Defining parameters
Level: | \( N \) | \(=\) | \( 675 = 3^{3} \cdot 5^{2} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 675.e (of order \(3\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 9 \) |
Character field: | \(\Q(\zeta_{3})\) | ||
Newform subspaces: | \( 5 \) | ||
Sturm bound: | \(180\) | ||
Trace bound: | \(2\) | ||
Distinguishing \(T_p\): | \(2\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(675, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 216 | 44 | 172 |
Cusp forms | 144 | 32 | 112 |
Eisenstein series | 72 | 12 | 60 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(675, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
675.2.e.a | $2$ | $5.390$ | \(\Q(\sqrt{-3}) \) | None | \(-1\) | \(0\) | \(0\) | \(-3\) | \(q+(-1+\zeta_{6})q^{2}+\zeta_{6}q^{4}+(-3+3\zeta_{6})q^{7}+\cdots\) |
675.2.e.b | $6$ | $5.390$ | 6.0.954288.1 | None | \(-1\) | \(0\) | \(0\) | \(5\) | \(q+(\beta _{4}-\beta _{5})q^{2}+(-2-\beta _{1}-\beta _{2}+2\beta _{3}+\cdots)q^{4}+\cdots\) |
675.2.e.c | $8$ | $5.390$ | 8.0.1223810289.2 | None | \(-2\) | \(0\) | \(0\) | \(-1\) | \(q-\beta _{1}q^{2}+(\beta _{1}-\beta _{2}-\beta _{3}+\beta _{6})q^{4}+\cdots\) |
675.2.e.d | $8$ | $5.390$ | \(\Q(\zeta_{24})\) | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q-\beta_{7} q^{2}-\beta_{2} q^{4}+(-\beta_{7}+2\beta_{5}-2\beta_{3})q^{7}+\cdots\) |
675.2.e.e | $8$ | $5.390$ | 8.0.1223810289.2 | None | \(2\) | \(0\) | \(0\) | \(1\) | \(q+\beta _{1}q^{2}+(\beta _{1}-\beta _{2}-\beta _{3}+\beta _{6})q^{4}+\cdots\) |
Decomposition of \(S_{2}^{\mathrm{old}}(675, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(675, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(45, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(135, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(225, [\chi])\)\(^{\oplus 2}\)