06126 0.119340
\(659\) 15.5772 26.9804i 0.606800 1.05101i −0.384965 0.922931i \(-0.625786\pi\)
0.991764 0.128077i \(-0.0408803\pi\)
\(660\) 0 0
\(661\) −3.15894 5.47145i −0.122869 0.212815i 0.798029 0.602619i \(-0.205876\pi\)
−0.920898 + 0.389804i \(0.872543\pi\)
\(662\) 9.96574 + 17.2612i 0.387329 + 0.670874i
\(663\) 0 0
\(664\) −15.1134 + 26.1771i −0.586512 + 1.01587i
\(665\) 0 0
\(666\) 0 0
\(667\) 9.40838 0.364294
\(668\) −0.995798 + 1.72477i −0.0385286 + 0.0667334i
\(669\) 0 0
\(670\) 0 0
\(671\) −4.40764 7.63426i −0.170155 0.294717i
\(672\) 0 0
\(673\) 3.29610 5.70901i 0.127055 0.220066i −0.795479 0.605981i \(-0.792781\pi\)
0.922534 + 0.385915i \(0.126114\pi\)
\(674\) 7.49857 0.288834
\(675\) 0 0
\(676\) 17.3476 0.667214
\(677\) 17.4473 30.2197i 0.670556 1.16144i −0.307191 0.951648i \(-0.599389\pi\)
0.977747 0.209788i \(-0.0672775\pi\)
\(678\) 0 0
\(679\) −2.79851 4.84716i −0.107397 0.186017i
\(680\) 0 0
\(681\) 0 0
\(682\) 10.7086 18.5479i 0.410054 0.710234i
\(683\) −26.0958 −0.998528 −0.499264 0.866450i \(-0.666396\pi\)
−0.499264 + 0.866450i \(0.666396\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) −5.67378 + 9.82727i −0.216626 + 0.375207i
\(687\) 0 0
\(688\) −3.24583 5.62194i −0.123746 0.214334i
\(689\) −7.93028 13.7356i −0.302119 0.523286i
\(690\) 0 0
\(691\) 14.6529 25.3796i 0.557423 0.965485i −0.440288 0.897857i \(-0.645124\pi\)
0.997711 0.0676282i \(-0.0215432\pi\)
\(692\) 10.6065 0.403197
\(693\) 0 0
\(694\) −54.6648 −2.07505
\(695\) 0 0
\(696\) 0 0
\(697\) 16.5982 + 28.7489i 0.628701 + 1.08894i
\(698\) 22.9387 + 39.7311i 0.868244 + 1.50384i
\(699\) 0 0
\(700\) 0 0
\(701\) −15.3891 −0.581239 −0.290620 0.956839i \(-0.593861\pi\)
−0.290620 + 0.956839i \(0.593861\pi\)
\(702\) 0 0
\(703\) 37.4696 1.41319
\(704\) 5.94116 10.2904i 0.223916 0.387834i
\(705\) 0 0
\(706\) −1.50442 2.60572i −0.0566194 0.0980677i
\(707\) 4.38870 + 7.60146i 0.165054 + 0.285882i
\(708\) 0 0
\(709\) 3.86996 6.70296i 0.145339 0.251735i −0.784160 0.620558i \(-0.786906\pi\)
0.929499 + 0.368823i \(0.120239\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 7.36062 0.275851
\(713\) 8.08842 14.0096i 0.302914 0.524662i
\(714\) 0 0
\(715\) 0 0
\(716\) 5.71508 + 9.89880i 0.213582 + 0.369936i
\(717\) 0 0
\(718\) −9.89374 + 17.1365i −0.369231 + 0.639527i
\(719\) 15.1316 0.564313 0.282156 0.959368i \(-0.408950\pi\)
0.282156 + 0.959368i \(0.408950\pi\)
\(720\) 0 0
\(721\) 0.420832 0.0156726
\(722\) −9.82470 + 17.0169i −0.365638 + 0.633303i
\(723\) 0 0
\(724\) −4.47229 7.74623i −0.166211 0.287886i
\(725\) 0 0
\(726\) 0 0
\(727\) −0.0809381 + 0.140189i −0.00300183 + 0.00519932i −0.867522 0.497398i \(-0.834289\pi\)
0.864521 + 0.502597i \(0.167622\pi\)
\(728\) 6.85590 0.254097
\(729\) 0 0
\(730\) 0 0
\(731\) −4.04873 + 7.01260i −0.149748 + 0.259370i
\(732\) 0 0
\(733\) 25.0166 + 43.3300i 0.924009 + 1.60043i 0.793148 + 0.609029i \(0.208441\pi\)
0.130861 + 0.991401i \(0.458226\pi\)
\(734\) 11.9047 + 20.6196i 0.439412 + 0.761084i
\(735\) 0 0
\(736\) −6.96427 + 12.0625i −0.256707 + 0.444629i
\(737\) 7.46070 0.274818
\(738\) 0 0
\(739\) 30.5505 1.12382 0.561909 0.827199i \(-0.310067\pi\)
0.561909 + 0.827199i \(0.310067\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 1.04936 + 1.81754i 0.0385231 + 0.0667240i
\(743\) 2.98342 + 5.16743i 0.109451 + 0.189575i 0.915548 0.402209i \(-0.131757\pi\)
−0.806097 + 0.591783i \(0.798424\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) −15.4329 −0.565039
\(747\) 0 0
\(748\) 12.6530 0.462640
\(749\) −2.79670 + 4.84403i −0.102189 + 0.176997i
\(750\) 0 0
\(751\) −17.1988 29.7892i −0.627593 1.08702i −0.988033 0.154240i \(-0.950707\pi\)
0.360441 0.932782i \(-0.382626\pi\)
\(752\) −9.06674 15.7041i −0.330630 0.572668i
\(753\) 0 0
\(754\) 12.5342 21.7099i 0.456470 0.790630i
\(755\) 0 0
\(756\) 0 0
\(757\) 40.6873 1.47881 0.739403 0.673263i \(-0.235108\pi\)
0.739403 + 0.673263i \(0.235108\pi\)
\(758\) 23.3248 40.3997i 0.847194 1.46738i
\(759\) 0 0
\(760\) 0 0
\(761\) 14.1298 + 24.4735i 0.512204 + 0.887164i 0.999900 + 0.0141502i \(0.00450429\pi\)
−0.487696 + 0.873014i \(0.662162\pi\)
\(762\) 0 0
\(763\) −1.17705 + 2.03870i −0.0426119 + 0.0738060i
\(764\) −16.9519 −0.613299
\(765\) 0 0
\(766\) −2.39407 −0.0865013
\(767\) 8.99180 15.5743i 0.324675 0.562354i
\(768\) 0 0
\(769\) 23.4518 + 40.6197i 0.845694 + 1.46478i 0.885017 + 0.465558i \(0.154146\pi\)
−0.0393235 + 0.999227i \(0.512520\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 3.19791 5.53894i 0.115095 0.199351i
\(773\) −9.19641 −0.330772 −0.165386 0.986229i \(-0.552887\pi\)
−0.165386 + 0.986229i \(0.552887\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) −12.0414 + 20.8563i −0.432260 + 0.748696i
\(777\) 0 0
\(778\) −10.5458 18.2658i −0.378085 0.654862i
\(779\) 15.1562 + 26.2512i 0.543025 + 0.940548i
\(780\) 0 0
\(781\) −8.59074 + 14.8796i −0.307401 + 0.532434i
\(782\) 38.1261 1.36339
\(783\) 0 0
\(784\) 32.9844 1.17801
\(785\) 0 0
\(786\) 0 0
\(787\) −2.87319 4.97651i −0.102418 0.177393i 0.810262 0.586067i \(-0.199325\pi\)
−0.912680 + 0.408674i \(0.865991\pi\)
\(788\) −0.691939 1.19847i −0.0246493 0.0426938i
\(789\) 0 0
\(790\) 0 0
\(791\) 6.06126 0.215514
\(792\) 0 0
\(793\) −17.7411 −0.630004
\(794\) 0.709351 1.22863i 0.0251739 0.0436025i
\(795\) 0 0
\(796\) −4.38128 7.58859i −0.155290 0.268971i
\(797\) −3.53725 6.12670i −0.125296 0.217019i 0.796553 0.604569i \(-0.206655\pi\)
−0.921849 + 0.387550i \(0.873321\pi\)
\(798\) 0 0
\(799\) −11.3095 + 19.5887i −0.400103 + 0.692998i
\(800\) 0 0
\(801\) 0 0
\(802\) −54.5868 −1.92753
\(803\) 18.2893 31.6781i 0.645417 1.11789i
\(804\) 0 0
\(805\) 0 0
\(806\) −21.5515 37.3282i −0.759118 1.31483i
\(807\) 0 0
\(808\) 18.8836 32.7074i 0.664323 1.15064i
\(809\) −38.1075 −1.33979 −0.669894 0.742457i \(-0.733660\pi\)
−0.669894 + 0.742457i \(0.733660\pi\)
\(810\) 0 0
\(811\) −1.44105 −0.0506022 −0.0253011 0.999680i \(-0.508054\pi\)
−0.0253011 + 0.999680i \(0.508054\pi\)
\(812\) −0.415754 + 0.720107i −0.0145901 + 0.0252708i
\(813\) 0 0
\(814\) −17.0351 29.5057i −0.597081 1.03417i
\(815\) 0 0
\(816\) 0 0
\(817\) −3.69698 + 6.40335i −0.129341 + 0.224025i
\(818\) 8.25904 0.288771
\(819\) 0 0
\(820\) 0 0
\(821\) 11.2571 19.4979i 0.392876 0.680482i −0.599951 0.800037i \(-0.704813\pi\)
0.992828 + 0.119555i \(0.0381467\pi\)
\(822\) 0 0
\(823\) 20.7295 + 35.9045i 0.722583 + 1.25155i 0.959961 + 0.280134i \(0.0903788\pi\)
−0.237378 + 0.971417i \(0.576288\pi\)
\(824\) −0.905373 1.56815i −0.0315402 0.0546291i
\(825\) 0 0
\(826\) −1.18982 + 2.06083i −0.0413992 + 0.0717055i
\(827\) −27.8133 −0.967164 −0.483582 0.875299i \(-0.660664\pi\)
−0.483582 + 0.875299i \(0.660664\pi\)
\(828\) 0 0
\(829\) 20.7232 0.719745 0.359872 0.933002i \(-0.382820\pi\)
0.359872 + 0.933002i \(0.382820\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) −11.9568 20.7098i −0.414528 0.717983i
\(833\) −20.5718 35.6314i −0.712770 1.23455i
\(834\) 0 0
\(835\) 0 0
\(836\) 11.5537 0.399595
\(837\) 0 0
\(838\) −17.9017 −0.618403
\(839\) 9.07253 15.7141i 0.313218 0.542510i −0.665839 0.746096i \(-0.731926\pi\)
0.979057 + 0.203585i \(0.0652595\pi\)
\(840\) 0 0
\(841\) 11.4759 + 19.8768i 0.395720 + 0.685406i
\(842\) 8.69029 + 15.0520i 0.299487 + 0.518727i
\(843\) 0 0
\(844\) −3.71722 + 6.43841i −0.127952 + 0.221619i
\(845\) 0 0
\(846\) 0 0
\(847\) 0.701798 0.0241141
\(848\) 6.21591 10.7663i 0.213455 0.369716i
\(849\) 0 0
\(850\) 0 0
\(851\) −12.8670 22.2862i −0.441074 0.763962i
\(852\) 0 0
\(853\) 2.00354 3.47023i 0.0685999 0.118819i −0.829685 0.558231i \(-0.811480\pi\)
0.898285 + 0.439413i \(0.144813\pi\)
\(854\) 2.34755 0.0803316
\(855\) 0 0
\(856\) 24.0672 0.822599
\(857\) −4.54485 + 7.87192i −0.155249 + 0.268900i −0.933150 0.359488i \(-0.882951\pi\)
0.777901 + 0.628387i \(0.216285\pi\)
\(858\) 0 0
\(859\) −8.19348 14.1915i −0.279558 0.484208i 0.691717 0.722169i \(-0.256855\pi\)
−0.971275 + 0.237960i \(0.923521\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) −30.5122 + 52.8486i −1.03925 + 1.80003i
\(863\) −23.7967 −0.810050 −0.405025 0.914306i \(-0.632737\pi\)
−0.405025 + 0.914306i \(0.632737\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 14.0602 24.3530i 0.477785 0.827549i
\(867\) 0 0
\(868\) 0.714850 + 1.23816i 0.0242636 + 0.0420258i
\(869\) 5.27496 + 9.13650i 0.178941 + 0.309935i
\(870\) 0 0
\(871\) 7.50747 13.0033i 0.254381 0.440600i
\(872\) 10.1291 0.343016
\(873\) 0 0
\(874\) 34.8137 1.17759
\(875\) 0 0
\(876\) 0 0
\(877\) −18.0372 31.2413i −0.609073 1.05495i −0.991394 0.130916i \(-0.958208\pi\)
0.382321 0.924030i \(-0.375125\pi\)
\(878\) 25.9343 + 44.9196i 0.875241 + 1.51596i
\(879\) 0 0
\(880\) 0 0
\(881\) 35.4575 1.19459 0.597297 0.802020i \(-0.296241\pi\)
0.597297 + 0.802020i \(0.296241\pi\)
\(882\) 0 0
\(883\) −39.1320 −1.31690 −0.658448 0.752626i \(-0.728787\pi\)
−0.658448 + 0.752626i \(0.728787\pi\)
\(884\) 12.7323 22.0531i 0.428235 0.741725i
\(885\) 0 0
\(886\) −0.290768 0.503625i −0.00976855 0.0169196i
\(887\) 25.6416 + 44.4126i 0.860962 + 1.49123i 0.871002 + 0.491280i \(0.163471\pi\)
−0.0100402 + 0.999950i \(0.503196\pi\)
\(888\) 0 0
\(889\) −0.815778 + 1.41297i −0.0273603 + 0.0473895i
\(890\) 0 0
\(891\) 0 0
\(892\) −2.60530 −0.0872318
\(893\) −10.3270 + 17.8868i −0.345579 + 0.598560i
\(894\) 0 0
\(895\) 0 0
\(896\) 3.42207 + 5.92720i 0.114323 + 0.198014i
\(897\) 0 0
\(898\) −6.41752 + 11.1155i −0.214156 + 0.370928i
\(899\) −10.3994 −0.346841
\(900\) 0 0
\(901\) −15.5070 −0.516614
\(902\) 13.7811 23.8696i 0.458862 0.794772i
\(903\) 0 0
\(904\) −13.0401 22.5861i −0.433708 0.751204i
\(905\) 0 0
\(906\) 0 0
\(907\) −23.9294 + 41.4470i −0.794563 + 1.37622i 0.128552 + 0.991703i \(0.458967\pi\)
−0.923116 + 0.384522i \(0.874366\pi\)
\(908\) −8.56930 −0.284382
\(909\) 0 0
\(910\) 0 0
\(911\) 9.02153 15.6258i 0.298897 0.517704i −0.676987 0.735995i \(-0.736715\pi\)
0.975884 + 0.218291i \(0.0700481\pi\)
\(912\) 0 0
\(913\) −21.5482 37.3226i −0.713142 1.23520i
\(914\) −17.5552 30.4065i −0.580675 1.00576i
\(915\) 0 0
\(916\) −2.22559 + 3.85483i −0.0735354 + 0.127367i
\(917\) −4.74276 −0.156620
\(918\) 0 0
\(919\) 10.3976 0.342984 0.171492 0.985185i \(-0.445141\pi\)
0.171492 + 0.985185i \(0.445141\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 33.4854 + 57.9984i 1.10278 + 1.91008i
\(923\) 17.2892 + 29.9458i 0.569081 + 0.985676i
\(924\) 0 0
\(925\) 0 0
\(926\) 68.8351 2.26206
\(927\) 0 0
\(928\) 8.95410 0.293933
\(929\) −18.0108 + 31.1956i −0.590915 + 1.02349i 0.403194 + 0.915114i \(0.367900\pi\)
−0.994109 + 0.108381i \(0.965433\pi\)
\(930\) 0 0
\(931\) −18.7845 32.5358i −0.615638 1.06632i
\(932\) −1.22382 2.11971i −0.0400874 0.0694334i
\(933\) 0 0
\(934\) −18.4101 + 31.8873i −0.602398 + 1.04338i
\(935\) 0 0
\(936\) 0 0
\(937\) 24.0326 0.785111 0.392555 0.919728i \(-0.371591\pi\)
0.392555 + 0.919728i \(0.371591\pi\)
\(938\) −0.993410 + 1.72064i −0.0324360 + 0.0561808i
\(939\) 0 0
\(940\) 0 0
\(941\) 8.33380 + 14.4346i 0.271674 + 0.470553i 0.969291 0.245918i \(-0.0790894\pi\)
−0.697616 + 0.716471i \(0.745756\pi\)
\(942\) 0 0
\(943\) 10.4092 18.0292i 0.338969 0.587112i
\(944\) 14.0959 0.458783
\(945\) 0 0
\(946\) 6.72315 0.218589
\(947\) −13.7700 + 23.8503i −0.447464 + 0.775031i −0.998220 0.0596355i \(-0.981006\pi\)
0.550756 + 0.834666i \(0.314339\pi\)
\(948\) 0 0
\(949\) −36.8080 63.7533i −1.19484 2.06952i
\(950\) 0 0
\(951\) 0 0
\(952\) 3.35154 5.80504i 0.108624 0.188142i
\(953\) 18.1344 0.587432 0.293716 0.955893i \(-0.405108\pi\)
0.293716 + 0.955893i \(0.405108\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) −5.24922 + 9.09192i −0.169772 + 0.294054i
\(957\) 0 0
\(958\) −27.1917 47.0974i −0.878523 1.52165i
\(959\) −0.583565 1.01076i −0.0188443 0.0326393i
\(960\) 0 0
\(961\) 6.55956 11.3615i 0.211599 0.366500i
\(962\) −68.5676 −2.21071
\(963\) 0 0
\(964\) 7.51009 0.241884
\(965\) 0 0
\(966\) 0 0
\(967\) −18.0937 31.3393i −0.581855 1.00780i −0.995259 0.0972552i \(-0.968994\pi\)
0.413404 0.910548i \(-0.364340\pi\)
\(968\) −1.50984 2.61512i −0.0485281 0.0840532i
\(969\) 0 0
\(970\) 0 0
\(971\) 34.6173 1.11092 0.555461 0.831542i \(-0.312542\pi\)
0.555461 + 0.831542i \(0.312542\pi\)
\(972\) 0 0
\(973\) −5.50527 −0.176491
\(974\) −19.4170 + 33.6312i −0.622161 + 1.07761i
\(975\) 0 0
\(976\) −6.95292 12.0428i −0.222557 0.385481i
\(977\) −14.7166 25.4898i −0.470825 0.815492i 0.528618 0.848860i \(-0.322710\pi\)
−0.999443 + 0.0333671i \(0.989377\pi\)
\(978\) 0 0
\(979\) −5.24729 + 9.08857i −0.167704 + 0.290472i
\(980\) 0 0
\(981\) 0 0
\(982\) 7.52432 0.240111
\(983\) 12.2456 21.2099i 0.390573 0.676492i −0.601953 0.798532i \(-0.705610\pi\)
0.992525 + 0.122040i \(0.0389437\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) −12.2549 21.2260i −0.390274 0.675975i
\(987\) 0 0
\(988\) 11.6262 20.1371i 0.369878 0.640647i
\(989\) 5.07813 0.161475
\(990\) 0 0
\(991\) −13.2821 −0.421919 −0.210959 0.977495i \(-0.567659\pi\)
−0.210959 + 0.977495i \(0.567659\pi\)
\(992\) 7.69787 13.3331i 0.244408 0.423327i
\(993\) 0 0
\(994\) −2.28776 3.96251i −0.0725632 0.125683i
\(995\) 0 0
\(996\) 0 0
\(997\) −19.5765 + 33.9075i −0.619994 + 1.07386i 0.369492 + 0.929234i \(0.379532\pi\)
−0.989486 + 0.144627i \(0.953802\pi\)
\(998\) −30.8734 −0.977280
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 675.2.e.e.451.1 8
3.2 odd 2 225.2.e.c.151.4 yes 8
5.2 odd 4 675.2.k.c.424.2 16
5.3 odd 4 675.2.k.c.424.7 16
5.4 even 2 675.2.e.c.451.4 8
9.2 odd 6 2025.2.a.y.1.1 4
9.4 even 3 inner 675.2.e.e.226.1 8
9.5 odd 6 225.2.e.c.76.4 8
9.7 even 3 2025.2.a.p.1.4 4
15.2 even 4 225.2.k.c.124.7 16
15.8 even 4 225.2.k.c.124.2 16
15.14 odd 2 225.2.e.e.151.1 yes 8
45.2 even 12 2025.2.b.n.649.2 8
45.4 even 6 675.2.e.c.226.4 8
45.7 odd 12 2025.2.b.o.649.7 8
45.13 odd 12 675.2.k.c.199.2 16
45.14 odd 6 225.2.e.e.76.1 yes 8
45.22 odd 12 675.2.k.c.199.7 16
45.23 even 12 225.2.k.c.49.7 16
45.29 odd 6 2025.2.a.q.1.4 4
45.32 even 12 225.2.k.c.49.2 16
45.34 even 6 2025.2.a.z.1.1 4
45.38 even 12 2025.2.b.n.649.7 8
45.43 odd 12 2025.2.b.o.649.2 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
225.2.e.c.76.4 8 9.5 odd 6
225.2.e.c.151.4 yes 8 3.2 odd 2
225.2.e.e.76.1 yes 8 45.14 odd 6
225.2.e.e.151.1 yes 8 15.14 odd 2
225.2.k.c.49.2 16 45.32 even 12
225.2.k.c.49.7 16 45.23 even 12
225.2.k.c.124.2 16 15.8 even 4
225.2.k.c.124.7 16 15.2 even 4
675.2.e.c.226.4 8 45.4 even 6
675.2.e.c.451.4 8 5.4 even 2
675.2.e.e.226.1 8 9.4 even 3 inner
675.2.e.e.451.1 8 1.1 even 1 trivial
675.2.k.c.199.2 16 45.13 odd 12
675.2.k.c.199.7 16 45.22 odd 12
675.2.k.c.424.2 16 5.2 odd 4
675.2.k.c.424.7 16 5.3 odd 4
2025.2.a.p.1.4 4 9.7 even 3
2025.2.a.q.1.4 4 45.29 odd 6
2025.2.a.y.1.1 4 9.2 odd 6
2025.2.a.z.1.1 4 45.34 even 6
2025.2.b.n.649.2 8 45.2 even 12
2025.2.b.n.649.7 8 45.38 even 12
2025.2.b.o.649.2 8 45.43 odd 12
2025.2.b.o.649.7 8 45.7 odd 12