Properties

Label 675.2.bg
Level $675$
Weight $2$
Character orbit 675.bg
Rep. character $\chi_{675}(4,\cdot)$
Character field $\Q(\zeta_{90})$
Dimension $2112$
Newform subspaces $1$
Sturm bound $180$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 675 = 3^{3} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 675.bg (of order \(90\) and degree \(24\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 675 \)
Character field: \(\Q(\zeta_{90})\)
Newform subspaces: \( 1 \)
Sturm bound: \(180\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(675, [\chi])\).

Total New Old
Modular forms 2208 2208 0
Cusp forms 2112 2112 0
Eisenstein series 96 96 0

Trace form

\( 2112 q - 30 q^{2} - 30 q^{3} - 18 q^{4} - 36 q^{5} - 18 q^{6} - 15 q^{8} - 18 q^{9} - 12 q^{10} - 18 q^{11} - 30 q^{12} - 30 q^{13} - 18 q^{14} - 69 q^{15} - 6 q^{16} - 15 q^{17} - 9 q^{19} + 27 q^{20}+ \cdots - 108 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(675, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
675.2.bg.a 675.bg 675.ag $2112$ $5.390$ None 675.2.bg.a \(-30\) \(-30\) \(-36\) \(0\) $\mathrm{SU}(2)[C_{90}]$