Properties

Label 675.2.e.c.451.1
Level $675$
Weight $2$
Character 675.451
Analytic conductor $5.390$
Analytic rank $0$
Dimension $8$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [675,2,Mod(226,675)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(675, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([2, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("675.226");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 675 = 3^{3} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 675.e (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.38990213644\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{3})\)
Coefficient field: 8.0.1223810289.2
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 2x^{7} + 8x^{6} - 2x^{5} + 23x^{4} - 8x^{3} + 37x^{2} + 15x + 9 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{4}]\)
Coefficient ring index: \( 3 \)
Twist minimal: no (minimal twist has level 225)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 451.1
Root \(1.31686 - 2.28087i\) of defining polynomial
Character \(\chi\) \(=\) 675.451
Dual form 675.2.e.c.226.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.31686 + 2.28087i) q^{2} +(-2.46825 - 4.27513i) q^{4} +(-0.898714 + 1.55662i) q^{7} +7.73393 q^{8} +O(q^{10})\) \(q+(-1.31686 + 2.28087i) q^{2} +(-2.46825 - 4.27513i) q^{4} +(-0.898714 + 1.55662i) q^{7} +7.73393 q^{8} +(0.904062 - 1.56588i) q^{11} +(0.985914 + 1.70765i) q^{13} +(-2.36696 - 4.09970i) q^{14} +(-5.24801 + 9.08982i) q^{16} +4.80812 q^{17} +2.96467 q^{19} +(2.38105 + 4.12410i) q^{22} +(0.866963 + 1.50162i) q^{23} -5.19325 q^{26} +8.87300 q^{28} +(-3.68382 + 6.38057i) q^{29} +(1.31151 + 2.27161i) q^{31} +(-6.08789 - 10.5445i) q^{32} +(-6.33163 + 10.9667i) q^{34} -11.6351 q^{37} +(-3.90406 + 6.76203i) q^{38} +(-1.23324 - 2.13603i) q^{41} +(-3.63907 + 6.30306i) q^{43} -8.92580 q^{44} -4.56668 q^{46} +(-3.14604 + 5.44910i) q^{47} +(1.88463 + 3.26427i) q^{49} +(4.86696 - 8.42983i) q^{52} +1.72540 q^{53} +(-6.95059 + 12.0388i) q^{56} +(-9.70218 - 16.8047i) q^{58} +(5.51300 + 9.54880i) q^{59} +(6.33521 - 10.9729i) q^{61} -6.90833 q^{62} +11.0756 q^{64} +(4.55187 + 7.88407i) q^{67} +(-11.8676 - 20.5554i) q^{68} -1.27460 q^{71} +3.58770 q^{73} +(15.3218 - 26.5382i) q^{74} +(-7.31755 - 12.6744i) q^{76} +(1.62499 + 2.81456i) q^{77} +(-1.05545 + 1.82809i) q^{79} +6.49602 q^{82} +(-0.549415 + 0.951614i) q^{83} +(-9.58431 - 16.6005i) q^{86} +(6.99195 - 12.1104i) q^{88} +13.2935 q^{89} -3.54422 q^{91} +(4.27976 - 7.41277i) q^{92} +(-8.28580 - 14.3514i) q^{94} +(-1.91638 + 3.31926i) q^{97} -9.92718 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 2 q^{2} - 4 q^{4} - q^{7} + 18 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 8 q - 2 q^{2} - 4 q^{4} - q^{7} + 18 q^{8} - q^{11} + 2 q^{13} + 3 q^{14} - 4 q^{16} + 22 q^{17} + 4 q^{19} + 3 q^{22} - 15 q^{23} + 20 q^{26} + 8 q^{28} + q^{29} + 4 q^{31} - 10 q^{32} - 9 q^{34} + 2 q^{37} - 23 q^{38} - 5 q^{41} - 10 q^{43} - 44 q^{44} - 20 q^{47} + 3 q^{49} + 17 q^{52} + 40 q^{53} - 30 q^{56} - 18 q^{58} + 17 q^{59} + 13 q^{61} - 12 q^{62} + 38 q^{64} + 17 q^{67} - 34 q^{68} + 16 q^{71} - 4 q^{73} + 40 q^{74} - 11 q^{76} - 12 q^{77} + 7 q^{79} - 24 q^{82} - 30 q^{83} - 34 q^{86} + 9 q^{88} + 18 q^{89} - 34 q^{91} + 12 q^{92} - 3 q^{94} - 19 q^{97} + 26 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/675\mathbb{Z}\right)^\times\).

\(n\) \(326\) \(352\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.31686 + 2.28087i −0.931162 + 1.61282i −0.149823 + 0.988713i \(0.547870\pi\)
−0.781339 + 0.624107i \(0.785463\pi\)
\(3\) 0 0
\(4\) −2.46825 4.27513i −1.23412 2.13757i
\(5\) 0 0
\(6\) 0 0
\(7\) −0.898714 + 1.55662i −0.339682 + 0.588346i −0.984373 0.176097i \(-0.943653\pi\)
0.644691 + 0.764443i \(0.276986\pi\)
\(8\) 7.73393 2.73436
\(9\) 0 0
\(10\) 0 0
\(11\) 0.904062 1.56588i 0.272585 0.472131i −0.696938 0.717131i \(-0.745455\pi\)
0.969523 + 0.245000i \(0.0787881\pi\)
\(12\) 0 0
\(13\) 0.985914 + 1.70765i 0.273443 + 0.473618i 0.969741 0.244135i \(-0.0785041\pi\)
−0.696298 + 0.717753i \(0.745171\pi\)
\(14\) −2.36696 4.09970i −0.632598 1.09569i
\(15\) 0 0
\(16\) −5.24801 + 9.08982i −1.31200 + 2.27246i
\(17\) 4.80812 1.16614 0.583071 0.812421i \(-0.301851\pi\)
0.583071 + 0.812421i \(0.301851\pi\)
\(18\) 0 0
\(19\) 2.96467 0.680142 0.340071 0.940400i \(-0.389549\pi\)
0.340071 + 0.940400i \(0.389549\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 2.38105 + 4.12410i 0.507641 + 0.879261i
\(23\) 0.866963 + 1.50162i 0.180774 + 0.313110i 0.942144 0.335207i \(-0.108806\pi\)
−0.761370 + 0.648317i \(0.775473\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) −5.19325 −1.01848
\(27\) 0 0
\(28\) 8.87300 1.67684
\(29\) −3.68382 + 6.38057i −0.684069 + 1.18484i 0.289659 + 0.957130i \(0.406458\pi\)
−0.973728 + 0.227713i \(0.926875\pi\)
\(30\) 0 0
\(31\) 1.31151 + 2.27161i 0.235555 + 0.407993i 0.959434 0.281934i \(-0.0909760\pi\)
−0.723879 + 0.689927i \(0.757643\pi\)
\(32\) −6.08789 10.5445i −1.07620 1.86403i
\(33\) 0 0
\(34\) −6.33163 + 10.9667i −1.08587 + 1.88078i
\(35\) 0 0
\(36\) 0 0
\(37\) −11.6351 −1.91280 −0.956399 0.292063i \(-0.905658\pi\)
−0.956399 + 0.292063i \(0.905658\pi\)
\(38\) −3.90406 + 6.76203i −0.633322 + 1.09695i
\(39\) 0 0
\(40\) 0 0
\(41\) −1.23324 2.13603i −0.192600 0.333592i 0.753511 0.657435i \(-0.228359\pi\)
−0.946111 + 0.323842i \(0.895025\pi\)
\(42\) 0 0
\(43\) −3.63907 + 6.30306i −0.554953 + 0.961207i 0.442954 + 0.896544i \(0.353931\pi\)
−0.997907 + 0.0646628i \(0.979403\pi\)
\(44\) −8.92580 −1.34562
\(45\) 0 0
\(46\) −4.56668 −0.673321
\(47\) −3.14604 + 5.44910i −0.458897 + 0.794833i −0.998903 0.0468283i \(-0.985089\pi\)
0.540006 + 0.841661i \(0.318422\pi\)
\(48\) 0 0
\(49\) 1.88463 + 3.26427i 0.269233 + 0.466324i
\(50\) 0 0
\(51\) 0 0
\(52\) 4.86696 8.42983i 0.674926 1.16901i
\(53\) 1.72540 0.237001 0.118501 0.992954i \(-0.462191\pi\)
0.118501 + 0.992954i \(0.462191\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) −6.95059 + 12.0388i −0.928811 + 1.60875i
\(57\) 0 0
\(58\) −9.70218 16.8047i −1.27396 2.20656i
\(59\) 5.51300 + 9.54880i 0.717732 + 1.24315i 0.961896 + 0.273414i \(0.0881529\pi\)
−0.244165 + 0.969734i \(0.578514\pi\)
\(60\) 0 0
\(61\) 6.33521 10.9729i 0.811141 1.40494i −0.100925 0.994894i \(-0.532180\pi\)
0.912066 0.410043i \(-0.134486\pi\)
\(62\) −6.90833 −0.877358
\(63\) 0 0
\(64\) 11.0756 1.38445
\(65\) 0 0
\(66\) 0 0
\(67\) 4.55187 + 7.88407i 0.556100 + 0.963193i 0.997817 + 0.0660386i \(0.0210360\pi\)
−0.441717 + 0.897154i \(0.645631\pi\)
\(68\) −11.8676 20.5554i −1.43916 2.49271i
\(69\) 0 0
\(70\) 0 0
\(71\) −1.27460 −0.151268 −0.0756338 0.997136i \(-0.524098\pi\)
−0.0756338 + 0.997136i \(0.524098\pi\)
\(72\) 0 0
\(73\) 3.58770 0.419908 0.209954 0.977711i \(-0.432669\pi\)
0.209954 + 0.977711i \(0.432669\pi\)
\(74\) 15.3218 26.5382i 1.78112 3.08500i
\(75\) 0 0
\(76\) −7.31755 12.6744i −0.839380 1.45385i
\(77\) 1.62499 + 2.81456i 0.185184 + 0.320749i
\(78\) 0 0
\(79\) −1.05545 + 1.82809i −0.118747 + 0.205676i −0.919272 0.393624i \(-0.871221\pi\)
0.800524 + 0.599300i \(0.204555\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 6.49602 0.717366
\(83\) −0.549415 + 0.951614i −0.0603061 + 0.104453i −0.894602 0.446863i \(-0.852541\pi\)
0.834296 + 0.551317i \(0.185874\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) −9.58431 16.6005i −1.03350 1.79008i
\(87\) 0 0
\(88\) 6.99195 12.1104i 0.745344 1.29097i
\(89\) 13.2935 1.40910 0.704552 0.709653i \(-0.251148\pi\)
0.704552 + 0.709653i \(0.251148\pi\)
\(90\) 0 0
\(91\) −3.54422 −0.371535
\(92\) 4.27976 7.41277i 0.446196 0.772834i
\(93\) 0 0
\(94\) −8.28580 14.3514i −0.854615 1.48024i
\(95\) 0 0
\(96\) 0 0
\(97\) −1.91638 + 3.31926i −0.194579 + 0.337020i −0.946762 0.321933i \(-0.895667\pi\)
0.752184 + 0.658954i \(0.229001\pi\)
\(98\) −9.92718 −1.00280
\(99\) 0 0
\(100\) 0 0
\(101\) 3.27618 5.67452i 0.325993 0.564636i −0.655720 0.755004i \(-0.727635\pi\)
0.981713 + 0.190368i \(0.0609682\pi\)
\(102\) 0 0
\(103\) −4.03779 6.99365i −0.397855 0.689105i 0.595606 0.803277i \(-0.296912\pi\)
−0.993461 + 0.114172i \(0.963579\pi\)
\(104\) 7.62499 + 13.2069i 0.747691 + 1.29504i
\(105\) 0 0
\(106\) −2.27211 + 3.93541i −0.220687 + 0.382241i
\(107\) −8.97674 −0.867814 −0.433907 0.900958i \(-0.642865\pi\)
−0.433907 + 0.900958i \(0.642865\pi\)
\(108\) 0 0
\(109\) −6.34164 −0.607419 −0.303710 0.952765i \(-0.598225\pi\)
−0.303710 + 0.952765i \(0.598225\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) −9.43292 16.3383i −0.891327 1.54382i
\(113\) 7.45127 + 12.9060i 0.700957 + 1.21409i 0.968131 + 0.250444i \(0.0805767\pi\)
−0.267174 + 0.963648i \(0.586090\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 36.3704 3.37691
\(117\) 0 0
\(118\) −29.0394 −2.67330
\(119\) −4.32113 + 7.48441i −0.396117 + 0.686095i
\(120\) 0 0
\(121\) 3.86534 + 6.69497i 0.351395 + 0.608634i
\(122\) 16.6852 + 28.8996i 1.51061 + 2.61645i
\(123\) 0 0
\(124\) 6.47428 11.2138i 0.581408 1.00703i
\(125\) 0 0
\(126\) 0 0
\(127\) −3.62303 −0.321492 −0.160746 0.986996i \(-0.551390\pi\)
−0.160746 + 0.986996i \(0.551390\pi\)
\(128\) −2.40922 + 4.17289i −0.212947 + 0.368835i
\(129\) 0 0
\(130\) 0 0
\(131\) 3.64673 + 6.31631i 0.318616 + 0.551859i 0.980200 0.198012i \(-0.0634486\pi\)
−0.661584 + 0.749871i \(0.730115\pi\)
\(132\) 0 0
\(133\) −2.66439 + 4.61486i −0.231032 + 0.400159i
\(134\) −23.9767 −2.07127
\(135\) 0 0
\(136\) 37.1857 3.18865
\(137\) 3.56310 6.17148i 0.304417 0.527265i −0.672715 0.739902i \(-0.734872\pi\)
0.977131 + 0.212637i \(0.0682052\pi\)
\(138\) 0 0
\(139\) 7.35533 + 12.7398i 0.623871 + 1.08058i 0.988758 + 0.149525i \(0.0477744\pi\)
−0.364887 + 0.931052i \(0.618892\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 1.67848 2.90721i 0.140855 0.243967i
\(143\) 3.56531 0.298146
\(144\) 0 0
\(145\) 0 0
\(146\) −4.72450 + 8.18308i −0.391003 + 0.677236i
\(147\) 0 0
\(148\) 28.7183 + 49.7416i 2.36063 + 4.08873i
\(149\) −0.282655 0.489572i −0.0231560 0.0401073i 0.854215 0.519920i \(-0.174038\pi\)
−0.877371 + 0.479812i \(0.840705\pi\)
\(150\) 0 0
\(151\) −0.0766925 + 0.132835i −0.00624115 + 0.0108100i −0.869129 0.494585i \(-0.835320\pi\)
0.862888 + 0.505395i \(0.168653\pi\)
\(152\) 22.9285 1.85975
\(153\) 0 0
\(154\) −8.55953 −0.689746
\(155\) 0 0
\(156\) 0 0
\(157\) −5.73035 9.92525i −0.457332 0.792121i 0.541487 0.840709i \(-0.317861\pi\)
−0.998819 + 0.0485874i \(0.984528\pi\)
\(158\) −2.77976 4.81469i −0.221146 0.383036i
\(159\) 0 0
\(160\) 0 0
\(161\) −3.11661 −0.245623
\(162\) 0 0
\(163\) 22.0595 1.72783 0.863915 0.503637i \(-0.168005\pi\)
0.863915 + 0.503637i \(0.168005\pi\)
\(164\) −6.08789 + 10.5445i −0.475384 + 0.823389i
\(165\) 0 0
\(166\) −1.44701 2.50629i −0.112310 0.194526i
\(167\) −8.53421 14.7817i −0.660397 1.14384i −0.980511 0.196462i \(-0.937055\pi\)
0.320115 0.947379i \(-0.396279\pi\)
\(168\) 0 0
\(169\) 4.55595 7.89113i 0.350457 0.607010i
\(170\) 0 0
\(171\) 0 0
\(172\) 35.9285 2.73953
\(173\) −5.97233 + 10.3444i −0.454067 + 0.786468i −0.998634 0.0522497i \(-0.983361\pi\)
0.544567 + 0.838718i \(0.316694\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 9.48906 + 16.4355i 0.715265 + 1.23887i
\(177\) 0 0
\(178\) −17.5056 + 30.3207i −1.31210 + 2.27263i
\(179\) −8.54921 −0.638998 −0.319499 0.947587i \(-0.603515\pi\)
−0.319499 + 0.947587i \(0.603515\pi\)
\(180\) 0 0
\(181\) −10.5524 −0.784351 −0.392176 0.919890i \(-0.628277\pi\)
−0.392176 + 0.919890i \(0.628277\pi\)
\(182\) 4.66724 8.08390i 0.345959 0.599219i
\(183\) 0 0
\(184\) 6.70503 + 11.6135i 0.494301 + 0.856155i
\(185\) 0 0
\(186\) 0 0
\(187\) 4.34684 7.52895i 0.317873 0.550571i
\(188\) 31.0608 2.26534
\(189\) 0 0
\(190\) 0 0
\(191\) −8.66862 + 15.0145i −0.627239 + 1.08641i 0.360864 + 0.932618i \(0.382482\pi\)
−0.988103 + 0.153792i \(0.950852\pi\)
\(192\) 0 0
\(193\) 0.779763 + 1.35059i 0.0561286 + 0.0972175i 0.892724 0.450603i \(-0.148791\pi\)
−0.836596 + 0.547821i \(0.815458\pi\)
\(194\) −5.04721 8.74202i −0.362369 0.627641i
\(195\) 0 0
\(196\) 9.30346 16.1141i 0.664533 1.15100i
\(197\) 17.9767 1.28079 0.640395 0.768046i \(-0.278771\pi\)
0.640395 + 0.768046i \(0.278771\pi\)
\(198\) 0 0
\(199\) 11.0225 0.781362 0.390681 0.920526i \(-0.372240\pi\)
0.390681 + 0.920526i \(0.372240\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 8.62856 + 14.9451i 0.607104 + 1.05153i
\(203\) −6.62141 11.4686i −0.464732 0.804939i
\(204\) 0 0
\(205\) 0 0
\(206\) 21.2688 1.48187
\(207\) 0 0
\(208\) −20.6964 −1.43503
\(209\) 2.68025 4.64232i 0.185397 0.321116i
\(210\) 0 0
\(211\) 11.9643 + 20.7227i 0.823655 + 1.42661i 0.902943 + 0.429760i \(0.141402\pi\)
−0.0792886 + 0.996852i \(0.525265\pi\)
\(212\) −4.25871 7.37630i −0.292489 0.506606i
\(213\) 0 0
\(214\) 11.8211 20.4748i 0.808076 1.39963i
\(215\) 0 0
\(216\) 0 0
\(217\) −4.71470 −0.320055
\(218\) 8.35107 14.4645i 0.565606 0.979658i
\(219\) 0 0
\(220\) 0 0
\(221\) 4.74040 + 8.21061i 0.318874 + 0.552305i
\(222\) 0 0
\(223\) 10.8553 18.8020i 0.726927 1.25907i −0.231249 0.972895i \(-0.574281\pi\)
0.958176 0.286180i \(-0.0923855\pi\)
\(224\) 21.8851 1.46226
\(225\) 0 0
\(226\) −39.2492 −2.61082
\(227\) −7.05010 + 12.2111i −0.467932 + 0.810481i −0.999328 0.0366416i \(-0.988334\pi\)
0.531397 + 0.847123i \(0.321667\pi\)
\(228\) 0 0
\(229\) −1.83879 3.18488i −0.121511 0.210463i 0.798853 0.601526i \(-0.205441\pi\)
−0.920364 + 0.391064i \(0.872107\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) −28.4904 + 49.3469i −1.87049 + 3.23978i
\(233\) −5.34164 −0.349943 −0.174971 0.984574i \(-0.555983\pi\)
−0.174971 + 0.984574i \(0.555983\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 27.2149 47.1376i 1.77154 3.06840i
\(237\) 0 0
\(238\) −11.3807 19.7119i −0.737698 1.27773i
\(239\) −11.0167 19.0815i −0.712613 1.23428i −0.963873 0.266362i \(-0.914178\pi\)
0.251260 0.967920i \(-0.419155\pi\)
\(240\) 0 0
\(241\) 9.32358 16.1489i 0.600585 1.04024i −0.392148 0.919902i \(-0.628268\pi\)
0.992733 0.120341i \(-0.0383988\pi\)
\(242\) −20.3605 −1.30882
\(243\) 0 0
\(244\) −62.5475 −4.00420
\(245\) 0 0
\(246\) 0 0
\(247\) 2.92291 + 5.06263i 0.185980 + 0.322127i
\(248\) 10.1431 + 17.5684i 0.644091 + 1.11560i
\(249\) 0 0
\(250\) 0 0
\(251\) −14.6929 −0.927407 −0.463704 0.885990i \(-0.653480\pi\)
−0.463704 + 0.885990i \(0.653480\pi\)
\(252\) 0 0
\(253\) 3.13515 0.197105
\(254\) 4.77103 8.26366i 0.299361 0.518508i
\(255\) 0 0
\(256\) 4.73035 + 8.19320i 0.295647 + 0.512075i
\(257\) −11.1045 19.2335i −0.692678 1.19975i −0.970957 0.239253i \(-0.923098\pi\)
0.278280 0.960500i \(-0.410236\pi\)
\(258\) 0 0
\(259\) 10.4566 18.1114i 0.649743 1.12539i
\(260\) 0 0
\(261\) 0 0
\(262\) −19.2089 −1.18673
\(263\) −2.87001 + 4.97100i −0.176972 + 0.306525i −0.940842 0.338846i \(-0.889964\pi\)
0.763870 + 0.645370i \(0.223297\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) −7.01727 12.1543i −0.430256 0.745226i
\(267\) 0 0
\(268\) 22.4703 38.9197i 1.37259 2.37740i
\(269\) 15.6162 0.952139 0.476070 0.879408i \(-0.342061\pi\)
0.476070 + 0.879408i \(0.342061\pi\)
\(270\) 0 0
\(271\) −6.75315 −0.410225 −0.205112 0.978738i \(-0.565756\pi\)
−0.205112 + 0.978738i \(0.565756\pi\)
\(272\) −25.2331 + 43.7050i −1.52998 + 2.65000i
\(273\) 0 0
\(274\) 9.38423 + 16.2540i 0.566922 + 0.981938i
\(275\) 0 0
\(276\) 0 0
\(277\) 15.1483 26.2376i 0.910172 1.57646i 0.0963529 0.995347i \(-0.469282\pi\)
0.813820 0.581118i \(-0.197384\pi\)
\(278\) −38.7438 −2.32370
\(279\) 0 0
\(280\) 0 0
\(281\) 9.31755 16.1385i 0.555838 0.962740i −0.441999 0.897015i \(-0.645731\pi\)
0.997838 0.0657249i \(-0.0209360\pi\)
\(282\) 0 0
\(283\) −2.83683 4.91354i −0.168632 0.292079i 0.769307 0.638879i \(-0.220602\pi\)
−0.937939 + 0.346800i \(0.887268\pi\)
\(284\) 3.14604 + 5.44910i 0.186683 + 0.323345i
\(285\) 0 0
\(286\) −4.69502 + 8.13201i −0.277622 + 0.480856i
\(287\) 4.43332 0.261690
\(288\) 0 0
\(289\) 6.11806 0.359886
\(290\) 0 0
\(291\) 0 0
\(292\) −8.85533 15.3379i −0.518219 0.897582i
\(293\) −9.13867 15.8286i −0.533887 0.924720i −0.999216 0.0395819i \(-0.987397\pi\)
0.465329 0.885138i \(-0.345936\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) −89.9850 −5.23027
\(297\) 0 0
\(298\) 1.48887 0.0862478
\(299\) −1.70950 + 2.96094i −0.0988631 + 0.171236i
\(300\) 0 0
\(301\) −6.54097 11.3293i −0.377015 0.653009i
\(302\) −0.201987 0.349852i −0.0116230 0.0201317i
\(303\) 0 0
\(304\) −15.5586 + 26.9483i −0.892349 + 1.54559i
\(305\) 0 0
\(306\) 0 0
\(307\) 15.5050 0.884915 0.442458 0.896789i \(-0.354107\pi\)
0.442458 + 0.896789i \(0.354107\pi\)
\(308\) 8.02174 13.8941i 0.457081 0.791688i
\(309\) 0 0
\(310\) 0 0
\(311\) 15.2232 + 26.3673i 0.863228 + 1.49515i 0.868796 + 0.495170i \(0.164894\pi\)
−0.00556798 + 0.999984i \(0.501772\pi\)
\(312\) 0 0
\(313\) −3.47468 + 6.01832i −0.196401 + 0.340176i −0.947359 0.320174i \(-0.896259\pi\)
0.750958 + 0.660350i \(0.229592\pi\)
\(314\) 30.1843 1.70340
\(315\) 0 0
\(316\) 10.4205 0.586196
\(317\) 8.07253 13.9820i 0.453398 0.785309i −0.545196 0.838308i \(-0.683545\pi\)
0.998595 + 0.0529995i \(0.0168782\pi\)
\(318\) 0 0
\(319\) 6.66081 + 11.5369i 0.372934 + 0.645940i
\(320\) 0 0
\(321\) 0 0
\(322\) 4.10414 7.10858i 0.228715 0.396146i
\(323\) 14.2545 0.793142
\(324\) 0 0
\(325\) 0 0
\(326\) −29.0493 + 50.3148i −1.60889 + 2.78668i
\(327\) 0 0
\(328\) −9.53779 16.5199i −0.526636 0.912160i
\(329\) −5.65478 9.79436i −0.311758 0.539981i
\(330\) 0 0
\(331\) −6.31112 + 10.9312i −0.346890 + 0.600832i −0.985695 0.168537i \(-0.946096\pi\)
0.638805 + 0.769369i \(0.279429\pi\)
\(332\) 5.42437 0.297701
\(333\) 0 0
\(334\) 44.9535 2.45975
\(335\) 0 0
\(336\) 0 0
\(337\) −3.46020 5.99324i −0.188489 0.326473i 0.756258 0.654274i \(-0.227026\pi\)
−0.944747 + 0.327801i \(0.893692\pi\)
\(338\) 11.9991 + 20.7831i 0.652665 + 1.13045i
\(339\) 0 0
\(340\) 0 0
\(341\) 4.74276 0.256835
\(342\) 0 0
\(343\) −19.3570 −1.04518
\(344\) −28.1443 + 48.7474i −1.51744 + 2.62828i
\(345\) 0 0
\(346\) −15.7295 27.2442i −0.845621 1.46466i
\(347\) −6.90317 11.9566i −0.370581 0.641866i 0.619074 0.785333i \(-0.287508\pi\)
−0.989655 + 0.143467i \(0.954175\pi\)
\(348\) 0 0
\(349\) −3.28384 + 5.68778i −0.175780 + 0.304460i −0.940431 0.339985i \(-0.889578\pi\)
0.764651 + 0.644445i \(0.222911\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) −22.0153 −1.17342
\(353\) 1.76250 3.05273i 0.0938082 0.162481i −0.815302 0.579035i \(-0.803429\pi\)
0.909111 + 0.416555i \(0.136763\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) −32.8116 56.8313i −1.73901 3.01205i
\(357\) 0 0
\(358\) 11.2581 19.4996i 0.595010 1.03059i
\(359\) −22.9285 −1.21012 −0.605061 0.796179i \(-0.706851\pi\)
−0.605061 + 0.796179i \(0.706851\pi\)
\(360\) 0 0
\(361\) −10.2107 −0.537407
\(362\) 13.8960 24.0686i 0.730358 1.26502i
\(363\) 0 0
\(364\) 8.74801 + 15.1520i 0.458520 + 0.794181i
\(365\) 0 0
\(366\) 0 0
\(367\) 2.08966 3.61939i 0.109079 0.188931i −0.806318 0.591482i \(-0.798543\pi\)
0.915397 + 0.402551i \(0.131876\pi\)
\(368\) −18.1993 −0.948706
\(369\) 0 0
\(370\) 0 0
\(371\) −1.55064 + 2.68578i −0.0805051 + 0.139439i
\(372\) 0 0
\(373\) 3.42045 + 5.92440i 0.177104 + 0.306754i 0.940888 0.338719i \(-0.109994\pi\)
−0.763783 + 0.645473i \(0.776660\pi\)
\(374\) 11.4484 + 19.8292i 0.591982 + 1.02534i
\(375\) 0 0
\(376\) −24.3312 + 42.1429i −1.25479 + 2.17336i
\(377\) −14.5277 −0.748217
\(378\) 0 0
\(379\) −12.7764 −0.656280 −0.328140 0.944629i \(-0.606422\pi\)
−0.328140 + 0.944629i \(0.606422\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) −22.8307 39.5440i −1.16812 2.02325i
\(383\) −3.76730 6.52515i −0.192500 0.333420i 0.753578 0.657358i \(-0.228326\pi\)
−0.946078 + 0.323939i \(0.894993\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) −4.10736 −0.209059
\(387\) 0 0
\(388\) 18.9204 0.960538
\(389\) 2.72588 4.72135i 0.138207 0.239382i −0.788611 0.614893i \(-0.789199\pi\)
0.926818 + 0.375511i \(0.122533\pi\)
\(390\) 0 0
\(391\) 4.16847 + 7.22000i 0.210808 + 0.365131i
\(392\) 14.5756 + 25.2456i 0.736177 + 1.27510i
\(393\) 0 0
\(394\) −23.6729 + 41.0026i −1.19262 + 2.06568i
\(395\) 0 0
\(396\) 0 0
\(397\) 5.64549 0.283339 0.141670 0.989914i \(-0.454753\pi\)
0.141670 + 0.989914i \(0.454753\pi\)
\(398\) −14.5151 + 25.1408i −0.727574 + 1.26020i
\(399\) 0 0
\(400\) 0 0
\(401\) −2.75209 4.76676i −0.137433 0.238040i 0.789091 0.614276i \(-0.210552\pi\)
−0.926524 + 0.376235i \(0.877218\pi\)
\(402\) 0 0
\(403\) −2.58608 + 4.47922i −0.128822 + 0.223126i
\(404\) −32.3458 −1.60926
\(405\) 0 0
\(406\) 34.8779 1.73096
\(407\) −10.5188 + 18.2192i −0.521400 + 0.903091i
\(408\) 0 0
\(409\) −16.4265 28.4515i −0.812238 1.40684i −0.911295 0.411755i \(-0.864916\pi\)
0.0990570 0.995082i \(-0.468417\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) −19.9325 + 34.5241i −0.982005 + 1.70088i
\(413\) −19.8184 −0.975202
\(414\) 0 0
\(415\) 0 0
\(416\) 12.0043 20.7920i 0.588558 1.01941i
\(417\) 0 0
\(418\) 7.05903 + 12.2266i 0.345268 + 0.598022i
\(419\) 11.4295 + 19.7965i 0.558369 + 0.967124i 0.997633 + 0.0687656i \(0.0219060\pi\)
−0.439264 + 0.898358i \(0.644761\pi\)
\(420\) 0 0
\(421\) −8.97071 + 15.5377i −0.437205 + 0.757262i −0.997473 0.0710498i \(-0.977365\pi\)
0.560267 + 0.828312i \(0.310698\pi\)
\(422\) −63.0212 −3.06782
\(423\) 0 0
\(424\) 13.3441 0.648046
\(425\) 0 0
\(426\) 0 0
\(427\) 11.3871 + 19.7230i 0.551060 + 0.954463i
\(428\) 22.1568 + 38.3768i 1.07099 + 1.85501i
\(429\) 0 0
\(430\) 0 0
\(431\) 6.18871 0.298100 0.149050 0.988830i \(-0.452378\pi\)
0.149050 + 0.988830i \(0.452378\pi\)
\(432\) 0 0
\(433\) 3.11806 0.149844 0.0749221 0.997189i \(-0.476129\pi\)
0.0749221 + 0.997189i \(0.476129\pi\)
\(434\) 6.20861 10.7536i 0.298023 0.516190i
\(435\) 0 0
\(436\) 15.6528 + 27.1114i 0.749631 + 1.29840i
\(437\) 2.57026 + 4.45182i 0.122952 + 0.212960i
\(438\) 0 0
\(439\) −6.75494 + 11.6999i −0.322396 + 0.558406i −0.980982 0.194100i \(-0.937822\pi\)
0.658586 + 0.752505i \(0.271155\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) −24.9698 −1.18769
\(443\) 12.1387 21.0248i 0.576726 0.998918i −0.419126 0.907928i \(-0.637663\pi\)
0.995852 0.0909904i \(-0.0290032\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 28.5899 + 49.5192i 1.35377 + 2.34480i
\(447\) 0 0
\(448\) −9.95377 + 17.2404i −0.470271 + 0.814534i
\(449\) 24.1437 1.13941 0.569705 0.821849i \(-0.307057\pi\)
0.569705 + 0.821849i \(0.307057\pi\)
\(450\) 0 0
\(451\) −4.45970 −0.209999
\(452\) 36.7832 63.7104i 1.73014 2.99668i
\(453\) 0 0
\(454\) −18.5680 32.1607i −0.871440 1.50938i
\(455\) 0 0
\(456\) 0 0
\(457\) −1.41078 + 2.44355i −0.0659937 + 0.114304i −0.897134 0.441758i \(-0.854355\pi\)
0.831141 + 0.556062i \(0.187688\pi\)
\(458\) 9.68573 0.452585
\(459\) 0 0
\(460\) 0 0
\(461\) 10.7286 18.5825i 0.499681 0.865474i −0.500318 0.865841i \(-0.666784\pi\)
1.00000 0.000367761i \(0.000117062\pi\)
\(462\) 0 0
\(463\) −9.90167 17.1502i −0.460170 0.797037i 0.538799 0.842434i \(-0.318878\pi\)
−0.998969 + 0.0453970i \(0.985545\pi\)
\(464\) −38.6655 66.9706i −1.79500 3.10903i
\(465\) 0 0
\(466\) 7.03421 12.1836i 0.325853 0.564395i
\(467\) 22.7210 1.05140 0.525701 0.850669i \(-0.323803\pi\)
0.525701 + 0.850669i \(0.323803\pi\)
\(468\) 0 0
\(469\) −16.3633 −0.755588
\(470\) 0 0
\(471\) 0 0
\(472\) 42.6372 + 73.8497i 1.96253 + 3.39921i
\(473\) 6.57989 + 11.3967i 0.302544 + 0.524021i
\(474\) 0 0
\(475\) 0 0
\(476\) 42.6625 1.95543
\(477\) 0 0
\(478\) 58.0300 2.65423
\(479\) 10.6440 18.4359i 0.486336 0.842359i −0.513541 0.858065i \(-0.671666\pi\)
0.999877 + 0.0157065i \(0.00499974\pi\)
\(480\) 0 0
\(481\) −11.4712 19.8687i −0.523042 0.905935i
\(482\) 24.5557 + 42.5318i 1.11848 + 1.93727i
\(483\) 0 0
\(484\) 19.0813 33.0497i 0.867330 1.50226i
\(485\) 0 0
\(486\) 0 0
\(487\) 9.58690 0.434424 0.217212 0.976124i \(-0.430304\pi\)
0.217212 + 0.976124i \(0.430304\pi\)
\(488\) 48.9961 84.8637i 2.21795 3.84160i
\(489\) 0 0
\(490\) 0 0
\(491\) −18.9222 32.7742i −0.853945 1.47908i −0.877620 0.479357i \(-0.840870\pi\)
0.0236745 0.999720i \(-0.492463\pi\)
\(492\) 0 0
\(493\) −17.7123 + 30.6786i −0.797721 + 1.38169i
\(494\) −15.3963 −0.692711
\(495\) 0 0
\(496\) −27.5314 −1.23619
\(497\) 1.14550 1.98407i 0.0513829 0.0889977i
\(498\) 0 0
\(499\) −8.46266 14.6577i −0.378840 0.656171i 0.612053 0.790816i \(-0.290344\pi\)
−0.990894 + 0.134646i \(0.957010\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 19.3485 33.5126i 0.863566 1.49574i
\(503\) 40.4168 1.80210 0.901048 0.433719i \(-0.142799\pi\)
0.901048 + 0.433719i \(0.142799\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) −4.12856 + 7.15088i −0.183537 + 0.317896i
\(507\) 0 0
\(508\) 8.94253 + 15.4889i 0.396761 + 0.687210i
\(509\) −20.7034 35.8593i −0.917660 1.58943i −0.802959 0.596034i \(-0.796742\pi\)
−0.114701 0.993400i \(-0.536591\pi\)
\(510\) 0 0
\(511\) −3.22431 + 5.58467i −0.142635 + 0.247051i
\(512\) −34.5537 −1.52707
\(513\) 0 0
\(514\) 58.4922 2.57998
\(515\) 0 0
\(516\) 0 0
\(517\) 5.68843 + 9.85265i 0.250177 + 0.433319i
\(518\) 27.5398 + 47.7004i 1.21003 + 2.09584i
\(519\) 0 0
\(520\) 0 0
\(521\) 17.0301 0.746103 0.373052 0.927811i \(-0.378311\pi\)
0.373052 + 0.927811i \(0.378311\pi\)
\(522\) 0 0
\(523\) −9.57651 −0.418751 −0.209376 0.977835i \(-0.567143\pi\)
−0.209376 + 0.977835i \(0.567143\pi\)
\(524\) 18.0021 31.1805i 0.786424 1.36213i
\(525\) 0 0
\(526\) −7.55880 13.0922i −0.329579 0.570848i
\(527\) 6.30592 + 10.9222i 0.274690 + 0.475777i
\(528\) 0 0
\(529\) 9.99675 17.3149i 0.434641 0.752821i
\(530\) 0 0
\(531\) 0 0
\(532\) 26.3055 1.14049
\(533\) 2.43174 4.21189i 0.105330 0.182437i
\(534\) 0 0
\(535\) 0 0
\(536\) 35.2038 + 60.9748i 1.52057 + 2.63371i
\(537\) 0 0
\(538\) −20.5644 + 35.6187i −0.886596 + 1.53563i
\(539\) 6.81528 0.293555
\(540\) 0 0
\(541\) −0.833751 −0.0358458 −0.0179229 0.999839i \(-0.505705\pi\)
−0.0179229 + 0.999839i \(0.505705\pi\)
\(542\) 8.89297 15.4031i 0.381986 0.661619i
\(543\) 0 0
\(544\) −29.2713 50.6994i −1.25500 2.17372i
\(545\) 0 0
\(546\) 0 0
\(547\) −14.1635 + 24.5319i −0.605587 + 1.04891i 0.386371 + 0.922343i \(0.373728\pi\)
−0.991958 + 0.126565i \(0.959605\pi\)
\(548\) −35.1785 −1.50275
\(549\) 0 0
\(550\) 0 0
\(551\) −10.9213 + 18.9163i −0.465264 + 0.805861i
\(552\) 0 0
\(553\) −1.89709 3.28586i −0.0806727 0.139729i
\(554\) 39.8964 + 69.1026i 1.69504 + 2.93589i
\(555\) 0 0
\(556\) 36.3096 62.8901i 1.53987 2.66713i
\(557\) 11.5042 0.487448 0.243724 0.969845i \(-0.421631\pi\)
0.243724 + 0.969845i \(0.421631\pi\)
\(558\) 0 0
\(559\) −14.3512 −0.606993
\(560\) 0 0
\(561\) 0 0
\(562\) 24.5398 + 42.5043i 1.03515 + 1.79293i
\(563\) −16.5030 28.5840i −0.695517 1.20467i −0.970006 0.243080i \(-0.921842\pi\)
0.274490 0.961590i \(-0.411491\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 14.9429 0.628095
\(567\) 0 0
\(568\) −9.85769 −0.413619
\(569\) −13.5044 + 23.3903i −0.566135 + 0.980574i 0.430809 + 0.902443i \(0.358228\pi\)
−0.996943 + 0.0781305i \(0.975105\pi\)
\(570\) 0 0
\(571\) 12.2122 + 21.1521i 0.511064 + 0.885189i 0.999918 + 0.0128232i \(0.00408185\pi\)
−0.488854 + 0.872366i \(0.662585\pi\)
\(572\) −8.80007 15.2422i −0.367950 0.637307i
\(573\) 0 0
\(574\) −5.83807 + 10.1118i −0.243676 + 0.422060i
\(575\) 0 0
\(576\) 0 0
\(577\) −14.7976 −0.616033 −0.308017 0.951381i \(-0.599665\pi\)
−0.308017 + 0.951381i \(0.599665\pi\)
\(578\) −8.05663 + 13.9545i −0.335112 + 0.580431i
\(579\) 0 0
\(580\) 0 0
\(581\) −0.987533 1.71046i −0.0409698 0.0709617i
\(582\) 0 0
\(583\) 1.55987 2.70177i 0.0646030 0.111896i
\(584\) 27.7470 1.14818
\(585\) 0 0
\(586\) 48.1375 1.98854
\(587\) −15.2890 + 26.4813i −0.631044 + 1.09300i 0.356295 + 0.934374i \(0.384040\pi\)
−0.987339 + 0.158626i \(0.949294\pi\)
\(588\) 0 0
\(589\) 3.88821 + 6.73457i 0.160211 + 0.277493i
\(590\) 0 0
\(591\) 0 0
\(592\) 61.0611 105.761i 2.50960 4.34675i
\(593\) −5.09990 −0.209428 −0.104714 0.994502i \(-0.533393\pi\)
−0.104714 + 0.994502i \(0.533393\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) −1.39532 + 2.41677i −0.0571547 + 0.0989949i
\(597\) 0 0
\(598\) −4.50236 7.79831i −0.184115 0.318897i
\(599\) −0.282655 0.489572i −0.0115490 0.0200034i 0.860193 0.509968i \(-0.170343\pi\)
−0.871742 + 0.489965i \(0.837010\pi\)
\(600\) 0 0
\(601\) 5.50480 9.53459i 0.224546 0.388924i −0.731637 0.681694i \(-0.761244\pi\)
0.956183 + 0.292770i \(0.0945769\pi\)
\(602\) 34.4542 1.40425
\(603\) 0 0
\(604\) 0.757185 0.0308094
\(605\) 0 0
\(606\) 0 0
\(607\) −9.54913 16.5396i −0.387587 0.671321i 0.604537 0.796577i \(-0.293358\pi\)
−0.992124 + 0.125256i \(0.960025\pi\)
\(608\) −18.0486 31.2611i −0.731967 1.26780i
\(609\) 0 0
\(610\) 0 0
\(611\) −12.4069 −0.501929
\(612\) 0 0
\(613\) −9.33918 −0.377206 −0.188603 0.982053i \(-0.560396\pi\)
−0.188603 + 0.982053i \(0.560396\pi\)
\(614\) −20.4179 + 35.3648i −0.823999 + 1.42721i
\(615\) 0 0
\(616\) 12.5675 + 21.7676i 0.506360 + 0.877041i
\(617\) 12.2077 + 21.1444i 0.491464 + 0.851241i 0.999952 0.00982861i \(-0.00312859\pi\)
−0.508488 + 0.861069i \(0.669795\pi\)
\(618\) 0 0
\(619\) −19.7431 + 34.1961i −0.793544 + 1.37446i 0.130216 + 0.991486i \(0.458433\pi\)
−0.923760 + 0.382973i \(0.874900\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) −80.1874 −3.21522
\(623\) −11.9470 + 20.6928i −0.478647 + 0.829040i
\(624\) 0 0
\(625\) 0 0
\(626\) −9.15135 15.8506i −0.365761 0.633517i
\(627\) 0 0
\(628\) −28.2879 + 48.9960i −1.12881 + 1.95515i
\(629\) −55.9430 −2.23059
\(630\) 0 0
\(631\) 42.1634 1.67850 0.839249 0.543747i \(-0.182995\pi\)
0.839249 + 0.543747i \(0.182995\pi\)
\(632\) −8.16277 + 14.1383i −0.324698 + 0.562393i
\(633\) 0 0
\(634\) 21.2608 + 36.8248i 0.844375 + 1.46250i
\(635\) 0 0
\(636\) 0 0
\(637\) −3.71616 + 6.43658i −0.147240 + 0.255027i
\(638\) −35.0855 −1.38905
\(639\) 0 0
\(640\) 0 0
\(641\) 17.6577 30.5841i 0.697438 1.20800i −0.271913 0.962322i \(-0.587656\pi\)
0.969352 0.245677i \(-0.0790103\pi\)
\(642\) 0 0
\(643\) 7.09771 + 12.2936i 0.279906 + 0.484812i 0.971361 0.237608i \(-0.0763633\pi\)
−0.691455 + 0.722420i \(0.743030\pi\)
\(644\) 7.69256 + 13.3239i 0.303129 + 0.525036i
\(645\) 0 0
\(646\) −18.7712 + 32.5127i −0.738544 + 1.27919i
\(647\) 17.4897 0.687593 0.343796 0.939044i \(-0.388287\pi\)
0.343796 + 0.939044i \(0.388287\pi\)
\(648\) 0 0
\(649\) 19.9364 0.782572
\(650\) 0 0
\(651\) 0 0
\(652\) −54.4483 94.3072i −2.13236 3.69335i
\(653\) 5.48858 + 9.50650i 0.214785 + 0.372018i 0.953206 0.302322i \(-0.0977617\pi\)
−0.738421 + 0.674340i \(0.764428\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 25.8882 1.01077
\(657\) 0 0
\(658\) 29.7862 1.16119
\(659\) −7.89381 + 13.6725i −0.307499 + 0.532604i −0.977815 0.209472i \(-0.932825\pi\)
0.670316 + 0.742076i \(0.266159\pi\)
\(660\) 0 0
\(661\) −24.9466 43.2088i −0.970311 1.68063i −0.694614 0.719383i \(-0.744425\pi\)
−0.275697 0.961245i \(-0.588909\pi\)
\(662\) −16.6217 28.7897i −0.646022 1.11894i
\(663\) 0 0
\(664\) −4.24913 + 7.35972i −0.164898 + 0.285612i
\(665\) 0 0
\(666\) 0 0
\(667\) −12.7750 −0.494649
\(668\) −42.1291 + 72.9698i −1.63002 + 2.82328i
\(669\) 0 0
\(670\) 0 0
\(671\) −11.4549 19.8404i −0.442210 0.765929i
\(672\) 0 0
\(673\) 14.4197 24.9757i 0.555840 0.962743i −0.441998 0.897016i \(-0.645730\pi\)
0.997838 0.0657266i \(-0.0209365\pi\)
\(674\) 18.2264 0.702055
\(675\) 0 0
\(676\) −44.9809 −1.73003
\(677\) −5.23181 + 9.06176i −0.201075 + 0.348272i −0.948875 0.315652i \(-0.897777\pi\)
0.747800 + 0.663924i \(0.231110\pi\)
\(678\) 0 0
\(679\) −3.44455 5.96614i −0.132190 0.228959i
\(680\) 0 0
\(681\) 0 0
\(682\) −6.24556 + 10.8176i −0.239155 + 0.414228i
\(683\) −16.1875 −0.619396 −0.309698 0.950835i \(-0.600228\pi\)
−0.309698 + 0.950835i \(0.600228\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 25.4904 44.1507i 0.973229 1.68568i
\(687\) 0 0
\(688\) −38.1958 66.1570i −1.45620 2.52221i
\(689\) 1.70109 + 2.94638i 0.0648065 + 0.112248i
\(690\) 0 0
\(691\) −4.94181 + 8.55946i −0.187995 + 0.325617i −0.944582 0.328276i \(-0.893532\pi\)
0.756586 + 0.653894i \(0.226866\pi\)
\(692\) 58.9648 2.24150
\(693\) 0 0
\(694\) 36.3621 1.38029
\(695\) 0 0
\(696\) 0 0
\(697\) −5.92957 10.2703i −0.224598 0.389016i
\(698\) −8.64872 14.9800i −0.327359 0.567002i
\(699\) 0 0
\(700\) 0 0
\(701\) −43.9692 −1.66069 −0.830346 0.557248i \(-0.811857\pi\)
−0.830346 + 0.557248i \(0.811857\pi\)
\(702\) 0 0
\(703\) −34.4942 −1.30097
\(704\) 10.0130 17.3430i 0.377379 0.653640i
\(705\) 0 0
\(706\) 4.64193 + 8.04005i 0.174701 + 0.302591i
\(707\) 5.88870 + 10.1995i 0.221467 + 0.383593i
\(708\) 0 0
\(709\) −12.6130 + 21.8464i −0.473692 + 0.820458i −0.999546 0.0301162i \(-0.990412\pi\)
0.525855 + 0.850574i \(0.323746\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 102.811 3.85299
\(713\) −2.27407 + 3.93880i −0.0851645 + 0.147509i
\(714\) 0 0
\(715\) 0 0
\(716\) 21.1016 + 36.5490i 0.788603 + 1.36590i
\(717\) 0 0
\(718\) 30.1937 52.2971i 1.12682 1.95171i
\(719\) 36.8600 1.37465 0.687323 0.726352i \(-0.258786\pi\)
0.687323 + 0.726352i \(0.258786\pi\)
\(720\) 0 0
\(721\) 14.5153 0.540576
\(722\) 13.4461 23.2893i 0.500412 0.866740i
\(723\) 0 0
\(724\) 26.0459 + 45.1128i 0.967988 + 1.67660i
\(725\) 0 0
\(726\) 0 0
\(727\) −19.1226 + 33.1213i −0.709217 + 1.22840i 0.255931 + 0.966695i \(0.417618\pi\)
−0.965148 + 0.261705i \(0.915715\pi\)
\(728\) −27.4107 −1.01591
\(729\) 0 0
\(730\) 0 0
\(731\) −17.4971 + 30.3059i −0.647154 + 1.12090i
\(732\) 0 0
\(733\) 19.7916 + 34.2801i 0.731020 + 1.26616i 0.956448 + 0.291903i \(0.0942886\pi\)
−0.225428 + 0.974260i \(0.572378\pi\)
\(734\) 5.50358 + 9.53248i 0.203141 + 0.351850i
\(735\) 0 0
\(736\) 10.5559 18.2834i 0.389097 0.673936i
\(737\) 16.4607 0.606338
\(738\) 0 0
\(739\) −8.24773 −0.303398 −0.151699 0.988427i \(-0.548474\pi\)
−0.151699 + 0.988427i \(0.548474\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) −4.08395 7.07361i −0.149927 0.259680i
\(743\) −0.654091 1.13292i −0.0239963 0.0415627i 0.853778 0.520637i \(-0.174306\pi\)
−0.877774 + 0.479075i \(0.840972\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) −18.0171 −0.659651
\(747\) 0 0
\(748\) −42.9164 −1.56918
\(749\) 8.06752 13.9734i 0.294781 0.510575i
\(750\) 0 0
\(751\) −14.2234 24.6357i −0.519020 0.898969i −0.999756 0.0221034i \(-0.992964\pi\)
0.480736 0.876866i \(-0.340370\pi\)
\(752\) −33.0209 57.1939i −1.20415 2.08565i
\(753\) 0 0
\(754\) 19.1310 33.1359i 0.696711 1.20674i
\(755\) 0 0
\(756\) 0 0
\(757\) 38.2012 1.38845 0.694223 0.719760i \(-0.255748\pi\)
0.694223 + 0.719760i \(0.255748\pi\)
\(758\) 16.8248 29.1414i 0.611103 1.05846i
\(759\) 0 0
\(760\) 0 0
\(761\) 11.0952 + 19.2174i 0.402200 + 0.696632i 0.993991 0.109460i \(-0.0349121\pi\)
−0.591791 + 0.806092i \(0.701579\pi\)
\(762\) 0 0
\(763\) 5.69932 9.87152i 0.206329 0.357373i
\(764\) 85.5852 3.09637
\(765\) 0 0
\(766\) 19.8440 0.716994
\(767\) −10.8707 + 18.8286i −0.392518 + 0.679861i
\(768\) 0 0
\(769\) 8.45652 + 14.6471i 0.304950 + 0.528189i 0.977250 0.212090i \(-0.0680270\pi\)
−0.672300 + 0.740279i \(0.734694\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 3.84930 6.66718i 0.138539 0.239957i
\(773\) −38.6464 −1.39001 −0.695007 0.719003i \(-0.744599\pi\)
−0.695007 + 0.719003i \(0.744599\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) −14.8211 + 25.6709i −0.532047 + 0.921533i
\(777\) 0 0
\(778\) 7.17920 + 12.4347i 0.257387 + 0.445807i
\(779\) −3.65615 6.33264i −0.130995 0.226890i
\(780\) 0 0
\(781\) −1.15232 + 1.99588i −0.0412333 + 0.0714181i
\(782\) −21.9572 −0.785187
\(783\) 0 0
\(784\) −39.5622 −1.41294
\(785\) 0 0
\(786\) 0 0
\(787\) 5.45734 + 9.45240i 0.194533 + 0.336942i 0.946747 0.321977i \(-0.104347\pi\)
−0.752214 + 0.658919i \(0.771014\pi\)
\(788\) −44.3711 76.8530i −1.58065 2.73777i
\(789\) 0 0
\(790\) 0