Properties

Label 675.2.ba.c.518.17
Level $675$
Weight $2$
Character 675.518
Analytic conductor $5.390$
Analytic rank $0$
Dimension $288$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [675,2,Mod(32,675)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(675, base_ring=CyclotomicField(36)) chi = DirichletCharacter(H, H._module([10, 9])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("675.32"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 675 = 3^{3} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 675.ba (of order \(36\), degree \(12\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [288] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.38990213644\)
Analytic rank: \(0\)
Dimension: \(288\)
Relative dimension: \(24\) over \(\Q(\zeta_{36})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{36}]$

Embedding invariants

Embedding label 518.17
Character \(\chi\) \(=\) 675.518
Dual form 675.2.ba.c.632.17

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.01137 + 0.0884834i) q^{2} +(-1.35601 + 1.07761i) q^{3} +(-0.954575 - 0.168317i) q^{4} +(-1.46678 + 0.969879i) q^{6} +(0.0780926 + 0.0546810i) q^{7} +(-2.91182 - 0.780219i) q^{8} +(0.677513 - 2.92249i) q^{9} +(1.08290 - 2.97524i) q^{11} +(1.47579 - 0.800420i) q^{12} +(0.0973814 + 1.11307i) q^{13} +(0.0741421 + 0.0622126i) q^{14} +(-1.05420 - 0.383697i) q^{16} +(5.36631 - 1.43790i) q^{17} +(0.943809 - 2.89578i) q^{18} +(1.63705 - 0.945151i) q^{19} +(-0.164819 + 0.0100055i) q^{21} +(1.35847 - 2.91325i) q^{22} +(-1.46883 - 2.09771i) q^{23} +(4.78922 - 2.07982i) q^{24} +1.13435i q^{26} +(2.23060 + 4.69302i) q^{27} +(-0.0653414 - 0.0653414i) q^{28} +(2.20954 - 1.85402i) q^{29} +(1.90673 - 10.8136i) q^{31} +(4.43196 + 2.06666i) q^{32} +(1.73773 + 5.20139i) q^{33} +(5.55456 - 0.979419i) q^{34} +(-1.13864 + 2.67570i) q^{36} +(-0.764839 - 2.85442i) q^{37} +(1.73929 - 0.811046i) q^{38} +(-1.33151 - 1.40440i) q^{39} +(-0.907830 + 1.08191i) q^{41} +(-0.167578 - 0.00446450i) q^{42} +(4.72655 + 10.1361i) q^{43} +(-1.53449 + 2.65782i) q^{44} +(-1.29992 - 2.25153i) q^{46} +(0.833027 - 1.18969i) q^{47} +(1.84298 - 0.615719i) q^{48} +(-2.39103 - 6.56931i) q^{49} +(-5.72726 + 7.73259i) q^{51} +(0.0943918 - 1.07890i) q^{52} +(4.90478 - 4.90478i) q^{53} +(1.84070 + 4.94375i) q^{54} +(-0.184728 - 0.220150i) q^{56} +(-1.20135 + 3.04573i) q^{57} +(2.39871 - 1.67959i) q^{58} +(-5.36820 + 1.95387i) q^{59} +(-0.783208 - 4.44180i) q^{61} +(2.88524 - 10.7679i) q^{62} +(0.212714 - 0.191178i) q^{63} +(6.24259 + 3.60416i) q^{64} +(1.29725 + 5.41429i) q^{66} +(-10.2362 + 0.895552i) q^{67} +(-5.36457 + 0.469339i) q^{68} +(4.25226 + 1.26168i) q^{69} +(-5.04685 - 2.91380i) q^{71} +(-4.25298 + 7.98116i) q^{72} +(0.754018 - 2.81403i) q^{73} +(-0.520967 - 2.95455i) q^{74} +(-1.72177 + 0.626673i) q^{76} +(0.247255 - 0.173130i) q^{77} +(-1.22238 - 1.53818i) q^{78} +(-5.79636 - 6.90783i) q^{79} +(-8.08195 - 3.96006i) q^{81} +(-1.01388 + 1.01388i) q^{82} +(1.07463 - 12.2831i) q^{83} +(0.159016 + 0.0181909i) q^{84} +(3.88341 + 10.6696i) q^{86} +(-0.998236 + 4.89509i) q^{87} +(-5.47454 + 7.81845i) q^{88} +(5.65298 + 9.79125i) q^{89} +(-0.0532593 + 0.0922477i) q^{91} +(1.04903 + 2.24965i) q^{92} +(9.06731 + 16.7180i) q^{93} +(0.947766 - 1.12950i) q^{94} +(-8.23681 + 1.97352i) q^{96} +(-1.82485 + 0.850941i) q^{97} +(-1.83694 - 6.85557i) q^{98} +(-7.96144 - 5.18053i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 288 q + 24 q^{6} + 36 q^{11} + 48 q^{21} - 192 q^{36} - 180 q^{41} - 60 q^{51} - 288 q^{56} + 72 q^{61} + 144 q^{71} + 216 q^{76} + 24 q^{81} - 36 q^{91} - 168 q^{96}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/675\mathbb{Z}\right)^\times\).

\(n\) \(326\) \(352\)
\(\chi(n)\) \(e\left(\frac{5}{18}\right)\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.01137 + 0.0884834i 0.715147 + 0.0625672i 0.438921 0.898526i \(-0.355361\pi\)
0.276226 + 0.961093i \(0.410916\pi\)
\(3\) −1.35601 + 1.07761i −0.782891 + 0.622158i
\(4\) −0.954575 0.168317i −0.477287 0.0841586i
\(5\) 0 0
\(6\) −1.46678 + 0.969879i −0.598809 + 0.395951i
\(7\) 0.0780926 + 0.0546810i 0.0295162 + 0.0206675i 0.588241 0.808685i \(-0.299820\pi\)
−0.558725 + 0.829353i \(0.688709\pi\)
\(8\) −2.91182 0.780219i −1.02948 0.275849i
\(9\) 0.677513 2.92249i 0.225838 0.974165i
\(10\) 0 0
\(11\) 1.08290 2.97524i 0.326506 0.897068i −0.662483 0.749077i \(-0.730497\pi\)
0.988989 0.147991i \(-0.0472806\pi\)
\(12\) 1.47579 0.800420i 0.426024 0.231061i
\(13\) 0.0973814 + 1.11307i 0.0270087 + 0.308711i 0.997668 + 0.0682525i \(0.0217423\pi\)
−0.970659 + 0.240459i \(0.922702\pi\)
\(14\) 0.0741421 + 0.0622126i 0.0198153 + 0.0166270i
\(15\) 0 0
\(16\) −1.05420 0.383697i −0.263550 0.0959243i
\(17\) 5.36631 1.43790i 1.30152 0.348742i 0.459496 0.888180i \(-0.348030\pi\)
0.842025 + 0.539438i \(0.181363\pi\)
\(18\) 0.943809 2.89578i 0.222458 0.682541i
\(19\) 1.63705 0.945151i 0.375565 0.216832i −0.300322 0.953838i \(-0.597094\pi\)
0.675887 + 0.737005i \(0.263761\pi\)
\(20\) 0 0
\(21\) −0.164819 + 0.0100055i −0.0359664 + 0.00218337i
\(22\) 1.35847 2.91325i 0.289627 0.621107i
\(23\) −1.46883 2.09771i −0.306272 0.437402i 0.636281 0.771457i \(-0.280472\pi\)
−0.942554 + 0.334055i \(0.891583\pi\)
\(24\) 4.78922 2.07982i 0.977595 0.424541i
\(25\) 0 0
\(26\) 1.13435i 0.222464i
\(27\) 2.23060 + 4.69302i 0.429279 + 0.903172i
\(28\) −0.0653414 0.0653414i −0.0123484 0.0123484i
\(29\) 2.20954 1.85402i 0.410301 0.344283i −0.414158 0.910205i \(-0.635924\pi\)
0.824459 + 0.565922i \(0.191480\pi\)
\(30\) 0 0
\(31\) 1.90673 10.8136i 0.342459 1.94218i 0.00743407 0.999972i \(-0.497634\pi\)
0.335025 0.942209i \(-0.391255\pi\)
\(32\) 4.43196 + 2.06666i 0.783467 + 0.365336i
\(33\) 1.73773 + 5.20139i 0.302500 + 0.905445i
\(34\) 5.55456 0.979419i 0.952599 0.167969i
\(35\) 0 0
\(36\) −1.13864 + 2.67570i −0.189774 + 0.445950i
\(37\) −0.764839 2.85442i −0.125739 0.469263i 0.874126 0.485699i \(-0.161435\pi\)
−0.999865 + 0.0164356i \(0.994768\pi\)
\(38\) 1.73929 0.811046i 0.282151 0.131569i
\(39\) −1.33151 1.40440i −0.213212 0.224884i
\(40\) 0 0
\(41\) −0.907830 + 1.08191i −0.141779 + 0.168966i −0.832261 0.554384i \(-0.812954\pi\)
0.690482 + 0.723350i \(0.257398\pi\)
\(42\) −0.167578 0.00446450i −0.0258579 0.000688887i
\(43\) 4.72655 + 10.1361i 0.720792 + 1.54574i 0.833749 + 0.552144i \(0.186190\pi\)
−0.112957 + 0.993600i \(0.536032\pi\)
\(44\) −1.53449 + 2.65782i −0.231333 + 0.400681i
\(45\) 0 0
\(46\) −1.29992 2.25153i −0.191663 0.331970i
\(47\) 0.833027 1.18969i 0.121509 0.173534i −0.753789 0.657116i \(-0.771776\pi\)
0.875299 + 0.483583i \(0.160665\pi\)
\(48\) 1.84298 0.615719i 0.266011 0.0888714i
\(49\) −2.39103 6.56931i −0.341576 0.938473i
\(50\) 0 0
\(51\) −5.72726 + 7.73259i −0.801977 + 1.08278i
\(52\) 0.0943918 1.07890i 0.0130898 0.149617i
\(53\) 4.90478 4.90478i 0.673723 0.673723i −0.284849 0.958572i \(-0.591944\pi\)
0.958572 + 0.284849i \(0.0919435\pi\)
\(54\) 1.84070 + 4.94375i 0.250488 + 0.672760i
\(55\) 0 0
\(56\) −0.184728 0.220150i −0.0246853 0.0294188i
\(57\) −1.20135 + 3.04573i −0.159122 + 0.403417i
\(58\) 2.39871 1.67959i 0.314966 0.220542i
\(59\) −5.36820 + 1.95387i −0.698880 + 0.254372i −0.666933 0.745118i \(-0.732393\pi\)
−0.0319475 + 0.999490i \(0.510171\pi\)
\(60\) 0 0
\(61\) −0.783208 4.44180i −0.100280 0.568714i −0.993001 0.118105i \(-0.962318\pi\)
0.892722 0.450609i \(-0.148793\pi\)
\(62\) 2.88524 10.7679i 0.366425 1.36752i
\(63\) 0.212714 0.191178i 0.0267994 0.0240862i
\(64\) 6.24259 + 3.60416i 0.780324 + 0.450520i
\(65\) 0 0
\(66\) 1.29725 + 5.41429i 0.159680 + 0.666453i
\(67\) −10.2362 + 0.895552i −1.25055 + 0.109409i −0.693125 0.720817i \(-0.743767\pi\)
−0.557427 + 0.830226i \(0.688211\pi\)
\(68\) −5.36457 + 0.469339i −0.650549 + 0.0569157i
\(69\) 4.25226 + 1.26168i 0.511912 + 0.151889i
\(70\) 0 0
\(71\) −5.04685 2.91380i −0.598951 0.345805i 0.169678 0.985500i \(-0.445727\pi\)
−0.768629 + 0.639695i \(0.779061\pi\)
\(72\) −4.25298 + 7.98116i −0.501218 + 0.940589i
\(73\) 0.754018 2.81403i 0.0882512 0.329358i −0.907659 0.419709i \(-0.862132\pi\)
0.995910 + 0.0903509i \(0.0287989\pi\)
\(74\) −0.520967 2.95455i −0.0605611 0.343459i
\(75\) 0 0
\(76\) −1.72177 + 0.626673i −0.197501 + 0.0718843i
\(77\) 0.247255 0.173130i 0.0281774 0.0197300i
\(78\) −1.22238 1.53818i −0.138408 0.174165i
\(79\) −5.79636 6.90783i −0.652141 0.777191i 0.334094 0.942540i \(-0.391570\pi\)
−0.986235 + 0.165348i \(0.947125\pi\)
\(80\) 0 0
\(81\) −8.08195 3.96006i −0.897995 0.440006i
\(82\) −1.01388 + 1.01388i −0.111965 + 0.111965i
\(83\) 1.07463 12.2831i 0.117956 1.34824i −0.674483 0.738291i \(-0.735633\pi\)
0.792439 0.609952i \(-0.208811\pi\)
\(84\) 0.159016 + 0.0181909i 0.0173501 + 0.00198479i
\(85\) 0 0
\(86\) 3.88341 + 10.6696i 0.418759 + 1.15053i
\(87\) −0.998236 + 4.89509i −0.107022 + 0.524808i
\(88\) −5.47454 + 7.81845i −0.583588 + 0.833450i
\(89\) 5.65298 + 9.79125i 0.599215 + 1.03787i 0.992937 + 0.118641i \(0.0378538\pi\)
−0.393722 + 0.919229i \(0.628813\pi\)
\(90\) 0 0
\(91\) −0.0532593 + 0.0922477i −0.00558309 + 0.00967019i
\(92\) 1.04903 + 2.24965i 0.109369 + 0.234542i
\(93\) 9.06731 + 16.7180i 0.940237 + 1.73358i
\(94\) 0.947766 1.12950i 0.0977546 0.116499i
\(95\) 0 0
\(96\) −8.23681 + 1.97352i −0.840666 + 0.201422i
\(97\) −1.82485 + 0.850941i −0.185285 + 0.0864000i −0.513047 0.858360i \(-0.671483\pi\)
0.327762 + 0.944760i \(0.393706\pi\)
\(98\) −1.83694 6.85557i −0.185559 0.692517i
\(99\) −7.96144 5.18053i −0.800155 0.520663i
\(100\) 0 0
\(101\) 15.4928 2.73179i 1.54159 0.271824i 0.662713 0.748874i \(-0.269405\pi\)
0.878876 + 0.477050i \(0.158294\pi\)
\(102\) −6.47659 + 7.31375i −0.641278 + 0.724169i
\(103\) −8.32832 3.88356i −0.820614 0.382659i −0.0334791 0.999439i \(-0.510659\pi\)
−0.787135 + 0.616781i \(0.788436\pi\)
\(104\) 0.584885 3.31705i 0.0573527 0.325263i
\(105\) 0 0
\(106\) 5.39454 4.52656i 0.523964 0.439658i
\(107\) 4.86588 + 4.86588i 0.470402 + 0.470402i 0.902045 0.431643i \(-0.142066\pi\)
−0.431643 + 0.902045i \(0.642066\pi\)
\(108\) −1.33935 4.85529i −0.128879 0.467200i
\(109\) 7.83089i 0.750063i 0.927012 + 0.375031i \(0.122368\pi\)
−0.927012 + 0.375031i \(0.877632\pi\)
\(110\) 0 0
\(111\) 4.11308 + 3.04641i 0.390396 + 0.289153i
\(112\) −0.0613442 0.0876086i −0.00579648 0.00827823i
\(113\) −7.68065 + 16.4712i −0.722535 + 1.54948i 0.109021 + 0.994039i \(0.465229\pi\)
−0.831556 + 0.555442i \(0.812549\pi\)
\(114\) −1.48450 + 2.97406i −0.139036 + 0.278547i
\(115\) 0 0
\(116\) −2.42123 + 1.39790i −0.224806 + 0.129792i
\(117\) 3.31893 + 0.469526i 0.306835 + 0.0434077i
\(118\) −5.60212 + 1.50108i −0.515717 + 0.138186i
\(119\) 0.497695 + 0.181146i 0.0456236 + 0.0166056i
\(120\) 0 0
\(121\) 0.747114 + 0.626903i 0.0679195 + 0.0569912i
\(122\) −0.399088 4.56160i −0.0361318 0.412988i
\(123\) 0.0651476 2.44536i 0.00587416 0.220491i
\(124\) −3.64023 + 10.0015i −0.326903 + 0.898158i
\(125\) 0 0
\(126\) 0.232048 0.174530i 0.0206725 0.0155484i
\(127\) −18.4918 4.95487i −1.64088 0.439673i −0.683843 0.729629i \(-0.739693\pi\)
−0.957040 + 0.289956i \(0.906359\pi\)
\(128\) −2.01684 1.41221i −0.178265 0.124823i
\(129\) −17.3320 8.65128i −1.52600 0.761702i
\(130\) 0 0
\(131\) 19.0660 + 3.36186i 1.66581 + 0.293727i 0.925558 0.378605i \(-0.123596\pi\)
0.740250 + 0.672332i \(0.234707\pi\)
\(132\) −0.783308 5.25760i −0.0681782 0.457616i
\(133\) 0.179523 + 0.0157062i 0.0155666 + 0.00136190i
\(134\) −10.4318 −0.901174
\(135\) 0 0
\(136\) −16.7476 −1.43609
\(137\) 1.96913 + 0.172277i 0.168234 + 0.0147186i 0.170962 0.985278i \(-0.445313\pi\)
−0.00272729 + 0.999996i \(0.500868\pi\)
\(138\) 4.18897 + 1.65228i 0.356589 + 0.140652i
\(139\) −20.6650 3.64379i −1.75278 0.309062i −0.797182 0.603739i \(-0.793677\pi\)
−0.955597 + 0.294677i \(0.904788\pi\)
\(140\) 0 0
\(141\) 0.152427 + 2.51090i 0.0128366 + 0.211456i
\(142\) −4.84641 3.39350i −0.406702 0.284776i
\(143\) 3.41712 + 0.915613i 0.285754 + 0.0765674i
\(144\) −1.83559 + 2.82093i −0.152966 + 0.235078i
\(145\) 0 0
\(146\) 1.01159 2.77931i 0.0837196 0.230018i
\(147\) 10.3214 + 6.33143i 0.851296 + 0.522208i
\(148\) 0.249648 + 2.85349i 0.0205209 + 0.234555i
\(149\) 7.95475 + 6.67483i 0.651678 + 0.546823i 0.907580 0.419880i \(-0.137928\pi\)
−0.255901 + 0.966703i \(0.582372\pi\)
\(150\) 0 0
\(151\) 19.7123 + 7.17470i 1.60417 + 0.583869i 0.980274 0.197642i \(-0.0633285\pi\)
0.623892 + 0.781511i \(0.285551\pi\)
\(152\) −5.50421 + 1.47485i −0.446450 + 0.119626i
\(153\) −0.566505 16.6572i −0.0457992 1.34666i
\(154\) 0.265386 0.153221i 0.0213854 0.0123469i
\(155\) 0 0
\(156\) 1.03464 + 1.56472i 0.0828376 + 0.125278i
\(157\) −4.97376 + 10.6663i −0.396949 + 0.851260i 0.601671 + 0.798744i \(0.294502\pi\)
−0.998620 + 0.0525161i \(0.983276\pi\)
\(158\) −5.25104 7.49926i −0.417750 0.596609i
\(159\) −1.36548 + 11.9364i −0.108289 + 0.946615i
\(160\) 0 0
\(161\) 0.244133i 0.0192403i
\(162\) −7.82345 4.72020i −0.614668 0.370854i
\(163\) −15.0223 15.0223i −1.17663 1.17663i −0.980596 0.196039i \(-0.937192\pi\)
−0.196039 0.980596i \(-0.562808\pi\)
\(164\) 1.04870 0.879960i 0.0818893 0.0687133i
\(165\) 0 0
\(166\) 2.17370 12.3277i 0.168712 0.956811i
\(167\) −2.82971 1.31951i −0.218969 0.102107i 0.310039 0.950724i \(-0.399658\pi\)
−0.529008 + 0.848617i \(0.677436\pi\)
\(168\) 0.487729 + 0.0994607i 0.0376291 + 0.00767356i
\(169\) 11.5730 2.04064i 0.890235 0.156972i
\(170\) 0 0
\(171\) −1.65308 5.42462i −0.126414 0.414831i
\(172\) −2.80576 10.4712i −0.213937 0.798425i
\(173\) 19.0541 8.88509i 1.44866 0.675521i 0.470314 0.882499i \(-0.344141\pi\)
0.978345 + 0.206979i \(0.0663630\pi\)
\(174\) −1.44272 + 4.86242i −0.109372 + 0.368619i
\(175\) 0 0
\(176\) −2.28318 + 2.72099i −0.172101 + 0.205102i
\(177\) 5.17382 8.43428i 0.388888 0.633960i
\(178\) 4.85089 + 10.4028i 0.363590 + 0.779721i
\(179\) −6.25260 + 10.8298i −0.467342 + 0.809459i −0.999304 0.0373088i \(-0.988121\pi\)
0.531962 + 0.846768i \(0.321455\pi\)
\(180\) 0 0
\(181\) −2.19207 3.79678i −0.162935 0.282213i 0.772985 0.634425i \(-0.218763\pi\)
−0.935920 + 0.352212i \(0.885430\pi\)
\(182\) −0.0620272 + 0.0885841i −0.00459776 + 0.00656629i
\(183\) 5.84856 + 5.17912i 0.432338 + 0.382851i
\(184\) 2.64030 + 7.25415i 0.194645 + 0.534783i
\(185\) 0 0
\(186\) 7.69114 + 17.7104i 0.563942 + 1.29859i
\(187\) 1.53308 17.5232i 0.112110 1.28142i
\(188\) −0.995431 + 0.995431i −0.0725993 + 0.0725993i
\(189\) −0.0824260 + 0.488461i −0.00599561 + 0.0355303i
\(190\) 0 0
\(191\) 11.2869 + 13.4512i 0.816694 + 0.973298i 0.999952 0.00976704i \(-0.00310899\pi\)
−0.183259 + 0.983065i \(0.558665\pi\)
\(192\) −12.3489 + 1.83981i −0.891204 + 0.132777i
\(193\) 11.8555 8.30132i 0.853379 0.597542i −0.0629287 0.998018i \(-0.520044\pi\)
0.916307 + 0.400476i \(0.131155\pi\)
\(194\) −1.92089 + 0.699148i −0.137912 + 0.0501959i
\(195\) 0 0
\(196\) 1.17669 + 6.67335i 0.0840494 + 0.476668i
\(197\) 1.79014 6.68089i 0.127542 0.475994i −0.872375 0.488837i \(-0.837421\pi\)
0.999918 + 0.0128429i \(0.00408812\pi\)
\(198\) −7.59357 5.94389i −0.539652 0.422414i
\(199\) 9.64105 + 5.56626i 0.683436 + 0.394582i 0.801148 0.598466i \(-0.204223\pi\)
−0.117712 + 0.993048i \(0.537556\pi\)
\(200\) 0 0
\(201\) 12.9153 12.2450i 0.910977 0.863697i
\(202\) 15.9107 1.39200i 1.11947 0.0979409i
\(203\) 0.273928 0.0239656i 0.0192260 0.00168206i
\(204\) 6.76863 6.41734i 0.473899 0.449304i
\(205\) 0 0
\(206\) −8.07939 4.66464i −0.562918 0.325001i
\(207\) −7.12569 + 2.87143i −0.495270 + 0.199578i
\(208\) 0.324424 1.21077i 0.0224948 0.0839516i
\(209\) −1.03929 5.89411i −0.0718893 0.407704i
\(210\) 0 0
\(211\) 4.00924 1.45925i 0.276008 0.100459i −0.200308 0.979733i \(-0.564194\pi\)
0.476316 + 0.879274i \(0.341972\pi\)
\(212\) −5.50754 + 3.85642i −0.378259 + 0.264860i
\(213\) 9.98351 1.48740i 0.684059 0.101915i
\(214\) 4.49066 + 5.35175i 0.306975 + 0.365838i
\(215\) 0 0
\(216\) −2.83351 15.4056i −0.192796 1.04822i
\(217\) 0.740201 0.740201i 0.0502481 0.0502481i
\(218\) −0.692904 + 7.91993i −0.0469294 + 0.536405i
\(219\) 2.00998 + 4.62839i 0.135822 + 0.312758i
\(220\) 0 0
\(221\) 2.12307 + 5.83308i 0.142813 + 0.392375i
\(222\) 3.89029 + 3.44499i 0.261099 + 0.231213i
\(223\) −8.33967 + 11.9103i −0.558466 + 0.797572i −0.994761 0.102232i \(-0.967402\pi\)
0.436295 + 0.899804i \(0.356290\pi\)
\(224\) 0.233096 + 0.403734i 0.0155744 + 0.0269756i
\(225\) 0 0
\(226\) −9.22541 + 15.9789i −0.613665 + 1.06290i
\(227\) −0.426342 0.914294i −0.0282973 0.0606838i 0.891651 0.452723i \(-0.149547\pi\)
−0.919948 + 0.392039i \(0.871770\pi\)
\(228\) 1.65942 2.70517i 0.109898 0.179154i
\(229\) −0.236161 + 0.281446i −0.0156060 + 0.0185985i −0.773791 0.633441i \(-0.781642\pi\)
0.758185 + 0.652039i \(0.226086\pi\)
\(230\) 0 0
\(231\) −0.148713 + 0.501210i −0.00978462 + 0.0329772i
\(232\) −7.88031 + 3.67465i −0.517367 + 0.241252i
\(233\) 0.254961 + 0.951529i 0.0167031 + 0.0623368i 0.973774 0.227516i \(-0.0730604\pi\)
−0.957071 + 0.289853i \(0.906394\pi\)
\(234\) 3.31512 + 0.768535i 0.216716 + 0.0502407i
\(235\) 0 0
\(236\) 5.45322 0.961549i 0.354974 0.0625915i
\(237\) 15.3038 + 3.12086i 0.994092 + 0.202721i
\(238\) 0.487325 + 0.227244i 0.0315886 + 0.0147300i
\(239\) 3.98223 22.5844i 0.257589 1.46086i −0.531749 0.846902i \(-0.678465\pi\)
0.789338 0.613959i \(-0.210424\pi\)
\(240\) 0 0
\(241\) −14.7217 + 12.3529i −0.948306 + 0.795723i −0.979011 0.203805i \(-0.934669\pi\)
0.0307054 + 0.999528i \(0.490225\pi\)
\(242\) 0.700139 + 0.700139i 0.0450066 + 0.0450066i
\(243\) 15.2266 3.33932i 0.976786 0.214218i
\(244\) 4.37185i 0.279879i
\(245\) 0 0
\(246\) 0.282263 2.46740i 0.0179964 0.157316i
\(247\) 1.21144 + 1.73012i 0.0770821 + 0.110085i
\(248\) −13.9890 + 29.9996i −0.888304 + 1.90497i
\(249\) 11.7792 + 17.8140i 0.746474 + 1.12891i
\(250\) 0 0
\(251\) −7.72981 + 4.46281i −0.487901 + 0.281690i −0.723703 0.690111i \(-0.757562\pi\)
0.235802 + 0.971801i \(0.424228\pi\)
\(252\) −0.235230 + 0.146690i −0.0148181 + 0.00924062i
\(253\) −7.83178 + 2.09852i −0.492380 + 0.131933i
\(254\) −18.2636 6.64742i −1.14596 0.417097i
\(255\) 0 0
\(256\) −12.9586 10.8736i −0.809913 0.679598i
\(257\) −1.17787 13.4631i −0.0734736 0.839808i −0.940111 0.340869i \(-0.889279\pi\)
0.866637 0.498939i \(-0.166277\pi\)
\(258\) −16.7636 10.2832i −1.04366 0.640207i
\(259\) 0.0963542 0.264731i 0.00598716 0.0164496i
\(260\) 0 0
\(261\) −3.92138 7.71348i −0.242727 0.477453i
\(262\) 18.9854 + 5.08711i 1.17292 + 0.314283i
\(263\) 18.1928 + 12.7387i 1.12181 + 0.785503i 0.978922 0.204235i \(-0.0654706\pi\)
0.142893 + 0.989738i \(0.454360\pi\)
\(264\) −1.00173 16.5013i −0.0616520 1.01558i
\(265\) 0 0
\(266\) 0.180175 + 0.0317696i 0.0110472 + 0.00194792i
\(267\) −18.2166 7.18530i −1.11484 0.439733i
\(268\) 9.92197 + 0.868059i 0.606080 + 0.0530252i
\(269\) 23.2949 1.42032 0.710158 0.704042i \(-0.248623\pi\)
0.710158 + 0.704042i \(0.248623\pi\)
\(270\) 0 0
\(271\) −10.6978 −0.649842 −0.324921 0.945741i \(-0.605338\pi\)
−0.324921 + 0.945741i \(0.605338\pi\)
\(272\) −6.20888 0.543206i −0.376469 0.0329367i
\(273\) −0.0271871 0.182481i −0.00164544 0.0110443i
\(274\) 1.97628 + 0.348471i 0.119391 + 0.0210519i
\(275\) 0 0
\(276\) −3.84674 1.92010i −0.231546 0.115576i
\(277\) 22.9557 + 16.0737i 1.37927 + 0.965776i 0.999166 + 0.0408334i \(0.0130013\pi\)
0.380106 + 0.924943i \(0.375888\pi\)
\(278\) −20.5775 5.51373i −1.23416 0.330691i
\(279\) −30.3109 12.8988i −1.81467 0.772229i
\(280\) 0 0
\(281\) 7.46331 20.5053i 0.445224 1.22324i −0.490789 0.871278i \(-0.663292\pi\)
0.936013 0.351965i \(-0.114486\pi\)
\(282\) −0.0680136 + 2.55294i −0.00405015 + 0.152025i
\(283\) −2.06294 23.5795i −0.122629 1.40165i −0.769301 0.638886i \(-0.779395\pi\)
0.646672 0.762768i \(-0.276160\pi\)
\(284\) 4.32715 + 3.63091i 0.256769 + 0.215455i
\(285\) 0 0
\(286\) 3.37495 + 1.22838i 0.199565 + 0.0726358i
\(287\) −0.130055 + 0.0348480i −0.00767688 + 0.00205701i
\(288\) 9.04250 11.5522i 0.532834 0.680719i
\(289\) 12.0073 6.93242i 0.706312 0.407790i
\(290\) 0 0
\(291\) 1.55753 3.12036i 0.0913038 0.182919i
\(292\) −1.19342 + 2.55929i −0.0698395 + 0.149771i
\(293\) 0.820761 + 1.17217i 0.0479493 + 0.0684788i 0.842411 0.538836i \(-0.181136\pi\)
−0.794461 + 0.607315i \(0.792247\pi\)
\(294\) 9.87854 + 7.31670i 0.576128 + 0.426718i
\(295\) 0 0
\(296\) 8.90828i 0.517783i
\(297\) 16.3784 1.55449i 0.950369 0.0902009i
\(298\) 7.45459 + 7.45459i 0.431833 + 0.431833i
\(299\) 2.19187 1.83920i 0.126759 0.106363i
\(300\) 0 0
\(301\) −0.185145 + 1.05001i −0.0106716 + 0.0605215i
\(302\) 19.3016 + 9.00049i 1.11068 + 0.517920i
\(303\) −18.0645 + 20.3995i −1.03778 + 1.17192i
\(304\) −2.08843 + 0.368246i −0.119779 + 0.0211204i
\(305\) 0 0
\(306\) 0.900941 16.8967i 0.0515034 0.965922i
\(307\) 1.29179 + 4.82104i 0.0737265 + 0.275151i 0.992942 0.118605i \(-0.0378422\pi\)
−0.919215 + 0.393756i \(0.871175\pi\)
\(308\) −0.265164 + 0.123648i −0.0151091 + 0.00704551i
\(309\) 15.4782 3.70855i 0.880526 0.210972i
\(310\) 0 0
\(311\) −12.6560 + 15.0828i −0.717655 + 0.855268i −0.994401 0.105675i \(-0.966300\pi\)
0.276746 + 0.960943i \(0.410744\pi\)
\(312\) 2.78137 + 5.12822i 0.157464 + 0.290328i
\(313\) −2.47291 5.30318i −0.139777 0.299753i 0.823941 0.566676i \(-0.191771\pi\)
−0.963718 + 0.266923i \(0.913993\pi\)
\(314\) −5.97410 + 10.3474i −0.337138 + 0.583940i
\(315\) 0 0
\(316\) 4.37035 + 7.56967i 0.245851 + 0.425827i
\(317\) −13.4460 + 19.2029i −0.755205 + 1.07854i 0.238997 + 0.971020i \(0.423181\pi\)
−0.994202 + 0.107524i \(0.965708\pi\)
\(318\) −2.43717 + 11.9513i −0.136670 + 0.670193i
\(319\) −3.12345 8.58161i −0.174880 0.480478i
\(320\) 0 0
\(321\) −11.8417 1.35465i −0.660938 0.0756091i
\(322\) 0.0216017 0.246908i 0.00120382 0.0137597i
\(323\) 7.42588 7.42588i 0.413187 0.413187i
\(324\) 7.04828 + 5.14050i 0.391571 + 0.285583i
\(325\) 0 0
\(326\) −13.8639 16.5223i −0.767848 0.915086i
\(327\) −8.43864 10.6187i −0.466658 0.587218i
\(328\) 3.48756 2.44201i 0.192568 0.134838i
\(329\) 0.130106 0.0473549i 0.00717300 0.00261076i
\(330\) 0 0
\(331\) 2.14790 + 12.1813i 0.118059 + 0.669546i 0.985190 + 0.171466i \(0.0548504\pi\)
−0.867131 + 0.498080i \(0.834039\pi\)
\(332\) −3.09327 + 11.5442i −0.169765 + 0.633572i
\(333\) −8.86021 + 0.301332i −0.485536 + 0.0165129i
\(334\) −2.74513 1.58490i −0.150207 0.0867218i
\(335\) 0 0
\(336\) 0.177591 + 0.0526928i 0.00968838 + 0.00287463i
\(337\) 1.27310 0.111382i 0.0693501 0.00606735i −0.0524279 0.998625i \(-0.516696\pi\)
0.121778 + 0.992557i \(0.461140\pi\)
\(338\) 11.8852 1.03982i 0.646470 0.0565588i
\(339\) −7.33452 30.6118i −0.398356 1.66261i
\(340\) 0 0
\(341\) −30.1083 17.3830i −1.63045 0.941343i
\(342\) −1.19188 5.63257i −0.0644496 0.304574i
\(343\) 0.345213 1.28835i 0.0186398 0.0695645i
\(344\) −5.85445 33.2023i −0.315651 1.79015i
\(345\) 0 0
\(346\) 20.0570 7.30014i 1.07827 0.392458i
\(347\) −12.1041 + 8.47537i −0.649782 + 0.454982i −0.851425 0.524477i \(-0.824261\pi\)
0.201643 + 0.979459i \(0.435372\pi\)
\(348\) 1.77682 4.50470i 0.0952475 0.241477i
\(349\) −14.9928 17.8678i −0.802548 0.956439i 0.197166 0.980370i \(-0.436826\pi\)
−0.999714 + 0.0239312i \(0.992382\pi\)
\(350\) 0 0
\(351\) −5.00646 + 2.93983i −0.267225 + 0.156917i
\(352\) 10.9481 10.9481i 0.583538 0.583538i
\(353\) −0.0310525 + 0.354931i −0.00165276 + 0.0188911i −0.996976 0.0777063i \(-0.975240\pi\)
0.995324 + 0.0965974i \(0.0307959\pi\)
\(354\) 5.97894 8.07239i 0.317777 0.429043i
\(355\) 0 0
\(356\) −3.74816 10.2980i −0.198652 0.545792i
\(357\) −0.870083 + 0.290685i −0.0460497 + 0.0153847i
\(358\) −7.28196 + 10.3997i −0.384863 + 0.549642i
\(359\) 4.55004 + 7.88090i 0.240142 + 0.415938i 0.960755 0.277400i \(-0.0894727\pi\)
−0.720613 + 0.693338i \(0.756139\pi\)
\(360\) 0 0
\(361\) −7.71338 + 13.3600i −0.405967 + 0.703156i
\(362\) −1.88105 4.03391i −0.0988655 0.212018i
\(363\) −1.68865 0.0449878i −0.0886312 0.00236125i
\(364\) 0.0663668 0.0790929i 0.00347857 0.00414559i
\(365\) 0 0
\(366\) 5.45679 + 5.75550i 0.285231 + 0.300845i
\(367\) −22.0312 + 10.2733i −1.15002 + 0.536262i −0.901677 0.432410i \(-0.857663\pi\)
−0.248341 + 0.968673i \(0.579885\pi\)
\(368\) 0.743556 + 2.77499i 0.0387605 + 0.144656i
\(369\) 2.54681 + 3.38613i 0.132581 + 0.176275i
\(370\) 0 0
\(371\) 0.651225 0.114829i 0.0338099 0.00596160i
\(372\) −5.84149 17.4848i −0.302867 0.906545i
\(373\) 20.3805 + 9.50357i 1.05526 + 0.492076i 0.871246 0.490847i \(-0.163313\pi\)
0.184015 + 0.982923i \(0.441090\pi\)
\(374\) 3.10102 17.5867i 0.160350 0.909389i
\(375\) 0 0
\(376\) −3.35384 + 2.81420i −0.172961 + 0.145131i
\(377\) 2.27883 + 2.27883i 0.117366 + 0.117366i
\(378\) −0.126584 + 0.486722i −0.00651078 + 0.0250343i
\(379\) 3.33488i 0.171301i 0.996325 + 0.0856506i \(0.0272969\pi\)
−0.996325 + 0.0856506i \(0.972703\pi\)
\(380\) 0 0
\(381\) 30.4145 13.2081i 1.55818 0.676673i
\(382\) 10.2251 + 14.6029i 0.523159 + 0.747149i
\(383\) −8.39456 + 18.0022i −0.428942 + 0.919869i 0.566461 + 0.824089i \(0.308312\pi\)
−0.995403 + 0.0957800i \(0.969465\pi\)
\(384\) 4.25666 0.258404i 0.217222 0.0131866i
\(385\) 0 0
\(386\) 12.7248 7.34669i 0.647678 0.373937i
\(387\) 32.8251 6.94596i 1.66859 0.353083i
\(388\) 1.88518 0.505133i 0.0957056 0.0256443i
\(389\) 12.3541 + 4.49653i 0.626378 + 0.227983i 0.635654 0.771974i \(-0.280731\pi\)
−0.00927617 + 0.999957i \(0.502953\pi\)
\(390\) 0 0
\(391\) −10.8985 9.14493i −0.551161 0.462479i
\(392\) 1.83675 + 20.9941i 0.0927699 + 1.06036i
\(393\) −29.4765 + 15.9871i −1.48689 + 0.806441i
\(394\) 2.40164 6.59846i 0.120993 0.332425i
\(395\) 0 0
\(396\) 6.72782 + 6.28525i 0.338086 + 0.315846i
\(397\) 19.9480 + 5.34505i 1.00116 + 0.268260i 0.721932 0.691964i \(-0.243255\pi\)
0.279229 + 0.960225i \(0.409921\pi\)
\(398\) 9.25815 + 6.48263i 0.464069 + 0.324945i
\(399\) −0.260360 + 0.172158i −0.0130343 + 0.00861869i
\(400\) 0 0
\(401\) −29.6077 5.22064i −1.47854 0.260706i −0.624545 0.780989i \(-0.714716\pi\)
−0.853994 + 0.520282i \(0.825827\pi\)
\(402\) 14.1457 11.2415i 0.705521 0.560673i
\(403\) 12.2220 + 1.06929i 0.608823 + 0.0532651i
\(404\) −15.2488 −0.758657
\(405\) 0 0
\(406\) 0.279163 0.0138546
\(407\) −9.32081 0.815466i −0.462016 0.0404211i
\(408\) 22.7099 18.0474i 1.12431 0.893478i
\(409\) 0.0461503 + 0.00813754i 0.00228199 + 0.000402376i 0.174789 0.984606i \(-0.444076\pi\)
−0.172507 + 0.985008i \(0.555187\pi\)
\(410\) 0 0
\(411\) −2.85581 + 1.88835i −0.140867 + 0.0931454i
\(412\) 7.29634 + 5.10895i 0.359465 + 0.251700i
\(413\) −0.526056 0.140956i −0.0258855 0.00693600i
\(414\) −7.46079 + 2.27357i −0.366678 + 0.111740i
\(415\) 0 0
\(416\) −1.86875 + 5.13435i −0.0916230 + 0.251732i
\(417\) 31.9484 17.3278i 1.56452 0.848544i
\(418\) −0.529577 6.05309i −0.0259024 0.296066i
\(419\) 25.6941 + 21.5599i 1.25524 + 1.05327i 0.996172 + 0.0874108i \(0.0278593\pi\)
0.259066 + 0.965860i \(0.416585\pi\)
\(420\) 0 0
\(421\) 28.5935 + 10.4072i 1.39356 + 0.507215i 0.926260 0.376884i \(-0.123005\pi\)
0.467300 + 0.884099i \(0.345227\pi\)
\(422\) 4.18395 1.12109i 0.203671 0.0545736i
\(423\) −2.91246 3.24055i −0.141609 0.157561i
\(424\) −18.1086 + 10.4550i −0.879432 + 0.507740i
\(425\) 0 0
\(426\) 10.2286 0.620939i 0.495579 0.0300846i
\(427\) 0.181719 0.389698i 0.00879400 0.0188588i
\(428\) −3.82583 5.46386i −0.184929 0.264105i
\(429\) −5.62031 + 2.44074i −0.271351 + 0.117840i
\(430\) 0 0
\(431\) 13.0282i 0.627544i −0.949498 0.313772i \(-0.898407\pi\)
0.949498 0.313772i \(-0.101593\pi\)
\(432\) −0.550795 5.80325i −0.0265001 0.279209i
\(433\) −20.0186 20.0186i −0.962033 0.962033i 0.0372720 0.999305i \(-0.488133\pi\)
−0.999305 + 0.0372720i \(0.988133\pi\)
\(434\) 0.814112 0.683121i 0.0390786 0.0327909i
\(435\) 0 0
\(436\) 1.31807 7.47517i 0.0631243 0.357996i
\(437\) −4.38720 2.04578i −0.209868 0.0978631i
\(438\) 1.62330 + 4.85887i 0.0775641 + 0.232166i
\(439\) 18.8026 3.31540i 0.897398 0.158236i 0.294122 0.955768i \(-0.404973\pi\)
0.603276 + 0.797532i \(0.293862\pi\)
\(440\) 0 0
\(441\) −20.8187 + 2.53699i −0.991368 + 0.120809i
\(442\) 1.63108 + 6.08726i 0.0775824 + 0.289541i
\(443\) −1.25966 + 0.587391i −0.0598485 + 0.0279078i −0.452312 0.891860i \(-0.649401\pi\)
0.392464 + 0.919768i \(0.371623\pi\)
\(444\) −3.41347 3.60033i −0.161996 0.170864i
\(445\) 0 0
\(446\) −9.48836 + 11.3078i −0.449287 + 0.535439i
\(447\) −17.9796 0.478999i −0.850404 0.0226559i
\(448\) 0.290421 + 0.622810i 0.0137211 + 0.0294250i
\(449\) 11.4763 19.8775i 0.541600 0.938078i −0.457213 0.889357i \(-0.651152\pi\)
0.998812 0.0487209i \(-0.0155145\pi\)
\(450\) 0 0
\(451\) 2.23585 + 3.87261i 0.105282 + 0.182354i
\(452\) 10.1041 14.4302i 0.475259 0.678740i
\(453\) −34.4616 + 11.5132i −1.61915 + 0.540940i
\(454\) −0.350290 0.962414i −0.0164399 0.0451683i
\(455\) 0 0
\(456\) 5.87444 7.93130i 0.275096 0.371417i
\(457\) 0.232947 2.66259i 0.0108968 0.124551i −0.988798 0.149261i \(-0.952311\pi\)
0.999695 + 0.0247099i \(0.00786620\pi\)
\(458\) −0.263750 + 0.263750i −0.0123242 + 0.0123242i
\(459\) 18.7182 + 21.9768i 0.873689 + 1.02579i
\(460\) 0 0
\(461\) −13.5853 16.1904i −0.632732 0.754061i 0.350471 0.936574i \(-0.386021\pi\)
−0.983204 + 0.182512i \(0.941577\pi\)
\(462\) −0.194753 + 0.493751i −0.00906074 + 0.0229714i
\(463\) 0.992726 0.695114i 0.0461359 0.0323047i −0.550281 0.834980i \(-0.685479\pi\)
0.596417 + 0.802675i \(0.296591\pi\)
\(464\) −3.04067 + 1.10671i −0.141160 + 0.0513779i
\(465\) 0 0
\(466\) 0.173666 + 0.984908i 0.00804492 + 0.0456250i
\(467\) −0.909385 + 3.39387i −0.0420813 + 0.157050i −0.983769 0.179438i \(-0.942572\pi\)
0.941688 + 0.336487i \(0.109239\pi\)
\(468\) −3.08914 1.00683i −0.142795 0.0465408i
\(469\) −0.848342 0.489790i −0.0391728 0.0226164i
\(470\) 0 0
\(471\) −4.74961 19.8233i −0.218851 0.913410i
\(472\) 17.1557 1.50093i 0.789653 0.0690857i
\(473\) 35.2757 3.08623i 1.62198 0.141905i
\(474\) 15.2017 + 4.51048i 0.698238 + 0.207173i
\(475\) 0 0
\(476\) −0.444597 0.256688i −0.0203781 0.0117653i
\(477\) −11.0111 17.6572i −0.504165 0.808470i
\(478\) 6.02585 22.4888i 0.275616 1.02861i
\(479\) 6.70575 + 38.0302i 0.306393 + 1.73764i 0.616873 + 0.787063i \(0.288399\pi\)
−0.310479 + 0.950580i \(0.600489\pi\)
\(480\) 0 0
\(481\) 3.10270 1.12929i 0.141471 0.0514912i
\(482\) −15.9821 + 11.1908i −0.727964 + 0.509726i
\(483\) 0.263080 + 0.331046i 0.0119705 + 0.0150631i
\(484\) −0.607658 0.724178i −0.0276208 0.0329172i
\(485\) 0 0
\(486\) 15.6952 2.02999i 0.711948 0.0920824i
\(487\) 6.28015 6.28015i 0.284581 0.284581i −0.550352 0.834933i \(-0.685506\pi\)
0.834933 + 0.550352i \(0.185506\pi\)
\(488\) −1.18501 + 13.5448i −0.0536430 + 0.613143i
\(489\) 36.5585 + 4.18216i 1.65323 + 0.189124i
\(490\) 0 0
\(491\) 6.13941 + 16.8679i 0.277068 + 0.761237i 0.997691 + 0.0679107i \(0.0216333\pi\)
−0.720624 + 0.693326i \(0.756144\pi\)
\(492\) −0.473785 + 2.32332i −0.0213599 + 0.104743i
\(493\) 9.19116 13.1263i 0.413949 0.591181i
\(494\) 1.07213 + 1.85698i 0.0482373 + 0.0835495i
\(495\) 0 0
\(496\) −6.15923 + 10.6681i −0.276557 + 0.479011i
\(497\) −0.234792 0.503513i −0.0105319 0.0225856i
\(498\) 10.3369 + 19.0588i 0.463205 + 0.854045i
\(499\) −16.0337 + 19.1083i −0.717769 + 0.855404i −0.994412 0.105569i \(-0.966334\pi\)
0.276643 + 0.960973i \(0.410778\pi\)
\(500\) 0 0
\(501\) 5.25902 1.26005i 0.234956 0.0562949i
\(502\) −8.21259 + 3.82959i −0.366546 + 0.170923i
\(503\) −9.95836 37.1651i −0.444021 1.65711i −0.718507 0.695519i \(-0.755174\pi\)
0.274486 0.961591i \(-0.411492\pi\)
\(504\) −0.768544 + 0.390712i −0.0342337 + 0.0174037i
\(505\) 0 0
\(506\) −8.10651 + 1.42940i −0.360378 + 0.0635444i
\(507\) −13.4941 + 15.2384i −0.599295 + 0.676759i
\(508\) 16.8178 + 7.84228i 0.746170 + 0.347945i
\(509\) 4.24058 24.0495i 0.187960 1.06598i −0.734132 0.679007i \(-0.762411\pi\)
0.922092 0.386970i \(-0.126478\pi\)
\(510\) 0 0
\(511\) 0.212757 0.178525i 0.00941184 0.00789747i
\(512\) −8.66188 8.66188i −0.382805 0.382805i
\(513\) 8.08721 + 5.57445i 0.357059 + 0.246118i
\(514\) 13.7204i 0.605183i
\(515\) 0 0
\(516\) 15.0886 + 11.1756i 0.664236 + 0.491977i
\(517\) −2.63752 3.76676i −0.115998 0.165662i
\(518\) 0.120874 0.259215i 0.00531090 0.0113893i
\(519\) −16.2629 + 32.5812i −0.713862 + 1.43015i
\(520\) 0 0
\(521\) −28.5328 + 16.4734i −1.25004 + 0.721713i −0.971118 0.238600i \(-0.923312\pi\)
−0.278925 + 0.960313i \(0.589978\pi\)
\(522\) −3.28345 8.14816i −0.143713 0.356635i
\(523\) −12.9787 + 3.47763i −0.567519 + 0.152066i −0.531158 0.847273i \(-0.678243\pi\)
−0.0363604 + 0.999339i \(0.511576\pi\)
\(524\) −17.6341 6.41829i −0.770350 0.280384i
\(525\) 0 0
\(526\) 17.2725 + 14.4933i 0.753116 + 0.631939i
\(527\) −5.31676 60.7709i −0.231602 2.64722i
\(528\) 0.163845 6.15006i 0.00713046 0.267647i
\(529\) 5.62355 15.4506i 0.244502 0.671764i
\(530\) 0 0
\(531\) 2.07313 + 17.0123i 0.0899664 + 0.738271i
\(532\) −0.168725 0.0452096i −0.00731514 0.00196009i
\(533\) −1.29265 0.905124i −0.0559909 0.0392053i
\(534\) −17.7880 8.87887i −0.769761 0.384226i
\(535\) 0 0
\(536\) 30.5047 + 5.37880i 1.31760 + 0.232329i
\(537\) −3.19175 21.4232i −0.137734 0.924479i
\(538\) 23.5598 + 2.06121i 1.01573 + 0.0888653i
\(539\) −22.1345 −0.953400
\(540\) 0 0
\(541\) 8.25433 0.354882 0.177441 0.984131i \(-0.443218\pi\)
0.177441 + 0.984131i \(0.443218\pi\)
\(542\) −10.8194 0.946574i −0.464733 0.0406588i
\(543\) 7.06392 + 2.78626i 0.303142 + 0.119570i
\(544\) 26.7549 + 4.71761i 1.14711 + 0.202266i
\(545\) 0 0
\(546\) −0.0113497 0.186962i −0.000485722 0.00800123i
\(547\) 15.0685 + 10.5511i 0.644281 + 0.451130i 0.849502 0.527585i \(-0.176902\pi\)
−0.205221 + 0.978716i \(0.565791\pi\)
\(548\) −1.85069 0.495890i −0.0790574 0.0211834i
\(549\) −13.5118 0.720453i −0.576668 0.0307482i
\(550\) 0 0
\(551\) 1.86479 5.12347i 0.0794427 0.218267i
\(552\) −11.3974 6.99148i −0.485106 0.297577i
\(553\) −0.0749253 0.856401i −0.00318615 0.0364179i
\(554\) 21.7944 + 18.2877i 0.925956 + 0.776969i
\(555\) 0 0
\(556\) 19.1129 + 6.95654i 0.810569 + 0.295023i
\(557\) −24.2426 + 6.49580i −1.02719 + 0.275236i −0.732797 0.680448i \(-0.761785\pi\)
−0.294397 + 0.955683i \(0.595119\pi\)
\(558\) −29.5142 15.7275i −1.24944 0.665796i
\(559\) −10.8220 + 6.24807i −0.457721 + 0.264265i
\(560\) 0 0
\(561\) 16.8043 + 25.4136i 0.709476 + 1.07296i
\(562\) 9.36255 20.0781i 0.394935 0.846942i
\(563\) −12.2869 17.5476i −0.517833 0.739542i 0.472028 0.881584i \(-0.343522\pi\)
−0.989861 + 0.142042i \(0.954633\pi\)
\(564\) 0.277126 2.42250i 0.0116691 0.102006i
\(565\) 0 0
\(566\) 24.0301i 1.01006i
\(567\) −0.414600 0.751180i −0.0174116 0.0315466i
\(568\) 12.4221 + 12.4221i 0.521220 + 0.521220i
\(569\) −28.2319 + 23.6893i −1.18354 + 0.993109i −0.183592 + 0.983002i \(0.558773\pi\)
−0.999949 + 0.0101065i \(0.996783\pi\)
\(570\) 0 0
\(571\) −4.68121 + 26.5485i −0.195903 + 1.11102i 0.715225 + 0.698894i \(0.246324\pi\)
−0.911128 + 0.412124i \(0.864787\pi\)
\(572\) −3.10778 1.44918i −0.129943 0.0605933i
\(573\) −29.8004 6.07707i −1.24493 0.253873i
\(574\) −0.134617 + 0.0237366i −0.00561880 + 0.000990746i
\(575\) 0 0
\(576\) 14.7626 15.8021i 0.615108 0.658420i
\(577\) 9.12335 + 34.0488i 0.379810 + 1.41747i 0.846188 + 0.532884i \(0.178892\pi\)
−0.466378 + 0.884585i \(0.654441\pi\)
\(578\) 12.7572 5.94880i 0.530631 0.247437i
\(579\) −7.13058 + 24.0323i −0.296337 + 0.998747i
\(580\) 0 0
\(581\) 0.755571 0.900455i 0.0313464 0.0373572i
\(582\) 1.85134 3.01802i 0.0767404 0.125101i
\(583\) −9.28151 19.9043i −0.384401 0.824350i
\(584\) −4.39113 + 7.60565i −0.181706 + 0.314724i
\(585\) 0 0
\(586\) 0.726376 + 1.25812i 0.0300063 + 0.0519724i
\(587\) 0.300699 0.429442i 0.0124112 0.0177250i −0.812899 0.582405i \(-0.802112\pi\)
0.825310 + 0.564680i \(0.191001\pi\)
\(588\) −8.78687 7.78110i −0.362364 0.320887i
\(589\) −7.09908 19.5046i −0.292512 0.803671i
\(590\) 0 0
\(591\) 4.77195 + 10.9884i 0.196292 + 0.452003i
\(592\) −0.288939 + 3.30259i −0.0118753 + 0.135736i
\(593\) −13.4237 + 13.4237i −0.551245 + 0.551245i −0.926800 0.375555i \(-0.877452\pi\)
0.375555 + 0.926800i \(0.377452\pi\)
\(594\) 16.7021 0.122955i 0.685297 0.00504491i
\(595\) 0 0
\(596\) −6.46991 7.71054i −0.265018 0.315836i
\(597\) −19.0716 + 2.84140i −0.780549 + 0.116291i
\(598\) 2.37953 1.66616i 0.0973062 0.0681345i
\(599\) −22.1618 + 8.06622i −0.905505 + 0.329577i −0.752457 0.658642i \(-0.771131\pi\)
−0.153049 + 0.988219i \(0.548909\pi\)
\(600\) 0 0
\(601\) −0.127390 0.722463i −0.00519634 0.0294699i 0.982099 0.188364i \(-0.0603184\pi\)
−0.987296 + 0.158894i \(0.949207\pi\)
\(602\) −0.280158 + 1.04556i −0.0114184 + 0.0426140i
\(603\) −4.31792 + 30.5220i −0.175839 + 1.24295i
\(604\) −17.6093 10.1667i −0.716510 0.413677i
\(605\) 0 0
\(606\) −20.0749 + 19.0330i −0.815488 + 0.773165i
\(607\) −24.4981 + 2.14331i −0.994347 + 0.0869941i −0.572699 0.819766i \(-0.694104\pi\)
−0.421648 + 0.906760i \(0.638548\pi\)
\(608\) 9.20863 0.805651i 0.373459 0.0326734i
\(609\) −0.345623 + 0.327685i −0.0140054 + 0.0132785i
\(610\) 0 0
\(611\) 1.40533 + 0.811368i 0.0568536 + 0.0328244i
\(612\) −2.26293 + 15.9959i −0.0914733 + 0.646596i
\(613\) −7.22014 + 26.9459i −0.291619 + 1.08834i 0.652247 + 0.758007i \(0.273827\pi\)
−0.943866 + 0.330330i \(0.892840\pi\)
\(614\) 0.879899 + 4.99016i 0.0355098 + 0.201386i
\(615\) 0 0
\(616\) −0.855041 + 0.311210i −0.0344506 + 0.0125390i
\(617\) −23.6349 + 16.5493i −0.951506 + 0.666252i −0.942676 0.333709i \(-0.891700\pi\)
−0.00883005 + 0.999961i \(0.502811\pi\)
\(618\) 15.9824 2.38115i 0.642905 0.0957838i
\(619\) −17.6679 21.0558i −0.710133 0.846304i 0.283499 0.958972i \(-0.408505\pi\)
−0.993633 + 0.112669i \(0.964060\pi\)
\(620\) 0 0
\(621\) 6.56822 11.5724i 0.263574 0.464384i
\(622\) −14.1345 + 14.1345i −0.566741 + 0.566741i
\(623\) −0.0939396 + 1.07373i −0.00376361 + 0.0430183i
\(624\) 0.864813 + 1.99141i 0.0346202 + 0.0797203i
\(625\) 0 0
\(626\) −2.03179 5.58229i −0.0812066 0.223113i
\(627\) 7.76084 + 6.87251i 0.309938 + 0.274462i
\(628\) 6.54314 9.34457i 0.261100 0.372889i
\(629\) −8.20873 14.2179i −0.327303 0.566906i
\(630\) 0 0
\(631\) 20.0750 34.7710i 0.799174 1.38421i −0.120981 0.992655i \(-0.538604\pi\)
0.920155 0.391555i \(-0.128063\pi\)
\(632\) 11.4883 + 24.6368i 0.456980 + 0.979997i
\(633\) −3.86407 + 6.29915i −0.153583 + 0.250369i
\(634\) −15.2981 + 18.2315i −0.607564 + 0.724067i
\(635\) 0 0
\(636\) 3.31255 11.1643i 0.131351 0.442694i
\(637\) 7.07929 3.30113i 0.280492 0.130795i
\(638\) −2.39964 8.95556i −0.0950025 0.354554i
\(639\) −11.9349 + 12.7753i −0.472136 + 0.505381i
\(640\) 0 0
\(641\) −18.1658 + 3.20312i −0.717506 + 0.126516i −0.520469 0.853880i \(-0.674243\pi\)
−0.197037 + 0.980396i \(0.563132\pi\)
\(642\) −11.8565 2.41784i −0.467937 0.0954247i
\(643\) 15.3029 + 7.13584i 0.603486 + 0.281410i 0.700251 0.713897i \(-0.253072\pi\)
−0.0967645 + 0.995307i \(0.530849\pi\)
\(644\) −0.0410917 + 0.233043i −0.00161924 + 0.00918317i
\(645\) 0 0
\(646\) 8.16738 6.85325i 0.321341 0.269638i
\(647\) 7.09292 + 7.09292i 0.278851 + 0.278851i 0.832650 0.553799i \(-0.186822\pi\)
−0.553799 + 0.832650i \(0.686822\pi\)
\(648\) 20.4434 + 17.8367i 0.803094 + 0.700690i
\(649\) 18.0875i 0.709997i
\(650\) 0 0
\(651\) −0.206070 + 1.80137i −0.00807652 + 0.0706011i
\(652\) 11.8114 + 16.8684i 0.462569 + 0.660617i
\(653\) −9.19766 + 19.7244i −0.359932 + 0.771877i 0.640062 + 0.768324i \(0.278909\pi\)
−0.999994 + 0.00355334i \(0.998869\pi\)
\(654\) −7.59501 11.4862i −0.296988 0.449144i
\(655\) 0 0
\(656\) 1.37216 0.792216i 0.0535738 0.0309308i
\(657\) −7.71314 4.11016i −0.300918 0.160353i
\(658\) 0.135776 0.0363810i 0.00529310 0.00141828i
\(659\) −12.3875 4.50869i −0.482550 0.175634i 0.0892792 0.996007i \(-0.471544\pi\)
−0.571829 + 0.820373i \(0.693766\pi\)
\(660\) 0 0
\(661\) 3.09314 + 2.59546i 0.120309 + 0.100952i 0.700957 0.713203i \(-0.252756\pi\)
−0.580648 + 0.814155i \(0.697201\pi\)
\(662\) 1.09447 + 12.5099i 0.0425379 + 0.486210i
\(663\) −9.16468 5.62186i −0.355927 0.218335i
\(664\) −12.7126 + 34.9276i −0.493345 + 1.35545i
\(665\) 0 0
\(666\) −8.98762 0.479223i −0.348263 0.0185695i
\(667\) −7.13463 1.91172i −0.276254 0.0740221i
\(668\) 2.47907 + 1.73586i 0.0959181 + 0.0671626i
\(669\) −1.52598 25.1373i −0.0589980 0.971866i
\(670\) 0 0
\(671\) −14.0635 2.47978i −0.542917 0.0957309i
\(672\) −0.751148 0.296280i −0.0289762 0.0114292i
\(673\) −26.4671 2.31557i −1.02023 0.0892588i −0.435254 0.900308i \(-0.643341\pi\)
−0.584978 + 0.811049i \(0.698897\pi\)
\(674\) 1.29743 0.0499752
\(675\) 0 0
\(676\) −11.3908 −0.438108
\(677\) 29.9981 + 2.62449i 1.15292 + 0.100867i 0.647542 0.762030i \(-0.275797\pi\)
0.505379 + 0.862898i \(0.331353\pi\)
\(678\) −4.70928 31.6089i −0.180859 1.21393i
\(679\) −0.189037 0.0333324i −0.00725459 0.00127918i
\(680\) 0 0
\(681\) 1.56338 + 0.780359i 0.0599087 + 0.0299034i
\(682\) −28.9125 20.2448i −1.10712 0.775212i
\(683\) 3.13527 + 0.840092i 0.119968 + 0.0321452i 0.318303 0.947989i \(-0.396887\pi\)
−0.198336 + 0.980134i \(0.563554\pi\)
\(684\) 0.664927 + 5.45644i 0.0254241 + 0.208632i
\(685\) 0 0
\(686\) 0.463136 1.27246i 0.0176826 0.0485826i
\(687\) 0.0169474 0.636133i 0.000646583 0.0242700i
\(688\) −1.09353 12.4991i −0.0416903 0.476522i
\(689\) 5.93702 + 4.98175i 0.226182 + 0.189790i
\(690\) 0 0
\(691\) −10.0425 3.65517i −0.382034 0.139049i 0.143862 0.989598i \(-0.454048\pi\)
−0.525896 + 0.850549i \(0.676270\pi\)
\(692\) −19.6841 + 5.27434i −0.748278 + 0.200500i
\(693\) −0.338453 0.839900i −0.0128568 0.0319052i
\(694\) −12.9916 + 7.50073i −0.493156 + 0.284724i
\(695\) 0 0
\(696\) 6.72592 13.4747i 0.254945 0.510759i
\(697\) −3.31602 + 7.11123i −0.125603 + 0.269357i
\(698\) −13.5823 19.3975i −0.514098 0.734208i
\(699\) −1.37111 1.01553i −0.0518600 0.0384109i
\(700\) 0 0
\(701\) 16.6810i 0.630034i 0.949086 + 0.315017i \(0.102010\pi\)
−0.949086 + 0.315017i \(0.897990\pi\)
\(702\) −5.32351 + 2.53027i −0.200923 + 0.0954989i
\(703\) −3.94993 3.94993i −0.148975 0.148975i
\(704\) 17.4833 14.6703i 0.658928 0.552906i
\(705\) 0 0
\(706\) −0.0628111 + 0.356219i −0.00236393 + 0.0134065i
\(707\) 1.35925 + 0.633828i 0.0511198 + 0.0238375i
\(708\) −6.35843 + 7.18031i −0.238964 + 0.269853i
\(709\) 25.9605 4.57754i 0.974967 0.171913i 0.336602 0.941647i \(-0.390722\pi\)
0.638365 + 0.769734i \(0.279611\pi\)
\(710\) 0 0
\(711\) −24.1152 + 12.2597i −0.904391 + 0.459774i
\(712\) −8.82112 32.9209i −0.330586 1.23376i
\(713\) −25.4845 + 11.8836i −0.954401 + 0.445044i
\(714\) −0.905697 + 0.217003i −0.0338948 + 0.00812112i
\(715\) 0 0
\(716\) 7.79142 9.28546i 0.291179 0.347014i
\(717\) 18.9372 + 34.9159i 0.707222 + 1.30396i
\(718\) 3.90445 + 8.37312i 0.145713 + 0.312482i
\(719\) 5.44851 9.43709i 0.203195 0.351944i −0.746361 0.665541i \(-0.768201\pi\)
0.949556 + 0.313597i \(0.101534\pi\)
\(720\) 0 0
\(721\) −0.438023 0.758678i −0.0163128 0.0282547i
\(722\) −8.98322 + 12.8294i −0.334321 + 0.477460i
\(723\) 6.65104 32.6149i 0.247355 1.21296i
\(724\) 1.45343 + 3.99328i 0.0540164 + 0.148409i
\(725\) 0 0
\(726\) −1.70387 0.194917i −0.0632366 0.00723405i
\(727\) 0.274043 3.13232i 0.0101637 0.116171i −0.989418 0.145093i \(-0.953652\pi\)
0.999582 + 0.0289218i \(0.00920737\pi\)
\(728\) 0.227055 0.227055i 0.00841520 0.00841520i
\(729\) −17.0489 + 20.9365i −0.631440 + 0.775425i
\(730\) 0 0
\(731\) 39.9389 + 47.5973i 1.47719 + 1.76045i
\(732\) −4.71115 5.92827i −0.174129 0.219115i
\(733\) 7.67078 5.37114i 0.283327 0.198388i −0.423271 0.906003i \(-0.639118\pi\)
0.706597 + 0.707616i \(0.250229\pi\)
\(734\) −23.1907 + 8.44073i −0.855984 + 0.311553i
\(735\) 0 0
\(736\) −2.17456 12.3325i −0.0801552 0.454583i
\(737\) −8.42029 + 31.4250i −0.310165 + 1.15755i
\(738\) 2.27615 + 3.64999i 0.0837862 + 0.134358i
\(739\) 6.38972 + 3.68911i 0.235050 + 0.135706i 0.612899 0.790161i \(-0.290003\pi\)
−0.377850 + 0.925867i \(0.623336\pi\)
\(740\) 0 0
\(741\) −3.50711 1.04059i −0.128837 0.0382271i
\(742\) 0.668790 0.0585116i 0.0245521 0.00214803i
\(743\) 32.2725 2.82348i 1.18396 0.103583i 0.521884 0.853017i \(-0.325229\pi\)
0.662080 + 0.749433i \(0.269674\pi\)
\(744\) −13.3586 55.7544i −0.489750 2.04405i
\(745\) 0 0
\(746\) 19.7713 + 11.4150i 0.723879 + 0.417932i
\(747\) −35.1691 11.4625i −1.28677 0.419393i
\(748\) −4.41289 + 16.4691i −0.161351 + 0.602170i
\(749\) 0.113918 + 0.646060i 0.00416247 + 0.0236065i
\(750\) 0 0
\(751\) −17.0159 + 6.19326i −0.620917 + 0.225995i −0.633273 0.773928i \(-0.718289\pi\)
0.0123561 + 0.999924i \(0.496067\pi\)
\(752\) −1.33466 + 0.934536i −0.0486699 + 0.0340790i
\(753\) 5.67252 14.3813i 0.206718 0.524085i
\(754\) 2.10310 + 2.50638i 0.0765905 + 0.0912770i
\(755\) 0 0
\(756\) 0.160898 0.452399i 0.00585181 0.0164536i
\(757\) −17.4396 + 17.4396i −0.633854 + 0.633854i −0.949033 0.315178i \(-0.897936\pi\)
0.315178 + 0.949033i \(0.397936\pi\)
\(758\) −0.295082 + 3.37280i −0.0107178 + 0.122506i
\(759\) 8.35856 11.2852i 0.303397 0.409627i
\(760\) 0 0
\(761\) −13.1496 36.1282i −0.476672 1.30965i −0.912301 0.409520i \(-0.865696\pi\)
0.435629 0.900126i \(-0.356526\pi\)
\(762\) 31.9290 10.6671i 1.15666 0.386429i
\(763\) −0.428201 + 0.611534i −0.0155019 + 0.0221390i
\(764\) −8.51014 14.7400i −0.307886 0.533275i
\(765\) 0 0
\(766\) −10.0829 + 17.4641i −0.364310 + 0.631004i
\(767\) −2.69756 5.78494i −0.0974032 0.208882i
\(768\) 29.2894 + 0.780308i 1.05689 + 0.0281570i
\(769\) −2.27346 + 2.70940i −0.0819831 + 0.0977036i −0.805477 0.592627i \(-0.798091\pi\)
0.723494 + 0.690331i \(0.242535\pi\)
\(770\) 0 0
\(771\) 16.1052 + 16.9868i 0.580015 + 0.611766i
\(772\) −12.7142 + 5.92874i −0.457595 + 0.213380i
\(773\) 12.2008 + 45.5341i 0.438833 + 1.63775i 0.731723 + 0.681602i \(0.238716\pi\)
−0.292890 + 0.956146i \(0.594617\pi\)
\(774\) 33.8129 4.12047i 1.21538 0.148107i
\(775\) 0 0
\(776\) 5.97754 1.05400i 0.214581 0.0378365i
\(777\) 0.154620 + 0.462809i 0.00554695 + 0.0166032i
\(778\) 12.0967 + 5.64079i 0.433688 + 0.202232i
\(779\) −0.463594 + 2.62917i −0.0166100 + 0.0941999i
\(780\) 0 0
\(781\) −14.1345 + 11.8602i −0.505771 + 0.424393i
\(782\) −10.2132 10.2132i −0.365225 0.365225i
\(783\) 13.6295 + 6.23383i 0.487080 + 0.222779i
\(784\) 7.84279i 0.280100i
\(785\) 0 0
\(786\) −31.2262 + 13.5607i −1.11380 + 0.483693i
\(787\) −25.7839 36.8233i −0.919098 1.31261i −0.949728 0.313077i \(-0.898640\pi\)
0.0306302 0.999531i \(-0.490249\pi\)
\(788\) −2.83333 + 6.07610i −0.100933 + 0.216452i
\(789\) −38.3969 + 2.33092i −1.36697 + 0.0829829i
\(790\) 0 0
\(791\) −1.50046 + 0.866293i −0.0533504 + 0.0308018i
\(792\) 19.1403 + 21.2964i 0.680121 + 0.756735i
\(793\) 4.86778 1.30432i 0.172860 0.0463177i
\(794\) 19.7019 + 7.17089i 0.699193 + 0.254485i
\(795\) 0 0
\(796\) −8.26620 6.93617i −0.292988 0.245846i
\(797\) −3.06411 35.0229i −0.108536 1.24057i −0.833786 0.552088i \(-0.813831\pi\)
0.725249 0.688486i \(-0.241724\pi\)
\(798\) −0.278553 + 0.151078i −0.00986068 + 0.00534811i
\(799\) 2.75963 7.58203i 0.0976288 0.268233i
\(800\) 0 0
\(801\) 32.4448 9.88711i 1.14638 0.349344i
\(802\) −29.4824 7.89979i −1.04106 0.278951i
\(803\) −7.55590 5.29070i −0.266642 0.186705i
\(804\) −14.3897 + 9.51491i −0.507485 + 0.335565i
\(805\) 0 0
\(806\) 12.2664 + 2.16289i 0.432065 + 0.0761847i
\(807\) −31.5881 + 25.1028i −1.11195 + 0.883662i
\(808\) −47.2435 4.13327i −1.66202 0.145408i
\(809\) 27.2053 0.956489 0.478244 0.878227i \(-0.341273\pi\)
0.478244 + 0.878227i \(0.341273\pi\)
\(810\) 0 0
\(811\) 7.54215 0.264841 0.132420 0.991194i \(-0.457725\pi\)
0.132420 + 0.991194i \(0.457725\pi\)
\(812\) −0.265519 0.0232299i −0.00931788 0.000815209i
\(813\) 14.5062 11.5280i 0.508756 0.404305i
\(814\) −9.35464 1.64948i −0.327880 0.0578141i
\(815\) 0 0
\(816\) 9.00465 5.95416i 0.315226 0.208437i
\(817\) 17.3178 + 12.1260i 0.605871 + 0.424236i
\(818\) 0.0459550 + 0.0123136i 0.00160678 + 0.000430535i
\(819\) 0.233510 + 0.218149i 0.00815949 + 0.00762274i
\(820\) 0 0
\(821\) −2.67629 + 7.35304i −0.0934031 + 0.256623i −0.977593 0.210505i \(-0.932489\pi\)
0.884190 + 0.467128i \(0.154711\pi\)
\(822\) −3.05537 + 1.65713i −0.106568 + 0.0577990i
\(823\) 0.836540 + 9.56170i 0.0291600 + 0.333300i 0.996737 + 0.0807223i \(0.0257227\pi\)
−0.967577 + 0.252577i \(0.918722\pi\)
\(824\) 21.2205 + 17.8061i 0.739252 + 0.620306i
\(825\) 0 0
\(826\) −0.519565 0.189106i −0.0180780 0.00657985i
\(827\) 45.9650 12.3163i 1.59836 0.428279i 0.653812 0.756657i \(-0.273169\pi\)
0.944546 + 0.328378i \(0.106502\pi\)
\(828\) 7.28532 1.54161i 0.253182 0.0535748i
\(829\) 16.4702 9.50910i 0.572035 0.330265i −0.185927 0.982564i \(-0.559529\pi\)
0.757962 + 0.652299i \(0.226195\pi\)
\(830\) 0 0
\(831\) −48.4493 + 2.94115i −1.68069 + 0.102028i
\(832\) −3.40379 + 7.29945i −0.118005 + 0.253063i
\(833\) −22.2770 31.8149i −0.771853 1.10232i
\(834\) 33.8449 14.6979i 1.17195 0.508946i
\(835\) 0 0
\(836\) 5.80130i 0.200642i
\(837\) 55.0016 15.1725i 1.90113 0.524437i
\(838\) 24.0786 + 24.0786i 0.831780 + 0.831780i
\(839\) −10.3688 + 8.70044i −0.357970 + 0.300373i −0.803981 0.594655i \(-0.797289\pi\)
0.446011 + 0.895028i \(0.352844\pi\)
\(840\) 0 0
\(841\) −3.59114 + 20.3664i −0.123832 + 0.702289i
\(842\) 27.9977 + 13.0556i 0.964865 + 0.449924i
\(843\) 11.9764 + 35.8479i 0.412489 + 1.23467i
\(844\) −4.07274 + 0.718134i −0.140189 + 0.0247192i
\(845\) 0 0
\(846\) −2.65885 3.53510i −0.0914130 0.121539i
\(847\) 0.0240644 + 0.0898095i 0.000826862 + 0.00308589i
\(848\) −7.05256 + 3.28866i −0.242186 + 0.112933i
\(849\) 28.2068 + 29.7509i 0.968056 + 1.02105i
\(850\) 0 0
\(851\) −4.86432 + 5.79707i −0.166747 + 0.198721i
\(852\) −9.78036 0.260561i −0.335070 0.00892669i
\(853\) −9.25913 19.8563i −0.317026 0.679865i 0.681629 0.731698i \(-0.261272\pi\)
−0.998656 + 0.0518322i \(0.983494\pi\)
\(854\) 0.218267 0.378050i 0.00746895 0.0129366i
\(855\) 0 0
\(856\) −10.3721 17.9650i −0.354511 0.614031i
\(857\) 3.06418 4.37610i 0.104670 0.149485i −0.763400 0.645926i \(-0.776471\pi\)
0.868070 + 0.496441i \(0.165360\pi\)
\(858\) −5.90018 + 1.97119i −0.201429 + 0.0672952i
\(859\) 18.0037 + 49.4648i 0.614279 + 1.68772i 0.720569 + 0.693383i \(0.243881\pi\)
−0.106290 + 0.994335i \(0.533897\pi\)
\(860\) 0 0
\(861\) 0.138802 0.187402i 0.00473038 0.00638665i
\(862\) 1.15278 13.1763i 0.0392637 0.448786i
\(863\) 13.4046 13.4046i 0.456299 0.456299i −0.441139 0.897439i \(-0.645426\pi\)
0.897439 + 0.441139i \(0.145426\pi\)
\(864\) 0.187053 + 25.4091i 0.00636367 + 0.864436i
\(865\) 0 0
\(866\) −18.4749 22.0175i −0.627803 0.748187i
\(867\) −8.81155 + 22.3396i −0.299256 + 0.758693i
\(868\) −0.831165 + 0.581988i −0.0282116 + 0.0197540i
\(869\) −26.8293 + 9.76507i −0.910122 + 0.331257i
\(870\) 0 0
\(871\) −1.99363 11.3065i −0.0675517 0.383105i
\(872\) 6.10980 22.8021i 0.206904 0.772177i
\(873\) 1.25051 + 5.90964i 0.0423234 + 0.200011i
\(874\) −4.25606 2.45724i −0.143964 0.0831174i
\(875\) 0 0
\(876\) −1.13964 4.75646i −0.0385047 0.160706i
\(877\) 11.2439 0.983712i 0.379679 0.0332176i 0.104281 0.994548i \(-0.466746\pi\)
0.275398 + 0.961330i \(0.411190\pi\)
\(878\) 19.3097 1.68938i 0.651672 0.0570139i
\(879\) −2.37610 0.705008i −0.0801438 0.0237793i
\(880\) 0 0
\(881\) 20.6068 + 11.8973i 0.694260 + 0.400831i 0.805206 0.592995i \(-0.202055\pi\)
−0.110946 + 0.993826i \(0.535388\pi\)
\(882\) −21.2799 + 0.723722i −0.716532 + 0.0243690i
\(883\) −8.66082 + 32.3226i −0.291460 + 1.08774i 0.652529 + 0.757764i \(0.273708\pi\)
−0.943988 + 0.329978i \(0.892959\pi\)
\(884\) −1.04482 5.92546i −0.0351410 0.199295i
\(885\) 0 0
\(886\) −1.32596 + 0.482611i −0.0445466 + 0.0162136i
\(887\) 20.4488 14.3184i 0.686603 0.480765i −0.177473 0.984126i \(-0.556792\pi\)
0.864076 + 0.503361i \(0.167903\pi\)
\(888\) −9.59965 12.0797i −0.322143 0.405368i
\(889\) −1.17314 1.39809i −0.0393457 0.0468904i
\(890\) 0 0
\(891\) −20.5340 + 19.7574i −0.687916 + 0.661898i
\(892\) 9.96554 9.96554i 0.333671 0.333671i
\(893\) 0.239274 2.73491i 0.00800699 0.0915203i
\(894\) −18.1416 2.07534i −0.606746 0.0694097i
\(895\) 0 0
\(896\) −0.0802794 0.220566i −0.00268195 0.00736858i
\(897\) −0.990254 + 4.85594i −0.0330636 + 0.162135i
\(898\) 13.3656 19.0881i 0.446016 0.636977i
\(899\) −15.8357 27.4282i −0.528149 0.914781i
\(900\) 0 0
\(901\) 19.2680 33.3731i 0.641910 1.11182i
\(902\) 1.91861 + 4.11448i 0.0638828 + 0.136997i
\(903\) −0.880442 1.62333i −0.0292993 0.0540211i
\(904\) 35.2158 41.9685i 1.17126 1.39585i
\(905\) 0 0
\(906\) −35.8722 + 8.59488i −1.19177 + 0.285546i
\(907\) 37.0499 17.2767i 1.23022 0.573662i 0.304734 0.952438i \(-0.401433\pi\)
0.925489 + 0.378776i \(0.123655\pi\)
\(908\) 0.253084 + 0.944522i 0.00839889 + 0.0313451i
\(909\) 2.51290 47.1284i 0.0833478 1.56315i
\(910\) 0 0
\(911\) 36.3327 6.40644i 1.20376 0.212255i 0.464435 0.885607i \(-0.346258\pi\)
0.739321 + 0.673353i \(0.235146\pi\)
\(912\) 2.43510 2.74985i 0.0806341 0.0910568i
\(913\) −35.3814 16.4986i −1.17095 0.546024i
\(914\) 0.471191 2.67225i 0.0155856 0.0883903i
\(915\) 0 0
\(916\) 0.272806 0.228911i 0.00901376 0.00756344i
\(917\) 1.30509 + 1.30509i 0.0430978 + 0.0430978i
\(918\) 16.9864 + 23.8830i 0.560635 + 0.788255i
\(919\) 6.98816i 0.230518i 0.993335 + 0.115259i \(0.0367698\pi\)
−0.993335 + 0.115259i \(0.963230\pi\)
\(920\) 0 0
\(921\) −6.94688 5.14531i −0.228907 0.169544i
\(922\) −12.3072 17.5765i −0.405317 0.578853i
\(923\) 2.75181 5.90127i 0.0905769 0.194243i
\(924\) 0.226320 0.453412i 0.00744540 0.0149162i
\(925\) 0 0
\(926\) 1.06552 0.615178i 0.0350152 0.0202160i
\(927\) −16.9922 + 21.7083i −0.558098 + 0.712995i
\(928\) 13.6242 3.65059i 0.447236 0.119837i
\(929\) 26.6437 + 9.69750i 0.874150 + 0.318165i 0.739847 0.672776i \(-0.234898\pi\)
0.134303 + 0.990940i \(0.457120\pi\)
\(930\) 0 0
\(931\) −10.1232 8.49439i −0.331775 0.278392i
\(932\) −0.0832210 0.951220i −0.00272599 0.0311583i
\(933\) 0.908218 34.0906i 0.0297337 1.11608i
\(934\) −1.22003 + 3.35199i −0.0399205 + 0.109681i
\(935\) 0 0
\(936\) −9.29778 3.95667i −0.303908 0.129328i
\(937\) 23.2187 + 6.22144i 0.758523 + 0.203246i 0.617295 0.786732i \(-0.288228\pi\)
0.141228 + 0.989977i \(0.454895\pi\)
\(938\) −0.814649 0.570424i −0.0265992 0.0186250i
\(939\) 9.06805 + 4.52632i 0.295925 + 0.147711i
\(940\) 0 0
\(941\) 46.1660 + 8.14032i 1.50497 + 0.265367i 0.864506 0.502622i \(-0.167631\pi\)
0.640463 + 0.767989i \(0.278742\pi\)
\(942\) −3.04959 20.4690i −0.0993609 0.666915i
\(943\) 3.60298 + 0.315220i 0.117329 + 0.0102650i
\(944\) 6.40884 0.208590
\(945\) 0 0
\(946\) 35.9499 1.16883
\(947\) 38.6945 + 3.38533i 1.25740 + 0.110009i 0.696308 0.717743i \(-0.254825\pi\)
0.561095 + 0.827751i \(0.310380\pi\)
\(948\) −14.0834 5.55499i −0.457407 0.180418i
\(949\) 3.20566 + 0.565244i 0.104060 + 0.0183486i
\(950\) 0 0
\(951\) −2.46034 40.5289i −0.0797821 1.31424i
\(952\) −1.30786 0.915775i −0.0423880 0.0296804i
\(953\) −27.5802 7.39010i −0.893412 0.239389i −0.217227 0.976121i \(-0.569701\pi\)
−0.676185 + 0.736732i \(0.736368\pi\)
\(954\) −9.57397 18.8323i −0.309969 0.609719i
\(955\) 0 0
\(956\) −7.60268 + 20.8882i −0.245888 + 0.675572i
\(957\) 13.4831 + 8.27087i 0.435845 + 0.267359i
\(958\) 3.41695 + 39.0559i 0.110397 + 1.26184i
\(959\) 0.144354 + 0.121128i 0.00466145 + 0.00391142i
\(960\) 0 0
\(961\) −84.1681 30.6347i −2.71510 0.988215i
\(962\) 3.23790 0.867593i 0.104394 0.0279723i
\(963\) 17.5172 10.9238i 0.564484 0.352015i
\(964\) 16.1321 9.31390i 0.519581 0.299981i
\(965\) 0 0
\(966\) 0.236779 + 0.358088i 0.00761824 + 0.0115213i
\(967\) 13.1114 28.1176i 0.421636 0.904201i −0.574675 0.818382i \(-0.694872\pi\)
0.996311 0.0858189i \(-0.0273507\pi\)
\(968\) −1.68634 2.40834i −0.0542010 0.0774070i
\(969\) −2.06735 + 18.0718i −0.0664128 + 0.580548i
\(970\) 0 0
\(971\) 0.0712926i 0.00228789i 0.999999 + 0.00114394i \(0.000364129\pi\)
−0.999999 + 0.00114394i \(0.999636\pi\)
\(972\) −15.0970 + 0.624737i −0.484236 + 0.0200385i
\(973\) −1.41453 1.41453i −0.0453479 0.0453479i
\(974\) 6.90724 5.79587i 0.221322 0.185712i
\(975\) 0 0
\(976\) −0.878647 + 4.98305i −0.0281248 + 0.159504i
\(977\) −9.45855 4.41060i −0.302606 0.141107i 0.265384 0.964143i \(-0.414501\pi\)
−0.567990 + 0.823035i \(0.692279\pi\)
\(978\) 36.6041 + 7.46453i 1.17047 + 0.238689i
\(979\) 35.2529 6.21604i 1.12669 0.198665i
\(980\) 0 0
\(981\) 22.8857 + 5.30553i 0.730685 + 0.169392i
\(982\) 4.71669 + 17.6029i 0.150516 + 0.561732i
\(983\) −16.9928 + 7.92390i −0.541988 + 0.252733i −0.674278 0.738478i \(-0.735545\pi\)
0.132290 + 0.991211i \(0.457767\pi\)
\(984\) −2.09762 + 7.06962i −0.0668696 + 0.225371i
\(985\) 0 0
\(986\) 10.4571 12.4623i 0.333023 0.396881i
\(987\) −0.125395 + 0.204418i −0.00399137 + 0.00650668i
\(988\) −0.865202 1.85543i −0.0275257 0.0590292i
\(989\) 14.3201 24.8032i 0.455353 0.788695i
\(990\) 0 0
\(991\) 5.25715 + 9.10566i 0.166999 + 0.289251i 0.937363 0.348353i \(-0.113259\pi\)
−0.770364 + 0.637604i \(0.779926\pi\)
\(992\) 30.7986 43.9849i 0.977855 1.39652i
\(993\) −16.0393 14.2034i −0.508991 0.450730i
\(994\) −0.192909 0.530013i −0.00611871 0.0168110i
\(995\) 0 0
\(996\) −8.24569 18.9874i −0.261275 0.601639i
\(997\) 0.374273 4.27796i 0.0118533 0.135484i −0.987962 0.154696i \(-0.950560\pi\)
0.999815 + 0.0192119i \(0.00611571\pi\)
\(998\) −17.9068 + 17.9068i −0.566831 + 0.566831i
\(999\) 11.6898 9.95646i 0.369849 0.315008i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 675.2.ba.c.518.17 yes 288
5.2 odd 4 inner 675.2.ba.c.32.8 288
5.3 odd 4 inner 675.2.ba.c.32.17 yes 288
5.4 even 2 inner 675.2.ba.c.518.8 yes 288
27.11 odd 18 inner 675.2.ba.c.443.8 yes 288
135.38 even 36 inner 675.2.ba.c.632.8 yes 288
135.92 even 36 inner 675.2.ba.c.632.17 yes 288
135.119 odd 18 inner 675.2.ba.c.443.17 yes 288
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
675.2.ba.c.32.8 288 5.2 odd 4 inner
675.2.ba.c.32.17 yes 288 5.3 odd 4 inner
675.2.ba.c.443.8 yes 288 27.11 odd 18 inner
675.2.ba.c.443.17 yes 288 135.119 odd 18 inner
675.2.ba.c.518.8 yes 288 5.4 even 2 inner
675.2.ba.c.518.17 yes 288 1.1 even 1 trivial
675.2.ba.c.632.8 yes 288 135.38 even 36 inner
675.2.ba.c.632.17 yes 288 135.92 even 36 inner