Properties

Label 675.2.ba.b.668.3
Level $675$
Weight $2$
Character 675.668
Analytic conductor $5.390$
Analytic rank $0$
Dimension $192$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [675,2,Mod(32,675)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("675.32"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(675, base_ring=CyclotomicField(36)) chi = DirichletCharacter(H, H._module([10, 9])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 675 = 3^{3} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 675.ba (of order \(36\), degree \(12\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [192] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.38990213644\)
Analytic rank: \(0\)
Dimension: \(192\)
Relative dimension: \(16\) over \(\Q(\zeta_{36})\)
Twist minimal: no (minimal twist has level 135)
Sato-Tate group: $\mathrm{SU}(2)[C_{36}]$

Embedding invariants

Embedding label 668.3
Character \(\chi\) \(=\) 675.668
Dual form 675.2.ba.b.482.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.81626 - 0.846935i) q^{2} +(0.00445475 - 1.73205i) q^{3} +(1.29592 + 1.54442i) q^{4} +(-1.47502 + 3.14207i) q^{6} +(2.21198 - 0.193523i) q^{7} +(-0.00834683 - 0.0311508i) q^{8} +(-2.99996 - 0.0154316i) q^{9} +(1.09616 + 0.193283i) q^{11} +(2.68077 - 2.23771i) q^{12} +(1.28211 + 2.74949i) q^{13} +(-4.18143 - 1.52192i) q^{14} +(0.688959 - 3.90728i) q^{16} +(1.56207 - 5.82972i) q^{17} +(5.43563 + 2.56880i) q^{18} +(3.84801 + 2.22165i) q^{19} +(-0.325337 - 3.83212i) q^{21} +(-1.82722 - 1.27943i) q^{22} +(0.293046 - 3.34953i) q^{23} +(-0.0539918 + 0.0143183i) q^{24} -6.07964i q^{26} +(-0.0400924 + 5.19600i) q^{27} +(3.16543 + 3.16543i) q^{28} +(-1.74671 + 0.635749i) q^{29} +(7.13252 - 5.98490i) q^{31} +(-4.59753 + 6.56596i) q^{32} +(0.339658 - 1.89774i) q^{33} +(-7.77451 + 9.26530i) q^{34} +(-3.86387 - 4.65319i) q^{36} +(4.53439 + 1.21499i) q^{37} +(-5.10738 - 7.29410i) q^{38} +(4.76795 - 2.20842i) q^{39} +(-1.07377 + 2.95017i) q^{41} +(-2.65466 + 7.23565i) q^{42} +(5.86507 - 4.10676i) q^{43} +(1.12203 + 1.94341i) q^{44} +(-3.36908 + 5.83541i) q^{46} +(-1.10183 - 12.5940i) q^{47} +(-6.76452 - 1.21071i) q^{48} +(-2.03824 + 0.359397i) q^{49} +(-10.0904 - 2.73154i) q^{51} +(-2.58485 + 5.54322i) q^{52} +(-6.34457 + 6.34457i) q^{53} +(4.47349 - 9.40332i) q^{54} +(-0.0244914 - 0.0672897i) q^{56} +(3.86514 - 6.65503i) q^{57} +(3.71091 + 0.324662i) q^{58} +(0.242616 + 1.37594i) q^{59} +(-2.30056 - 1.93040i) q^{61} +(-18.0233 + 4.82933i) q^{62} +(-6.63885 + 0.546428i) q^{63} +(7.03924 - 4.06411i) q^{64} +(-2.22417 + 3.15912i) q^{66} +(-8.07622 + 3.76600i) q^{67} +(11.0278 - 5.14236i) q^{68} +(-5.80023 - 0.522490i) q^{69} +(-6.78702 + 3.91849i) q^{71} +(0.0245595 + 0.0935799i) q^{72} +(0.167045 - 0.0447595i) q^{73} +(-7.20661 - 6.04707i) q^{74} +(1.55556 + 8.82200i) q^{76} +(2.46210 + 0.215406i) q^{77} +(-10.5302 - 0.0270832i) q^{78} +(-0.697324 - 1.91588i) q^{79} +(8.99952 + 0.0925886i) q^{81} +(4.44885 - 4.44885i) q^{82} +(2.27031 - 4.86870i) q^{83} +(5.49677 - 5.46857i) q^{84} +(-14.1306 + 2.49161i) q^{86} +(1.09336 + 3.02821i) q^{87} +(-0.00312857 - 0.0357597i) q^{88} +(6.70700 - 11.6169i) q^{89} +(3.36809 + 5.83370i) q^{91} +(5.55283 - 3.88813i) q^{92} +(-10.3343 - 12.3805i) q^{93} +(-8.66507 + 23.8071i) q^{94} +(11.3521 + 7.99239i) q^{96} +(-9.92914 - 14.1803i) q^{97} +(4.00635 + 1.07350i) q^{98} +(-3.28547 - 0.596758i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 192 q + 12 q^{2} + 12 q^{3} - 36 q^{6} + 12 q^{7} + 18 q^{8} - 36 q^{11} + 12 q^{12} + 12 q^{13} - 24 q^{16} + 18 q^{17} + 54 q^{18} - 24 q^{21} + 12 q^{22} + 36 q^{23} + 36 q^{27} + 24 q^{28} - 24 q^{31}+ \cdots - 324 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/675\mathbb{Z}\right)^\times\).

\(n\) \(326\) \(352\)
\(\chi(n)\) \(e\left(\frac{7}{18}\right)\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.81626 0.846935i −1.28429 0.598874i −0.343910 0.939003i \(-0.611751\pi\)
−0.940379 + 0.340129i \(0.889529\pi\)
\(3\) 0.00445475 1.73205i 0.00257195 0.999997i
\(4\) 1.29592 + 1.54442i 0.647960 + 0.772208i
\(5\) 0 0
\(6\) −1.47502 + 3.14207i −0.602175 + 1.28274i
\(7\) 2.21198 0.193523i 0.836051 0.0731450i 0.338914 0.940817i \(-0.389940\pi\)
0.497137 + 0.867672i \(0.334385\pi\)
\(8\) −0.00834683 0.0311508i −0.00295105 0.0110135i
\(9\) −2.99996 0.0154316i −0.999987 0.00514388i
\(10\) 0 0
\(11\) 1.09616 + 0.193283i 0.330506 + 0.0582771i 0.336439 0.941705i \(-0.390777\pi\)
−0.00593305 + 0.999982i \(0.501889\pi\)
\(12\) 2.68077 2.23771i 0.773872 0.645971i
\(13\) 1.28211 + 2.74949i 0.355592 + 0.762570i 0.999998 0.00211367i \(-0.000672802\pi\)
−0.644405 + 0.764684i \(0.722895\pi\)
\(14\) −4.18143 1.52192i −1.11753 0.406749i
\(15\) 0 0
\(16\) 0.688959 3.90728i 0.172240 0.976820i
\(17\) 1.56207 5.82972i 0.378857 1.41391i −0.468769 0.883321i \(-0.655302\pi\)
0.847626 0.530594i \(-0.178031\pi\)
\(18\) 5.43563 + 2.56880i 1.28119 + 0.605472i
\(19\) 3.84801 + 2.22165i 0.882794 + 0.509681i 0.871578 0.490256i \(-0.163097\pi\)
0.0112151 + 0.999937i \(0.496430\pi\)
\(20\) 0 0
\(21\) −0.325337 3.83212i −0.0709944 0.836236i
\(22\) −1.82722 1.27943i −0.389564 0.272776i
\(23\) 0.293046 3.34953i 0.0611042 0.698425i −0.902429 0.430838i \(-0.858218\pi\)
0.963534 0.267587i \(-0.0862263\pi\)
\(24\) −0.0539918 + 0.0143183i −0.0110210 + 0.00292271i
\(25\) 0 0
\(26\) 6.07964i 1.19232i
\(27\) −0.0400924 + 5.19600i −0.00771578 + 0.999970i
\(28\) 3.16543 + 3.16543i 0.598210 + 0.598210i
\(29\) −1.74671 + 0.635749i −0.324355 + 0.118056i −0.499066 0.866564i \(-0.666323\pi\)
0.174710 + 0.984620i \(0.444101\pi\)
\(30\) 0 0
\(31\) 7.13252 5.98490i 1.28104 1.07492i 0.287939 0.957649i \(-0.407030\pi\)
0.993100 0.117270i \(-0.0374144\pi\)
\(32\) −4.59753 + 6.56596i −0.812737 + 1.16071i
\(33\) 0.339658 1.89774i 0.0591269 0.330355i
\(34\) −7.77451 + 9.26530i −1.33332 + 1.58899i
\(35\) 0 0
\(36\) −3.86387 4.65319i −0.643979 0.775531i
\(37\) 4.53439 + 1.21499i 0.745450 + 0.199743i 0.611499 0.791245i \(-0.290567\pi\)
0.133951 + 0.990988i \(0.457234\pi\)
\(38\) −5.10738 7.29410i −0.828527 1.18326i
\(39\) 4.76795 2.20842i 0.763482 0.353630i
\(40\) 0 0
\(41\) −1.07377 + 2.95017i −0.167695 + 0.460739i −0.994865 0.101214i \(-0.967727\pi\)
0.827169 + 0.561953i \(0.189950\pi\)
\(42\) −2.65466 + 7.23565i −0.409622 + 1.11649i
\(43\) 5.86507 4.10676i 0.894414 0.626276i −0.0333495 0.999444i \(-0.510617\pi\)
0.927764 + 0.373168i \(0.121729\pi\)
\(44\) 1.12203 + 1.94341i 0.169152 + 0.292981i
\(45\) 0 0
\(46\) −3.36908 + 5.83541i −0.496743 + 0.860385i
\(47\) −1.10183 12.5940i −0.160718 1.83702i −0.466031 0.884768i \(-0.654317\pi\)
0.305313 0.952252i \(-0.401239\pi\)
\(48\) −6.76452 1.21071i −0.976374 0.174751i
\(49\) −2.03824 + 0.359397i −0.291177 + 0.0513424i
\(50\) 0 0
\(51\) −10.0904 2.73154i −1.41294 0.382492i
\(52\) −2.58485 + 5.54322i −0.358454 + 0.768706i
\(53\) −6.34457 + 6.34457i −0.871494 + 0.871494i −0.992635 0.121142i \(-0.961344\pi\)
0.121142 + 0.992635i \(0.461344\pi\)
\(54\) 4.47349 9.40332i 0.608765 1.27963i
\(55\) 0 0
\(56\) −0.0244914 0.0672897i −0.00327281 0.00899196i
\(57\) 3.86514 6.65503i 0.511950 0.881480i
\(58\) 3.71091 + 0.324662i 0.487266 + 0.0426303i
\(59\) 0.242616 + 1.37594i 0.0315859 + 0.179132i 0.996519 0.0833623i \(-0.0265659\pi\)
−0.964933 + 0.262495i \(0.915455\pi\)
\(60\) 0 0
\(61\) −2.30056 1.93040i −0.294557 0.247163i 0.483517 0.875335i \(-0.339359\pi\)
−0.778075 + 0.628172i \(0.783803\pi\)
\(62\) −18.0233 + 4.82933i −2.28896 + 0.613326i
\(63\) −6.63885 + 0.546428i −0.836416 + 0.0688435i
\(64\) 7.03924 4.06411i 0.879905 0.508014i
\(65\) 0 0
\(66\) −2.22417 + 3.15912i −0.273777 + 0.388861i
\(67\) −8.07622 + 3.76600i −0.986667 + 0.460090i −0.847855 0.530228i \(-0.822106\pi\)
−0.138812 + 0.990319i \(0.544328\pi\)
\(68\) 11.0278 5.14236i 1.33732 0.623603i
\(69\) −5.80023 0.522490i −0.698265 0.0629003i
\(70\) 0 0
\(71\) −6.78702 + 3.91849i −0.805471 + 0.465039i −0.845380 0.534165i \(-0.820626\pi\)
0.0399099 + 0.999203i \(0.487293\pi\)
\(72\) 0.0245595 + 0.0935799i 0.00289436 + 0.0110285i
\(73\) 0.167045 0.0447595i 0.0195511 0.00523870i −0.249030 0.968496i \(-0.580112\pi\)
0.268581 + 0.963257i \(0.413445\pi\)
\(74\) −7.20661 6.04707i −0.837752 0.702957i
\(75\) 0 0
\(76\) 1.55556 + 8.82200i 0.178435 + 1.01195i
\(77\) 2.46210 + 0.215406i 0.280582 + 0.0245478i
\(78\) −10.5302 0.0270832i −1.19231 0.00306657i
\(79\) −0.697324 1.91588i −0.0784551 0.215554i 0.894264 0.447540i \(-0.147700\pi\)
−0.972719 + 0.231986i \(0.925478\pi\)
\(80\) 0 0
\(81\) 8.99952 + 0.0925886i 0.999947 + 0.0102876i
\(82\) 4.44885 4.44885i 0.491293 0.491293i
\(83\) 2.27031 4.86870i 0.249199 0.534409i −0.741423 0.671038i \(-0.765849\pi\)
0.990622 + 0.136629i \(0.0436267\pi\)
\(84\) 5.49677 5.46857i 0.599747 0.596670i
\(85\) 0 0
\(86\) −14.1306 + 2.49161i −1.52375 + 0.268677i
\(87\) 1.09336 + 3.02821i 0.117221 + 0.324658i
\(88\) −0.00312857 0.0357597i −0.000333506 0.00381199i
\(89\) 6.70700 11.6169i 0.710941 1.23139i −0.253563 0.967319i \(-0.581603\pi\)
0.964504 0.264067i \(-0.0850640\pi\)
\(90\) 0 0
\(91\) 3.36809 + 5.83370i 0.353072 + 0.611538i
\(92\) 5.55283 3.88813i 0.578922 0.405366i
\(93\) −10.3343 12.3805i −1.07162 1.28380i
\(94\) −8.66507 + 23.8071i −0.893734 + 2.45551i
\(95\) 0 0
\(96\) 11.3521 + 7.99239i 1.15861 + 0.815720i
\(97\) −9.92914 14.1803i −1.00815 1.43979i −0.894923 0.446221i \(-0.852769\pi\)
−0.113229 0.993569i \(-0.536119\pi\)
\(98\) 4.00635 + 1.07350i 0.404703 + 0.108440i
\(99\) −3.28547 0.596758i −0.330202 0.0599764i
\(100\) 0 0
\(101\) 4.92991 5.87523i 0.490544 0.584608i −0.462812 0.886457i \(-0.653159\pi\)
0.953356 + 0.301849i \(0.0976038\pi\)
\(102\) 16.0133 + 13.5071i 1.58555 + 1.33740i
\(103\) −6.03654 + 8.62107i −0.594798 + 0.849460i −0.997838 0.0657227i \(-0.979065\pi\)
0.403040 + 0.915182i \(0.367954\pi\)
\(104\) 0.0749472 0.0628881i 0.00734917 0.00616669i
\(105\) 0 0
\(106\) 16.8968 6.14994i 1.64116 0.597335i
\(107\) 4.95248 + 4.95248i 0.478774 + 0.478774i 0.904740 0.425965i \(-0.140065\pi\)
−0.425965 + 0.904740i \(0.640065\pi\)
\(108\) −8.07674 + 6.67167i −0.777185 + 0.641982i
\(109\) 9.40170i 0.900520i −0.892898 0.450260i \(-0.851331\pi\)
0.892898 0.450260i \(-0.148669\pi\)
\(110\) 0 0
\(111\) 2.12461 7.84836i 0.201659 0.744934i
\(112\) 0.767815 8.77616i 0.0725517 0.829270i
\(113\) 1.10249 + 0.771969i 0.103713 + 0.0726207i 0.624283 0.781199i \(-0.285391\pi\)
−0.520569 + 0.853819i \(0.674280\pi\)
\(114\) −12.6565 + 8.81372i −1.18539 + 0.825481i
\(115\) 0 0
\(116\) −3.24545 1.87376i −0.301333 0.173974i
\(117\) −3.80384 8.26814i −0.351665 0.764389i
\(118\) 0.724681 2.70455i 0.0667123 0.248974i
\(119\) 2.32708 13.1975i 0.213323 1.20982i
\(120\) 0 0
\(121\) −9.17240 3.33848i −0.833855 0.303498i
\(122\) 2.54349 + 5.45454i 0.230277 + 0.493831i
\(123\) 5.10504 + 1.87297i 0.460306 + 0.168880i
\(124\) 18.4863 + 3.25964i 1.66012 + 0.292724i
\(125\) 0 0
\(126\) 12.5206 + 4.63022i 1.11543 + 0.412493i
\(127\) 3.93996 + 14.7041i 0.349615 + 1.30478i 0.887127 + 0.461525i \(0.152697\pi\)
−0.537513 + 0.843256i \(0.680636\pi\)
\(128\) −0.257007 + 0.0224852i −0.0227165 + 0.00198743i
\(129\) −7.08697 10.1769i −0.623973 0.896022i
\(130\) 0 0
\(131\) 12.8204 + 15.2788i 1.12013 + 1.33491i 0.935995 + 0.352013i \(0.114503\pi\)
0.184131 + 0.982902i \(0.441053\pi\)
\(132\) 3.37108 1.93475i 0.293415 0.168398i
\(133\) 8.94167 + 4.16957i 0.775341 + 0.361547i
\(134\) 17.8581 1.54270
\(135\) 0 0
\(136\) −0.194639 −0.0166901
\(137\) 14.7130 + 6.86076i 1.25701 + 0.586155i 0.932993 0.359896i \(-0.117188\pi\)
0.324020 + 0.946050i \(0.394966\pi\)
\(138\) 10.0922 + 5.86139i 0.859105 + 0.498955i
\(139\) −1.79469 2.13883i −0.152223 0.181413i 0.684544 0.728972i \(-0.260002\pi\)
−0.836767 + 0.547559i \(0.815557\pi\)
\(140\) 0 0
\(141\) −21.8182 + 1.85232i −1.83743 + 0.155993i
\(142\) 15.6457 1.36882i 1.31296 0.114869i
\(143\) 0.873969 + 3.26170i 0.0730850 + 0.272757i
\(144\) −2.12715 + 11.7111i −0.177262 + 0.975921i
\(145\) 0 0
\(146\) −0.341305 0.0601812i −0.0282466 0.00498063i
\(147\) 0.613411 + 3.53192i 0.0505933 + 0.291308i
\(148\) 3.99976 + 8.57752i 0.328778 + 0.705068i
\(149\) 18.9187 + 6.88585i 1.54988 + 0.564111i 0.968390 0.249441i \(-0.0802470\pi\)
0.581492 + 0.813552i \(0.302469\pi\)
\(150\) 0 0
\(151\) 0.0907569 0.514708i 0.00738569 0.0418864i −0.980892 0.194552i \(-0.937675\pi\)
0.988278 + 0.152666i \(0.0487858\pi\)
\(152\) 0.0370874 0.138412i 0.00300819 0.0112267i
\(153\) −4.77611 + 17.4648i −0.386125 + 1.41195i
\(154\) −4.28937 2.47647i −0.345648 0.199560i
\(155\) 0 0
\(156\) 9.58959 + 4.50176i 0.767782 + 0.360430i
\(157\) −0.765462 0.535982i −0.0610905 0.0427760i 0.542632 0.839970i \(-0.317428\pi\)
−0.603723 + 0.797194i \(0.706317\pi\)
\(158\) −0.356107 + 4.07033i −0.0283304 + 0.323818i
\(159\) 10.9608 + 11.0173i 0.869249 + 0.873732i
\(160\) 0 0
\(161\) 7.46581i 0.588388i
\(162\) −16.2670 7.79018i −1.27806 0.612054i
\(163\) −4.24897 4.24897i −0.332805 0.332805i 0.520846 0.853651i \(-0.325617\pi\)
−0.853651 + 0.520846i \(0.825617\pi\)
\(164\) −5.94781 + 2.16483i −0.464446 + 0.169045i
\(165\) 0 0
\(166\) −8.24694 + 6.92001i −0.640087 + 0.537097i
\(167\) −4.66589 + 6.66358i −0.361057 + 0.515643i −0.958049 0.286604i \(-0.907474\pi\)
0.596992 + 0.802247i \(0.296362\pi\)
\(168\) −0.116658 + 0.0421205i −0.00900035 + 0.00324967i
\(169\) 2.44036 2.90831i 0.187720 0.223716i
\(170\) 0 0
\(171\) −11.5096 6.72424i −0.880160 0.514215i
\(172\) 13.9432 + 3.73607i 1.06316 + 0.284873i
\(173\) −9.39399 13.4160i −0.714212 1.02000i −0.998129 0.0611509i \(-0.980523\pi\)
0.283917 0.958849i \(-0.408366\pi\)
\(174\) 0.578861 6.42601i 0.0438833 0.487155i
\(175\) 0 0
\(176\) 1.51042 4.14985i 0.113852 0.312807i
\(177\) 2.38427 0.414092i 0.179213 0.0311251i
\(178\) −22.0204 + 15.4188i −1.65050 + 1.15569i
\(179\) 0.436647 + 0.756295i 0.0326365 + 0.0565281i 0.881882 0.471470i \(-0.156276\pi\)
−0.849246 + 0.527998i \(0.822943\pi\)
\(180\) 0 0
\(181\) −0.367901 + 0.637223i −0.0273459 + 0.0473644i −0.879374 0.476131i \(-0.842039\pi\)
0.852029 + 0.523495i \(0.175372\pi\)
\(182\) −1.17655 13.4481i −0.0872119 0.996836i
\(183\) −3.35379 + 3.97608i −0.247920 + 0.293920i
\(184\) −0.106786 + 0.0188293i −0.00787240 + 0.00138812i
\(185\) 0 0
\(186\) 8.28434 + 31.2387i 0.607437 + 2.29053i
\(187\) 2.83907 6.08840i 0.207613 0.445228i
\(188\) 18.0225 18.0225i 1.31442 1.31442i
\(189\) 0.916863 + 11.5012i 0.0666920 + 0.836590i
\(190\) 0 0
\(191\) 2.16218 + 5.94054i 0.156450 + 0.429842i 0.993010 0.118033i \(-0.0376589\pi\)
−0.836560 + 0.547876i \(0.815437\pi\)
\(192\) −7.00786 12.2104i −0.505749 0.881209i
\(193\) 26.3618 + 2.30636i 1.89756 + 0.166015i 0.975349 0.220667i \(-0.0708235\pi\)
0.922213 + 0.386683i \(0.126379\pi\)
\(194\) 6.02411 + 34.1644i 0.432506 + 2.45286i
\(195\) 0 0
\(196\) −3.19645 2.68214i −0.228318 0.191582i
\(197\) 0.424090 0.113635i 0.0302152 0.00809613i −0.243680 0.969856i \(-0.578355\pi\)
0.273895 + 0.961760i \(0.411688\pi\)
\(198\) 5.46184 + 3.86644i 0.388156 + 0.274776i
\(199\) −2.06085 + 1.18983i −0.146090 + 0.0843452i −0.571263 0.820767i \(-0.693546\pi\)
0.425173 + 0.905112i \(0.360213\pi\)
\(200\) 0 0
\(201\) 6.48691 + 14.0051i 0.457551 + 0.987847i
\(202\) −13.9299 + 6.49563i −0.980106 + 0.457031i
\(203\) −3.74065 + 1.74429i −0.262542 + 0.122425i
\(204\) −8.85767 19.1236i −0.620161 1.33892i
\(205\) 0 0
\(206\) 18.2654 10.5455i 1.27261 0.734742i
\(207\) −0.930814 + 10.0439i −0.0646960 + 0.698101i
\(208\) 11.6263 3.11527i 0.806141 0.216005i
\(209\) 3.78864 + 3.17905i 0.262066 + 0.219899i
\(210\) 0 0
\(211\) 1.83079 + 10.3830i 0.126037 + 0.714792i 0.980686 + 0.195586i \(0.0626610\pi\)
−0.854649 + 0.519206i \(0.826228\pi\)
\(212\) −18.0207 1.57661i −1.23767 0.108282i
\(213\) 6.75676 + 11.7729i 0.462966 + 0.806664i
\(214\) −4.80055 13.1894i −0.328159 0.901610i
\(215\) 0 0
\(216\) 0.162194 0.0421212i 0.0110359 0.00286598i
\(217\) 14.6188 14.6188i 0.992389 0.992389i
\(218\) −7.96263 + 17.0759i −0.539297 + 1.15653i
\(219\) −0.0767813 0.289528i −0.00518840 0.0195645i
\(220\) 0 0
\(221\) 18.0315 3.17944i 1.21293 0.213872i
\(222\) −10.5059 + 12.4552i −0.705110 + 0.835941i
\(223\) −0.713099 8.15076i −0.0477527 0.545815i −0.981960 0.189086i \(-0.939447\pi\)
0.934208 0.356729i \(-0.116108\pi\)
\(224\) −8.89900 + 15.4135i −0.594589 + 1.02986i
\(225\) 0 0
\(226\) −1.34859 2.33583i −0.0897069 0.155377i
\(227\) 3.90472 2.73411i 0.259165 0.181469i −0.436772 0.899572i \(-0.643878\pi\)
0.695937 + 0.718103i \(0.254989\pi\)
\(228\) 15.2870 2.65500i 1.01241 0.175831i
\(229\) 2.44592 6.72010i 0.161631 0.444077i −0.832268 0.554374i \(-0.812958\pi\)
0.993899 + 0.110297i \(0.0351801\pi\)
\(230\) 0 0
\(231\) 0.384061 4.26351i 0.0252693 0.280518i
\(232\) 0.0343835 + 0.0491048i 0.00225739 + 0.00322389i
\(233\) −8.72938 2.33903i −0.571881 0.153235i −0.0387217 0.999250i \(-0.512329\pi\)
−0.533159 + 0.846015i \(0.678995\pi\)
\(234\) −0.0938188 + 18.2387i −0.00613313 + 1.19230i
\(235\) 0 0
\(236\) −1.81062 + 2.15781i −0.117861 + 0.140461i
\(237\) −3.32150 + 1.19926i −0.215755 + 0.0779004i
\(238\) −15.4040 + 21.9992i −0.998495 + 1.42600i
\(239\) −3.14736 + 2.64095i −0.203586 + 0.170829i −0.738880 0.673837i \(-0.764645\pi\)
0.535295 + 0.844665i \(0.320201\pi\)
\(240\) 0 0
\(241\) 5.80277 2.11203i 0.373789 0.136048i −0.148293 0.988944i \(-0.547378\pi\)
0.522082 + 0.852895i \(0.325156\pi\)
\(242\) 13.8320 + 13.8320i 0.889153 + 0.889153i
\(243\) 0.200458 15.5872i 0.0128594 0.999917i
\(244\) 6.05468i 0.387611i
\(245\) 0 0
\(246\) −7.68579 7.72543i −0.490028 0.492555i
\(247\) −1.17484 + 13.4284i −0.0747530 + 0.854431i
\(248\) −0.245968 0.172229i −0.0156190 0.0109365i
\(249\) −8.42269 3.95397i −0.533766 0.250573i
\(250\) 0 0
\(251\) −15.6657 9.04459i −0.988810 0.570890i −0.0838914 0.996475i \(-0.526735\pi\)
−0.904918 + 0.425585i \(0.860068\pi\)
\(252\) −9.44732 9.54502i −0.595125 0.601279i
\(253\) 0.968633 3.61499i 0.0608975 0.227272i
\(254\) 5.29746 30.0434i 0.332392 1.88509i
\(255\) 0 0
\(256\) −14.7902 5.38320i −0.924389 0.336450i
\(257\) 4.90513 + 10.5191i 0.305974 + 0.656163i 0.997828 0.0658743i \(-0.0209837\pi\)
−0.691854 + 0.722037i \(0.743206\pi\)
\(258\) 4.25264 + 24.4860i 0.264758 + 1.52443i
\(259\) 10.2651 + 1.81002i 0.637844 + 0.112469i
\(260\) 0 0
\(261\) 5.24986 1.88027i 0.324958 0.116386i
\(262\) −10.3451 38.6083i −0.639120 2.38523i
\(263\) 2.21755 0.194010i 0.136740 0.0119632i −0.0185804 0.999827i \(-0.505915\pi\)
0.155320 + 0.987864i \(0.450359\pi\)
\(264\) −0.0619513 + 0.00525952i −0.00381284 + 0.000323701i
\(265\) 0 0
\(266\) −12.7090 15.1460i −0.779240 0.928662i
\(267\) −20.0911 11.6686i −1.22955 0.714106i
\(268\) −16.2824 7.59261i −0.994606 0.463792i
\(269\) −2.60637 −0.158913 −0.0794565 0.996838i \(-0.525318\pi\)
−0.0794565 + 0.996838i \(0.525318\pi\)
\(270\) 0 0
\(271\) −22.2817 −1.35352 −0.676759 0.736205i \(-0.736616\pi\)
−0.676759 + 0.736205i \(0.736616\pi\)
\(272\) −21.7021 10.1199i −1.31589 0.613608i
\(273\) 10.1192 5.80769i 0.612444 0.351497i
\(274\) −20.9119 24.9218i −1.26333 1.50558i
\(275\) 0 0
\(276\) −6.70968 9.63507i −0.403875 0.579963i
\(277\) 8.27992 0.724399i 0.497492 0.0435249i 0.164351 0.986402i \(-0.447447\pi\)
0.333141 + 0.942877i \(0.391891\pi\)
\(278\) 1.44817 + 5.40464i 0.0868555 + 0.324149i
\(279\) −21.4896 + 17.8444i −1.28655 + 1.06832i
\(280\) 0 0
\(281\) −6.04432 1.06578i −0.360574 0.0635790i −0.00957353 0.999954i \(-0.503047\pi\)
−0.351001 + 0.936375i \(0.614159\pi\)
\(282\) 41.1964 + 15.1144i 2.45321 + 0.900047i
\(283\) −12.9205 27.7081i −0.768044 1.64708i −0.762413 0.647091i \(-0.775985\pi\)
−0.00563108 0.999984i \(-0.501792\pi\)
\(284\) −14.8472 5.40394i −0.881019 0.320665i
\(285\) 0 0
\(286\) 1.17509 6.66428i 0.0694847 0.394067i
\(287\) −1.80424 + 6.73352i −0.106501 + 0.397467i
\(288\) 13.8937 19.6267i 0.818697 1.15651i
\(289\) −16.8231 9.71284i −0.989596 0.571343i
\(290\) 0 0
\(291\) −24.6051 + 17.1346i −1.44238 + 1.00445i
\(292\) 0.285604 + 0.199982i 0.0167137 + 0.0117031i
\(293\) −0.657015 + 7.50972i −0.0383833 + 0.438723i 0.952551 + 0.304378i \(0.0984485\pi\)
−0.990935 + 0.134345i \(0.957107\pi\)
\(294\) 1.87720 6.93440i 0.109480 0.404423i
\(295\) 0 0
\(296\) 0.151391i 0.00879944i
\(297\) −1.04825 + 5.68792i −0.0608255 + 0.330046i
\(298\) −28.5294 28.5294i −1.65266 1.65266i
\(299\) 9.58520 3.48873i 0.554326 0.201758i
\(300\) 0 0
\(301\) 12.1787 10.2191i 0.701967 0.589020i
\(302\) −0.600762 + 0.857978i −0.0345700 + 0.0493711i
\(303\) −10.1542 8.56499i −0.583344 0.492046i
\(304\) 11.3317 13.5046i 0.649919 0.774543i
\(305\) 0 0
\(306\) 23.4662 27.6756i 1.34147 1.58211i
\(307\) 12.7384 + 3.41325i 0.727021 + 0.194805i 0.603302 0.797513i \(-0.293851\pi\)
0.123719 + 0.992317i \(0.460518\pi\)
\(308\) 2.85801 + 4.08166i 0.162850 + 0.232574i
\(309\) 14.9052 + 10.4940i 0.847927 + 0.596981i
\(310\) 0 0
\(311\) −0.0958399 + 0.263318i −0.00543458 + 0.0149314i −0.942380 0.334544i \(-0.891418\pi\)
0.936946 + 0.349475i \(0.113640\pi\)
\(312\) −0.108591 0.130092i −0.00614777 0.00736501i
\(313\) 7.80530 5.46533i 0.441182 0.308919i −0.331797 0.943351i \(-0.607655\pi\)
0.772979 + 0.634432i \(0.218766\pi\)
\(314\) 0.936334 + 1.62178i 0.0528404 + 0.0915223i
\(315\) 0 0
\(316\) 2.05524 3.55979i 0.115617 0.200254i
\(317\) 0.318142 + 3.63638i 0.0178686 + 0.204239i 0.999881 + 0.0154231i \(0.00490952\pi\)
−0.982012 + 0.188816i \(0.939535\pi\)
\(318\) −10.5767 29.2934i −0.593112 1.64269i
\(319\) −2.03756 + 0.359276i −0.114081 + 0.0201156i
\(320\) 0 0
\(321\) 8.59998 8.55586i 0.480004 0.477542i
\(322\) −6.32305 + 13.5598i −0.352370 + 0.755660i
\(323\) 18.9624 18.9624i 1.05510 1.05510i
\(324\) 11.5197 + 14.0190i 0.639981 + 0.778833i
\(325\) 0 0
\(326\) 4.11862 + 11.3158i 0.228109 + 0.626725i
\(327\) −16.2842 0.0418822i −0.900517 0.00231609i
\(328\) 0.100863 + 0.00882434i 0.00556921 + 0.000487243i
\(329\) −4.87446 27.6444i −0.268738 1.52409i
\(330\) 0 0
\(331\) −6.76703 5.67821i −0.371950 0.312103i 0.437583 0.899178i \(-0.355835\pi\)
−0.809532 + 0.587075i \(0.800279\pi\)
\(332\) 10.4614 2.80313i 0.574146 0.153842i
\(333\) −13.5843 3.71489i −0.744412 0.203575i
\(334\) 14.1181 8.15107i 0.772506 0.446007i
\(335\) 0 0
\(336\) −15.1973 1.36899i −0.829080 0.0746843i
\(337\) −21.7951 + 10.1632i −1.18726 + 0.553627i −0.912972 0.408022i \(-0.866219\pi\)
−0.274284 + 0.961649i \(0.588441\pi\)
\(338\) −6.89547 + 3.21541i −0.375064 + 0.174895i
\(339\) 1.34200 1.90612i 0.0728872 0.103526i
\(340\) 0 0
\(341\) 8.97519 5.18183i 0.486034 0.280612i
\(342\) 15.2094 + 21.9608i 0.822429 + 1.18751i
\(343\) −19.4524 + 5.21226i −1.05033 + 0.281435i
\(344\) −0.176884 0.148423i −0.00953693 0.00800243i
\(345\) 0 0
\(346\) 5.69942 + 32.3230i 0.306403 + 1.73770i
\(347\) 16.7440 + 1.46491i 0.898867 + 0.0786406i 0.527215 0.849732i \(-0.323236\pi\)
0.371651 + 0.928372i \(0.378792\pi\)
\(348\) −3.25990 + 5.61292i −0.174749 + 0.300884i
\(349\) 11.7112 + 32.1764i 0.626888 + 1.72236i 0.689463 + 0.724321i \(0.257846\pi\)
−0.0625752 + 0.998040i \(0.519931\pi\)
\(350\) 0 0
\(351\) −14.3377 + 6.55159i −0.765291 + 0.349698i
\(352\) −6.30874 + 6.30874i −0.336257 + 0.336257i
\(353\) −9.55751 + 20.4961i −0.508695 + 1.09090i 0.469447 + 0.882961i \(0.344453\pi\)
−0.978142 + 0.207939i \(0.933324\pi\)
\(354\) −4.68117 1.26723i −0.248801 0.0673524i
\(355\) 0 0
\(356\) 26.6330 4.69612i 1.41155 0.248894i
\(357\) −22.8484 4.08940i −1.20926 0.216434i
\(358\) −0.152531 1.74344i −0.00806152 0.0921436i
\(359\) −15.4051 + 26.6824i −0.813050 + 1.40824i 0.0976695 + 0.995219i \(0.468861\pi\)
−0.910720 + 0.413025i \(0.864472\pi\)
\(360\) 0 0
\(361\) 0.371443 + 0.643357i 0.0195496 + 0.0338609i
\(362\) 1.20789 0.845774i 0.0634853 0.0444529i
\(363\) −5.82326 + 15.8721i −0.305642 + 0.833071i
\(364\) −4.64489 + 12.7617i −0.243458 + 0.668897i
\(365\) 0 0
\(366\) 9.45884 4.38115i 0.494421 0.229006i
\(367\) 8.33253 + 11.9001i 0.434955 + 0.621179i 0.975464 0.220158i \(-0.0706574\pi\)
−0.540510 + 0.841338i \(0.681769\pi\)
\(368\) −12.8856 3.45270i −0.671711 0.179984i
\(369\) 3.26680 8.83382i 0.170063 0.459870i
\(370\) 0 0
\(371\) −12.8063 + 15.2619i −0.664868 + 0.792358i
\(372\) 5.72820 32.0047i 0.296993 1.65936i
\(373\) 9.77090 13.9543i 0.505918 0.722526i −0.482227 0.876046i \(-0.660172\pi\)
0.988146 + 0.153520i \(0.0490610\pi\)
\(374\) −10.3130 + 8.65361i −0.533271 + 0.447467i
\(375\) 0 0
\(376\) −0.383116 + 0.139443i −0.0197577 + 0.00719121i
\(377\) −3.98745 3.98745i −0.205364 0.205364i
\(378\) 8.07552 21.6657i 0.415360 1.11436i
\(379\) 1.06208i 0.0545552i −0.999628 0.0272776i \(-0.991316\pi\)
0.999628 0.0272776i \(-0.00868381\pi\)
\(380\) 0 0
\(381\) 25.4858 6.75868i 1.30568 0.346258i
\(382\) 1.10417 12.6208i 0.0564945 0.645735i
\(383\) 18.5741 + 13.0057i 0.949090 + 0.664560i 0.942070 0.335415i \(-0.108877\pi\)
0.00701991 + 0.999975i \(0.497765\pi\)
\(384\) 0.0378005 + 0.445248i 0.00192900 + 0.0227215i
\(385\) 0 0
\(386\) −45.9265 26.5156i −2.33759 1.34961i
\(387\) −17.6583 + 12.2296i −0.897624 + 0.621666i
\(388\) 9.03290 33.7112i 0.458576 1.71143i
\(389\) −0.536388 + 3.04201i −0.0271960 + 0.154236i −0.995382 0.0959969i \(-0.969396\pi\)
0.968186 + 0.250233i \(0.0805072\pi\)
\(390\) 0 0
\(391\) −19.0690 6.94056i −0.964363 0.350999i
\(392\) 0.0282083 + 0.0604930i 0.00142474 + 0.00305536i
\(393\) 26.5207 22.1375i 1.33779 1.11669i
\(394\) −0.866498 0.152787i −0.0436535 0.00769729i
\(395\) 0 0
\(396\) −3.33606 5.84748i −0.167643 0.293847i
\(397\) 3.92165 + 14.6358i 0.196822 + 0.734549i 0.991788 + 0.127895i \(0.0408220\pi\)
−0.794966 + 0.606654i \(0.792511\pi\)
\(398\) 4.75076 0.415637i 0.238134 0.0208340i
\(399\) 7.26171 15.4688i 0.363540 0.774408i
\(400\) 0 0
\(401\) 15.1491 + 18.0540i 0.756509 + 0.901573i 0.997622 0.0689246i \(-0.0219568\pi\)
−0.241113 + 0.970497i \(0.577512\pi\)
\(402\) 0.0795531 30.9310i 0.00396775 1.54270i
\(403\) 25.6001 + 11.9375i 1.27523 + 0.594649i
\(404\) 15.4626 0.769292
\(405\) 0 0
\(406\) 8.27129 0.410497
\(407\) 4.73560 + 2.20825i 0.234735 + 0.109459i
\(408\) −0.000867066 0.337123i −4.29261e−5 0.0166901i
\(409\) −9.99118 11.9070i −0.494032 0.588764i 0.460206 0.887812i \(-0.347775\pi\)
−0.954238 + 0.299048i \(0.903331\pi\)
\(410\) 0 0
\(411\) 11.9487 25.4529i 0.589386 1.25550i
\(412\) −21.1374 + 1.84928i −1.04136 + 0.0911076i
\(413\) 0.802939 + 2.99661i 0.0395100 + 0.147453i
\(414\) 10.1972 17.4540i 0.501163 0.857818i
\(415\) 0 0
\(416\) −23.9476 4.22260i −1.17413 0.207030i
\(417\) −3.71254 + 3.09895i −0.181804 + 0.151756i
\(418\) −4.18870 8.98270i −0.204876 0.439358i
\(419\) 7.24231 + 2.63599i 0.353810 + 0.128776i 0.512810 0.858502i \(-0.328605\pi\)
−0.159000 + 0.987279i \(0.550827\pi\)
\(420\) 0 0
\(421\) −0.219552 + 1.24514i −0.0107003 + 0.0606845i −0.989690 0.143223i \(-0.954253\pi\)
0.978990 + 0.203908i \(0.0653643\pi\)
\(422\) 5.46849 20.4087i 0.266202 0.993479i
\(423\) 3.11110 + 37.7984i 0.151267 + 1.83782i
\(424\) 0.250595 + 0.144681i 0.0121700 + 0.00702635i
\(425\) 0 0
\(426\) −2.30116 27.1051i −0.111492 1.31325i
\(427\) −5.46239 3.82480i −0.264343 0.185095i
\(428\) −1.23068 + 14.0667i −0.0594871 + 0.679940i
\(429\) 5.65330 1.49922i 0.272944 0.0723832i
\(430\) 0 0
\(431\) 31.3833i 1.51168i 0.654755 + 0.755841i \(0.272772\pi\)
−0.654755 + 0.755841i \(0.727228\pi\)
\(432\) 20.2746 + 3.73648i 0.975462 + 0.179772i
\(433\) 24.8304 + 24.8304i 1.19327 + 1.19327i 0.976143 + 0.217127i \(0.0696687\pi\)
0.217127 + 0.976143i \(0.430331\pi\)
\(434\) −38.9327 + 14.1703i −1.86883 + 0.680198i
\(435\) 0 0
\(436\) 14.5201 12.1838i 0.695389 0.583500i
\(437\) 8.56911 12.2380i 0.409916 0.585421i
\(438\) −0.105757 + 0.590887i −0.00505326 + 0.0282337i
\(439\) −13.0944 + 15.6053i −0.624962 + 0.744800i −0.981915 0.189322i \(-0.939371\pi\)
0.356953 + 0.934122i \(0.383815\pi\)
\(440\) 0 0
\(441\) 6.12018 1.04672i 0.291437 0.0498439i
\(442\) −35.4426 9.49681i −1.68583 0.451717i
\(443\) −1.58059 2.25731i −0.0750960 0.107248i 0.779847 0.625970i \(-0.215297\pi\)
−0.854943 + 0.518722i \(0.826408\pi\)
\(444\) 14.8745 6.88956i 0.705911 0.326964i
\(445\) 0 0
\(446\) −5.60799 + 15.4078i −0.265546 + 0.729582i
\(447\) 12.0109 32.7374i 0.568095 1.54843i
\(448\) 14.7842 10.3520i 0.698487 0.489086i
\(449\) −14.4725 25.0672i −0.683001 1.18299i −0.974060 0.226288i \(-0.927341\pi\)
0.291059 0.956705i \(-0.405992\pi\)
\(450\) 0 0
\(451\) −1.74725 + 3.02633i −0.0822748 + 0.142504i
\(452\) 0.236491 + 2.70311i 0.0111236 + 0.127143i
\(453\) −0.891093 0.159488i −0.0418672 0.00749340i
\(454\) −9.40759 + 1.65881i −0.441520 + 0.0778519i
\(455\) 0 0
\(456\) −0.239571 0.0648537i −0.0112189 0.00303705i
\(457\) −10.0414 + 21.5339i −0.469718 + 1.00731i 0.518616 + 0.855007i \(0.326447\pi\)
−0.988333 + 0.152305i \(0.951330\pi\)
\(458\) −10.1339 + 10.1339i −0.473527 + 0.473527i
\(459\) 30.2286 + 8.35023i 1.41095 + 0.389755i
\(460\) 0 0
\(461\) −3.22783 8.86840i −0.150335 0.413043i 0.841550 0.540179i \(-0.181644\pi\)
−0.991885 + 0.127137i \(0.959421\pi\)
\(462\) −4.30847 + 7.41836i −0.200448 + 0.345133i
\(463\) −18.4116 1.61081i −0.855659 0.0748605i −0.349121 0.937078i \(-0.613520\pi\)
−0.506538 + 0.862217i \(0.669075\pi\)
\(464\) 1.28064 + 7.26288i 0.0594523 + 0.337171i
\(465\) 0 0
\(466\) 13.8738 + 11.6415i 0.642691 + 0.539282i
\(467\) 12.3653 3.31326i 0.572196 0.153320i 0.0388925 0.999243i \(-0.487617\pi\)
0.533304 + 0.845924i \(0.320950\pi\)
\(468\) 7.83998 16.5896i 0.362403 0.766852i
\(469\) −17.1356 + 9.89327i −0.791250 + 0.456829i
\(470\) 0 0
\(471\) −0.931755 + 1.32343i −0.0429330 + 0.0609803i
\(472\) 0.0408366 0.0190424i 0.00187966 0.000876499i
\(473\) 7.22284 3.36807i 0.332107 0.154864i
\(474\) 7.04840 + 0.634926i 0.323744 + 0.0291631i
\(475\) 0 0
\(476\) 23.3982 13.5090i 1.07245 0.619182i
\(477\) 19.1314 18.9355i 0.875965 0.866999i
\(478\) 7.95312 2.13103i 0.363767 0.0974712i
\(479\) −6.23949 5.23555i −0.285090 0.239219i 0.489016 0.872275i \(-0.337356\pi\)
−0.774106 + 0.633056i \(0.781800\pi\)
\(480\) 0 0
\(481\) 2.47299 + 14.0250i 0.112758 + 0.639485i
\(482\) −12.3281 1.07857i −0.561529 0.0491274i
\(483\) −12.9311 0.0332583i −0.588386 0.00151330i
\(484\) −6.73069 18.4924i −0.305940 0.840564i
\(485\) 0 0
\(486\) −13.5654 + 28.1405i −0.615339 + 1.27648i
\(487\) −11.3243 + 11.3243i −0.513154 + 0.513154i −0.915492 0.402337i \(-0.868198\pi\)
0.402337 + 0.915492i \(0.368198\pi\)
\(488\) −0.0409312 + 0.0877772i −0.00185287 + 0.00397349i
\(489\) −7.37833 + 7.34047i −0.333659 + 0.331948i
\(490\) 0 0
\(491\) 3.22425 0.568523i 0.145508 0.0256571i −0.100419 0.994945i \(-0.532018\pi\)
0.245928 + 0.969288i \(0.420907\pi\)
\(492\) 3.72308 + 10.3115i 0.167849 + 0.464879i
\(493\) 0.977764 + 11.1759i 0.0440363 + 0.503337i
\(494\) 13.5068 23.3945i 0.607701 1.05257i
\(495\) 0 0
\(496\) −18.4707 31.9921i −0.829357 1.43649i
\(497\) −14.2544 + 9.98107i −0.639399 + 0.447712i
\(498\) 11.9490 + 14.3149i 0.535449 + 0.641466i
\(499\) −10.4633 + 28.7478i −0.468404 + 1.28693i 0.450616 + 0.892718i \(0.351204\pi\)
−0.919020 + 0.394211i \(0.871018\pi\)
\(500\) 0 0
\(501\) 11.5208 + 8.11121i 0.514713 + 0.362382i
\(502\) 20.7928 + 29.6951i 0.928026 + 1.32536i
\(503\) −12.3296 3.30370i −0.549749 0.147305i −0.0267563 0.999642i \(-0.508518\pi\)
−0.522993 + 0.852337i \(0.675184\pi\)
\(504\) 0.0724350 + 0.202244i 0.00322651 + 0.00900868i
\(505\) 0 0
\(506\) −4.82095 + 5.74538i −0.214317 + 0.255413i
\(507\) −5.02645 4.23977i −0.223232 0.188295i
\(508\) −17.6034 + 25.1403i −0.781026 + 1.11542i
\(509\) −25.3418 + 21.2643i −1.12326 + 0.942525i −0.998764 0.0496958i \(-0.984175\pi\)
−0.124493 + 0.992221i \(0.539730\pi\)
\(510\) 0 0
\(511\) 0.360838 0.131334i 0.0159625 0.00580988i
\(512\) 22.6685 + 22.6685i 1.00181 + 1.00181i
\(513\) −11.6980 + 19.9052i −0.516477 + 0.878835i
\(514\) 23.2597i 1.02594i
\(515\) 0 0
\(516\) 6.53316 24.1336i 0.287606 1.06242i
\(517\) 1.22642 14.0180i 0.0539378 0.616512i
\(518\) −17.1112 11.9814i −0.751821 0.526431i
\(519\) −23.2790 + 16.2110i −1.02183 + 0.711586i
\(520\) 0 0
\(521\) 25.0460 + 14.4603i 1.09728 + 0.633518i 0.935507 0.353309i \(-0.114944\pi\)
0.161778 + 0.986827i \(0.448277\pi\)
\(522\) −11.1276 1.03124i −0.487040 0.0451361i
\(523\) −6.53051 + 24.3722i −0.285559 + 1.06572i 0.662871 + 0.748734i \(0.269338\pi\)
−0.948430 + 0.316987i \(0.897329\pi\)
\(524\) −6.98258 + 39.6002i −0.305035 + 1.72994i
\(525\) 0 0
\(526\) −4.19195 1.52575i −0.182778 0.0665257i
\(527\) −23.7488 50.9294i −1.03451 2.21852i
\(528\) −7.18101 2.63461i −0.312513 0.114657i
\(529\) 11.5171 + 2.03078i 0.500745 + 0.0882948i
\(530\) 0 0
\(531\) −0.706605 4.13152i −0.0306640 0.179293i
\(532\) 5.14813 + 19.2131i 0.223200 + 0.832993i
\(533\) −9.48814 + 0.830105i −0.410977 + 0.0359558i
\(534\) 26.6080 + 38.2090i 1.15144 + 1.65346i
\(535\) 0 0
\(536\) 0.184725 + 0.220146i 0.00797889 + 0.00950888i
\(537\) 1.31188 0.752923i 0.0566119 0.0324910i
\(538\) 4.73383 + 2.20742i 0.204090 + 0.0951687i
\(539\) −2.30371 −0.0992278
\(540\) 0 0
\(541\) −5.37883 −0.231254 −0.115627 0.993293i \(-0.536888\pi\)
−0.115627 + 0.993293i \(0.536888\pi\)
\(542\) 40.4693 + 18.8712i 1.73831 + 0.810586i
\(543\) 1.10206 + 0.640060i 0.0472939 + 0.0274676i
\(544\) 31.0960 + 37.0588i 1.33323 + 1.58888i
\(545\) 0 0
\(546\) −23.2979 + 1.97793i −0.997057 + 0.0846478i
\(547\) −18.2031 + 1.59256i −0.778308 + 0.0680931i −0.469384 0.882994i \(-0.655524\pi\)
−0.308923 + 0.951087i \(0.599969\pi\)
\(548\) 8.47092 + 31.6139i 0.361860 + 1.35048i
\(549\) 6.87181 + 5.82663i 0.293282 + 0.248675i
\(550\) 0 0
\(551\) −8.13375 1.43420i −0.346509 0.0610990i
\(552\) 0.0321375 + 0.185043i 0.00136786 + 0.00787594i
\(553\) −1.91324 4.10295i −0.0813591 0.174475i
\(554\) −15.6520 5.69686i −0.664990 0.242036i
\(555\) 0 0
\(556\) 0.977467 5.54349i 0.0414538 0.235096i
\(557\) 1.10675 4.13045i 0.0468945 0.175013i −0.938507 0.345261i \(-0.887790\pi\)
0.985401 + 0.170248i \(0.0544570\pi\)
\(558\) 54.1438 14.2097i 2.29209 0.601544i
\(559\) 18.8111 + 10.8606i 0.795626 + 0.459355i
\(560\) 0 0
\(561\) −10.5327 4.94452i −0.444693 0.208758i
\(562\) 10.0754 + 7.05488i 0.425005 + 0.297592i
\(563\) −2.00004 + 22.8606i −0.0842918 + 0.963459i 0.829829 + 0.558018i \(0.188438\pi\)
−0.914121 + 0.405442i \(0.867118\pi\)
\(564\) −31.1354 31.2960i −1.31104 1.31780i
\(565\) 0 0
\(566\) 61.2679i 2.57528i
\(567\) 19.9247 1.53681i 0.836759 0.0645401i
\(568\) 0.178714 + 0.178714i 0.00749867 + 0.00749867i
\(569\) 4.11183 1.49658i 0.172377 0.0627400i −0.254390 0.967102i \(-0.581875\pi\)
0.426767 + 0.904362i \(0.359652\pi\)
\(570\) 0 0
\(571\) 16.1524 13.5535i 0.675958 0.567196i −0.238864 0.971053i \(-0.576775\pi\)
0.914822 + 0.403857i \(0.132331\pi\)
\(572\) −3.90483 + 5.57667i −0.163269 + 0.233172i
\(573\) 10.2989 3.71853i 0.430243 0.155344i
\(574\) 8.97982 10.7017i 0.374811 0.446682i
\(575\) 0 0
\(576\) −21.1802 + 12.0835i −0.882507 + 0.503481i
\(577\) −11.7007 3.13518i −0.487105 0.130519i 0.00690397 0.999976i \(-0.497802\pi\)
−0.494009 + 0.869457i \(0.664469\pi\)
\(578\) 22.3290 + 31.8891i 0.928764 + 1.32641i
\(579\) 4.11215 45.6495i 0.170895 1.89713i
\(580\) 0 0
\(581\) 4.07968 11.2088i 0.169254 0.465021i
\(582\) 59.2011 10.2818i 2.45397 0.426196i
\(583\) −8.18099 + 5.72839i −0.338822 + 0.237246i
\(584\) −0.00278859 0.00482997i −0.000115393 0.000199866i
\(585\) 0 0
\(586\) 7.55356 13.0831i 0.312034 0.540460i
\(587\) 1.25428 + 14.3364i 0.0517695 + 0.591728i 0.977130 + 0.212641i \(0.0682064\pi\)
−0.925361 + 0.379087i \(0.876238\pi\)
\(588\) −4.65983 + 5.52445i −0.192168 + 0.227825i
\(589\) 40.7423 7.18397i 1.67876 0.296010i
\(590\) 0 0
\(591\) −0.194931 0.735049i −0.00801839 0.0302359i
\(592\) 7.87131 16.8801i 0.323509 0.693767i
\(593\) 0.209120 0.209120i 0.00858753 0.00858753i −0.702800 0.711388i \(-0.748067\pi\)
0.711388 + 0.702800i \(0.248067\pi\)
\(594\) 6.72118 9.44293i 0.275773 0.387448i
\(595\) 0 0
\(596\) 13.8825 + 38.1419i 0.568650 + 1.56235i
\(597\) 2.05167 + 3.57479i 0.0839691 + 0.146307i
\(598\) −20.3639 1.78161i −0.832742 0.0728555i
\(599\) 1.58777 + 9.00467i 0.0648743 + 0.367921i 0.999911 + 0.0133687i \(0.00425551\pi\)
−0.935036 + 0.354552i \(0.884633\pi\)
\(600\) 0 0
\(601\) −4.24577 3.56262i −0.173188 0.145322i 0.552073 0.833796i \(-0.313837\pi\)
−0.725262 + 0.688473i \(0.758281\pi\)
\(602\) −30.7745 + 8.24601i −1.25428 + 0.336082i
\(603\) 24.2864 11.1732i 0.989021 0.455009i
\(604\) 0.912537 0.526854i 0.0371306 0.0214374i
\(605\) 0 0
\(606\) 11.1887 + 24.1562i 0.454509 + 0.981278i
\(607\) 33.1493 15.4578i 1.34549 0.627412i 0.389559 0.921002i \(-0.372628\pi\)
0.955932 + 0.293589i \(0.0948498\pi\)
\(608\) −32.2786 + 15.0518i −1.30907 + 0.610429i
\(609\) 3.00453 + 6.48675i 0.121750 + 0.262856i
\(610\) 0 0
\(611\) 33.2143 19.1763i 1.34371 0.775790i
\(612\) −33.1624 + 15.2567i −1.34051 + 0.616716i
\(613\) −25.3096 + 6.78170i −1.02225 + 0.273910i −0.730738 0.682658i \(-0.760824\pi\)
−0.291509 + 0.956568i \(0.594157\pi\)
\(614\) −20.2455 16.9880i −0.817041 0.685579i
\(615\) 0 0
\(616\) −0.0138407 0.0784943i −0.000557656 0.00316263i
\(617\) 11.4338 + 1.00033i 0.460309 + 0.0402718i 0.314952 0.949108i \(-0.398012\pi\)
0.145356 + 0.989379i \(0.453567\pi\)
\(618\) −18.1840 31.6835i −0.731467 1.27450i
\(619\) 9.29363 + 25.5340i 0.373542 + 1.02630i 0.973981 + 0.226629i \(0.0727704\pi\)
−0.600439 + 0.799671i \(0.705007\pi\)
\(620\) 0 0
\(621\) 17.3924 + 1.65695i 0.697932 + 0.0664913i
\(622\) 0.397083 0.397083i 0.0159216 0.0159216i
\(623\) 12.5876 26.9943i 0.504313 1.08150i
\(624\) −5.34399 20.1512i −0.213931 0.806694i
\(625\) 0 0
\(626\) −18.8052 + 3.31587i −0.751608 + 0.132529i
\(627\) 5.52313 6.54793i 0.220572 0.261499i
\(628\) −0.164197 1.87678i −0.00655218 0.0748917i
\(629\) 14.1661 24.5363i 0.564838 0.978328i
\(630\) 0 0
\(631\) 7.42122 + 12.8539i 0.295434 + 0.511707i 0.975086 0.221828i \(-0.0712024\pi\)
−0.679652 + 0.733535i \(0.737869\pi\)
\(632\) −0.0538608 + 0.0377137i −0.00214247 + 0.00150017i
\(633\) 17.9919 3.12477i 0.715114 0.124198i
\(634\) 2.50195 6.87405i 0.0993651 0.273003i
\(635\) 0 0
\(636\) −2.81103 + 31.2057i −0.111465 + 1.23738i
\(637\) −3.60140 5.14333i −0.142693 0.203786i
\(638\) 4.00501 + 1.07314i 0.158560 + 0.0424860i
\(639\) 20.4212 11.6506i 0.807852 0.460889i
\(640\) 0 0
\(641\) −2.24280 + 2.67286i −0.0885851 + 0.105572i −0.808516 0.588474i \(-0.799729\pi\)
0.719931 + 0.694046i \(0.244173\pi\)
\(642\) −22.8660 + 8.25602i −0.902451 + 0.325839i
\(643\) 1.30898 1.86941i 0.0516210 0.0737225i −0.792512 0.609857i \(-0.791227\pi\)
0.844133 + 0.536134i \(0.180116\pi\)
\(644\) 11.5303 9.67508i 0.454358 0.381252i
\(645\) 0 0
\(646\) −50.5006 + 18.3807i −1.98692 + 0.723180i
\(647\) 8.56365 + 8.56365i 0.336672 + 0.336672i 0.855113 0.518441i \(-0.173488\pi\)
−0.518441 + 0.855113i \(0.673488\pi\)
\(648\) −0.0722333 0.281115i −0.00283759 0.0110432i
\(649\) 1.55515i 0.0610450i
\(650\) 0 0
\(651\) −25.2553 25.3855i −0.989833 0.994938i
\(652\) 1.05586 12.0685i 0.0413505 0.472638i
\(653\) 20.3999 + 14.2842i 0.798311 + 0.558984i 0.900029 0.435830i \(-0.143545\pi\)
−0.101718 + 0.994813i \(0.532434\pi\)
\(654\) 29.5408 + 13.8677i 1.15514 + 0.542270i
\(655\) 0 0
\(656\) 10.7873 + 6.22808i 0.421175 + 0.243166i
\(657\) −0.501818 + 0.131699i −0.0195778 + 0.00513806i
\(658\) −14.5598 + 54.3378i −0.567599 + 2.11831i
\(659\) −5.36362 + 30.4186i −0.208937 + 1.18494i 0.682186 + 0.731179i \(0.261030\pi\)
−0.891123 + 0.453762i \(0.850082\pi\)
\(660\) 0 0
\(661\) 33.9585 + 12.3599i 1.32083 + 0.480744i 0.903726 0.428112i \(-0.140821\pi\)
0.417109 + 0.908857i \(0.363043\pi\)
\(662\) 7.48160 + 16.0443i 0.290780 + 0.623581i
\(663\) −5.42660 31.2455i −0.210752 1.21347i
\(664\) −0.170614 0.0300838i −0.00662109 0.00116748i
\(665\) 0 0
\(666\) 21.5262 + 18.2522i 0.834125 + 0.707257i
\(667\) 1.61759 + 6.03694i 0.0626335 + 0.233751i
\(668\) −16.3379 + 1.42939i −0.632134 + 0.0553046i
\(669\) −14.1207 + 1.19881i −0.545936 + 0.0463487i
\(670\) 0 0
\(671\) −2.14868 2.56070i −0.0829489 0.0988547i
\(672\) 26.6573 + 15.4821i 1.02833 + 0.597236i
\(673\) −33.5440 15.6418i −1.29303 0.602949i −0.350339 0.936623i \(-0.613934\pi\)
−0.942689 + 0.333674i \(0.891712\pi\)
\(674\) 48.1932 1.85633
\(675\) 0 0
\(676\) 7.65415 0.294390
\(677\) −41.5346 19.3679i −1.59630 0.744368i −0.597938 0.801542i \(-0.704013\pi\)
−0.998364 + 0.0571738i \(0.981791\pi\)
\(678\) −4.05177 + 2.32541i −0.155607 + 0.0893070i
\(679\) −24.7073 29.4450i −0.948179 1.13000i
\(680\) 0 0
\(681\) −4.71821 6.77532i −0.180802 0.259631i
\(682\) −20.6899 + 1.81014i −0.792259 + 0.0693137i
\(683\) −4.46063 16.6473i −0.170681 0.636992i −0.997247 0.0741513i \(-0.976375\pi\)
0.826566 0.562840i \(-0.190291\pi\)
\(684\) −4.53047 26.4897i −0.173227 1.01286i
\(685\) 0 0
\(686\) 39.7450 + 7.00812i 1.51747 + 0.267571i
\(687\) −11.6286 4.26638i −0.443660 0.162772i
\(688\) −12.0055 25.7458i −0.457705 0.981551i
\(689\) −25.5787 9.30989i −0.974472 0.354679i
\(690\) 0 0
\(691\) −6.05103 + 34.3171i −0.230192 + 1.30548i 0.622314 + 0.782768i \(0.286193\pi\)
−0.852506 + 0.522717i \(0.824918\pi\)
\(692\) 8.54605 31.8943i 0.324872 1.21244i
\(693\) −7.38288 0.684203i −0.280452 0.0259907i
\(694\) −29.1708 16.8418i −1.10731 0.639305i
\(695\) 0 0
\(696\) 0.0852049 0.0593351i 0.00322968 0.00224909i
\(697\) 15.5213 + 10.8682i 0.587913 + 0.411661i
\(698\) 5.98066 68.3592i 0.226371 2.58743i
\(699\) −4.09019 + 15.1093i −0.154705 + 0.571485i
\(700\) 0 0
\(701\) 27.2979i 1.03103i −0.856881 0.515515i \(-0.827601\pi\)
0.856881 0.515515i \(-0.172399\pi\)
\(702\) 31.5898 + 0.243747i 1.19228 + 0.00919964i
\(703\) 14.7491 + 14.7491i 0.556273 + 0.556273i
\(704\) 8.50169 3.09436i 0.320419 0.116623i
\(705\) 0 0
\(706\) 34.7178 29.1317i 1.30662 1.09639i
\(707\) 9.76787 13.9500i 0.367359 0.524642i
\(708\) 3.72936 + 3.14568i 0.140158 + 0.118222i
\(709\) 16.4826 19.6432i 0.619018 0.737717i −0.361883 0.932223i \(-0.617866\pi\)
0.980901 + 0.194506i \(0.0623105\pi\)
\(710\) 0 0
\(711\) 2.06238 + 5.75833i 0.0773453 + 0.215954i
\(712\) −0.417857 0.111964i −0.0156598 0.00419604i
\(713\) −17.9564 25.6444i −0.672473 0.960391i
\(714\) 38.0350 + 26.7785i 1.42343 + 1.00216i
\(715\) 0 0
\(716\) −0.602175 + 1.65446i −0.0225043 + 0.0618302i
\(717\) 4.56022 + 5.46313i 0.170304 + 0.204024i
\(718\) 50.5779 35.4150i 1.88755 1.32168i
\(719\) 0.729141 + 1.26291i 0.0271924 + 0.0470986i 0.879301 0.476266i \(-0.158010\pi\)
−0.852109 + 0.523364i \(0.824677\pi\)
\(720\) 0 0
\(721\) −11.6843 + 20.2379i −0.435148 + 0.753698i
\(722\) −0.129754 1.48309i −0.00482893 0.0551949i
\(723\) −3.63229 10.0601i −0.135086 0.374138i
\(724\) −1.46091 + 0.257598i −0.0542942 + 0.00957354i
\(725\) 0 0
\(726\) 24.0192 23.8960i 0.891437 0.886863i
\(727\) −19.8194 + 42.5029i −0.735062 + 1.57634i 0.0798819 + 0.996804i \(0.474546\pi\)
−0.814944 + 0.579540i \(0.803232\pi\)
\(728\) 0.153611 0.153611i 0.00569322 0.00569322i
\(729\) −26.9968 0.416640i −0.999881 0.0154311i
\(730\) 0 0
\(731\) −14.7796 40.6067i −0.546645 1.50189i
\(732\) −10.4870 0.0269720i −0.387610 0.000996915i
\(733\) 24.4678 + 2.14066i 0.903740 + 0.0790670i 0.529544 0.848283i \(-0.322363\pi\)
0.374196 + 0.927350i \(0.377919\pi\)
\(734\) −5.05543 28.6707i −0.186599 1.05826i
\(735\) 0 0
\(736\) 20.6456 + 17.3237i 0.761006 + 0.638560i
\(737\) −9.58076 + 2.56716i −0.352912 + 0.0945625i
\(738\) −13.4150 + 13.2777i −0.493814 + 0.488760i
\(739\) 18.0486 10.4204i 0.663928 0.383319i −0.129844 0.991534i \(-0.541448\pi\)
0.793772 + 0.608215i \(0.208114\pi\)
\(740\) 0 0
\(741\) 23.2534 + 2.09469i 0.854236 + 0.0769503i
\(742\) 36.1853 16.8735i 1.32840 0.619445i
\(743\) −38.5547 + 17.9783i −1.41443 + 0.659561i −0.971510 0.236998i \(-0.923836\pi\)
−0.442923 + 0.896559i \(0.646059\pi\)
\(744\) −0.299404 + 0.425261i −0.0109767 + 0.0155908i
\(745\) 0 0
\(746\) −29.5649 + 17.0693i −1.08245 + 0.624951i
\(747\) −6.88597 + 14.5709i −0.251945 + 0.533120i
\(748\) 13.0822 3.50537i 0.478334 0.128169i
\(749\) 11.9132 + 9.99638i 0.435300 + 0.365260i
\(750\) 0 0
\(751\) 3.51433 + 19.9308i 0.128240 + 0.727284i 0.979331 + 0.202265i \(0.0648304\pi\)
−0.851091 + 0.525018i \(0.824059\pi\)
\(752\) −49.9673 4.37157i −1.82212 0.159415i
\(753\) −15.7354 + 27.0934i −0.573431 + 0.987338i
\(754\) 3.86512 + 10.6193i 0.140760 + 0.386734i
\(755\) 0 0
\(756\) −16.5745 + 16.3207i −0.602808 + 0.593577i
\(757\) −10.9992 + 10.9992i −0.399771 + 0.399771i −0.878152 0.478381i \(-0.841224\pi\)
0.478381 + 0.878152i \(0.341224\pi\)
\(758\) −0.899510 + 1.92901i −0.0326717 + 0.0700647i
\(759\) −6.25701 1.69382i −0.227115 0.0614818i
\(760\) 0 0
\(761\) −12.7782 + 2.25313i −0.463208 + 0.0816761i −0.400382 0.916348i \(-0.631122\pi\)
−0.0628262 + 0.998024i \(0.520011\pi\)
\(762\) −52.0129 9.30927i −1.88423 0.337239i
\(763\) −1.81945 20.7964i −0.0658685 0.752880i
\(764\) −6.37266 + 11.0378i −0.230555 + 0.399332i
\(765\) 0 0
\(766\) −22.7203 39.3527i −0.820918 1.42187i
\(767\) −3.47208 + 2.43117i −0.125369 + 0.0877846i
\(768\) −9.38983 + 25.5933i −0.338826 + 0.923520i
\(769\) 10.6865 29.3608i 0.385364 1.05878i −0.583700 0.811969i \(-0.698396\pi\)
0.969064 0.246810i \(-0.0793822\pi\)
\(770\) 0 0
\(771\) 18.2414 8.44905i 0.656948 0.304285i
\(772\) 30.6008 + 43.7024i 1.10135 + 1.57288i
\(773\) −35.0964 9.40406i −1.26233 0.338241i −0.435243 0.900313i \(-0.643338\pi\)
−0.827088 + 0.562072i \(0.810004\pi\)
\(774\) 42.4298 7.25668i 1.52511 0.260836i
\(775\) 0 0
\(776\) −0.358850 + 0.427661i −0.0128820 + 0.0153521i
\(777\) 3.18076 17.7716i 0.114109 0.637553i
\(778\) 3.55061 5.07079i 0.127295 0.181797i
\(779\) −10.6861 + 8.96672i −0.382870 + 0.321266i
\(780\) 0 0
\(781\) −8.19706 + 2.98349i −0.293314 + 0.106758i
\(782\) 28.7561 + 28.7561i 1.02832 + 1.02832i
\(783\) −3.23332 9.10137i −0.115549 0.325256i
\(784\) 8.21158i 0.293271i
\(785\) 0 0
\(786\) −66.9174 + 17.7461i −2.38686 + 0.632983i
\(787\) 3.06442 35.0265i 0.109235 1.24856i −0.721707 0.692199i \(-0.756642\pi\)
0.830942 0.556360i \(-0.187802\pi\)
\(788\) 0.725085 + 0.507710i 0.0258301 + 0.0180864i
\(789\) −0.326156 3.84175i −0.0116115 0.136770i
\(790\) 0 0
\(791\) 2.58807 + 1.49422i 0.0920213 + 0.0531285i
\(792\) 0.00883374 + 0.107326i 0.000313893 + 0.00381366i
\(793\) 2.35805 8.80036i 0.0837367 0.312510i
\(794\) 5.27284 29.9037i 0.187126 1.06124i
\(795\) 0 0
\(796\) −4.50830 1.64089i −0.159793 0.0581597i
\(797\) 10.8830 + 23.3386i 0.385495 + 0.826696i 0.999306 + 0.0372435i \(0.0118577\pi\)
−0.613811 + 0.789453i \(0.710364\pi\)
\(798\) −26.2902 + 21.9451i −0.930663 + 0.776849i
\(799\) −75.1405 13.2493i −2.65828 0.468726i
\(800\) 0 0
\(801\) −20.3000 + 34.7466i −0.717266 + 1.22771i
\(802\) −12.2241 45.6210i −0.431648 1.61093i
\(803\) 0.191760 0.0167768i 0.00676705 0.000592040i
\(804\) −13.2233 + 28.1680i −0.466349 + 0.993410i
\(805\) 0 0
\(806\) −36.3860 43.3632i −1.28164 1.52740i
\(807\) −0.0116107 + 4.51434i −0.000408716 + 0.158912i
\(808\) −0.224167 0.104531i −0.00788618 0.00367739i
\(809\) −14.9511 −0.525654 −0.262827 0.964843i \(-0.584655\pi\)
−0.262827 + 0.964843i \(0.584655\pi\)
\(810\) 0 0
\(811\) 14.0980 0.495049 0.247525 0.968882i \(-0.420383\pi\)
0.247525 + 0.968882i \(0.420383\pi\)
\(812\) −7.54150 3.51666i −0.264655 0.123411i
\(813\) −0.0992594 + 38.5929i −0.00348118 + 1.35351i
\(814\) −6.73083 8.02149i −0.235916 0.281153i
\(815\) 0 0
\(816\) −17.6248 + 37.5440i −0.616990 + 1.31430i
\(817\) 31.6926 2.77274i 1.10878 0.0970060i
\(818\) 8.06208 + 30.0881i 0.281884 + 1.05201i
\(819\) −10.0141 17.5528i −0.349921 0.613346i
\(820\) 0 0
\(821\) 6.53467 + 1.15224i 0.228061 + 0.0402134i 0.286511 0.958077i \(-0.407505\pi\)
−0.0584494 + 0.998290i \(0.518616\pi\)
\(822\) −43.2589 + 36.1093i −1.50883 + 1.25946i
\(823\) −9.68030 20.7595i −0.337434 0.723630i 0.662236 0.749295i \(-0.269607\pi\)
−0.999671 + 0.0256651i \(0.991830\pi\)
\(824\) 0.318939 + 0.116084i 0.0111108 + 0.00404399i
\(825\) 0 0
\(826\) 1.07959 6.12265i 0.0375637 0.213034i
\(827\) 6.34894 23.6946i 0.220774 0.823941i −0.763279 0.646069i \(-0.776412\pi\)
0.984054 0.177872i \(-0.0569213\pi\)
\(828\) −16.7183 + 11.5786i −0.581000 + 0.402383i
\(829\) 24.8714 + 14.3595i 0.863821 + 0.498727i 0.865290 0.501272i \(-0.167134\pi\)
−0.00146915 + 0.999999i \(0.500468\pi\)
\(830\) 0 0
\(831\) −1.21781 14.3444i −0.0422453 0.497603i
\(832\) 20.1993 + 14.1437i 0.700284 + 0.490344i
\(833\) −1.08869 + 12.4438i −0.0377208 + 0.431151i
\(834\) 9.36754 2.48422i 0.324371 0.0860215i
\(835\) 0 0
\(836\) 9.97102i 0.344855i
\(837\) 30.8116 + 37.3005i 1.06500 + 1.28929i
\(838\) −10.9214 10.9214i −0.377273 0.377273i
\(839\) 29.6410 10.7884i 1.02332 0.372458i 0.224787 0.974408i \(-0.427831\pi\)
0.798534 + 0.601950i \(0.205609\pi\)
\(840\) 0 0
\(841\) −19.5685 + 16.4199i −0.674775 + 0.566204i
\(842\) 1.45332 2.07555i 0.0500846 0.0715282i
\(843\) −1.87290 + 10.4643i −0.0645061 + 0.360409i
\(844\) −13.6630 + 16.2830i −0.470301 + 0.560483i
\(845\) 0 0
\(846\) 26.3623 71.2866i 0.906353 2.45088i
\(847\) −20.9353 5.60959i −0.719344 0.192748i
\(848\) 20.4189 + 29.1612i 0.701187 + 1.00140i
\(849\) −48.0492 + 22.2554i −1.64905 + 0.763805i
\(850\) 0 0
\(851\) 5.39842 14.8320i 0.185055 0.508435i
\(852\) −9.42601 + 25.6919i −0.322930 + 0.880191i
\(853\) 18.5060 12.9580i 0.633632 0.443674i −0.212125 0.977243i \(-0.568038\pi\)
0.845757 + 0.533569i \(0.179149\pi\)
\(854\) 6.68174 + 11.5731i 0.228645 + 0.396024i
\(855\) 0 0
\(856\) 0.112936 0.195611i 0.00386008 0.00668586i
\(857\) −0.720788 8.23864i −0.0246216 0.281427i −0.998518 0.0544314i \(-0.982665\pi\)
0.973896 0.226995i \(-0.0728902\pi\)
\(858\) −11.5376 2.06500i −0.393887 0.0704980i
\(859\) 11.2675 1.98676i 0.384442 0.0677875i 0.0219126 0.999760i \(-0.493024\pi\)
0.362529 + 0.931972i \(0.381913\pi\)
\(860\) 0 0
\(861\) 11.6547 + 3.15502i 0.397192 + 0.107523i
\(862\) 26.5797 57.0002i 0.905306 1.94144i
\(863\) 9.18912 9.18912i 0.312801 0.312801i −0.533193 0.845994i \(-0.679008\pi\)
0.845994 + 0.533193i \(0.179008\pi\)
\(864\) −33.9324 24.1520i −1.15440 0.821669i
\(865\) 0 0
\(866\) −24.0686 66.1280i −0.817886 2.24712i
\(867\) −16.8980 + 29.0951i −0.573887 + 0.988123i
\(868\) 41.5223 + 3.63273i 1.40936 + 0.123303i
\(869\) −0.394074 2.23490i −0.0133680 0.0758139i
\(870\) 0 0
\(871\) −20.7091 17.3770i −0.701703 0.588798i
\(872\) −0.292870 + 0.0784744i −0.00991784 + 0.00265748i
\(873\) 29.5682 + 42.6935i 1.00073 + 1.44496i
\(874\) −25.9285 + 14.9698i −0.877044 + 0.506362i
\(875\) 0 0
\(876\) 0.347650 0.493788i 0.0117460 0.0166835i
\(877\) −48.3756 + 22.5579i −1.63353 + 0.761726i −0.999929 0.0119368i \(-0.996200\pi\)
−0.633598 + 0.773663i \(0.718423\pi\)
\(878\) 36.9995 17.2531i 1.24867 0.582265i
\(879\) 13.0042 + 1.17143i 0.438622 + 0.0395115i
\(880\) 0 0
\(881\) −34.2794 + 19.7912i −1.15490 + 0.666782i −0.950077 0.312016i \(-0.898996\pi\)
−0.204824 + 0.978799i \(0.565662\pi\)
\(882\) −12.0023 3.28228i −0.404140 0.110520i
\(883\) −48.7707 + 13.0681i −1.64127 + 0.439776i −0.957149 0.289597i \(-0.906479\pi\)
−0.684116 + 0.729373i \(0.739812\pi\)
\(884\) 28.2777 + 23.7278i 0.951082 + 0.798053i
\(885\) 0 0
\(886\) 0.958958 + 5.43852i 0.0322168 + 0.182711i
\(887\) 11.8379 + 1.03569i 0.397479 + 0.0347749i 0.284143 0.958782i \(-0.408291\pi\)
0.113336 + 0.993557i \(0.463846\pi\)
\(888\) −0.262216 0.000674409i −0.00879941 2.26317e-5i
\(889\) 11.5607 + 31.7628i 0.387734 + 1.06529i
\(890\) 0 0
\(891\) 9.84706 + 1.84095i 0.329889 + 0.0616741i
\(892\) 11.6641 11.6641i 0.390541 0.390541i
\(893\) 23.7395 50.9096i 0.794413 1.70362i
\(894\) −49.5413 + 49.2871i −1.65691 + 1.64841i
\(895\) 0 0
\(896\) −0.564144 + 0.0994738i −0.0188467 + 0.00332319i
\(897\) −5.99993 16.6175i −0.200332 0.554843i
\(898\) 5.05560 + 57.7858i 0.168708 + 1.92834i
\(899\) −8.65353 + 14.9884i −0.288611 + 0.499890i
\(900\) 0 0
\(901\) 27.0764 + 46.8977i 0.902046 + 1.56239i
\(902\) 5.73656 4.01678i 0.191006 0.133744i
\(903\) −17.6457 21.1395i −0.587213 0.703479i
\(904\) 0.0148452 0.0407868i 0.000493743 0.00135655i
\(905\) 0 0
\(906\) 1.48338 + 1.04437i 0.0492820 + 0.0346969i
\(907\) −0.725418 1.03600i −0.0240871 0.0343999i 0.806928 0.590650i \(-0.201129\pi\)
−0.831015 + 0.556250i \(0.812240\pi\)
\(908\) 9.28280 + 2.48732i 0.308061 + 0.0825446i
\(909\) −14.8802 + 17.5494i −0.493545 + 0.582077i
\(910\) 0 0
\(911\) 0.894909 1.06651i 0.0296497 0.0353351i −0.751016 0.660284i \(-0.770436\pi\)
0.780666 + 0.624949i \(0.214880\pi\)
\(912\) −23.3401 19.6872i −0.772869 0.651909i
\(913\) 3.42967 4.89808i 0.113506 0.162103i
\(914\) 36.4756 30.6067i 1.20651 1.01238i
\(915\) 0 0
\(916\) 13.5484 4.93120i 0.447650 0.162931i
\(917\) 31.3154 + 31.3154i 1.03412 + 1.03412i
\(918\) −47.8308 40.7678i −1.57865 1.34554i
\(919\) 3.33325i 0.109954i −0.998488 0.0549769i \(-0.982491\pi\)
0.998488 0.0549769i \(-0.0175085\pi\)
\(920\) 0 0
\(921\) 5.96866 22.0483i 0.196674 0.726518i
\(922\) −1.64838 + 18.8411i −0.0542865 + 0.620498i
\(923\) −19.4755 13.6369i −0.641044 0.448864i
\(924\) 7.08234 4.93201i 0.232992 0.162251i
\(925\) 0 0
\(926\) 32.0759 + 18.5191i 1.05408 + 0.608574i
\(927\) 18.2424 25.7697i 0.599160 0.846389i
\(928\) 3.85624 14.3917i 0.126587 0.472430i
\(929\) −5.78861 + 32.8289i −0.189918 + 1.07708i 0.729554 + 0.683924i \(0.239728\pi\)
−0.919472 + 0.393156i \(0.871383\pi\)
\(930\) 0 0
\(931\) −8.64161 3.14529i −0.283217 0.103083i
\(932\) −7.70014 16.5130i −0.252226 0.540901i
\(933\) 0.455652 + 0.167172i 0.0149174 + 0.00547297i
\(934\) −25.2646 4.45484i −0.826684 0.145767i
\(935\) 0 0
\(936\) −0.225809 + 0.187505i −0.00738080 + 0.00612880i
\(937\) −11.0023 41.0610i −0.359428 1.34140i −0.874820 0.484449i \(-0.839020\pi\)
0.515392 0.856955i \(-0.327647\pi\)
\(938\) 39.5017 3.45595i 1.28978 0.112841i
\(939\) −9.43143 13.5435i −0.307783 0.441975i
\(940\) 0 0
\(941\) −1.20131 1.43167i −0.0391617 0.0466711i 0.746108 0.665825i \(-0.231920\pi\)
−0.785270 + 0.619154i \(0.787476\pi\)
\(942\) 2.81316 1.61455i 0.0916579 0.0526048i
\(943\) 9.56700 + 4.46117i 0.311544 + 0.145276i
\(944\) 5.54334 0.180420
\(945\) 0 0
\(946\) −15.9711 −0.519265
\(947\) −28.3806 13.2341i −0.922246 0.430050i −0.0972956 0.995256i \(-0.531019\pi\)
−0.824950 + 0.565205i \(0.808797\pi\)
\(948\) −6.15656 3.57563i −0.199956 0.116131i
\(949\) 0.337235 + 0.401901i 0.0109471 + 0.0130462i
\(950\) 0 0
\(951\) 6.29979 0.534837i 0.204285 0.0173433i
\(952\) −0.430537 + 0.0376671i −0.0139538 + 0.00122080i
\(953\) −3.16696 11.8193i −0.102588 0.382864i 0.895472 0.445117i \(-0.146838\pi\)
−0.998060 + 0.0622534i \(0.980171\pi\)
\(954\) −50.7847 + 18.1888i −1.64421 + 0.588885i
\(955\) 0 0
\(956\) −8.15744 1.43838i −0.263830 0.0465204i
\(957\) 0.613206 + 3.53074i 0.0198221 + 0.114133i
\(958\) 6.89835 + 14.7936i 0.222876 + 0.477958i
\(959\) 33.8725 + 12.3286i 1.09380 + 0.398111i
\(960\) 0 0
\(961\) 9.67079 54.8458i 0.311961 1.76922i
\(962\) 7.38668 27.5675i 0.238156 0.888811i
\(963\) −14.7808 14.9337i −0.476305 0.481231i
\(964\) 10.7818 + 6.22486i 0.347258 + 0.200489i
\(965\) 0 0
\(966\) 23.4581 + 11.0122i 0.754751 + 0.354312i
\(967\) −8.91754 6.24413i −0.286769 0.200798i 0.421337 0.906904i \(-0.361561\pi\)
−0.708106 + 0.706107i \(0.750450\pi\)
\(968\) −0.0274359 + 0.313593i −0.000881822 + 0.0100793i
\(969\) −32.7593 32.9283i −1.05238 1.05781i
\(970\) 0 0
\(971\) 17.9235i 0.575194i −0.957752 0.287597i \(-0.907144\pi\)
0.957752 0.287597i \(-0.0928563\pi\)
\(972\) 24.3329 19.8901i 0.780477 0.637976i
\(973\) −4.38373 4.38373i −0.140536 0.140536i
\(974\) 30.1589 10.9769i 0.966353 0.351724i
\(975\) 0 0
\(976\) −9.12762 + 7.65898i −0.292168 + 0.245158i
\(977\) −2.92108 + 4.17173i −0.0934536 + 0.133466i −0.863156 0.504937i \(-0.831516\pi\)
0.769702 + 0.638403i \(0.220405\pi\)
\(978\) 19.6178 7.08323i 0.627310 0.226497i
\(979\) 9.59732 11.4376i 0.306732 0.365549i
\(980\) 0 0
\(981\) −0.145084 + 28.2047i −0.00463216 + 0.900508i
\(982\) −6.33758 1.69815i −0.202240 0.0541901i
\(983\) 31.6427 + 45.1905i 1.00925 + 1.44135i 0.894027 + 0.448014i \(0.147868\pi\)
0.115220 + 0.993340i \(0.463243\pi\)
\(984\) 0.0157335 0.174659i 0.000501565 0.00556794i
\(985\) 0 0
\(986\) 7.68938 21.1264i 0.244880 0.672802i
\(987\) −47.9031 + 8.31963i −1.52477 + 0.264817i
\(988\) −22.2616 + 15.5877i −0.708236 + 0.495912i
\(989\) −12.0370 20.8487i −0.382754 0.662949i
\(990\) 0 0
\(991\) 4.20341 7.28053i 0.133526 0.231274i −0.791508 0.611159i \(-0.790703\pi\)
0.925033 + 0.379886i \(0.124037\pi\)
\(992\) 6.50458 + 74.3476i 0.206520 + 2.36054i
\(993\) −9.86507 + 11.6955i −0.313058 + 0.371146i
\(994\) 34.3431 6.05561i 1.08930 0.192072i
\(995\) 0 0
\(996\) −4.80855 18.1322i −0.152365 0.574540i
\(997\) 15.9928 34.2966i 0.506496 1.08618i −0.472317 0.881429i \(-0.656582\pi\)
0.978813 0.204756i \(-0.0656400\pi\)
\(998\) 43.3517 43.3517i 1.37227 1.37227i
\(999\) −6.49486 + 23.5120i −0.205488 + 0.743886i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 675.2.ba.b.668.3 192
5.2 odd 4 inner 675.2.ba.b.182.14 192
5.3 odd 4 135.2.q.a.47.3 yes 192
5.4 even 2 135.2.q.a.128.14 yes 192
15.8 even 4 405.2.r.a.62.14 192
15.14 odd 2 405.2.r.a.143.3 192
27.23 odd 18 inner 675.2.ba.b.293.14 192
135.4 even 18 405.2.r.a.98.14 192
135.23 even 36 135.2.q.a.77.14 yes 192
135.58 odd 36 405.2.r.a.17.3 192
135.77 even 36 inner 675.2.ba.b.482.3 192
135.104 odd 18 135.2.q.a.23.3 192
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
135.2.q.a.23.3 192 135.104 odd 18
135.2.q.a.47.3 yes 192 5.3 odd 4
135.2.q.a.77.14 yes 192 135.23 even 36
135.2.q.a.128.14 yes 192 5.4 even 2
405.2.r.a.17.3 192 135.58 odd 36
405.2.r.a.62.14 192 15.8 even 4
405.2.r.a.98.14 192 135.4 even 18
405.2.r.a.143.3 192 15.14 odd 2
675.2.ba.b.182.14 192 5.2 odd 4 inner
675.2.ba.b.293.14 192 27.23 odd 18 inner
675.2.ba.b.482.3 192 135.77 even 36 inner
675.2.ba.b.668.3 192 1.1 even 1 trivial