Properties

Label 675.2.e.c.451.4
Level $675$
Weight $2$
Character 675.451
Analytic conductor $5.390$
Analytic rank $0$
Dimension $8$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [675,2,Mod(226,675)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(675, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([2, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("675.226");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 675 = 3^{3} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 675.e (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.38990213644\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{3})\)
Coefficient field: 8.0.1223810289.2
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 2x^{7} + 8x^{6} - 2x^{5} + 23x^{4} - 8x^{3} + 37x^{2} + 15x + 9 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{4}]\)
Coefficient ring index: \( 3 \)
Twist minimal: no (minimal twist has level 225)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 451.4
Root \(-0.816862 + 1.41485i\) of defining polynomial
Character \(\chi\) \(=\) 675.451
Dual form 675.2.e.c.226.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.816862 - 1.41485i) q^{2} +(-0.334526 - 0.579416i) q^{4} +(-0.252674 + 0.437645i) q^{7} +2.17440 q^{8} +O(q^{10})\) \(q+(0.816862 - 1.41485i) q^{2} +(-0.334526 - 0.579416i) q^{4} +(-0.252674 + 0.437645i) q^{7} +2.17440 q^{8} +(1.55010 - 2.68485i) q^{11} +(3.11964 + 5.40337i) q^{13} +(0.412800 + 0.714990i) q^{14} +(2.44524 - 4.23527i) q^{16} +6.10020 q^{17} -5.57022 q^{19} +(-2.53244 - 4.38631i) q^{22} +(-1.91280 - 3.31307i) q^{23} +10.1932 q^{26} +0.338104 q^{28} +(1.22966 - 2.12984i) q^{29} +(-2.11429 - 3.66206i) q^{31} +(-1.82044 - 3.15309i) q^{32} +(4.98302 - 8.63085i) q^{34} +6.72677 q^{37} +(-4.55010 + 7.88101i) q^{38} +(-2.72092 - 4.71278i) q^{41} +(-0.663704 + 1.14957i) q^{43} -2.07420 q^{44} -6.24997 q^{46} +(-1.85396 + 3.21115i) q^{47} +(3.37231 + 5.84101i) q^{49} +(2.08720 - 3.61514i) q^{52} -2.54205 q^{53} +(-0.549415 + 0.951614i) q^{56} +(-2.00893 - 3.47956i) q^{58} +(1.44116 + 2.49616i) q^{59} +(1.42173 - 2.46250i) q^{61} -6.90833 q^{62} +3.83276 q^{64} +(-1.20326 - 2.08411i) q^{67} +(-2.04068 - 3.53456i) q^{68} -5.54205 q^{71} -11.7988 q^{73} +(5.49484 - 9.51734i) q^{74} +(1.86338 + 3.22748i) q^{76} +(0.783341 + 1.35679i) q^{77} +(-1.70149 + 2.94707i) q^{79} -8.89047 q^{82} +(-6.95059 + 12.0388i) q^{83} +(1.08431 + 1.87808i) q^{86} +(3.37054 - 5.83795i) q^{88} -3.38513 q^{89} -3.15301 q^{91} +(-1.27976 + 2.21661i) q^{92} +(3.02886 + 5.24614i) q^{94} +(-5.53779 + 9.59173i) q^{97} +11.0188 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 2 q^{2} - 4 q^{4} - q^{7} + 18 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 8 q - 2 q^{2} - 4 q^{4} - q^{7} + 18 q^{8} - q^{11} + 2 q^{13} + 3 q^{14} - 4 q^{16} + 22 q^{17} + 4 q^{19} + 3 q^{22} - 15 q^{23} + 20 q^{26} + 8 q^{28} + q^{29} + 4 q^{31} - 10 q^{32} - 9 q^{34} + 2 q^{37} - 23 q^{38} - 5 q^{41} - 10 q^{43} - 44 q^{44} - 20 q^{47} + 3 q^{49} + 17 q^{52} + 40 q^{53} - 30 q^{56} - 18 q^{58} + 17 q^{59} + 13 q^{61} - 12 q^{62} + 38 q^{64} + 17 q^{67} - 34 q^{68} + 16 q^{71} - 4 q^{73} + 40 q^{74} - 11 q^{76} - 12 q^{77} + 7 q^{79} - 24 q^{82} - 30 q^{83} - 34 q^{86} + 9 q^{88} + 18 q^{89} - 34 q^{91} + 12 q^{92} - 3 q^{94} - 19 q^{97} + 26 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/675\mathbb{Z}\right)^\times\).

\(n\) \(326\) \(352\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.816862 1.41485i 0.577608 1.00045i −0.418144 0.908381i \(-0.637319\pi\)
0.995753 0.0920666i \(-0.0293473\pi\)
\(3\) 0 0
\(4\) −0.334526 0.579416i −0.167263 0.289708i
\(5\) 0 0
\(6\) 0 0
\(7\) −0.252674 + 0.437645i −0.0955019 + 0.165414i −0.909818 0.415008i \(-0.863779\pi\)
0.814316 + 0.580422i \(0.197112\pi\)
\(8\) 2.17440 0.768767
\(9\) 0 0
\(10\) 0 0
\(11\) 1.55010 2.68485i 0.467373 0.809514i −0.531932 0.846787i \(-0.678534\pi\)
0.999305 + 0.0372730i \(0.0118671\pi\)
\(12\) 0 0
\(13\) 3.11964 + 5.40337i 0.865232 + 1.49863i 0.866817 + 0.498627i \(0.166162\pi\)
−0.00158518 + 0.999999i \(0.500505\pi\)
\(14\) 0.412800 + 0.714990i 0.110325 + 0.191089i
\(15\) 0 0
\(16\) 2.44524 4.23527i 0.611309 1.05882i
\(17\) 6.10020 1.47952 0.739758 0.672873i \(-0.234940\pi\)
0.739758 + 0.672873i \(0.234940\pi\)
\(18\) 0 0
\(19\) −5.57022 −1.27790 −0.638948 0.769250i \(-0.720630\pi\)
−0.638948 + 0.769250i \(0.720630\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) −2.53244 4.38631i −0.539917 0.935164i
\(23\) −1.91280 3.31307i −0.398846 0.690822i 0.594738 0.803920i \(-0.297256\pi\)
−0.993584 + 0.113098i \(0.963923\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 10.1932 1.99906
\(27\) 0 0
\(28\) 0.338104 0.0638957
\(29\) 1.22966 2.12984i 0.228342 0.395501i −0.728975 0.684541i \(-0.760003\pi\)
0.957317 + 0.289040i \(0.0933361\pi\)
\(30\) 0 0
\(31\) −2.11429 3.66206i −0.379738 0.657725i 0.611286 0.791409i \(-0.290652\pi\)
−0.991024 + 0.133685i \(0.957319\pi\)
\(32\) −1.82044 3.15309i −0.321811 0.557394i
\(33\) 0 0
\(34\) 4.98302 8.63085i 0.854581 1.48018i
\(35\) 0 0
\(36\) 0 0
\(37\) 6.72677 1.10587 0.552937 0.833223i \(-0.313507\pi\)
0.552937 + 0.833223i \(0.313507\pi\)
\(38\) −4.55010 + 7.88101i −0.738124 + 1.27847i
\(39\) 0 0
\(40\) 0 0
\(41\) −2.72092 4.71278i −0.424937 0.736012i 0.571478 0.820618i \(-0.306370\pi\)
−0.996415 + 0.0846053i \(0.973037\pi\)
\(42\) 0 0
\(43\) −0.663704 + 1.14957i −0.101214 + 0.175308i −0.912185 0.409779i \(-0.865606\pi\)
0.810971 + 0.585086i \(0.198939\pi\)
\(44\) −2.07420 −0.312697
\(45\) 0 0
\(46\) −6.24997 −0.921508
\(47\) −1.85396 + 3.21115i −0.270428 + 0.468395i −0.968971 0.247173i \(-0.920499\pi\)
0.698544 + 0.715568i \(0.253832\pi\)
\(48\) 0 0
\(49\) 3.37231 + 5.84101i 0.481759 + 0.834431i
\(50\) 0 0
\(51\) 0 0
\(52\) 2.08720 3.61514i 0.289443 0.501329i
\(53\) −2.54205 −0.349177 −0.174589 0.984641i \(-0.555860\pi\)
−0.174589 + 0.984641i \(0.555860\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) −0.549415 + 0.951614i −0.0734187 + 0.127165i
\(57\) 0 0
\(58\) −2.00893 3.47956i −0.263785 0.456889i
\(59\) 1.44116 + 2.49616i 0.187623 + 0.324973i 0.944457 0.328634i \(-0.106588\pi\)
−0.756834 + 0.653607i \(0.773255\pi\)
\(60\) 0 0
\(61\) 1.42173 2.46250i 0.182033 0.315291i −0.760539 0.649292i \(-0.775065\pi\)
0.942573 + 0.334001i \(0.108399\pi\)
\(62\) −6.90833 −0.877358
\(63\) 0 0
\(64\) 3.83276 0.479095
\(65\) 0 0
\(66\) 0 0
\(67\) −1.20326 2.08411i −0.147002 0.254614i 0.783116 0.621875i \(-0.213629\pi\)
−0.930118 + 0.367261i \(0.880296\pi\)
\(68\) −2.04068 3.53456i −0.247468 0.428628i
\(69\) 0 0
\(70\) 0 0
\(71\) −5.54205 −0.657720 −0.328860 0.944379i \(-0.606664\pi\)
−0.328860 + 0.944379i \(0.606664\pi\)
\(72\) 0 0
\(73\) −11.7988 −1.38095 −0.690473 0.723359i \(-0.742597\pi\)
−0.690473 + 0.723359i \(0.742597\pi\)
\(74\) 5.49484 9.51734i 0.638762 1.10637i
\(75\) 0 0
\(76\) 1.86338 + 3.22748i 0.213745 + 0.370217i
\(77\) 0.783341 + 1.35679i 0.0892700 + 0.154620i
\(78\) 0 0
\(79\) −1.70149 + 2.94707i −0.191433 + 0.331571i −0.945725 0.324967i \(-0.894647\pi\)
0.754293 + 0.656538i \(0.227980\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) −8.89047 −0.981789
\(83\) −6.95059 + 12.0388i −0.762926 + 1.32143i 0.178410 + 0.983956i \(0.442905\pi\)
−0.941336 + 0.337470i \(0.890429\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 1.08431 + 1.87808i 0.116924 + 0.202518i
\(87\) 0 0
\(88\) 3.37054 5.83795i 0.359301 0.622327i
\(89\) −3.38513 −0.358823 −0.179411 0.983774i \(-0.557419\pi\)
−0.179411 + 0.983774i \(0.557419\pi\)
\(90\) 0 0
\(91\) −3.15301 −0.330525
\(92\) −1.27976 + 2.21661i −0.133425 + 0.231098i
\(93\) 0 0
\(94\) 3.02886 + 5.24614i 0.312403 + 0.541098i
\(95\) 0 0
\(96\) 0 0
\(97\) −5.53779 + 9.59173i −0.562277 + 0.973892i 0.435020 + 0.900421i \(0.356741\pi\)
−0.997297 + 0.0734716i \(0.976592\pi\)
\(98\) 11.0188 1.11307
\(99\) 0 0
\(100\) 0 0
\(101\) −8.68451 + 15.0420i −0.864141 + 1.49674i 0.00375621 + 0.999993i \(0.498804\pi\)
−0.867897 + 0.496744i \(0.834529\pi\)
\(102\) 0 0
\(103\) −0.416378 0.721188i −0.0410269 0.0710608i 0.844783 0.535109i \(-0.179730\pi\)
−0.885810 + 0.464049i \(0.846396\pi\)
\(104\) 6.78334 + 11.7491i 0.665161 + 1.15209i
\(105\) 0 0
\(106\) −2.07650 + 3.59661i −0.201688 + 0.349334i
\(107\) 11.0684 1.07002 0.535012 0.844844i \(-0.320307\pi\)
0.535012 + 0.844844i \(0.320307\pi\)
\(108\) 0 0
\(109\) −4.65836 −0.446190 −0.223095 0.974797i \(-0.571616\pi\)
−0.223095 + 0.974797i \(0.571616\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 1.23570 + 2.14029i 0.116762 + 0.202238i
\(113\) −5.99711 10.3873i −0.564160 0.977155i −0.997127 0.0757447i \(-0.975867\pi\)
0.432967 0.901410i \(-0.357467\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) −1.64542 −0.152773
\(117\) 0 0
\(118\) 4.70892 0.433491
\(119\) −1.54136 + 2.66972i −0.141297 + 0.244733i
\(120\) 0 0
\(121\) 0.694371 + 1.20269i 0.0631246 + 0.109335i
\(122\) −2.32271 4.02305i −0.210288 0.364230i
\(123\) 0 0
\(124\) −1.41457 + 2.45011i −0.127032 + 0.220026i
\(125\) 0 0
\(126\) 0 0
\(127\) 3.22858 0.286490 0.143245 0.989687i \(-0.454246\pi\)
0.143245 + 0.989687i \(0.454246\pi\)
\(128\) 6.77171 11.7289i 0.598540 1.03670i
\(129\) 0 0
\(130\) 0 0
\(131\) −4.69256 8.12776i −0.409991 0.710125i 0.584897 0.811107i \(-0.301135\pi\)
−0.994888 + 0.100982i \(0.967802\pi\)
\(132\) 0 0
\(133\) 1.40745 2.43778i 0.122042 0.211382i
\(134\) −3.93159 −0.339637
\(135\) 0 0
\(136\) 13.2643 1.13740
\(137\) −1.15478 + 2.00013i −0.0986593 + 0.170883i −0.911130 0.412119i \(-0.864789\pi\)
0.812471 + 0.583002i \(0.198122\pi\)
\(138\) 0 0
\(139\) −5.44701 9.43449i −0.462009 0.800223i 0.537052 0.843549i \(-0.319538\pi\)
−0.999061 + 0.0433260i \(0.986205\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) −4.52709 + 7.84115i −0.379905 + 0.658014i
\(143\) 19.3430 1.61754
\(144\) 0 0
\(145\) 0 0
\(146\) −9.63799 + 16.6935i −0.797646 + 1.38156i
\(147\) 0 0
\(148\) −2.25028 3.89760i −0.184972 0.320381i
\(149\) −8.17151 14.1535i −0.669436 1.15950i −0.978062 0.208314i \(-0.933202\pi\)
0.308626 0.951183i \(-0.400131\pi\)
\(150\) 0 0
\(151\) −11.3913 + 19.7304i −0.927015 + 1.60564i −0.138727 + 0.990331i \(0.544301\pi\)
−0.788288 + 0.615306i \(0.789032\pi\)
\(152\) −12.1119 −0.982404
\(153\) 0 0
\(154\) 2.55953 0.206252
\(155\) 0 0
\(156\) 0 0
\(157\) 6.23035 + 10.7913i 0.497236 + 0.861238i 0.999995 0.00318877i \(-0.00101502\pi\)
−0.502759 + 0.864427i \(0.667682\pi\)
\(158\) 2.77976 + 4.81469i 0.221146 + 0.383036i
\(159\) 0 0
\(160\) 0 0
\(161\) 1.93326 0.152362
\(162\) 0 0
\(163\) 7.57384 0.593229 0.296614 0.954997i \(-0.404142\pi\)
0.296614 + 0.954997i \(0.404142\pi\)
\(164\) −1.82044 + 3.15309i −0.142152 + 0.246215i
\(165\) 0 0
\(166\) 11.3553 + 19.6680i 0.881345 + 1.52653i
\(167\) 1.48837 + 2.57793i 0.115174 + 0.199486i 0.917849 0.396929i \(-0.129924\pi\)
−0.802676 + 0.596416i \(0.796591\pi\)
\(168\) 0 0
\(169\) −12.9643 + 22.4548i −0.997252 + 1.72729i
\(170\) 0 0
\(171\) 0 0
\(172\) 0.888105 0.0677174
\(173\) 7.92649 13.7291i 0.602640 1.04380i −0.389780 0.920908i \(-0.627449\pi\)
0.992420 0.122895i \(-0.0392177\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) −7.58073 13.1302i −0.571419 0.989727i
\(177\) 0 0
\(178\) −2.76518 + 4.78943i −0.207259 + 0.358983i
\(179\) −17.0841 −1.27693 −0.638463 0.769653i \(-0.720429\pi\)
−0.638463 + 0.769653i \(0.720429\pi\)
\(180\) 0 0
\(181\) 13.3690 0.993712 0.496856 0.867833i \(-0.334488\pi\)
0.496856 + 0.867833i \(0.334488\pi\)
\(182\) −2.57557 + 4.46102i −0.190914 + 0.330673i
\(183\) 0 0
\(184\) −4.15919 7.20393i −0.306620 0.531081i
\(185\) 0 0
\(186\) 0 0
\(187\) 9.45593 16.3782i 0.691486 1.19769i
\(188\) 2.48079 0.180930
\(189\) 0 0
\(190\) 0 0
\(191\) 12.6686 21.9427i 0.916669 1.58772i 0.112230 0.993682i \(-0.464201\pi\)
0.804439 0.594035i \(-0.202466\pi\)
\(192\) 0 0
\(193\) −4.77976 8.27879i −0.344055 0.595921i 0.641127 0.767435i \(-0.278467\pi\)
−0.985182 + 0.171515i \(0.945134\pi\)
\(194\) 9.04721 + 15.6702i 0.649552 + 1.12506i
\(195\) 0 0
\(196\) 2.25625 3.90794i 0.161161 0.279139i
\(197\) −2.06841 −0.147368 −0.0736842 0.997282i \(-0.523476\pi\)
−0.0736842 + 0.997282i \(0.523476\pi\)
\(198\) 0 0
\(199\) 13.0970 0.928419 0.464210 0.885725i \(-0.346338\pi\)
0.464210 + 0.885725i \(0.346338\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 14.1881 + 24.5745i 0.998271 + 1.72906i
\(203\) 0.621407 + 1.07631i 0.0436142 + 0.0755421i
\(204\) 0 0
\(205\) 0 0
\(206\) −1.36049 −0.0947900
\(207\) 0 0
\(208\) 30.5130 2.11570
\(209\) −8.63441 + 14.9552i −0.597255 + 1.03448i
\(210\) 0 0
\(211\) −5.55595 9.62318i −0.382487 0.662487i 0.608930 0.793224i \(-0.291599\pi\)
−0.991417 + 0.130737i \(0.958266\pi\)
\(212\) 0.850382 + 1.47291i 0.0584045 + 0.101160i
\(213\) 0 0
\(214\) 9.04136 15.6601i 0.618055 1.07050i
\(215\) 0 0
\(216\) 0 0
\(217\) 2.13690 0.145063
\(218\) −3.80523 + 6.59086i −0.257723 + 0.446389i
\(219\) 0 0
\(220\) 0 0
\(221\) 19.0304 + 32.9617i 1.28012 + 2.21724i
\(222\) 0 0
\(223\) −1.94701 + 3.37231i −0.130381 + 0.225827i −0.923824 0.382819i \(-0.874953\pi\)
0.793442 + 0.608645i \(0.208287\pi\)
\(224\) 1.83991 0.122934
\(225\) 0 0
\(226\) −19.5952 −1.30346
\(227\) −6.40406 + 11.0922i −0.425053 + 0.736213i −0.996425 0.0844781i \(-0.973078\pi\)
0.571373 + 0.820691i \(0.306411\pi\)
\(228\) 0 0
\(229\) −3.32647 5.76162i −0.219820 0.380739i 0.734933 0.678140i \(-0.237214\pi\)
−0.954753 + 0.297401i \(0.903880\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 2.67378 4.63112i 0.175542 0.304048i
\(233\) −3.65836 −0.239667 −0.119833 0.992794i \(-0.538236\pi\)
−0.119833 + 0.992794i \(0.538236\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0.964212 1.67006i 0.0627648 0.108712i
\(237\) 0 0
\(238\) 2.51816 + 4.36158i 0.163228 + 0.282720i
\(239\) −7.84576 13.5893i −0.507500 0.879016i −0.999962 0.00868195i \(-0.997236\pi\)
0.492462 0.870334i \(-0.336097\pi\)
\(240\) 0 0
\(241\) −5.61248 + 9.72110i −0.361532 + 0.626191i −0.988213 0.153084i \(-0.951079\pi\)
0.626681 + 0.779276i \(0.284413\pi\)
\(242\) 2.26882 0.145845
\(243\) 0 0
\(244\) −1.90242 −0.121790
\(245\) 0 0
\(246\) 0 0
\(247\) −17.3771 30.0980i −1.10568 1.91509i
\(248\) −4.59731 7.96278i −0.291930 0.505637i
\(249\) 0 0
\(250\) 0 0
\(251\) −6.94042 −0.438075 −0.219038 0.975716i \(-0.570292\pi\)
−0.219038 + 0.975716i \(0.570292\pi\)
\(252\) 0 0
\(253\) −11.8601 −0.745640
\(254\) 2.63730 4.56794i 0.165479 0.286618i
\(255\) 0 0
\(256\) −7.23035 12.5233i −0.451897 0.782708i
\(257\) −9.16635 15.8766i −0.571781 0.990354i −0.996383 0.0849739i \(-0.972919\pi\)
0.424602 0.905380i \(-0.360414\pi\)
\(258\) 0 0
\(259\) −1.69968 + 2.94393i −0.105613 + 0.182927i
\(260\) 0 0
\(261\) 0 0
\(262\) −15.3327 −0.947257
\(263\) −8.03832 + 13.9228i −0.495664 + 0.858515i −0.999988 0.00499942i \(-0.998409\pi\)
0.504323 + 0.863515i \(0.331742\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) −2.29939 3.98265i −0.140984 0.244192i
\(267\) 0 0
\(268\) −0.805043 + 1.39438i −0.0491758 + 0.0851751i
\(269\) 18.2004 1.10970 0.554849 0.831951i \(-0.312776\pi\)
0.554849 + 0.831951i \(0.312776\pi\)
\(270\) 0 0
\(271\) −2.48571 −0.150996 −0.0754979 0.997146i \(-0.524055\pi\)
−0.0754979 + 0.997146i \(0.524055\pi\)
\(272\) 14.9164 25.8360i 0.904442 1.56654i
\(273\) 0 0
\(274\) 1.88659 + 3.26766i 0.113973 + 0.197407i
\(275\) 0 0
\(276\) 0 0
\(277\) 3.83363 6.64004i 0.230341 0.398962i −0.727568 0.686036i \(-0.759349\pi\)
0.957908 + 0.287074i \(0.0926826\pi\)
\(278\) −17.7978 −1.06744
\(279\) 0 0
\(280\) 0 0
\(281\) 0.136615 0.236624i 0.00814978 0.0141158i −0.861922 0.507041i \(-0.830739\pi\)
0.870072 + 0.492925i \(0.164072\pi\)
\(282\) 0 0
\(283\) 1.68544 + 2.91928i 0.100189 + 0.173533i 0.911763 0.410718i \(-0.134722\pi\)
−0.811573 + 0.584251i \(0.801389\pi\)
\(284\) 1.85396 + 3.21115i 0.110012 + 0.190547i
\(285\) 0 0
\(286\) 15.8006 27.3674i 0.934307 1.61827i
\(287\) 2.75003 0.162329
\(288\) 0 0
\(289\) 20.2125 1.18897
\(290\) 0 0
\(291\) 0 0
\(292\) 3.94701 + 6.83642i 0.230981 + 0.400071i
\(293\) 2.82202 + 4.88788i 0.164864 + 0.285553i 0.936607 0.350382i \(-0.113948\pi\)
−0.771743 + 0.635935i \(0.780615\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 14.6267 0.850159
\(297\) 0 0
\(298\) −26.7000 −1.54669
\(299\) 11.9345 20.6711i 0.690189 1.19544i
\(300\) 0 0
\(301\) −0.335402 0.580933i −0.0193322 0.0334844i
\(302\) 18.6103 + 32.2340i 1.07090 + 1.85486i
\(303\) 0 0
\(304\) −13.6205 + 23.5914i −0.781190 + 1.35306i
\(305\) 0 0
\(306\) 0 0
\(307\) −5.44105 −0.310537 −0.155269 0.987872i \(-0.549624\pi\)
−0.155269 + 0.987872i \(0.549624\pi\)
\(308\) 0.524096 0.907761i 0.0298632 0.0517245i
\(309\) 0 0
\(310\) 0 0
\(311\) −9.53985 16.5235i −0.540955 0.936962i −0.998849 0.0479550i \(-0.984730\pi\)
0.457895 0.889007i \(-0.348604\pi\)
\(312\) 0 0
\(313\) −4.57116 + 7.91747i −0.258377 + 0.447522i −0.965807 0.259261i \(-0.916521\pi\)
0.707430 + 0.706783i \(0.249854\pi\)
\(314\) 20.3573 1.14883
\(315\) 0 0
\(316\) 2.27677 0.128078
\(317\) −7.11836 + 12.3294i −0.399807 + 0.692486i −0.993702 0.112056i \(-0.964256\pi\)
0.593895 + 0.804543i \(0.297590\pi\)
\(318\) 0 0
\(319\) −3.81220 6.60292i −0.213442 0.369693i
\(320\) 0 0
\(321\) 0 0
\(322\) 1.57921 2.73527i 0.0880057 0.152430i
\(323\) −33.9795 −1.89067
\(324\) 0 0
\(325\) 0 0
\(326\) 6.18678 10.7158i 0.342654 0.593494i
\(327\) 0 0
\(328\) −5.91638 10.2475i −0.326677 0.565822i
\(329\) −0.936896 1.62275i −0.0516527 0.0894652i
\(330\) 0 0
\(331\) 6.10001 10.5655i 0.335287 0.580734i −0.648253 0.761425i \(-0.724500\pi\)
0.983540 + 0.180691i \(0.0578334\pi\)
\(332\) 9.30061 0.510437
\(333\) 0 0
\(334\) 4.86317 0.266101
\(335\) 0 0
\(336\) 0 0
\(337\) 2.29493 + 3.97494i 0.125013 + 0.216529i 0.921738 0.387813i \(-0.126769\pi\)
−0.796725 + 0.604342i \(0.793436\pi\)
\(338\) 21.1800 + 36.6849i 1.15204 + 1.99540i
\(339\) 0 0
\(340\) 0 0
\(341\) −13.1094 −0.709917
\(342\) 0 0
\(343\) −6.94582 −0.375039
\(344\) −1.44316 + 2.49962i −0.0778099 + 0.134771i
\(345\) 0 0
\(346\) −12.9497 22.4295i −0.696180 1.20582i
\(347\) −16.7301 28.9775i −0.898121 1.55559i −0.829894 0.557921i \(-0.811599\pi\)
−0.0682272 0.997670i \(-0.521734\pi\)
\(348\) 0 0
\(349\) 14.0408 24.3193i 0.751586 1.30178i −0.195468 0.980710i \(-0.562623\pi\)
0.947054 0.321074i \(-0.104044\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) −11.2875 −0.601624
\(353\) 0.920851 1.59496i 0.0490119 0.0848912i −0.840479 0.541845i \(-0.817726\pi\)
0.889491 + 0.456954i \(0.151059\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 1.13241 + 1.96140i 0.0600178 + 0.103954i
\(357\) 0 0
\(358\) −13.9553 + 24.1714i −0.737563 + 1.27750i
\(359\) 12.1119 0.639241 0.319621 0.947546i \(-0.396445\pi\)
0.319621 + 0.947546i \(0.396445\pi\)
\(360\) 0 0
\(361\) 12.0274 0.633020
\(362\) 10.9206 18.9151i 0.573976 0.994156i
\(363\) 0 0
\(364\) 1.05476 + 1.82690i 0.0552846 + 0.0957558i
\(365\) 0 0
\(366\) 0 0
\(367\) −7.28688 + 12.6212i −0.380372 + 0.658824i −0.991115 0.133005i \(-0.957537\pi\)
0.610743 + 0.791829i \(0.290871\pi\)
\(368\) −18.7090 −0.975274
\(369\) 0 0
\(370\) 0 0
\(371\) 0.642310 1.11251i 0.0333471 0.0577589i
\(372\) 0 0
\(373\) −4.72323 8.18087i −0.244560 0.423590i 0.717448 0.696612i \(-0.245310\pi\)
−0.962008 + 0.273022i \(0.911977\pi\)
\(374\) −15.4484 26.7574i −0.798817 1.38359i
\(375\) 0 0
\(376\) −4.03125 + 6.98233i −0.207896 + 0.360086i
\(377\) 15.3444 0.790276
\(378\) 0 0
\(379\) −28.5541 −1.46673 −0.733363 0.679837i \(-0.762051\pi\)
−0.733363 + 0.679837i \(0.762051\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) −20.6970 35.8483i −1.05895 1.83416i
\(383\) −0.732704 1.26908i −0.0374394 0.0648470i 0.846699 0.532073i \(-0.178587\pi\)
−0.884138 + 0.467226i \(0.845253\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) −15.6176 −0.794916
\(387\) 0 0
\(388\) 7.41014 0.376193
\(389\) −6.45506 + 11.1805i −0.327284 + 0.566873i −0.981972 0.189026i \(-0.939467\pi\)
0.654688 + 0.755900i \(0.272800\pi\)
\(390\) 0 0
\(391\) −11.6685 20.2104i −0.590100 1.02208i
\(392\) 7.33276 + 12.7007i 0.370360 + 0.641483i
\(393\) 0 0
\(394\) −1.68961 + 2.92649i −0.0851212 + 0.147434i
\(395\) 0 0
\(396\) 0 0
\(397\) 0.868386 0.0435831 0.0217915 0.999763i \(-0.493063\pi\)
0.0217915 + 0.999763i \(0.493063\pi\)
\(398\) 10.6984 18.5302i 0.536263 0.928834i
\(399\) 0 0
\(400\) 0 0
\(401\) 16.7063 + 28.9361i 0.834270 + 1.44500i 0.894623 + 0.446822i \(0.147444\pi\)
−0.0603527 + 0.998177i \(0.519223\pi\)
\(402\) 0 0
\(403\) 13.1916 22.8486i 0.657122 1.13817i
\(404\) 11.6208 0.578156
\(405\) 0 0
\(406\) 2.03042 0.100768
\(407\) 10.4272 18.0604i 0.516856 0.895221i
\(408\) 0 0
\(409\) −2.52767 4.37806i −0.124985 0.216481i 0.796742 0.604320i \(-0.206555\pi\)
−0.921727 + 0.387839i \(0.873222\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) −0.278579 + 0.482512i −0.0137246 + 0.0237717i
\(413\) −1.45658 −0.0716734
\(414\) 0 0
\(415\) 0 0
\(416\) 11.3582 19.6730i 0.556883 0.964549i
\(417\) 0 0
\(418\) 14.1062 + 24.4327i 0.689959 + 1.19504i
\(419\) 5.47880 + 9.48955i 0.267657 + 0.463595i 0.968256 0.249960i \(-0.0804174\pi\)
−0.700600 + 0.713555i \(0.747084\pi\)
\(420\) 0 0
\(421\) 5.31932 9.21333i 0.259248 0.449030i −0.706793 0.707421i \(-0.749859\pi\)
0.966041 + 0.258390i \(0.0831921\pi\)
\(422\) −18.1538 −0.883711
\(423\) 0 0
\(424\) −5.52744 −0.268436
\(425\) 0 0
\(426\) 0 0
\(427\) 0.718467 + 1.24442i 0.0347691 + 0.0602218i
\(428\) −3.70267 6.41322i −0.178975 0.309995i
\(429\) 0 0
\(430\) 0 0
\(431\) 37.3529 1.79923 0.899613 0.436687i \(-0.143848\pi\)
0.899613 + 0.436687i \(0.143848\pi\)
\(432\) 0 0
\(433\) 17.2125 0.827179 0.413589 0.910464i \(-0.364275\pi\)
0.413589 + 0.910464i \(0.364275\pi\)
\(434\) 1.74556 3.02339i 0.0837894 0.145127i
\(435\) 0 0
\(436\) 1.55834 + 2.69913i 0.0746310 + 0.129265i
\(437\) 10.6547 + 18.4545i 0.509684 + 0.882799i
\(438\) 0 0
\(439\) 15.8744 27.4952i 0.757642 1.31228i −0.186408 0.982473i \(-0.559684\pi\)
0.944050 0.329803i \(-0.106982\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 62.1809 2.95764
\(443\) 0.177979 0.308268i 0.00845603 0.0146463i −0.861766 0.507305i \(-0.830642\pi\)
0.870222 + 0.492659i \(0.163975\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 3.18087 + 5.50943i 0.150619 + 0.260879i
\(447\) 0 0
\(448\) −0.968438 + 1.67738i −0.0457544 + 0.0792490i
\(449\) 7.85632 0.370762 0.185381 0.982667i \(-0.440648\pi\)
0.185381 + 0.982667i \(0.440648\pi\)
\(450\) 0 0
\(451\) −16.8708 −0.794416
\(452\) −4.01238 + 6.94964i −0.188726 + 0.326884i
\(453\) 0 0
\(454\) 10.4625 + 18.1215i 0.491028 + 0.850485i
\(455\) 0 0
\(456\) 0 0
\(457\) 10.7455 18.6118i 0.502654 0.870622i −0.497341 0.867555i \(-0.665690\pi\)
0.999995 0.00306742i \(-0.000976391\pi\)
\(458\) −10.8691 −0.507879
\(459\) 0 0
\(460\) 0 0
\(461\) 20.4964 35.5007i 0.954611 1.65343i 0.219355 0.975645i \(-0.429605\pi\)
0.735256 0.677789i \(-0.237062\pi\)
\(462\) 0 0
\(463\) 21.0669 + 36.4890i 0.979063 + 1.69579i 0.665816 + 0.746116i \(0.268084\pi\)
0.313248 + 0.949671i \(0.398583\pi\)
\(464\) −6.01363 10.4159i −0.279176 0.483546i
\(465\) 0 0
\(466\) −2.98837 + 5.17601i −0.138434 + 0.239774i
\(467\) −22.5376 −1.04292 −0.521459 0.853276i \(-0.674612\pi\)
−0.521459 + 0.853276i \(0.674612\pi\)
\(468\) 0 0
\(469\) 1.21613 0.0561557
\(470\) 0 0
\(471\) 0 0
\(472\) 3.13366 + 5.42766i 0.144238 + 0.249828i
\(473\) 2.05762 + 3.56390i 0.0946093 + 0.163868i
\(474\) 0 0
\(475\) 0 0
\(476\) 2.06251 0.0945348
\(477\) 0 0
\(478\) −25.6356 −1.17255
\(479\) −16.6440 + 28.8282i −0.760483 + 1.31720i 0.182119 + 0.983277i \(0.441704\pi\)
−0.942602 + 0.333919i \(0.891629\pi\)
\(480\) 0 0
\(481\) 20.9851 + 36.3472i 0.956837 + 1.65729i
\(482\) 9.16924 + 15.8816i 0.417647 + 0.723387i
\(483\) 0 0
\(484\) 0.464570 0.804660i 0.0211168 0.0365754i
\(485\) 0 0
\(486\) 0 0
\(487\) −23.7703 −1.07713 −0.538566 0.842583i \(-0.681034\pi\)
−0.538566 + 0.842583i \(0.681034\pi\)
\(488\) 3.09140 5.35447i 0.139941 0.242385i
\(489\) 0 0
\(490\) 0 0
\(491\) −2.30281 3.98859i −0.103925 0.180003i 0.809374 0.587294i \(-0.199807\pi\)
−0.913298 + 0.407291i \(0.866473\pi\)
\(492\) 0 0
\(493\) 7.50118 12.9924i 0.337836 0.585150i
\(494\) −56.7787 −2.55459
\(495\) 0 0
\(496\) −20.6797 −0.928548
\(497\) 1.40033 2.42545i 0.0628135 0.108796i
\(498\) 0 0
\(499\) 9.44878 + 16.3658i 0.422985 + 0.732632i 0.996230 0.0867522i \(-0.0276488\pi\)
−0.573245 + 0.819384i \(0.694316\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) −5.66936 + 9.81962i −0.253036 + 0.438271i
\(503\) 35.7581 1.59438 0.797188 0.603731i \(-0.206320\pi\)
0.797188 + 0.603731i \(0.206320\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) −9.68809 + 16.7803i −0.430688 + 0.745974i
\(507\) 0 0
\(508\) −1.08004 1.87069i −0.0479192 0.0829985i
\(509\) 12.2034 + 21.1368i 0.540904 + 0.936874i 0.998852 + 0.0478949i \(0.0152513\pi\)
−0.457948 + 0.888979i \(0.651415\pi\)
\(510\) 0 0
\(511\) 2.98125 5.16368i 0.131883 0.228428i
\(512\) 3.46207 0.153003
\(513\) 0 0
\(514\) −29.9506 −1.32106
\(515\) 0 0
\(516\) 0 0
\(517\) 5.74765 + 9.95523i 0.252782 + 0.437830i
\(518\) 2.77681 + 4.80957i 0.122006 + 0.211321i
\(519\) 0 0
\(520\) 0 0
\(521\) −33.3968 −1.46314 −0.731571 0.681766i \(-0.761212\pi\)
−0.731571 + 0.681766i \(0.761212\pi\)
\(522\) 0 0
\(523\) 37.3654 1.63388 0.816938 0.576726i \(-0.195670\pi\)
0.816938 + 0.576726i \(0.195670\pi\)
\(524\) −3.13957 + 5.43789i −0.137153 + 0.237555i
\(525\) 0 0
\(526\) 13.1324 + 22.7460i 0.572600 + 0.991772i
\(527\) −12.8976 22.3393i −0.561828 0.973115i
\(528\) 0 0
\(529\) 4.18239 7.24412i 0.181843 0.314962i
\(530\) 0 0
\(531\) 0 0
\(532\) −1.88332 −0.0816521
\(533\) 16.9766 29.4043i 0.735338 1.27364i
\(534\) 0 0
\(535\) 0 0
\(536\) −2.61637 4.53168i −0.113010 0.195739i
\(537\) 0 0
\(538\) 14.8672 25.7508i 0.640971 1.11019i
\(539\) 20.9097 0.900645
\(540\) 0 0
\(541\) 28.2560 1.21482 0.607409 0.794389i \(-0.292209\pi\)
0.607409 + 0.794389i \(0.292209\pi\)
\(542\) −2.03048 + 3.51689i −0.0872165 + 0.151063i
\(543\) 0 0
\(544\) −11.1051 19.2345i −0.476125 0.824673i
\(545\) 0 0
\(546\) 0 0
\(547\) −19.2726 + 33.3811i −0.824036 + 1.42727i 0.0786172 + 0.996905i \(0.474950\pi\)
−0.902654 + 0.430368i \(0.858384\pi\)
\(548\) 1.54521 0.0660082
\(549\) 0 0
\(550\) 0 0
\(551\) −6.84949 + 11.8637i −0.291798 + 0.505409i
\(552\) 0 0
\(553\) −0.859845 1.48929i −0.0365643 0.0633313i
\(554\) −6.26309 10.8480i −0.266093 0.460887i
\(555\) 0 0
\(556\) −3.64433 + 6.31217i −0.154554 + 0.267696i
\(557\) −27.4125 −1.16151 −0.580753 0.814080i \(-0.697242\pi\)
−0.580753 + 0.814080i \(0.697242\pi\)
\(558\) 0 0
\(559\) −8.28206 −0.350294
\(560\) 0 0
\(561\) 0 0
\(562\) −0.223191 0.386579i −0.00941476 0.0163068i
\(563\) 13.8196 + 23.9363i 0.582427 + 1.00879i 0.995191 + 0.0979551i \(0.0312302\pi\)
−0.412764 + 0.910838i \(0.635437\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 5.50710 0.231481
\(567\) 0 0
\(568\) −12.0506 −0.505634
\(569\) −7.35807 + 12.7446i −0.308467 + 0.534280i −0.978027 0.208478i \(-0.933149\pi\)
0.669561 + 0.742757i \(0.266482\pi\)
\(570\) 0 0
\(571\) 14.1503 + 24.5090i 0.592172 + 1.02567i 0.993939 + 0.109930i \(0.0350627\pi\)
−0.401768 + 0.915742i \(0.631604\pi\)
\(572\) −6.47074 11.2077i −0.270555 0.468616i
\(573\) 0 0
\(574\) 2.24639 3.89087i 0.0937626 0.162402i
\(575\) 0 0
\(576\) 0 0
\(577\) 40.7976 1.69843 0.849214 0.528049i \(-0.177076\pi\)
0.849214 + 0.528049i \(0.177076\pi\)
\(578\) 16.5108 28.5975i 0.686759 1.18950i
\(579\) 0 0
\(580\) 0 0
\(581\) −3.51247 6.08377i −0.145722 0.252397i
\(582\) 0 0
\(583\) −3.94044 + 6.82504i −0.163196 + 0.282664i
\(584\) −25.6553 −1.06162
\(585\) 0 0
\(586\) 9.22080 0.380908
\(587\) −1.39016 + 2.40784i −0.0573782 + 0.0993820i −0.893288 0.449485i \(-0.851607\pi\)
0.835910 + 0.548867i \(0.184941\pi\)
\(588\) 0 0
\(589\) 11.7771 + 20.3985i 0.485265 + 0.840504i
\(590\) 0 0
\(591\) 0 0
\(592\) 16.4485 28.4897i 0.676031 1.17092i
\(593\) −14.8084 −0.608109 −0.304055 0.952655i \(-0.598341\pi\)
−0.304055 + 0.952655i \(0.598341\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) −5.46717 + 9.46941i −0.223944 + 0.387882i
\(597\) 0 0
\(598\) −19.4976 33.7709i −0.797318 1.38100i
\(599\) −8.17151 14.1535i −0.333879 0.578295i 0.649390 0.760456i \(-0.275024\pi\)
−0.983269 + 0.182160i \(0.941691\pi\)
\(600\) 0 0
\(601\) 3.31185 5.73630i 0.135093 0.233988i −0.790540 0.612411i \(-0.790200\pi\)
0.925633 + 0.378422i \(0.123533\pi\)
\(602\) −1.09591 −0.0446658
\(603\) 0 0
\(604\) 15.2428 0.620221
\(605\) 0 0
\(606\) 0 0
\(607\) 15.1547 + 26.2487i 0.615110 + 1.06540i 0.990365 + 0.138480i \(0.0442216\pi\)
−0.375256 + 0.926921i \(0.622445\pi\)
\(608\) 10.1403 + 17.5634i 0.411242 + 0.712291i
\(609\) 0 0
\(610\) 0 0
\(611\) −23.1347 −0.935931
\(612\) 0 0
\(613\) −14.7803 −0.596969 −0.298484 0.954415i \(-0.596481\pi\)
−0.298484 + 0.954415i \(0.596481\pi\)
\(614\) −4.44459 + 7.69825i −0.179369 + 0.310676i
\(615\) 0 0
\(616\) 1.70330 + 2.95020i 0.0686278 + 0.118867i
\(617\) 16.9256 + 29.3160i 0.681399 + 1.18022i 0.974554 + 0.224152i \(0.0719614\pi\)
−0.293155 + 0.956065i \(0.594705\pi\)
\(618\) 0 0
\(619\) −5.84433 + 10.1227i −0.234903 + 0.406865i −0.959245 0.282577i \(-0.908811\pi\)
0.724341 + 0.689442i \(0.242144\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) −31.1709 −1.24984
\(623\) 0.855334 1.48148i 0.0342682 0.0593543i
\(624\) 0 0
\(625\) 0 0
\(626\) 7.46800 + 12.9350i 0.298481 + 0.516985i
\(627\) 0 0
\(628\) 4.16843 7.21993i 0.166338 0.288107i
\(629\) 41.0347 1.63616
\(630\) 0 0
\(631\) −38.1357 −1.51816 −0.759078 0.650999i \(-0.774350\pi\)
−0.759078 + 0.650999i \(0.774350\pi\)
\(632\) −3.69972 + 6.40810i −0.147167 + 0.254901i
\(633\) 0 0
\(634\) 11.6294 + 20.1428i 0.461864 + 0.799972i
\(635\) 0 0
\(636\) 0 0
\(637\) −21.0408 + 36.4437i −0.833666 + 1.44395i
\(638\) −12.4562 −0.493144
\(639\) 0 0
\(640\) 0 0
\(641\) −17.3827 + 30.1077i −0.686576 + 1.18918i 0.286363 + 0.958121i \(0.407554\pi\)
−0.972939 + 0.231063i \(0.925780\pi\)
\(642\) 0 0
\(643\) 1.34258 + 2.32541i 0.0529461 + 0.0917053i 0.891284 0.453446i \(-0.149806\pi\)
−0.838338 + 0.545151i \(0.816472\pi\)
\(644\) −0.646726 1.12016i −0.0254846 0.0441406i
\(645\) 0 0
\(646\) −27.7565 + 48.0757i −1.09207 + 1.89151i
\(647\) 40.5103 1.59262 0.796311 0.604887i \(-0.206782\pi\)
0.796311 + 0.604887i \(0.206782\pi\)
\(648\) 0 0
\(649\) 8.93578 0.350760
\(650\) 0 0
\(651\) 0 0
\(652\) −2.53365 4.38841i −0.0992253 0.171863i
\(653\) −6.66772 11.5488i −0.260928 0.451941i 0.705561 0.708650i \(-0.250695\pi\)
−0.966489 + 0.256709i \(0.917362\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) −26.6132 −1.03907
\(657\) 0 0
\(658\) −3.06126 −0.119340
\(659\) 15.5772 26.9804i 0.606800 1.05101i −0.384965 0.922931i \(-0.625786\pi\)
0.991764 0.128077i \(-0.0408803\pi\)
\(660\) 0 0
\(661\) −3.15894 5.47145i −0.122869 0.212815i 0.798029 0.602619i \(-0.205876\pi\)
−0.920898 + 0.389804i \(0.872543\pi\)
\(662\) −9.96574 17.2612i −0.387329 0.670874i
\(663\) 0 0
\(664\) −15.1134 + 26.1771i −0.586512 + 1.01587i
\(665\) 0 0
\(666\) 0 0
\(667\) −9.40838 −0.364294
\(668\) 0.995798 1.72477i 0.0385286 0.0667334i
\(669\) 0 0
\(670\) 0 0
\(671\) −4.40764 7.63426i −0.170155 0.294717i
\(672\) 0 0
\(673\) −3.29610 + 5.70901i −0.127055 + 0.220066i −0.922534 0.385915i \(-0.873886\pi\)
0.795479 + 0.605981i \(0.207219\pi\)
\(674\) 7.49857 0.288834
\(675\) 0 0
\(676\) 17.3476 0.667214
\(677\) −17.4473 + 30.2197i −0.670556 + 1.16144i 0.307191 + 0.951648i \(0.400611\pi\)
−0.977747 + 0.209788i \(0.932722\pi\)
\(678\) 0 0
\(679\) −2.79851 4.84716i −0.107397 0.186017i
\(680\) 0 0
\(681\) 0 0
\(682\) −10.7086 + 18.5479i −0.410054 + 0.710234i
\(683\) 26.0958 0.998528 0.499264 0.866450i \(-0.333604\pi\)
0.499264 + 0.866450i \(0.333604\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) −5.67378 + 9.82727i −0.216626 + 0.375207i
\(687\) 0 0
\(688\) 3.24583 + 5.62194i 0.123746 + 0.214334i
\(689\) −7.93028 13.7356i −0.302119 0.523286i
\(690\) 0 0
\(691\) 14.6529 25.3796i 0.557423 0.965485i −0.440288 0.897857i \(-0.645124\pi\)
0.997711 0.0676282i \(-0.0215432\pi\)
\(692\) −10.6065 −0.403197
\(693\) 0 0
\(694\) −54.6648 −2.07505
\(695\) 0 0
\(696\) 0 0
\(697\) −16.5982 28.7489i −0.628701 1.08894i
\(698\) −22.9387 39.7311i −0.868244 1.50384i
\(699\) 0 0
\(700\) 0 0
\(701\) −15.3891 −0.581239 −0.290620 0.956839i \(-0.593861\pi\)
−0.290620 + 0.956839i \(0.593861\pi\)
\(702\) 0 0
\(703\) −37.4696 −1.41319
\(704\) 5.94116 10.2904i 0.223916 0.387834i
\(705\) 0 0
\(706\) −1.50442 2.60572i −0.0566194 0.0980677i
\(707\) −4.38870 7.60146i −0.165054 0.285882i
\(708\) 0 0
\(709\) 3.86996 6.70296i 0.145339 0.251735i −0.784160 0.620558i \(-0.786906\pi\)
0.929499 + 0.368823i \(0.120239\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) −7.36062 −0.275851
\(713\) −8.08842 + 14.0096i −0.302914 + 0.524662i
\(714\) 0 0
\(715\) 0 0
\(716\) 5.71508 + 9.89880i 0.213582 + 0.369936i
\(717\) 0 0
\(718\) 9.89374 17.1365i 0.369231 0.639527i
\(719\) 15.1316 0.564313 0.282156 0.959368i \(-0.408950\pi\)
0.282156 + 0.959368i \(0.408950\pi\)
\(720\) 0 0
\(721\) 0.420832 0.0156726
\(722\) 9.82470 17.0169i 0.365638 0.633303i
\(723\) 0 0
\(724\) −4.47229 7.74623i −0.166211 0.287886i
\(725\) 0 0
\(726\) 0 0
\(727\) 0.0809381 0.140189i 0.00300183 0.00519932i −0.864521 0.502597i \(-0.832378\pi\)
0.867522 + 0.497398i \(0.165711\pi\)
\(728\) −6.85590 −0.254097
\(729\) 0 0
\(730\) 0 0
\(731\) −4.04873 + 7.01260i −0.149748 + 0.259370i
\(732\) 0 0
\(733\) −25.0166 43.3300i −0.924009 1.60043i −0.793148 0.609029i \(-0.791559\pi\)
−0.130861 0.991401i \(-0.541774\pi\)
\(734\) 11.9047 + 20.6196i 0.439412 + 0.761084i
\(735\) 0 0
\(736\) −6.96427 + 12.0625i −0.256707 + 0.444629i
\(737\) −7.46070 −0.274818
\(738\) 0 0
\(739\) 30.5505 1.12382 0.561909 0.827199i \(-0.310067\pi\)
0.561909 + 0.827199i \(0.310067\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) −1.04936 1.81754i −0.0385231 0.0667240i
\(743\) −2.98342 5.16743i −0.109451 0.189575i 0.806097 0.591783i \(-0.201576\pi\)
−0.915548 + 0.402209i \(0.868243\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) −15.4329 −0.565039
\(747\) 0 0
\(748\) −12.6530 −0.462640
\(749\) −2.79670 + 4.84403i −0.102189 + 0.176997i
\(750\) 0 0
\(751\) −17.1988 29.7892i −0.627593 1.08702i −0.988033 0.154240i \(-0.950707\pi\)
0.360441 0.932782i \(-0.382626\pi\)
\(752\) 9.06674 + 15.7041i 0.330630 + 0.572668i
\(753\) 0 0
\(754\) 12.5342 21.7099i 0.456470 0.790630i
\(755\) 0 0
\(756\) 0 0
\(757\) −40.6873 −1.47881 −0.739403 0.673263i \(-0.764892\pi\)
−0.739403 + 0.673263i \(0.764892\pi\)
\(758\) −23.3248 + 40.3997i −0.847194 + 1.46738i
\(759\) 0 0
\(760\) 0 0
\(761\) 14.1298 + 24.4735i 0.512204 + 0.887164i 0.999900 + 0.0141502i \(0.00450429\pi\)
−0.487696 + 0.873014i \(0.662162\pi\)
\(762\) 0 0
\(763\) 1.17705 2.03870i 0.0426119 0.0738060i
\(764\) −16.9519 −0.613299
\(765\) 0 0
\(766\) −2.39407 −0.0865013
\(767\) −8.99180 + 15.5743i −0.324675 + 0.562354i
\(768\) 0 0
\(769\) 23.4518 + 40.6197i 0.845694 + 1.46478i 0.885017 + 0.465558i \(0.154146\pi\)
−0.0393235 + 0.999227i \(0.512520\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −3.19791 + 5.53894i −0.115095 + 0.199351i
\(773\) 9.19641 0.330772 0.165386 0.986229i \(-0.447113\pi\)
0.165386 + 0.986229i \(0.447113\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) −12.0414 + 20.8563i −0.432260 + 0.748696i
\(777\) 0 0
\(778\) 10.5458 + 18.2658i 0.378085 + 0.654862i
\(779\) 15.1562 + 26.2512i 0.543025 + 0.940548i
\(780\) 0 0
\(781\) −8.59074 + 14.8796i −0.307401 + 0.532434i
\(782\) −38.1261 −1.36339
\(783\) 0 0
\(784\) 32.9844 1.17801
\(785\) 0 0
\(786\) 0 0
\(787\) 2.87319 + 4.97651i 0.102418 + 0.177393i 0.912680 0.408674i \(-0.134009\pi\)
−0.810262 + 0.586067i \(0.800675\pi\)
\(788\) 0.691939 + 1.19847i 0.0246493 + 0.0426938i
\(789\) 0 0
\(790\)