Properties

Label 675.2.ba.b.68.11
Level $675$
Weight $2$
Character 675.68
Analytic conductor $5.390$
Analytic rank $0$
Dimension $192$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [675,2,Mod(32,675)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("675.32"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(675, base_ring=CyclotomicField(36)) chi = DirichletCharacter(H, H._module([10, 9])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 675 = 3^{3} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 675.ba (of order \(36\), degree \(12\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [192] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.38990213644\)
Analytic rank: \(0\)
Dimension: \(192\)
Relative dimension: \(16\) over \(\Q(\zeta_{36})\)
Twist minimal: no (minimal twist has level 135)
Sato-Tate group: $\mathrm{SU}(2)[C_{36}]$

Embedding invariants

Embedding label 68.11
Character \(\chi\) \(=\) 675.68
Dual form 675.2.ba.b.407.11

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.761943 - 1.08817i) q^{2} +(-1.60100 - 0.660916i) q^{3} +(0.0804885 + 0.221140i) q^{4} +(-1.93906 + 1.23857i) q^{6} +(-1.77434 + 0.827388i) q^{7} +(2.86825 + 0.768546i) q^{8} +(2.12638 + 2.11625i) q^{9} +(-2.76562 - 3.29594i) q^{11} +(0.0172933 - 0.407241i) q^{12} +(4.15220 - 2.90740i) q^{13} +(-0.451609 + 2.56120i) q^{14} +(2.66120 - 2.23301i) q^{16} +(3.09176 - 0.828434i) q^{17} +(3.92301 - 0.701399i) q^{18} +(0.776109 - 0.448087i) q^{19} +(3.38755 - 0.151957i) q^{21} +(-5.69379 + 0.498142i) q^{22} +(2.36525 - 5.07230i) q^{23} +(-4.08412 - 3.12611i) q^{24} -6.73356i q^{26} +(-2.00567 - 4.79346i) q^{27} +(-0.325783 - 0.325783i) q^{28} +(-1.14702 - 6.50507i) q^{29} +(2.27652 - 0.828586i) q^{31} +(0.115398 + 1.31900i) q^{32} +(2.24941 + 7.10463i) q^{33} +(1.45427 - 3.99557i) q^{34} +(-0.296839 + 0.640563i) q^{36} +(1.86654 + 6.96604i) q^{37} +(0.103757 - 1.18595i) q^{38} +(-8.56920 + 1.91049i) q^{39} +(8.33680 + 1.47000i) q^{41} +(2.41576 - 3.80200i) q^{42} +(-1.28541 - 0.112459i) q^{43} +(0.506265 - 0.876877i) q^{44} +(-3.71732 - 6.43859i) q^{46} +(-3.48305 - 7.46943i) q^{47} +(-5.73641 + 1.81622i) q^{48} +(-2.03580 + 2.42617i) q^{49} +(-5.49742 - 0.717071i) q^{51} +(0.977148 + 0.684206i) q^{52} +(-0.947342 + 0.947342i) q^{53} +(-6.74430 - 1.46984i) q^{54} +(-5.72514 + 1.00950i) q^{56} +(-1.53869 + 0.204443i) q^{57} +(-7.95258 - 3.70835i) q^{58} +(3.72879 + 3.12883i) q^{59} +(-7.90101 - 2.87573i) q^{61} +(0.832940 - 3.10857i) q^{62} +(-5.52388 - 1.99560i) q^{63} +(7.54029 + 4.35339i) q^{64} +(9.44496 + 2.96559i) q^{66} +(-5.53556 - 7.90560i) q^{67} +(0.432051 + 0.617033i) q^{68} +(-7.13912 + 6.55750i) q^{69} +(4.92123 + 2.84127i) q^{71} +(4.47256 + 7.70415i) q^{72} +(1.32285 - 4.93694i) q^{73} +(9.00242 + 3.27661i) q^{74} +(0.161558 + 0.135563i) q^{76} +(7.63418 + 3.55988i) q^{77} +(-4.45032 + 10.7804i) q^{78} +(0.410612 - 0.0724019i) q^{79} +(0.0429919 + 8.99990i) q^{81} +(7.95178 - 7.95178i) q^{82} +(7.59392 + 5.31732i) q^{83} +(0.306263 + 0.736893i) q^{84} +(-1.10179 + 1.31306i) q^{86} +(-2.46293 + 11.1727i) q^{87} +(-5.39942 - 11.5791i) q^{88} +(0.974450 + 1.68780i) q^{89} +(-4.96186 + 8.59420i) q^{91} +(1.31207 + 0.114791i) q^{92} +(-4.19233 - 0.178025i) q^{93} +(-10.7819 - 1.90114i) q^{94} +(0.686998 - 2.18799i) q^{96} +(-1.17718 + 13.4552i) q^{97} +(1.08892 + 4.06390i) q^{98} +(1.09426 - 12.8612i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 192 q + 12 q^{2} + 12 q^{3} - 36 q^{6} + 12 q^{7} + 18 q^{8} - 36 q^{11} + 12 q^{12} + 12 q^{13} - 24 q^{16} + 18 q^{17} + 54 q^{18} - 24 q^{21} + 12 q^{22} + 36 q^{23} + 36 q^{27} + 24 q^{28} - 24 q^{31}+ \cdots - 324 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/675\mathbb{Z}\right)^\times\).

\(n\) \(326\) \(352\)
\(\chi(n)\) \(e\left(\frac{17}{18}\right)\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.761943 1.08817i 0.538775 0.769451i −0.453797 0.891105i \(-0.649931\pi\)
0.992573 + 0.121654i \(0.0388198\pi\)
\(3\) −1.60100 0.660916i −0.924336 0.381580i
\(4\) 0.0804885 + 0.221140i 0.0402443 + 0.110570i
\(5\) 0 0
\(6\) −1.93906 + 1.23857i −0.791616 + 0.505645i
\(7\) −1.77434 + 0.827388i −0.670638 + 0.312723i −0.727947 0.685633i \(-0.759526\pi\)
0.0573098 + 0.998356i \(0.481748\pi\)
\(8\) 2.86825 + 0.768546i 1.01408 + 0.271722i
\(9\) 2.12638 + 2.11625i 0.708794 + 0.705416i
\(10\) 0 0
\(11\) −2.76562 3.29594i −0.833867 0.993764i −0.999971 0.00765542i \(-0.997563\pi\)
0.166104 0.986108i \(-0.446881\pi\)
\(12\) 0.0172933 0.407241i 0.00499215 0.117560i
\(13\) 4.15220 2.90740i 1.15161 0.806368i 0.167844 0.985814i \(-0.446319\pi\)
0.983768 + 0.179446i \(0.0574305\pi\)
\(14\) −0.451609 + 2.56120i −0.120698 + 0.684510i
\(15\) 0 0
\(16\) 2.66120 2.23301i 0.665301 0.558253i
\(17\) 3.09176 0.828434i 0.749861 0.200925i 0.136405 0.990653i \(-0.456445\pi\)
0.613456 + 0.789729i \(0.289779\pi\)
\(18\) 3.92301 0.701399i 0.924663 0.165321i
\(19\) 0.776109 0.448087i 0.178052 0.102798i −0.408325 0.912836i \(-0.633887\pi\)
0.586377 + 0.810038i \(0.300554\pi\)
\(20\) 0 0
\(21\) 3.38755 0.151957i 0.739223 0.0331597i
\(22\) −5.69379 + 0.498142i −1.21392 + 0.106204i
\(23\) 2.36525 5.07230i 0.493189 1.05765i −0.489435 0.872040i \(-0.662797\pi\)
0.982624 0.185607i \(-0.0594253\pi\)
\(24\) −4.08412 3.12611i −0.833667 0.638115i
\(25\) 0 0
\(26\) 6.73356i 1.32056i
\(27\) −2.00567 4.79346i −0.385991 0.922503i
\(28\) −0.325783 0.325783i −0.0615672 0.0615672i
\(29\) −1.14702 6.50507i −0.212996 1.20796i −0.884350 0.466825i \(-0.845398\pi\)
0.671354 0.741137i \(-0.265713\pi\)
\(30\) 0 0
\(31\) 2.27652 0.828586i 0.408875 0.148818i −0.129390 0.991594i \(-0.541302\pi\)
0.538266 + 0.842775i \(0.319080\pi\)
\(32\) 0.115398 + 1.31900i 0.0203996 + 0.233169i
\(33\) 2.24941 + 7.10463i 0.391573 + 1.23676i
\(34\) 1.45427 3.99557i 0.249405 0.685235i
\(35\) 0 0
\(36\) −0.296839 + 0.640563i −0.0494731 + 0.106760i
\(37\) 1.86654 + 6.96604i 0.306858 + 1.14521i 0.931334 + 0.364166i \(0.118646\pi\)
−0.624476 + 0.781044i \(0.714688\pi\)
\(38\) 0.103757 1.18595i 0.0168317 0.192387i
\(39\) −8.56920 + 1.91049i −1.37217 + 0.305922i
\(40\) 0 0
\(41\) 8.33680 + 1.47000i 1.30199 + 0.229576i 0.781292 0.624166i \(-0.214561\pi\)
0.520697 + 0.853742i \(0.325672\pi\)
\(42\) 2.41576 3.80200i 0.372761 0.586662i
\(43\) −1.28541 0.112459i −0.196024 0.0171499i −0.0112790 0.999936i \(-0.503590\pi\)
−0.184745 + 0.982787i \(0.559146\pi\)
\(44\) 0.506265 0.876877i 0.0763223 0.132194i
\(45\) 0 0
\(46\) −3.71732 6.43859i −0.548090 0.949319i
\(47\) −3.48305 7.46943i −0.508055 1.08953i −0.978338 0.207013i \(-0.933626\pi\)
0.470283 0.882516i \(-0.344152\pi\)
\(48\) −5.73641 + 1.81622i −0.827979 + 0.262148i
\(49\) −2.03580 + 2.42617i −0.290829 + 0.346596i
\(50\) 0 0
\(51\) −5.49742 0.717071i −0.769792 0.100410i
\(52\) 0.977148 + 0.684206i 0.135506 + 0.0948823i
\(53\) −0.947342 + 0.947342i −0.130127 + 0.130127i −0.769171 0.639043i \(-0.779330\pi\)
0.639043 + 0.769171i \(0.279330\pi\)
\(54\) −6.74430 1.46984i −0.917783 0.200021i
\(55\) 0 0
\(56\) −5.72514 + 1.00950i −0.765054 + 0.134900i
\(57\) −1.53869 + 0.204443i −0.203805 + 0.0270791i
\(58\) −7.95258 3.70835i −1.04422 0.486930i
\(59\) 3.72879 + 3.12883i 0.485447 + 0.407339i 0.852391 0.522904i \(-0.175151\pi\)
−0.366944 + 0.930243i \(0.619596\pi\)
\(60\) 0 0
\(61\) −7.90101 2.87573i −1.01162 0.368200i −0.217566 0.976046i \(-0.569812\pi\)
−0.794055 + 0.607846i \(0.792034\pi\)
\(62\) 0.832940 3.10857i 0.105783 0.394789i
\(63\) −5.52388 1.99560i −0.695944 0.251422i
\(64\) 7.54029 + 4.35339i 0.942536 + 0.544173i
\(65\) 0 0
\(66\) 9.44496 + 2.96559i 1.16259 + 0.365039i
\(67\) −5.53556 7.90560i −0.676276 0.965822i −0.999808 0.0196049i \(-0.993759\pi\)
0.323532 0.946217i \(-0.395130\pi\)
\(68\) 0.432051 + 0.617033i 0.0523939 + 0.0748262i
\(69\) −7.13912 + 6.55750i −0.859449 + 0.789430i
\(70\) 0 0
\(71\) 4.92123 + 2.84127i 0.584043 + 0.337197i 0.762738 0.646707i \(-0.223854\pi\)
−0.178696 + 0.983904i \(0.557188\pi\)
\(72\) 4.47256 + 7.70415i 0.527097 + 0.907943i
\(73\) 1.32285 4.93694i 0.154828 0.577825i −0.844292 0.535883i \(-0.819979\pi\)
0.999120 0.0419419i \(-0.0133544\pi\)
\(74\) 9.00242 + 3.27661i 1.04651 + 0.380898i
\(75\) 0 0
\(76\) 0.161558 + 0.135563i 0.0185320 + 0.0155502i
\(77\) 7.63418 + 3.55988i 0.869996 + 0.405686i
\(78\) −4.45032 + 10.7804i −0.503899 + 1.22064i
\(79\) 0.410612 0.0724019i 0.0461974 0.00814585i −0.150502 0.988610i \(-0.548089\pi\)
0.196699 + 0.980464i \(0.436978\pi\)
\(80\) 0 0
\(81\) 0.0429919 + 8.99990i 0.00477688 + 0.999989i
\(82\) 7.95178 7.95178i 0.878127 0.878127i
\(83\) 7.59392 + 5.31732i 0.833541 + 0.583652i 0.910560 0.413378i \(-0.135651\pi\)
−0.0770185 + 0.997030i \(0.524540\pi\)
\(84\) 0.306263 + 0.736893i 0.0334160 + 0.0804016i
\(85\) 0 0
\(86\) −1.10179 + 1.31306i −0.118809 + 0.141591i
\(87\) −2.46293 + 11.1727i −0.264054 + 1.19784i
\(88\) −5.39942 11.5791i −0.575580 1.23434i
\(89\) 0.974450 + 1.68780i 0.103292 + 0.178906i 0.913039 0.407872i \(-0.133729\pi\)
−0.809747 + 0.586779i \(0.800396\pi\)
\(90\) 0 0
\(91\) −4.96186 + 8.59420i −0.520144 + 0.900917i
\(92\) 1.31207 + 0.114791i 0.136792 + 0.0119678i
\(93\) −4.19233 0.178025i −0.434724 0.0184604i
\(94\) −10.7819 1.90114i −1.11207 0.196087i
\(95\) 0 0
\(96\) 0.686998 2.18799i 0.0701164 0.223310i
\(97\) −1.17718 + 13.4552i −0.119524 + 1.36617i 0.665359 + 0.746524i \(0.268279\pi\)
−0.784883 + 0.619644i \(0.787277\pi\)
\(98\) 1.08892 + 4.06390i 0.109997 + 0.410516i
\(99\) 1.09426 12.8612i 0.109977 1.29260i
\(100\) 0 0
\(101\) −1.45521 + 3.99814i −0.144798 + 0.397830i −0.990797 0.135354i \(-0.956783\pi\)
0.845999 + 0.533185i \(0.179005\pi\)
\(102\) −4.96901 + 5.43575i −0.492006 + 0.538219i
\(103\) 1.16385 + 13.3028i 0.114677 + 1.31077i 0.807589 + 0.589745i \(0.200772\pi\)
−0.692912 + 0.721022i \(0.743673\pi\)
\(104\) 14.1440 5.14800i 1.38694 0.504803i
\(105\) 0 0
\(106\) 0.309046 + 1.75269i 0.0300172 + 0.170236i
\(107\) −10.2616 10.2616i −0.992026 0.992026i 0.00794276 0.999968i \(-0.497472\pi\)
−0.999968 + 0.00794276i \(0.997472\pi\)
\(108\) 0.898596 0.829353i 0.0864674 0.0798045i
\(109\) 14.3459i 1.37409i −0.726615 0.687045i \(-0.758908\pi\)
0.726615 0.687045i \(-0.241092\pi\)
\(110\) 0 0
\(111\) 1.61563 12.3862i 0.153349 1.17565i
\(112\) −2.87431 + 6.16397i −0.271597 + 0.582441i
\(113\) 13.5865 1.18867i 1.27811 0.111821i 0.572198 0.820116i \(-0.306091\pi\)
0.705916 + 0.708295i \(0.250535\pi\)
\(114\) −0.949930 + 1.83013i −0.0889691 + 0.171408i
\(115\) 0 0
\(116\) 1.34621 0.777236i 0.124993 0.0721646i
\(117\) 14.9819 + 2.60484i 1.38508 + 0.240817i
\(118\) 6.24582 1.67356i 0.574974 0.154064i
\(119\) −4.80039 + 4.02801i −0.440051 + 0.369247i
\(120\) 0 0
\(121\) −1.30443 + 7.39778i −0.118584 + 0.672525i
\(122\) −9.14940 + 6.40648i −0.828348 + 0.580016i
\(123\) −12.3756 7.86339i −1.11587 0.709018i
\(124\) 0.366468 + 0.436739i 0.0329098 + 0.0392204i
\(125\) 0 0
\(126\) −6.38043 + 4.49038i −0.568414 + 0.400035i
\(127\) 3.47767 + 0.931838i 0.308593 + 0.0826872i 0.409792 0.912179i \(-0.365601\pi\)
−0.101199 + 0.994866i \(0.532268\pi\)
\(128\) 8.08251 3.76894i 0.714400 0.333130i
\(129\) 1.98362 + 1.02960i 0.174648 + 0.0906510i
\(130\) 0 0
\(131\) 0.189922 + 0.521807i 0.0165936 + 0.0455905i 0.947713 0.319124i \(-0.103389\pi\)
−0.931119 + 0.364715i \(0.881167\pi\)
\(132\) −1.39007 + 1.06928i −0.120990 + 0.0930687i
\(133\) −1.00634 + 1.43720i −0.0872607 + 0.124621i
\(134\) −12.8204 −1.10751
\(135\) 0 0
\(136\) 9.50463 0.815015
\(137\) 3.46624 4.95031i 0.296141 0.422934i −0.643315 0.765601i \(-0.722442\pi\)
0.939457 + 0.342668i \(0.111330\pi\)
\(138\) 1.69606 + 12.7650i 0.144378 + 1.08663i
\(139\) 6.33390 + 17.4022i 0.537234 + 1.47604i 0.850295 + 0.526306i \(0.176423\pi\)
−0.313061 + 0.949733i \(0.601354\pi\)
\(140\) 0 0
\(141\) 0.639692 + 14.2605i 0.0538718 + 1.20095i
\(142\) 6.84148 3.19024i 0.574125 0.267719i
\(143\) −21.0660 5.64463i −1.76163 0.472027i
\(144\) 10.3843 + 0.883525i 0.865362 + 0.0736271i
\(145\) 0 0
\(146\) −4.36428 5.20115i −0.361190 0.430450i
\(147\) 4.86281 2.53880i 0.401078 0.209397i
\(148\) −1.39024 + 0.973455i −0.114277 + 0.0800175i
\(149\) −1.50609 + 8.54145i −0.123384 + 0.699743i 0.858871 + 0.512192i \(0.171166\pi\)
−0.982255 + 0.187551i \(0.939945\pi\)
\(150\) 0 0
\(151\) −12.2052 + 10.2414i −0.993244 + 0.833431i −0.986034 0.166543i \(-0.946740\pi\)
−0.00721007 + 0.999974i \(0.502295\pi\)
\(152\) 2.57045 0.688750i 0.208491 0.0558650i
\(153\) 8.32742 + 4.78136i 0.673232 + 0.386550i
\(154\) 9.69056 5.59485i 0.780887 0.450846i
\(155\) 0 0
\(156\) −1.11221 1.74122i −0.0890479 0.139410i
\(157\) −13.2243 + 1.15698i −1.05541 + 0.0923367i −0.601630 0.798775i \(-0.705482\pi\)
−0.453784 + 0.891112i \(0.649926\pi\)
\(158\) 0.234077 0.501981i 0.0186222 0.0399354i
\(159\) 2.14280 0.890578i 0.169935 0.0706274i
\(160\) 0 0
\(161\) 10.9570i 0.863530i
\(162\) 9.82616 + 6.81063i 0.772016 + 0.535094i
\(163\) −5.24760 5.24760i −0.411024 0.411024i 0.471071 0.882095i \(-0.343867\pi\)
−0.882095 + 0.471071i \(0.843867\pi\)
\(164\) 0.345940 + 1.96192i 0.0270133 + 0.153200i
\(165\) 0 0
\(166\) 11.5723 4.21196i 0.898183 0.326912i
\(167\) 0.717512 + 8.20120i 0.0555227 + 0.634628i 0.972068 + 0.234698i \(0.0754101\pi\)
−0.916546 + 0.399930i \(0.869034\pi\)
\(168\) 9.83313 + 2.16763i 0.758642 + 0.167237i
\(169\) 4.34150 11.9282i 0.333962 0.917553i
\(170\) 0 0
\(171\) 2.59856 + 0.689635i 0.198717 + 0.0527377i
\(172\) −0.0785918 0.293309i −0.00599257 0.0223646i
\(173\) −0.677506 + 7.74393i −0.0515098 + 0.588760i 0.925951 + 0.377643i \(0.123265\pi\)
−0.977461 + 0.211116i \(0.932290\pi\)
\(174\) 10.2811 + 11.1930i 0.779412 + 0.848542i
\(175\) 0 0
\(176\) −14.7198 2.59549i −1.10954 0.195643i
\(177\) −3.90189 7.47366i −0.293284 0.561755i
\(178\) 2.57908 + 0.225641i 0.193310 + 0.0169125i
\(179\) −2.19929 + 3.80928i −0.164382 + 0.284719i −0.936436 0.350839i \(-0.885896\pi\)
0.772053 + 0.635558i \(0.219230\pi\)
\(180\) 0 0
\(181\) −2.85830 4.95072i −0.212456 0.367984i 0.740027 0.672577i \(-0.234813\pi\)
−0.952483 + 0.304593i \(0.901479\pi\)
\(182\) 5.57127 + 11.9476i 0.412970 + 0.885617i
\(183\) 10.7489 + 9.82594i 0.794580 + 0.726355i
\(184\) 10.6824 12.7308i 0.787519 0.938529i
\(185\) 0 0
\(186\) −3.38804 + 4.42631i −0.248423 + 0.324553i
\(187\) −11.2811 7.89911i −0.824956 0.577640i
\(188\) 1.37145 1.37145i 0.100023 0.100023i
\(189\) 7.52479 + 6.84577i 0.547348 + 0.497957i
\(190\) 0 0
\(191\) 14.2067 2.50503i 1.02796 0.181258i 0.365860 0.930670i \(-0.380775\pi\)
0.662104 + 0.749412i \(0.269664\pi\)
\(192\) −9.19475 11.9532i −0.663574 0.862651i
\(193\) −15.7247 7.33254i −1.13189 0.527808i −0.235852 0.971789i \(-0.575788\pi\)
−0.896036 + 0.443981i \(0.853566\pi\)
\(194\) 13.7446 + 11.5331i 0.986802 + 0.828025i
\(195\) 0 0
\(196\) −0.700384 0.254919i −0.0500274 0.0182085i
\(197\) 3.52289 13.1476i 0.250995 0.936727i −0.719280 0.694721i \(-0.755528\pi\)
0.970275 0.242006i \(-0.0778054\pi\)
\(198\) −13.1613 10.9902i −0.935336 0.781041i
\(199\) 7.78555 + 4.49499i 0.551903 + 0.318641i 0.749889 0.661564i \(-0.230107\pi\)
−0.197986 + 0.980205i \(0.563440\pi\)
\(200\) 0 0
\(201\) 3.63748 + 16.3154i 0.256568 + 1.15080i
\(202\) 3.24187 + 4.62987i 0.228097 + 0.325756i
\(203\) 7.41743 + 10.5932i 0.520601 + 0.743496i
\(204\) −0.283906 1.27342i −0.0198774 0.0891570i
\(205\) 0 0
\(206\) 15.3625 + 8.86955i 1.07036 + 0.617971i
\(207\) 15.7637 5.78018i 1.09565 0.401750i
\(208\) 4.55757 17.0091i 0.316011 1.17937i
\(209\) −3.62329 1.31877i −0.250628 0.0912212i
\(210\) 0 0
\(211\) −14.3607 12.0500i −0.988631 0.829559i −0.00326162 0.999995i \(-0.501038\pi\)
−0.985369 + 0.170435i \(0.945483\pi\)
\(212\) −0.285746 0.133245i −0.0196251 0.00915134i
\(213\) −6.00103 7.80139i −0.411184 0.534542i
\(214\) −18.9851 + 3.34758i −1.29779 + 0.228836i
\(215\) 0 0
\(216\) −2.06876 15.2903i −0.140762 1.04037i
\(217\) −3.35376 + 3.35376i −0.227668 + 0.227668i
\(218\) −15.6108 10.9308i −1.05729 0.740326i
\(219\) −5.38077 + 7.02973i −0.363599 + 0.475025i
\(220\) 0 0
\(221\) 10.4290 12.4288i 0.701530 0.836051i
\(222\) −12.2473 11.1957i −0.821984 0.751405i
\(223\) 7.00968 + 15.0323i 0.469403 + 1.00664i 0.988402 + 0.151862i \(0.0485270\pi\)
−0.518999 + 0.854775i \(0.673695\pi\)
\(224\) −1.29608 2.24488i −0.0865981 0.149992i
\(225\) 0 0
\(226\) 9.05870 15.6901i 0.602576 1.04369i
\(227\) −18.0248 1.57696i −1.19634 0.104667i −0.528478 0.848947i \(-0.677237\pi\)
−0.667867 + 0.744281i \(0.732793\pi\)
\(228\) −0.169058 0.323812i −0.0111961 0.0214450i
\(229\) −18.7074 3.29862i −1.23622 0.217979i −0.482924 0.875662i \(-0.660425\pi\)
−0.753294 + 0.657684i \(0.771536\pi\)
\(230\) 0 0
\(231\) −9.86952 10.7449i −0.649367 0.706963i
\(232\) 1.70951 19.5397i 0.112235 1.28285i
\(233\) 1.95750 + 7.30551i 0.128240 + 0.478600i 0.999934 0.0114509i \(-0.00364501\pi\)
−0.871694 + 0.490050i \(0.836978\pi\)
\(234\) 14.2499 14.3181i 0.931544 0.936005i
\(235\) 0 0
\(236\) −0.391785 + 1.07642i −0.0255031 + 0.0700691i
\(237\) −0.705239 0.155464i −0.0458102 0.0100985i
\(238\) 0.725521 + 8.29275i 0.0470286 + 0.537539i
\(239\) −11.7518 + 4.27731i −0.760162 + 0.276676i −0.692875 0.721057i \(-0.743656\pi\)
−0.0672867 + 0.997734i \(0.521434\pi\)
\(240\) 0 0
\(241\) 2.97320 + 16.8619i 0.191521 + 1.08617i 0.917287 + 0.398227i \(0.130374\pi\)
−0.725766 + 0.687942i \(0.758514\pi\)
\(242\) 7.05612 + 7.05612i 0.453585 + 0.453585i
\(243\) 5.87934 14.4372i 0.377160 0.926148i
\(244\) 1.97870i 0.126673i
\(245\) 0 0
\(246\) −17.9862 + 7.47531i −1.14676 + 0.476609i
\(247\) 1.91979 4.11700i 0.122153 0.261958i
\(248\) 7.16645 0.626983i 0.455070 0.0398134i
\(249\) −8.64354 13.5320i −0.547762 0.857553i
\(250\) 0 0
\(251\) 4.66370 2.69259i 0.294370 0.169955i −0.345541 0.938404i \(-0.612304\pi\)
0.639911 + 0.768449i \(0.278971\pi\)
\(252\) −0.00330126 1.38218i −0.000207960 0.0870690i
\(253\) −23.2594 + 6.23233i −1.46231 + 0.391823i
\(254\) 3.66378 3.07428i 0.229886 0.192897i
\(255\) 0 0
\(256\) −0.966651 + 5.48215i −0.0604157 + 0.342634i
\(257\) 10.0445 7.03325i 0.626560 0.438722i −0.216692 0.976240i \(-0.569527\pi\)
0.843252 + 0.537518i \(0.180638\pi\)
\(258\) 2.63178 1.37401i 0.163847 0.0855424i
\(259\) −9.07550 10.8158i −0.563924 0.672059i
\(260\) 0 0
\(261\) 11.3273 16.2596i 0.701145 1.00645i
\(262\) 0.712524 + 0.190920i 0.0440199 + 0.0117951i
\(263\) −12.3505 + 5.75913i −0.761563 + 0.355123i −0.764289 0.644873i \(-0.776910\pi\)
0.00272594 + 0.999996i \(0.499132\pi\)
\(264\) 0.991650 + 22.1067i 0.0610318 + 1.36057i
\(265\) 0 0
\(266\) 0.797143 + 2.19013i 0.0488760 + 0.134286i
\(267\) −0.444600 3.34619i −0.0272091 0.204783i
\(268\) 1.30270 1.86045i 0.0795749 0.113645i
\(269\) −12.3342 −0.752028 −0.376014 0.926614i \(-0.622706\pi\)
−0.376014 + 0.926614i \(0.622706\pi\)
\(270\) 0 0
\(271\) 19.7578 1.20020 0.600099 0.799926i \(-0.295128\pi\)
0.600099 + 0.799926i \(0.295128\pi\)
\(272\) 6.37789 9.10856i 0.386716 0.552288i
\(273\) 13.6240 10.4799i 0.824560 0.634273i
\(274\) −2.74569 7.54371i −0.165873 0.455732i
\(275\) 0 0
\(276\) −2.02475 1.05094i −0.121875 0.0632594i
\(277\) 1.83776 0.856962i 0.110420 0.0514898i −0.366623 0.930370i \(-0.619486\pi\)
0.477044 + 0.878880i \(0.341708\pi\)
\(278\) 23.7626 + 6.36718i 1.42519 + 0.381878i
\(279\) 6.59425 + 3.05579i 0.394787 + 0.182946i
\(280\) 0 0
\(281\) −16.8041 20.0263i −1.00245 1.19467i −0.980822 0.194903i \(-0.937561\pi\)
−0.0216244 0.999766i \(-0.506884\pi\)
\(282\) 16.0053 + 10.1696i 0.953100 + 0.605593i
\(283\) 1.89971 1.33019i 0.112926 0.0790717i −0.515749 0.856740i \(-0.672486\pi\)
0.628675 + 0.777668i \(0.283597\pi\)
\(284\) −0.232218 + 1.31697i −0.0137796 + 0.0781480i
\(285\) 0 0
\(286\) −22.1934 + 18.6225i −1.31232 + 1.10117i
\(287\) −16.0086 + 4.28949i −0.944956 + 0.253200i
\(288\) −2.54596 + 3.04891i −0.150022 + 0.179659i
\(289\) −5.84978 + 3.37737i −0.344105 + 0.198669i
\(290\) 0 0
\(291\) 10.7774 20.7637i 0.631783 1.21719i
\(292\) 1.19823 0.104832i 0.0701211 0.00613480i
\(293\) −5.09445 + 10.9251i −0.297621 + 0.638250i −0.997075 0.0764274i \(-0.975649\pi\)
0.699454 + 0.714677i \(0.253426\pi\)
\(294\) 0.942540 7.22598i 0.0549701 0.421427i
\(295\) 0 0
\(296\) 21.4149i 1.24471i
\(297\) −10.2521 + 19.8675i −0.594885 + 1.15283i
\(298\) 8.14698 + 8.14698i 0.471942 + 0.471942i
\(299\) −4.92621 27.9379i −0.284890 1.61569i
\(300\) 0 0
\(301\) 2.37381 0.863996i 0.136824 0.0497999i
\(302\) 1.84467 + 21.0846i 0.106149 + 1.21328i
\(303\) 4.97222 5.43925i 0.285646 0.312477i
\(304\) 1.06480 2.92551i 0.0610704 0.167790i
\(305\) 0 0
\(306\) 11.5479 5.41851i 0.660152 0.309756i
\(307\) 6.08202 + 22.6984i 0.347119 + 1.29547i 0.890117 + 0.455732i \(0.150622\pi\)
−0.542998 + 0.839734i \(0.682711\pi\)
\(308\) −0.172769 + 1.97476i −0.00984441 + 0.112522i
\(309\) 6.92874 22.0670i 0.394162 1.25535i
\(310\) 0 0
\(311\) 3.91683 + 0.690642i 0.222103 + 0.0391627i 0.283592 0.958945i \(-0.408474\pi\)
−0.0614891 + 0.998108i \(0.519585\pi\)
\(312\) −26.0469 1.10607i −1.47462 0.0626189i
\(313\) 0.911077 + 0.0797089i 0.0514971 + 0.00450541i 0.112875 0.993609i \(-0.463994\pi\)
−0.0613781 + 0.998115i \(0.519550\pi\)
\(314\) −8.81718 + 15.2718i −0.497582 + 0.861838i
\(315\) 0 0
\(316\) 0.0490605 + 0.0849753i 0.00275987 + 0.00478023i
\(317\) 11.1443 + 23.8990i 0.625924 + 1.34230i 0.922021 + 0.387141i \(0.126537\pi\)
−0.296096 + 0.955158i \(0.595685\pi\)
\(318\) 0.663597 3.01030i 0.0372127 0.168809i
\(319\) −18.2681 + 21.7711i −1.02282 + 1.21895i
\(320\) 0 0
\(321\) 9.64673 + 23.2108i 0.538428 + 1.29550i
\(322\) 11.9230 + 8.34859i 0.664444 + 0.465249i
\(323\) 2.02833 2.02833i 0.112859 0.112859i
\(324\) −1.98678 + 0.733896i −0.110377 + 0.0407720i
\(325\) 0 0
\(326\) −9.70865 + 1.71190i −0.537712 + 0.0948132i
\(327\) −9.48144 + 22.9678i −0.524325 + 1.27012i
\(328\) 22.7823 + 10.6235i 1.25794 + 0.586587i
\(329\) 12.3602 + 10.3715i 0.681442 + 0.571798i
\(330\) 0 0
\(331\) −12.0746 4.39481i −0.663682 0.241561i −0.0118569 0.999930i \(-0.503774\pi\)
−0.651825 + 0.758369i \(0.725996\pi\)
\(332\) −0.564651 + 2.10731i −0.0309893 + 0.115653i
\(333\) −10.7729 + 18.7625i −0.590350 + 1.02818i
\(334\) 9.47099 + 5.46808i 0.518229 + 0.299200i
\(335\) 0 0
\(336\) 8.67563 7.96883i 0.473294 0.434735i
\(337\) −4.87543 6.96283i −0.265581 0.379290i 0.664106 0.747638i \(-0.268812\pi\)
−0.929688 + 0.368349i \(0.879923\pi\)
\(338\) −9.67189 13.8129i −0.526081 0.751322i
\(339\) −22.5376 7.07650i −1.22408 0.384343i
\(340\) 0 0
\(341\) −9.02697 5.21173i −0.488838 0.282231i
\(342\) 2.73040 2.30221i 0.147643 0.124489i
\(343\) 5.15177 19.2267i 0.278169 1.03814i
\(344\) −3.60046 1.31046i −0.194124 0.0706553i
\(345\) 0 0
\(346\) 7.91047 + 6.63767i 0.425270 + 0.356844i
\(347\) −4.76851 2.22359i −0.255987 0.119369i 0.290389 0.956909i \(-0.406215\pi\)
−0.546376 + 0.837540i \(0.683993\pi\)
\(348\) −2.66897 + 0.354620i −0.143072 + 0.0190096i
\(349\) 20.3047 3.58026i 1.08688 0.191647i 0.398627 0.917113i \(-0.369487\pi\)
0.688258 + 0.725466i \(0.258376\pi\)
\(350\) 0 0
\(351\) −22.2644 14.0721i −1.18839 0.751115i
\(352\) 4.02821 4.02821i 0.214704 0.214704i
\(353\) −23.6027 16.5268i −1.25624 0.879631i −0.259948 0.965623i \(-0.583705\pi\)
−0.996296 + 0.0859911i \(0.972594\pi\)
\(354\) −11.1056 1.44859i −0.590257 0.0769918i
\(355\) 0 0
\(356\) −0.294808 + 0.351339i −0.0156248 + 0.0186209i
\(357\) 10.3476 3.27617i 0.547652 0.173393i
\(358\) 2.46940 + 5.29565i 0.130512 + 0.279884i
\(359\) −8.91393 15.4394i −0.470459 0.814860i 0.528970 0.848641i \(-0.322578\pi\)
−0.999429 + 0.0337810i \(0.989245\pi\)
\(360\) 0 0
\(361\) −9.09844 + 15.7590i −0.478865 + 0.829419i
\(362\) −7.56508 0.661859i −0.397612 0.0347865i
\(363\) 6.97769 10.9817i 0.366234 0.576390i
\(364\) −2.29990 0.405534i −0.120547 0.0212558i
\(365\) 0 0
\(366\) 18.8823 4.20977i 0.986994 0.220048i
\(367\) 1.91117 21.8448i 0.0997623 1.14029i −0.767028 0.641614i \(-0.778265\pi\)
0.866790 0.498674i \(-0.166179\pi\)
\(368\) −5.03210 18.7800i −0.262316 0.978978i
\(369\) 14.6163 + 20.7685i 0.760895 + 1.08117i
\(370\) 0 0
\(371\) 0.897087 2.46473i 0.0465744 0.127962i
\(372\) −0.298066 0.941423i −0.0154540 0.0488105i
\(373\) 1.50421 + 17.1932i 0.0778848 + 0.890228i 0.930165 + 0.367142i \(0.119664\pi\)
−0.852280 + 0.523086i \(0.824781\pi\)
\(374\) −17.1911 + 6.25706i −0.888932 + 0.323545i
\(375\) 0 0
\(376\) −4.24967 24.1011i −0.219160 1.24292i
\(377\) −23.6755 23.6755i −1.21935 1.21935i
\(378\) 13.1828 2.97215i 0.678051 0.152871i
\(379\) 27.1687i 1.39556i 0.716312 + 0.697780i \(0.245829\pi\)
−0.716312 + 0.697780i \(0.754171\pi\)
\(380\) 0 0
\(381\) −4.95187 3.79031i −0.253692 0.194184i
\(382\) 8.09883 17.3680i 0.414372 0.888624i
\(383\) −7.32022 + 0.640436i −0.374046 + 0.0327248i −0.272629 0.962119i \(-0.587893\pi\)
−0.101417 + 0.994844i \(0.532338\pi\)
\(384\) −15.4310 + 0.692197i −0.787461 + 0.0353235i
\(385\) 0 0
\(386\) −19.9604 + 11.5241i −1.01596 + 0.586562i
\(387\) −2.49529 2.95939i −0.126843 0.150434i
\(388\) −3.07024 + 0.822667i −0.155868 + 0.0417646i
\(389\) 23.9421 20.0898i 1.21391 1.01859i 0.214792 0.976660i \(-0.431093\pi\)
0.999120 0.0419334i \(-0.0133517\pi\)
\(390\) 0 0
\(391\) 3.11072 17.6418i 0.157316 0.892182i
\(392\) −7.70382 + 5.39427i −0.389102 + 0.272452i
\(393\) 0.0408056 0.960934i 0.00205837 0.0484727i
\(394\) −11.6225 13.8512i −0.585535 0.697814i
\(395\) 0 0
\(396\) 2.93220 0.793192i 0.147349 0.0398594i
\(397\) 15.9305 + 4.26857i 0.799531 + 0.214234i 0.635378 0.772201i \(-0.280844\pi\)
0.164153 + 0.986435i \(0.447511\pi\)
\(398\) 10.8234 5.04706i 0.542530 0.252986i
\(399\) 2.56101 1.63585i 0.128211 0.0818949i
\(400\) 0 0
\(401\) −0.517022 1.42051i −0.0258188 0.0709367i 0.926114 0.377245i \(-0.123128\pi\)
−0.951932 + 0.306308i \(0.900906\pi\)
\(402\) 20.5254 + 8.47320i 1.02371 + 0.422605i
\(403\) 7.04354 10.0592i 0.350864 0.501085i
\(404\) −1.00128 −0.0498155
\(405\) 0 0
\(406\) 17.1788 0.852571
\(407\) 17.7975 25.4175i 0.882189 1.25990i
\(408\) −15.2169 6.28176i −0.753348 0.310993i
\(409\) 8.02778 + 22.0561i 0.396948 + 1.09061i 0.963763 + 0.266760i \(0.0859532\pi\)
−0.566815 + 0.823845i \(0.691825\pi\)
\(410\) 0 0
\(411\) −8.82118 + 5.63453i −0.435117 + 0.277931i
\(412\) −2.84812 + 1.32810i −0.140317 + 0.0654308i
\(413\) −9.20490 2.46645i −0.452944 0.121366i
\(414\) 5.72121 21.5577i 0.281182 1.05950i
\(415\) 0 0
\(416\) 4.31402 + 5.14125i 0.211512 + 0.252070i
\(417\) 1.36086 32.0471i 0.0666418 1.56935i
\(418\) −4.19579 + 2.93792i −0.205223 + 0.143698i
\(419\) 2.76242 15.6665i 0.134953 0.765357i −0.839939 0.542680i \(-0.817409\pi\)
0.974892 0.222677i \(-0.0714794\pi\)
\(420\) 0 0
\(421\) 27.8051 23.3312i 1.35514 1.13709i 0.377685 0.925934i \(-0.376720\pi\)
0.977452 0.211160i \(-0.0677241\pi\)
\(422\) −24.0545 + 6.44539i −1.17096 + 0.313756i
\(423\) 8.40087 23.2539i 0.408464 1.13064i
\(424\) −3.44529 + 1.98914i −0.167318 + 0.0966012i
\(425\) 0 0
\(426\) −13.0617 + 0.585914i −0.632840 + 0.0283876i
\(427\) 16.3984 1.43468i 0.793576 0.0694289i
\(428\) 1.44331 3.09519i 0.0697652 0.149612i
\(429\) 29.9960 + 22.9599i 1.44822 + 1.10851i
\(430\) 0 0
\(431\) 10.7570i 0.518146i −0.965858 0.259073i \(-0.916583\pi\)
0.965858 0.259073i \(-0.0834169\pi\)
\(432\) −16.0414 8.27769i −0.771790 0.398261i
\(433\) 25.8369 + 25.8369i 1.24164 + 1.24164i 0.959320 + 0.282321i \(0.0911042\pi\)
0.282321 + 0.959320i \(0.408896\pi\)
\(434\) 1.09408 + 6.20483i 0.0525175 + 0.297842i
\(435\) 0 0
\(436\) 3.17246 1.15468i 0.151933 0.0552992i
\(437\) −0.437136 4.99649i −0.0209111 0.239015i
\(438\) 3.54968 + 11.2114i 0.169610 + 0.535703i
\(439\) −4.76440 + 13.0901i −0.227393 + 0.624756i −0.999948 0.0101913i \(-0.996756\pi\)
0.772556 + 0.634947i \(0.218978\pi\)
\(440\) 0 0
\(441\) −9.46327 + 0.850709i −0.450632 + 0.0405100i
\(442\) −5.57831 20.8185i −0.265333 0.990237i
\(443\) −0.993879 + 11.3601i −0.0472206 + 0.539734i 0.935335 + 0.353764i \(0.115098\pi\)
−0.982555 + 0.185970i \(0.940457\pi\)
\(444\) 2.86914 0.639668i 0.136163 0.0303573i
\(445\) 0 0
\(446\) 21.6986 + 3.82606i 1.02746 + 0.181169i
\(447\) 8.05642 12.6794i 0.381056 0.599717i
\(448\) −16.9810 1.48564i −0.802276 0.0701900i
\(449\) −0.807925 + 1.39937i −0.0381283 + 0.0660402i −0.884460 0.466616i \(-0.845473\pi\)
0.846332 + 0.532657i \(0.178806\pi\)
\(450\) 0 0
\(451\) −18.2114 31.5431i −0.857541 1.48530i
\(452\) 1.35642 + 2.90886i 0.0638008 + 0.136821i
\(453\) 26.3092 8.32980i 1.23611 0.391368i
\(454\) −15.4498 + 18.4124i −0.725097 + 0.864137i
\(455\) 0 0
\(456\) −4.57049 0.596164i −0.214033 0.0279180i
\(457\) −4.53775 3.17737i −0.212267 0.148631i 0.462608 0.886563i \(-0.346914\pi\)
−0.674875 + 0.737932i \(0.735803\pi\)
\(458\) −17.8434 + 17.8434i −0.833768 + 0.833768i
\(459\) −10.1721 13.1587i −0.474793 0.614194i
\(460\) 0 0
\(461\) 14.9666 2.63902i 0.697065 0.122911i 0.186123 0.982527i \(-0.440408\pi\)
0.510942 + 0.859615i \(0.329297\pi\)
\(462\) −19.2123 + 2.55269i −0.893836 + 0.118762i
\(463\) 29.9580 + 13.9696i 1.39226 + 0.649224i 0.966749 0.255727i \(-0.0823148\pi\)
0.425516 + 0.904951i \(0.360093\pi\)
\(464\) −17.5784 14.7500i −0.816056 0.684752i
\(465\) 0 0
\(466\) 9.44112 + 3.43629i 0.437352 + 0.159183i
\(467\) −5.87822 + 21.9378i −0.272012 + 1.01516i 0.685806 + 0.727784i \(0.259450\pi\)
−0.957818 + 0.287377i \(0.907217\pi\)
\(468\) 0.629839 + 3.52277i 0.0291143 + 0.162840i
\(469\) 16.3630 + 9.44716i 0.755571 + 0.436229i
\(470\) 0 0
\(471\) 21.9367 + 6.88783i 1.01079 + 0.317374i
\(472\) 8.29047 + 11.8400i 0.381600 + 0.544981i
\(473\) 3.18431 + 4.54767i 0.146415 + 0.209102i
\(474\) −0.706524 + 0.648964i −0.0324517 + 0.0298079i
\(475\) 0 0
\(476\) −1.27713 0.737352i −0.0585372 0.0337965i
\(477\) −4.01922 + 0.00959972i −0.184027 + 0.000439541i
\(478\) −4.29979 + 16.0470i −0.196668 + 0.733974i
\(479\) −21.4594 7.81060i −0.980507 0.356875i −0.198470 0.980107i \(-0.563597\pi\)
−0.782037 + 0.623232i \(0.785819\pi\)
\(480\) 0 0
\(481\) 28.0033 + 23.4976i 1.27684 + 1.07140i
\(482\) 20.6140 + 9.61245i 0.938941 + 0.437835i
\(483\) 7.24163 17.5421i 0.329506 0.798191i
\(484\) −1.74094 + 0.306975i −0.0791336 + 0.0139534i
\(485\) 0 0
\(486\) −11.2304 17.3981i −0.509421 0.789192i
\(487\) −13.1004 + 13.1004i −0.593634 + 0.593634i −0.938611 0.344977i \(-0.887887\pi\)
0.344977 + 0.938611i \(0.387887\pi\)
\(488\) −20.4520 14.3206i −0.925817 0.648264i
\(489\) 4.93317 + 11.8696i 0.223086 + 0.536762i
\(490\) 0 0
\(491\) −5.95862 + 7.10121i −0.268909 + 0.320473i −0.883553 0.468332i \(-0.844855\pi\)
0.614644 + 0.788805i \(0.289300\pi\)
\(492\) 0.742816 3.36967i 0.0334887 0.151916i
\(493\) −8.93533 19.1619i −0.402427 0.863007i
\(494\) −3.01722 5.22597i −0.135751 0.235128i
\(495\) 0 0
\(496\) 4.20804 7.28854i 0.188947 0.327265i
\(497\) −11.0828 0.969617i −0.497131 0.0434933i
\(498\) −21.3109 0.904958i −0.954965 0.0405521i
\(499\) 20.3482 + 3.58794i 0.910911 + 0.160618i 0.609417 0.792850i \(-0.291404\pi\)
0.301494 + 0.953468i \(0.402515\pi\)
\(500\) 0 0
\(501\) 4.27157 13.6043i 0.190840 0.607796i
\(502\) 0.623488 7.12650i 0.0278276 0.318071i
\(503\) −1.21585 4.53760i −0.0542119 0.202322i 0.933508 0.358557i \(-0.116731\pi\)
−0.987720 + 0.156235i \(0.950064\pi\)
\(504\) −14.3102 9.96924i −0.637426 0.444065i
\(505\) 0 0
\(506\) −10.9405 + 30.0588i −0.486365 + 1.33628i
\(507\) −14.8343 + 16.2276i −0.658813 + 0.720694i
\(508\) 0.0738452 + 0.844055i 0.00327635 + 0.0374489i
\(509\) 30.3526 11.0475i 1.34536 0.489670i 0.433862 0.900979i \(-0.357151\pi\)
0.911496 + 0.411309i \(0.134928\pi\)
\(510\) 0 0
\(511\) 1.73758 + 9.85432i 0.0768661 + 0.435929i
\(512\) 17.8410 + 17.8410i 0.788469 + 0.788469i
\(513\) −3.70450 2.82154i −0.163558 0.124574i
\(514\) 16.2891i 0.718480i
\(515\) 0 0
\(516\) −0.0680271 + 0.521529i −0.00299472 + 0.0229590i
\(517\) −14.9860 + 32.1376i −0.659083 + 1.41341i
\(518\) −18.6844 + 1.63467i −0.820945 + 0.0718234i
\(519\) 6.20277 11.9502i 0.272271 0.524557i
\(520\) 0 0
\(521\) −2.29310 + 1.32392i −0.100463 + 0.0580021i −0.549390 0.835566i \(-0.685140\pi\)
0.448927 + 0.893568i \(0.351806\pi\)
\(522\) −9.06243 24.7150i −0.396652 1.08175i
\(523\) 12.5901 3.37351i 0.550527 0.147513i 0.0271764 0.999631i \(-0.491348\pi\)
0.523351 + 0.852117i \(0.324682\pi\)
\(524\) −0.100106 + 0.0839990i −0.00437316 + 0.00366951i
\(525\) 0 0
\(526\) −3.14347 + 17.8275i −0.137062 + 0.777317i
\(527\) 6.35202 4.44773i 0.276698 0.193746i
\(528\) 21.8509 + 13.8839i 0.950938 + 0.604219i
\(529\) −5.34967 6.37549i −0.232594 0.277195i
\(530\) 0 0
\(531\) 1.30746 + 14.5441i 0.0567388 + 0.631161i
\(532\) −0.398822 0.106864i −0.0172911 0.00463314i
\(533\) 38.8899 18.1347i 1.68451 0.785499i
\(534\) −3.97997 2.06581i −0.172230 0.0893962i
\(535\) 0 0
\(536\) −9.80156 26.9296i −0.423363 1.16318i
\(537\) 6.03866 4.64510i 0.260587 0.200451i
\(538\) −9.39794 + 13.4217i −0.405174 + 0.578649i
\(539\) 13.6268 0.586947
\(540\) 0 0
\(541\) −42.0435 −1.80759 −0.903796 0.427963i \(-0.859231\pi\)
−0.903796 + 0.427963i \(0.859231\pi\)
\(542\) 15.0543 21.4998i 0.646637 0.923494i
\(543\) 1.30412 + 9.81518i 0.0559651 + 0.421210i
\(544\) 1.44949 + 3.98243i 0.0621463 + 0.170745i
\(545\) 0 0
\(546\) −1.02321 22.8103i −0.0437894 0.976189i
\(547\) 20.8870 9.73975i 0.893062 0.416442i 0.0787671 0.996893i \(-0.474902\pi\)
0.814295 + 0.580451i \(0.197124\pi\)
\(548\) 1.37371 + 0.368084i 0.0586818 + 0.0157238i
\(549\) −10.7148 22.8354i −0.457296 0.974591i
\(550\) 0 0
\(551\) −3.80505 4.53468i −0.162101 0.193184i
\(552\) −25.5165 + 13.3218i −1.08606 + 0.567014i
\(553\) −0.668660 + 0.468201i −0.0284343 + 0.0199099i
\(554\) 0.467751 2.65275i 0.0198728 0.112704i
\(555\) 0 0
\(556\) −3.33853 + 2.80136i −0.141585 + 0.118804i
\(557\) 34.3132 9.19419i 1.45390 0.389570i 0.556519 0.830835i \(-0.312137\pi\)
0.897377 + 0.441265i \(0.145470\pi\)
\(558\) 8.34966 4.84731i 0.353469 0.205203i
\(559\) −5.66426 + 3.27026i −0.239572 + 0.138317i
\(560\) 0 0
\(561\) 12.8404 + 20.1023i 0.542120 + 0.848720i
\(562\) −34.5957 + 3.02674i −1.45933 + 0.127675i
\(563\) −1.97748 + 4.24073i −0.0833410 + 0.178725i −0.943562 0.331196i \(-0.892548\pi\)
0.860221 + 0.509922i \(0.170326\pi\)
\(564\) −3.10209 + 1.28927i −0.130622 + 0.0542881i
\(565\) 0 0
\(566\) 3.08073i 0.129493i
\(567\) −7.52269 15.9333i −0.315923 0.669136i
\(568\) 11.9317 + 11.9317i 0.500642 + 0.500642i
\(569\) −1.37633 7.80556i −0.0576988 0.327226i 0.942272 0.334848i \(-0.108685\pi\)
−0.999971 + 0.00762185i \(0.997574\pi\)
\(570\) 0 0
\(571\) 4.65824 1.69546i 0.194941 0.0709528i −0.242705 0.970100i \(-0.578035\pi\)
0.437646 + 0.899147i \(0.355812\pi\)
\(572\) −0.447319 5.11288i −0.0187033 0.213780i
\(573\) −24.4006 5.37891i −1.01935 0.224707i
\(574\) −7.52995 + 20.6884i −0.314294 + 0.863516i
\(575\) 0 0
\(576\) 6.82068 + 25.2141i 0.284195 + 1.05059i
\(577\) 5.90200 + 22.0266i 0.245703 + 0.916977i 0.973029 + 0.230684i \(0.0740965\pi\)
−0.727325 + 0.686293i \(0.759237\pi\)
\(578\) −0.782053 + 8.93890i −0.0325291 + 0.371809i
\(579\) 20.3290 + 22.1321i 0.844844 + 0.919777i
\(580\) 0 0
\(581\) −17.8737 3.15161i −0.741526 0.130751i
\(582\) −14.3826 27.5484i −0.596179 1.14192i
\(583\) 5.74237 + 0.502393i 0.237825 + 0.0208070i
\(584\) 7.58853 13.1437i 0.314015 0.543891i
\(585\) 0 0
\(586\) 8.00664 + 13.8679i 0.330751 + 0.572878i
\(587\) 15.8151 + 33.9155i 0.652758 + 1.39984i 0.902142 + 0.431439i \(0.141994\pi\)
−0.249384 + 0.968405i \(0.580228\pi\)
\(588\) 0.952832 + 0.871019i 0.0392941 + 0.0359202i
\(589\) 1.39555 1.66315i 0.0575026 0.0685290i
\(590\) 0 0
\(591\) −14.3296 + 18.7209i −0.589440 + 0.770075i
\(592\) 20.5225 + 14.3700i 0.843470 + 0.590604i
\(593\) −5.46266 + 5.46266i −0.224324 + 0.224324i −0.810317 0.585992i \(-0.800705\pi\)
0.585992 + 0.810317i \(0.300705\pi\)
\(594\) 13.8077 + 26.2939i 0.566535 + 1.07885i
\(595\) 0 0
\(596\) −2.01008 + 0.354432i −0.0823362 + 0.0145181i
\(597\) −9.49383 12.3421i −0.388556 0.505126i
\(598\) −34.1546 15.9266i −1.39669 0.651286i
\(599\) 1.79656 + 1.50749i 0.0734055 + 0.0615946i 0.678752 0.734367i \(-0.262521\pi\)
−0.605347 + 0.795962i \(0.706965\pi\)
\(600\) 0 0
\(601\) 38.1639 + 13.8905i 1.55674 + 0.566607i 0.969987 0.243159i \(-0.0781836\pi\)
0.586753 + 0.809766i \(0.300406\pi\)
\(602\) 0.868536 3.24142i 0.0353989 0.132110i
\(603\) 4.95949 28.5249i 0.201966 1.16162i
\(604\) −3.24716 1.87475i −0.132125 0.0762824i
\(605\) 0 0
\(606\) −2.13027 9.55500i −0.0865362 0.388146i
\(607\) −1.07501 1.53527i −0.0436332 0.0623147i 0.796743 0.604319i \(-0.206555\pi\)
−0.840376 + 0.542004i \(0.817666\pi\)
\(608\) 0.680588 + 0.971981i 0.0276015 + 0.0394190i
\(609\) −4.87408 21.8619i −0.197508 0.885891i
\(610\) 0 0
\(611\) −36.1789 20.8879i −1.46364 0.845035i
\(612\) −0.387089 + 2.22637i −0.0156472 + 0.0899958i
\(613\) −4.71349 + 17.5910i −0.190376 + 0.710494i 0.803039 + 0.595926i \(0.203215\pi\)
−0.993415 + 0.114568i \(0.963452\pi\)
\(614\) 29.3338 + 10.6766i 1.18382 + 0.430874i
\(615\) 0 0
\(616\) 19.1608 + 16.0778i 0.772012 + 0.647795i
\(617\) −16.8885 7.87526i −0.679907 0.317046i 0.0518073 0.998657i \(-0.483502\pi\)
−0.731715 + 0.681611i \(0.761280\pi\)
\(618\) −18.7333 24.3534i −0.753564 0.979639i
\(619\) 28.0130 4.93945i 1.12594 0.198533i 0.420492 0.907296i \(-0.361858\pi\)
0.705447 + 0.708763i \(0.250746\pi\)
\(620\) 0 0
\(621\) −29.0578 1.16440i −1.16605 0.0467259i
\(622\) 3.73594 3.73594i 0.149797 0.149797i
\(623\) −3.12547 2.18848i −0.125219 0.0876795i
\(624\) −18.5382 + 24.2193i −0.742123 + 0.969549i
\(625\) 0 0
\(626\) 0.780926 0.930671i 0.0312121 0.0371971i
\(627\) 4.92928 + 4.50604i 0.196857 + 0.179954i
\(628\) −1.32026 2.83130i −0.0526840 0.112981i
\(629\) 11.5418 + 19.9910i 0.460202 + 0.797093i
\(630\) 0 0
\(631\) −16.2016 + 28.0619i −0.644974 + 1.11713i 0.339333 + 0.940666i \(0.389799\pi\)
−0.984307 + 0.176462i \(0.943535\pi\)
\(632\) 1.23338 + 0.107907i 0.0490613 + 0.00429231i
\(633\) 15.0273 + 28.7833i 0.597283 + 1.14403i
\(634\) 34.4974 + 6.08282i 1.37007 + 0.241580i
\(635\) 0 0
\(636\) 0.369414 + 0.402179i 0.0146482 + 0.0159475i
\(637\) −1.39919 + 15.9928i −0.0554380 + 0.633659i
\(638\) 9.77134 + 36.4671i 0.386851 + 1.44375i
\(639\) 4.45157 + 16.4562i 0.176102 + 0.650996i
\(640\) 0 0
\(641\) −7.10695 + 19.5262i −0.280708 + 0.771238i 0.716571 + 0.697514i \(0.245711\pi\)
−0.997279 + 0.0737239i \(0.976512\pi\)
\(642\) 32.6075 + 7.18807i 1.28692 + 0.283691i
\(643\) −3.44122 39.3334i −0.135709 1.55116i −0.693060 0.720880i \(-0.743738\pi\)
0.557351 0.830277i \(-0.311818\pi\)
\(644\) −2.42303 + 0.881910i −0.0954807 + 0.0347521i
\(645\) 0 0
\(646\) −0.661691 3.75263i −0.0260339 0.147645i
\(647\) 27.7872 + 27.7872i 1.09243 + 1.09243i 0.995269 + 0.0971593i \(0.0309756\pi\)
0.0971593 + 0.995269i \(0.469024\pi\)
\(648\) −6.79352 + 25.8470i −0.266875 + 1.01537i
\(649\) 20.9430i 0.822086i
\(650\) 0 0
\(651\) 7.58592 3.15281i 0.297315 0.123568i
\(652\) 0.738085 1.58283i 0.0289056 0.0619884i
\(653\) −16.8852 + 1.47726i −0.660770 + 0.0578098i −0.412608 0.910909i \(-0.635382\pi\)
−0.248162 + 0.968719i \(0.579826\pi\)
\(654\) 17.7685 + 27.8175i 0.694802 + 1.08775i
\(655\) 0 0
\(656\) 25.4684 14.7042i 0.994375 0.574103i
\(657\) 13.2607 7.69833i 0.517348 0.300341i
\(658\) 20.7037 5.54754i 0.807115 0.216266i
\(659\) −36.7210 + 30.8125i −1.43045 + 1.20029i −0.484997 + 0.874516i \(0.661179\pi\)
−0.945449 + 0.325770i \(0.894376\pi\)
\(660\) 0 0
\(661\) −0.726513 + 4.12026i −0.0282581 + 0.160259i −0.995671 0.0929427i \(-0.970373\pi\)
0.967413 + 0.253202i \(0.0814838\pi\)
\(662\) −13.9825 + 9.79064i −0.543445 + 0.380524i
\(663\) −24.9112 + 13.0058i −0.967470 + 0.505102i
\(664\) 17.6947 + 21.0877i 0.686687 + 0.818361i
\(665\) 0 0
\(666\) 12.2084 + 26.0187i 0.473068 + 1.00820i
\(667\) −35.7087 9.56811i −1.38264 0.370479i
\(668\) −1.75587 + 0.818774i −0.0679365 + 0.0316793i
\(669\) −1.28739 28.6995i −0.0497732 1.10959i
\(670\) 0 0
\(671\) 12.3730 + 33.9945i 0.477653 + 1.31234i
\(672\) 0.591347 + 4.45065i 0.0228117 + 0.171687i
\(673\) −13.6940 + 19.5570i −0.527863 + 0.753867i −0.991208 0.132311i \(-0.957760\pi\)
0.463345 + 0.886178i \(0.346649\pi\)
\(674\) −11.2915 −0.434933
\(675\) 0 0
\(676\) 2.98725 0.114894
\(677\) 12.6903 18.1236i 0.487727 0.696547i −0.497565 0.867427i \(-0.665772\pi\)
0.985292 + 0.170880i \(0.0546611\pi\)
\(678\) −24.8728 + 19.1328i −0.955235 + 0.734791i
\(679\) −9.04396 24.8481i −0.347075 0.953581i
\(680\) 0 0
\(681\) 27.8153 + 14.4376i 1.06589 + 0.553248i
\(682\) −12.5493 + 5.85182i −0.480537 + 0.224078i
\(683\) −24.3829 6.53337i −0.932985 0.249993i −0.239858 0.970808i \(-0.577101\pi\)
−0.693127 + 0.720815i \(0.743768\pi\)
\(684\) 0.0566484 + 0.630155i 0.00216601 + 0.0240946i
\(685\) 0 0
\(686\) −16.9965 20.2556i −0.648929 0.773363i
\(687\) 27.7703 + 17.6451i 1.05950 + 0.673201i
\(688\) −3.67187 + 2.57107i −0.139989 + 0.0980212i
\(689\) −1.17925 + 6.68785i −0.0449258 + 0.254787i
\(690\) 0 0
\(691\) 25.5999 21.4808i 0.973865 0.817170i −0.00928734 0.999957i \(-0.502956\pi\)
0.983153 + 0.182787i \(0.0585118\pi\)
\(692\) −1.76703 + 0.473473i −0.0671723 + 0.0179988i
\(693\) 8.69959 + 23.7255i 0.330470 + 0.901256i
\(694\) −6.05298 + 3.49469i −0.229768 + 0.132657i
\(695\) 0 0
\(696\) −15.6510 + 30.1532i −0.593251 + 1.14295i
\(697\) 26.9931 2.36159i 1.02244 0.0894517i
\(698\) 11.5751 24.8229i 0.438124 0.939559i
\(699\) 1.69437 12.9898i 0.0640868 0.491321i
\(700\) 0 0
\(701\) 12.4042i 0.468499i 0.972177 + 0.234249i \(0.0752632\pi\)
−0.972177 + 0.234249i \(0.924737\pi\)
\(702\) −32.2771 + 13.5053i −1.21822 + 0.509724i
\(703\) 4.57003 + 4.57003i 0.172362 + 0.172362i
\(704\) −6.50508 36.8922i −0.245170 1.39043i
\(705\) 0 0
\(706\) −35.9678 + 13.0912i −1.35367 + 0.492694i
\(707\) −0.725989 8.29809i −0.0273036 0.312082i
\(708\) 1.33867 1.46441i 0.0503103 0.0550359i
\(709\) 4.29127 11.7902i 0.161162 0.442789i −0.832659 0.553786i \(-0.813182\pi\)
0.993821 + 0.110998i \(0.0354046\pi\)
\(710\) 0 0
\(711\) 1.02634 + 0.715002i 0.0384906 + 0.0268147i
\(712\) 1.49782 + 5.58994i 0.0561332 + 0.209492i
\(713\) 1.18171 13.5070i 0.0442554 0.505842i
\(714\) 4.31925 13.7562i 0.161644 0.514812i
\(715\) 0 0
\(716\) −1.01940 0.179748i −0.0380969 0.00671750i
\(717\) 21.6416 + 0.918999i 0.808219 + 0.0343206i
\(718\) −23.5926 2.06408i −0.880466 0.0770308i
\(719\) −9.10268 + 15.7663i −0.339473 + 0.587984i −0.984334 0.176316i \(-0.943582\pi\)
0.644861 + 0.764300i \(0.276915\pi\)
\(720\) 0 0
\(721\) −13.0717 22.6408i −0.486815 0.843188i
\(722\) 10.2159 + 21.9081i 0.380196 + 0.815334i
\(723\) 6.38419 28.9608i 0.237431 1.07707i
\(724\) 0.864744 1.03056i 0.0321380 0.0383005i
\(725\) 0 0
\(726\) −6.63333 15.9603i −0.246186 0.592344i
\(727\) −8.06014 5.64377i −0.298934 0.209316i 0.414480 0.910058i \(-0.363963\pi\)
−0.713414 + 0.700742i \(0.752852\pi\)
\(728\) −20.8369 + 20.8369i −0.772267 + 0.772267i
\(729\) −18.9546 + 19.2282i −0.702022 + 0.712155i
\(730\) 0 0
\(731\) −4.06735 + 0.717184i −0.150436 + 0.0265260i
\(732\) −1.30775 + 3.16789i −0.0483359 + 0.117088i
\(733\) 33.5024 + 15.6224i 1.23744 + 0.577027i 0.927533 0.373740i \(-0.121925\pi\)
0.309905 + 0.950767i \(0.399703\pi\)
\(734\) −22.3146 18.7242i −0.823646 0.691121i
\(735\) 0 0
\(736\) 6.96332 + 2.53444i 0.256671 + 0.0934207i
\(737\) −10.7471 + 40.1088i −0.395875 + 1.47743i
\(738\) 33.7364 0.0805779i 1.24186 0.00296611i
\(739\) 7.02338 + 4.05495i 0.258359 + 0.149164i 0.623586 0.781755i \(-0.285675\pi\)
−0.365227 + 0.930919i \(0.619009\pi\)
\(740\) 0 0
\(741\) −5.79457 + 5.32249i −0.212869 + 0.195526i
\(742\) −1.99851 2.85416i −0.0733675 0.104780i
\(743\) −17.8592 25.5056i −0.655190 0.935709i 0.344805 0.938674i \(-0.387945\pi\)
−0.999996 + 0.00296531i \(0.999056\pi\)
\(744\) −11.8878 3.73262i −0.435829 0.136844i
\(745\) 0 0
\(746\) 19.8552 + 11.4634i 0.726949 + 0.419704i
\(747\) 4.89480 + 27.3773i 0.179091 + 1.00168i
\(748\) 0.838814 3.13050i 0.0306701 0.114462i
\(749\) 26.6979 + 9.71724i 0.975519 + 0.355060i
\(750\) 0 0
\(751\) −13.4156 11.2570i −0.489541 0.410774i 0.364321 0.931273i \(-0.381301\pi\)
−0.853862 + 0.520500i \(0.825746\pi\)
\(752\) −25.9484 12.1000i −0.946243 0.441240i
\(753\) −9.24615 + 1.22851i −0.336949 + 0.0447695i
\(754\) −43.8023 + 7.72353i −1.59519 + 0.281274i
\(755\) 0 0
\(756\) −0.908217 + 2.21504i −0.0330315 + 0.0805603i
\(757\) 20.1777 20.1777i 0.733371 0.733371i −0.237915 0.971286i \(-0.576464\pi\)
0.971286 + 0.237915i \(0.0764640\pi\)
\(758\) 29.5641 + 20.7010i 1.07381 + 0.751893i
\(759\) 41.3572 + 5.39455i 1.50117 + 0.195810i
\(760\) 0 0
\(761\) 23.7584 28.3141i 0.861240 1.02639i −0.138113 0.990416i \(-0.544104\pi\)
0.999353 0.0359689i \(-0.0114517\pi\)
\(762\) −7.89754 + 2.50046i −0.286098 + 0.0905820i
\(763\) 11.8696 + 25.4545i 0.429710 + 0.921516i
\(764\) 1.69744 + 2.94006i 0.0614113 + 0.106368i
\(765\) 0 0
\(766\) −4.88069 + 8.45360i −0.176346 + 0.305441i
\(767\) 24.5794 + 2.15042i 0.887512 + 0.0776472i
\(768\) 5.17084 8.13803i 0.186587 0.293656i
\(769\) −8.53754 1.50540i −0.307872 0.0542861i 0.0175779 0.999845i \(-0.494405\pi\)
−0.325450 + 0.945559i \(0.605516\pi\)
\(770\) 0 0
\(771\) −20.7296 + 4.62163i −0.746559 + 0.166444i
\(772\) 0.355865 4.06755i 0.0128078 0.146394i
\(773\) −3.05417 11.3983i −0.109851 0.409969i 0.889000 0.457908i \(-0.151401\pi\)
−0.998850 + 0.0479396i \(0.984734\pi\)
\(774\) −5.12158 + 0.460409i −0.184091 + 0.0165491i
\(775\) 0 0
\(776\) −13.7174 + 37.6882i −0.492425 + 1.35293i
\(777\) 7.38154 + 23.3141i 0.264811 + 0.836390i
\(778\) −3.61856 41.3603i −0.129732 1.48284i
\(779\) 7.12895 2.59472i 0.255421 0.0929657i
\(780\) 0 0
\(781\) −4.24560 24.0780i −0.151919 0.861578i
\(782\) −16.8270 16.8270i −0.601733 0.601733i
\(783\) −28.8813 + 18.5452i −1.03213 + 0.662752i
\(784\) 11.0025i 0.392947i
\(785\) 0 0
\(786\) −1.01457 0.776581i −0.0361884 0.0276997i
\(787\) −7.93722 + 17.0214i −0.282931 + 0.606748i −0.995490 0.0948643i \(-0.969758\pi\)
0.712559 + 0.701612i \(0.247536\pi\)
\(788\) 3.19101 0.279178i 0.113675 0.00994529i
\(789\) 23.5794 1.05771i 0.839448 0.0376556i
\(790\) 0 0
\(791\) −23.1237 + 13.3505i −0.822183 + 0.474687i
\(792\) 13.0230 36.0481i 0.462753 1.28091i
\(793\) −41.1675 + 11.0308i −1.46190 + 0.391715i
\(794\) 16.7831 14.0827i 0.595610 0.499776i
\(795\) 0 0
\(796\) −0.367376 + 2.08349i −0.0130213 + 0.0738475i
\(797\) −17.6670 + 12.3706i −0.625797 + 0.438188i −0.842981 0.537943i \(-0.819202\pi\)
0.217184 + 0.976131i \(0.430313\pi\)
\(798\) 0.171269 4.03324i 0.00606287 0.142775i
\(799\) −16.9567 20.2082i −0.599884 0.714914i
\(800\) 0 0
\(801\) −1.49974 + 5.65108i −0.0529909 + 0.199671i
\(802\) −1.93969 0.519739i −0.0684929 0.0183526i
\(803\) −19.9304 + 9.29368i −0.703327 + 0.327967i
\(804\) −3.31521 + 2.11759i −0.116919 + 0.0746818i
\(805\) 0 0
\(806\) −5.57934 15.3291i −0.196524 0.539945i
\(807\) 19.7470 + 8.15185i 0.695126 + 0.286959i
\(808\) −7.24665 + 10.3493i −0.254936 + 0.364087i
\(809\) 4.46938 0.157135 0.0785676 0.996909i \(-0.474965\pi\)
0.0785676 + 0.996909i \(0.474965\pi\)
\(810\) 0 0
\(811\) 37.9099 1.33120 0.665598 0.746311i \(-0.268177\pi\)
0.665598 + 0.746311i \(0.268177\pi\)
\(812\) −1.74556 + 2.49292i −0.0612573 + 0.0874845i
\(813\) −31.6321 13.0582i −1.10939 0.457971i
\(814\) −14.0978 38.7333i −0.494127 1.35760i
\(815\) 0 0
\(816\) −16.2310 + 10.3675i −0.568197 + 0.362936i
\(817\) −1.04801 + 0.488696i −0.0366653 + 0.0170973i
\(818\) 30.1175 + 8.06996i 1.05303 + 0.282159i
\(819\) −28.7383 + 7.77401i −1.00420 + 0.271646i
\(820\) 0 0
\(821\) 23.1674 + 27.6099i 0.808549 + 0.963591i 0.999839 0.0179428i \(-0.00571166\pi\)
−0.191290 + 0.981533i \(0.561267\pi\)
\(822\) −0.589922 + 13.8921i −0.0205759 + 0.484544i
\(823\) 2.18095 1.52711i 0.0760230 0.0532319i −0.534947 0.844886i \(-0.679668\pi\)
0.610970 + 0.791654i \(0.290780\pi\)
\(824\) −6.88563 + 39.0504i −0.239872 + 1.36038i
\(825\) 0 0
\(826\) −9.69752 + 8.13719i −0.337420 + 0.283129i
\(827\) −39.8859 + 10.6874i −1.38697 + 0.371637i −0.873647 0.486560i \(-0.838252\pi\)
−0.513321 + 0.858197i \(0.671585\pi\)
\(828\) 2.54703 + 3.02075i 0.0885153 + 0.104978i
\(829\) −19.6326 + 11.3349i −0.681869 + 0.393677i −0.800559 0.599254i \(-0.795464\pi\)
0.118690 + 0.992931i \(0.462131\pi\)
\(830\) 0 0
\(831\) −3.50863 + 0.157388i −0.121713 + 0.00545974i
\(832\) 43.9658 3.84651i 1.52424 0.133354i
\(833\) −4.28428 + 9.18766i −0.148441 + 0.318334i
\(834\) −33.8357 25.8989i −1.17164 0.896806i
\(835\) 0 0
\(836\) 0.907402i 0.0313832i
\(837\) −8.53774 9.25056i −0.295108 0.319746i
\(838\) −14.9429 14.9429i −0.516195 0.516195i
\(839\) 1.44230 + 8.17971i 0.0497938 + 0.282395i 0.999530 0.0306567i \(-0.00975985\pi\)
−0.949736 + 0.313052i \(0.898649\pi\)
\(840\) 0 0
\(841\) −13.7493 + 5.00432i −0.474112 + 0.172563i
\(842\) −4.20240 48.0337i −0.144824 1.65535i
\(843\) 13.6676 + 43.1681i 0.470736 + 1.48679i
\(844\) 1.50888 4.14562i 0.0519379 0.142698i
\(845\) 0 0
\(846\) −18.9031 26.8597i −0.649902 0.923455i
\(847\) −3.80634 14.2054i −0.130787 0.488105i
\(848\) −0.405641 + 4.63650i −0.0139298 + 0.159218i
\(849\) −3.92057 + 0.874084i −0.134554 + 0.0299985i
\(850\) 0 0
\(851\) 39.7487 + 7.00876i 1.36257 + 0.240257i
\(852\) 1.24219 1.95499i 0.0425567 0.0669770i
\(853\) 6.11455 + 0.534954i 0.209358 + 0.0183165i 0.191352 0.981521i \(-0.438713\pi\)
0.0180058 + 0.999838i \(0.494268\pi\)
\(854\) 10.9335 18.9374i 0.374137 0.648024i
\(855\) 0 0
\(856\) −21.5463 37.3193i −0.736439 1.27555i
\(857\) −14.6042 31.3187i −0.498869 1.06983i −0.981050 0.193756i \(-0.937933\pi\)
0.482181 0.876072i \(-0.339845\pi\)
\(858\) 47.8395 15.1466i 1.63321 0.517095i
\(859\) 14.4078 17.1705i 0.491587 0.585850i −0.462034 0.886862i \(-0.652880\pi\)
0.953620 + 0.301012i \(0.0973245\pi\)
\(860\) 0 0
\(861\) 28.4647 + 3.71287i 0.970073 + 0.126534i
\(862\) −11.7054 8.19621i −0.398688 0.279164i
\(863\) 34.4337 34.4337i 1.17214 1.17214i 0.190436 0.981700i \(-0.439010\pi\)
0.981700 0.190436i \(-0.0609900\pi\)
\(864\) 6.09114 3.19864i 0.207225 0.108820i
\(865\) 0 0
\(866\) 47.8011 8.42862i 1.62435 0.286416i
\(867\) 11.5976 1.54095i 0.393876 0.0523334i
\(868\) −1.01159 0.471713i −0.0343357 0.0160110i
\(869\) −1.37423 1.15312i −0.0466175 0.0391168i
\(870\) 0 0
\(871\) −45.9694 16.7315i −1.55762 0.566926i
\(872\) 11.0255 41.1477i 0.373370 1.39344i
\(873\) −30.9776 + 26.1197i −1.04843 + 0.884017i
\(874\) −5.77009 3.33137i −0.195176 0.112685i
\(875\) 0 0
\(876\) −1.98765 0.624094i −0.0671564 0.0210862i
\(877\) 7.94910 + 11.3525i 0.268422 + 0.383347i 0.930623 0.365980i \(-0.119266\pi\)
−0.662201 + 0.749327i \(0.730377\pi\)
\(878\) 10.6140 + 15.1584i 0.358206 + 0.511571i
\(879\) 15.3768 14.1240i 0.518645 0.476391i
\(880\) 0 0
\(881\) −20.3929 11.7738i −0.687054 0.396671i 0.115453 0.993313i \(-0.463168\pi\)
−0.802507 + 0.596642i \(0.796501\pi\)
\(882\) −6.28476 + 10.9458i −0.211619 + 0.368565i
\(883\) −4.25489 + 15.8795i −0.143188 + 0.534386i 0.856641 + 0.515913i \(0.172547\pi\)
−0.999829 + 0.0184733i \(0.994119\pi\)
\(884\) 3.58792 + 1.30590i 0.120675 + 0.0439221i
\(885\) 0 0
\(886\) 11.6044 + 9.73725i 0.389857 + 0.327129i
\(887\) −9.29073 4.33234i −0.311952 0.145466i 0.260336 0.965518i \(-0.416167\pi\)
−0.572289 + 0.820052i \(0.693944\pi\)
\(888\) 14.1534 34.2851i 0.474958 1.15053i
\(889\) −6.94156 + 1.22398i −0.232812 + 0.0410511i
\(890\) 0 0
\(891\) 29.5442 25.0320i 0.989769 0.838604i
\(892\) −2.76005 + 2.76005i −0.0924133 + 0.0924133i
\(893\) −6.05018 4.23638i −0.202461 0.141765i
\(894\) −7.65882 18.4278i −0.256149 0.616316i
\(895\) 0 0
\(896\) −11.2227 + 13.3748i −0.374926 + 0.446819i
\(897\) −10.5778 + 47.9843i −0.353181 + 1.60215i
\(898\) 0.907153 + 1.94540i 0.0302721 + 0.0649187i
\(899\) −8.00123 13.8585i −0.266856 0.462208i
\(900\) 0 0
\(901\) −2.14414 + 3.71376i −0.0714317 + 0.123723i
\(902\) −48.2002 4.21697i −1.60489 0.140410i
\(903\) −4.37149 0.185633i −0.145474 0.00617748i
\(904\) 39.8832 + 7.03248i 1.32649 + 0.233897i
\(905\) 0 0
\(906\) 10.9819 34.9756i 0.364848 1.16199i
\(907\) 1.17717 13.4551i 0.0390872 0.446769i −0.951283 0.308321i \(-0.900233\pi\)
0.990370 0.138448i \(-0.0442114\pi\)
\(908\) −1.10206 4.11293i −0.0365730 0.136492i
\(909\) −11.5554 + 5.42200i −0.383268 + 0.179836i
\(910\) 0 0
\(911\) 4.95701 13.6193i 0.164233 0.451227i −0.830090 0.557629i \(-0.811711\pi\)
0.994323 + 0.106403i \(0.0339332\pi\)
\(912\) −3.63825 + 3.97999i −0.120475 + 0.131791i
\(913\) −3.47635 39.7348i −0.115050 1.31503i
\(914\) −6.91502 + 2.51686i −0.228729 + 0.0832504i
\(915\) 0 0
\(916\) −0.776272 4.40246i −0.0256488 0.145461i
\(917\) −0.768724 0.768724i −0.0253855 0.0253855i
\(918\) −22.0694 + 1.04280i −0.728399 + 0.0344176i
\(919\) 11.7599i 0.387925i 0.981009 + 0.193962i \(0.0621340\pi\)
−0.981009 + 0.193962i \(0.937866\pi\)
\(920\) 0 0
\(921\) 5.26444 40.3597i 0.173469 1.32990i
\(922\) 8.53202 18.2970i 0.280987 0.602579i
\(923\) 28.6946 2.51046i 0.944496 0.0826327i
\(924\) 1.58175 3.04739i 0.0520357 0.100252i
\(925\) 0 0
\(926\) 38.0276 21.9552i 1.24966 0.721494i
\(927\) −25.6773 + 30.7499i −0.843353 + 1.00996i
\(928\) 8.44784 2.26359i 0.277314 0.0743061i
\(929\) −36.0388 + 30.2401i −1.18239 + 0.992146i −0.182433 + 0.983218i \(0.558397\pi\)
−0.999960 + 0.00892776i \(0.997158\pi\)
\(930\) 0 0
\(931\) −0.492867 + 2.79519i −0.0161531 + 0.0916086i
\(932\) −1.45799 + 1.02089i −0.0477579 + 0.0334405i
\(933\) −5.81437 3.69441i −0.190354 0.120950i
\(934\) 19.3932 + 23.1119i 0.634563 + 0.756243i
\(935\) 0 0
\(936\) 40.9700 + 18.9856i 1.33915 + 0.620565i
\(937\) −36.6017 9.80740i −1.19573 0.320394i −0.394580 0.918862i \(-0.629110\pi\)
−0.801147 + 0.598468i \(0.795776\pi\)
\(938\) 22.7477 10.6074i 0.742740 0.346346i
\(939\) −1.40595 0.729759i −0.0458814 0.0238148i
\(940\) 0 0
\(941\) −3.79401 10.4240i −0.123681 0.339811i 0.862364 0.506289i \(-0.168983\pi\)
−0.986045 + 0.166477i \(0.946761\pi\)
\(942\) 24.2096 18.6227i 0.788793 0.606760i
\(943\) 27.1749 38.8098i 0.884937 1.26382i
\(944\) 16.9098 0.550367
\(945\) 0 0
\(946\) 7.37489 0.239778
\(947\) 9.12331 13.0294i 0.296468 0.423400i −0.643090 0.765791i \(-0.722348\pi\)
0.939558 + 0.342391i \(0.111237\pi\)
\(948\) −0.0223842 0.168470i −0.000727006 0.00547165i
\(949\) −8.86092 24.3452i −0.287638 0.790278i
\(950\) 0 0
\(951\) −2.04674 45.6276i −0.0663701 1.47958i
\(952\) −16.8644 + 7.86402i −0.546580 + 0.254874i
\(953\) 35.2746 + 9.45180i 1.14266 + 0.306174i 0.780019 0.625756i \(-0.215210\pi\)
0.362638 + 0.931930i \(0.381876\pi\)
\(954\) −3.05197 + 4.38090i −0.0988113 + 0.141837i
\(955\) 0 0
\(956\) −1.89177 2.25453i −0.0611843 0.0729167i
\(957\) 43.6361 22.7818i 1.41055 0.736430i
\(958\) −24.8501 + 17.4002i −0.802871 + 0.562176i
\(959\) −2.05447 + 11.6515i −0.0663422 + 0.376245i
\(960\) 0 0
\(961\) −19.2514 + 16.1538i −0.621012 + 0.521091i
\(962\) 46.9062 12.5685i 1.51232 0.405224i
\(963\) −0.103984 43.5361i −0.00335084 1.40293i
\(964\) −3.48953 + 2.01468i −0.112390 + 0.0648886i
\(965\) 0 0
\(966\) −13.5710 21.2462i −0.436640 0.683584i
\(967\) 1.95128 0.170714i 0.0627488 0.00548981i −0.0557381 0.998445i \(-0.517751\pi\)
0.118487 + 0.992956i \(0.462196\pi\)
\(968\) −9.42696 + 20.2162i −0.302994 + 0.649773i
\(969\) −4.58790 + 1.90679i −0.147385 + 0.0612550i
\(970\) 0 0
\(971\) 27.5442i 0.883934i −0.897031 0.441967i \(-0.854281\pi\)
0.897031 0.441967i \(-0.145719\pi\)
\(972\) 3.66587 + 0.138130i 0.117583 + 0.00443052i
\(973\) −25.6369 25.6369i −0.821881 0.821881i
\(974\) 4.27366 + 24.2371i 0.136937 + 0.776607i
\(975\) 0 0
\(976\) −27.4477 + 9.99016i −0.878581 + 0.319777i
\(977\) −2.84484 32.5167i −0.0910146 1.04030i −0.895123 0.445819i \(-0.852912\pi\)
0.804108 0.594483i \(-0.202643\pi\)
\(978\) 16.6749 + 3.67586i 0.533205 + 0.117541i
\(979\) 2.86792 7.87954i 0.0916591 0.251831i
\(980\) 0 0
\(981\) 30.3595 30.5049i 0.969305 0.973946i
\(982\) 3.18718 + 11.8947i 0.101707 + 0.379575i
\(983\) −2.79155 + 31.9076i −0.0890367 + 1.01769i 0.811915 + 0.583775i \(0.198425\pi\)
−0.900952 + 0.433919i \(0.857130\pi\)
\(984\) −29.4531 32.0654i −0.938930 1.02221i
\(985\) 0 0
\(986\) −27.6596 4.87713i −0.880860 0.155319i
\(987\) −12.9340 24.7738i −0.411695 0.788558i
\(988\) 1.06496 + 0.0931716i 0.0338808 + 0.00296418i
\(989\) −3.61075 + 6.25401i −0.114815 + 0.198866i
\(990\) 0 0
\(991\) 24.5859 + 42.5840i 0.780995 + 1.35272i 0.931362 + 0.364094i \(0.118621\pi\)
−0.150367 + 0.988630i \(0.548046\pi\)
\(992\) 1.35561 + 2.90712i 0.0430407 + 0.0923012i
\(993\) 16.4269 + 15.0164i 0.521291 + 0.476531i
\(994\) −9.49956 + 11.3211i −0.301308 + 0.359084i
\(995\) 0 0
\(996\) 2.29676 3.00060i 0.0727755 0.0950778i
\(997\) −25.7299 18.0163i −0.814874 0.570581i 0.0901563 0.995928i \(-0.471263\pi\)
−0.905031 + 0.425347i \(0.860152\pi\)
\(998\) 19.4085 19.4085i 0.614364 0.614364i
\(999\) 29.6478 22.9188i 0.938014 0.725118i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 675.2.ba.b.68.11 192
5.2 odd 4 inner 675.2.ba.b.257.11 192
5.3 odd 4 135.2.q.a.122.6 yes 192
5.4 even 2 135.2.q.a.68.6 yes 192
15.8 even 4 405.2.r.a.152.11 192
15.14 odd 2 405.2.r.a.233.11 192
27.2 odd 18 inner 675.2.ba.b.218.11 192
135.2 even 36 inner 675.2.ba.b.407.11 192
135.29 odd 18 135.2.q.a.83.6 yes 192
135.79 even 18 405.2.r.a.8.11 192
135.83 even 36 135.2.q.a.2.6 192
135.133 odd 36 405.2.r.a.332.11 192
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
135.2.q.a.2.6 192 135.83 even 36
135.2.q.a.68.6 yes 192 5.4 even 2
135.2.q.a.83.6 yes 192 135.29 odd 18
135.2.q.a.122.6 yes 192 5.3 odd 4
405.2.r.a.8.11 192 135.79 even 18
405.2.r.a.152.11 192 15.8 even 4
405.2.r.a.233.11 192 15.14 odd 2
405.2.r.a.332.11 192 135.133 odd 36
675.2.ba.b.68.11 192 1.1 even 1 trivial
675.2.ba.b.218.11 192 27.2 odd 18 inner
675.2.ba.b.257.11 192 5.2 odd 4 inner
675.2.ba.b.407.11 192 135.2 even 36 inner