Properties

Label 675.2.ba.b.632.8
Level $675$
Weight $2$
Character 675.632
Analytic conductor $5.390$
Analytic rank $0$
Dimension $192$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [675,2,Mod(32,675)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("675.32"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(675, base_ring=CyclotomicField(36)) chi = DirichletCharacter(H, H._module([10, 9])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 675 = 3^{3} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 675.ba (of order \(36\), degree \(12\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [192] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.38990213644\)
Analytic rank: \(0\)
Dimension: \(192\)
Relative dimension: \(16\) over \(\Q(\zeta_{36})\)
Twist minimal: no (minimal twist has level 135)
Sato-Tate group: $\mathrm{SU}(2)[C_{36}]$

Embedding invariants

Embedding label 632.8
Character \(\chi\) \(=\) 675.632
Dual form 675.2.ba.b.518.8

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.0152086 - 0.00133058i) q^{2} +(-0.259886 - 1.71244i) q^{3} +(-1.96939 + 0.347256i) q^{4} +(-0.00623106 - 0.0256981i) q^{6} +(-0.211408 + 0.148030i) q^{7} +(-0.0589827 + 0.0158044i) q^{8} +(-2.86492 + 0.890079i) q^{9} +(1.49616 + 4.11066i) q^{11} +(1.10647 + 3.28221i) q^{12} +(-0.187451 + 2.14258i) q^{13} +(-0.00301826 + 0.00253263i) q^{14} +(3.75746 - 1.36760i) q^{16} +(-1.70216 - 0.456091i) q^{17} +(-0.0423872 + 0.0173489i) q^{18} +(4.91894 + 2.83995i) q^{19} +(0.308434 + 0.323554i) q^{21} +(0.0282241 + 0.0605267i) q^{22} +(3.32360 - 4.74660i) q^{23} +(0.0423928 + 0.0968971i) q^{24} +0.0328351i q^{26} +(2.26876 + 4.67469i) q^{27} +(0.364940 - 0.364940i) q^{28} +(3.59567 + 3.01712i) q^{29} +(-0.912568 - 5.17543i) q^{31} +(0.166010 - 0.0774120i) q^{32} +(6.65044 - 3.63039i) q^{33} +(-0.0264943 - 0.00467167i) q^{34} +(5.33305 - 2.74777i) q^{36} +(0.837479 - 3.12552i) q^{37} +(0.0785891 + 0.0366467i) q^{38} +(3.71775 - 0.235826i) q^{39} +(0.241984 + 0.288386i) q^{41} +(0.00512138 + 0.00451041i) q^{42} +(-3.84888 + 8.25395i) q^{43} +(-4.37396 - 7.57592i) q^{44} +(0.0442317 - 0.0766116i) q^{46} +(2.29910 + 3.28345i) q^{47} +(-3.31845 - 6.07901i) q^{48} +(-2.37136 + 6.51526i) q^{49} +(-0.338664 + 3.03338i) q^{51} +(-0.374859 - 4.28465i) q^{52} +(8.15900 + 8.15900i) q^{53} +(0.0407248 + 0.0680769i) q^{54} +(0.0101299 - 0.0120724i) q^{56} +(3.58489 - 9.16146i) q^{57} +(0.0586997 + 0.0411020i) q^{58} +(10.6146 + 3.86341i) q^{59} +(-2.10712 + 11.9501i) q^{61} +(-0.0207652 - 0.0774969i) q^{62} +(0.473909 - 0.612263i) q^{63} +(-6.92336 + 3.99720i) q^{64} +(0.0963135 - 0.0640622i) q^{66} +(-1.82940 - 0.160052i) q^{67} +(3.51058 + 0.307136i) q^{68} +(-8.99203 - 4.45790i) q^{69} +(4.44360 - 2.56551i) q^{71} +(0.154913 - 0.0977775i) q^{72} +(-3.71651 - 13.8702i) q^{73} +(0.00857816 - 0.0486492i) q^{74} +(-10.6735 - 3.88483i) q^{76} +(-0.924799 - 0.647552i) q^{77} +(0.0562282 - 0.00853337i) q^{78} +(1.98949 - 2.37099i) q^{79} +(7.41552 - 5.10001i) q^{81} +(0.00406398 + 0.00406398i) q^{82} +(0.432904 + 4.94812i) q^{83} +(-0.719782 - 0.530096i) q^{84} +(-0.0475536 + 0.130653i) q^{86} +(4.23219 - 6.94148i) q^{87} +(-0.153214 - 0.218812i) q^{88} +(-1.44584 + 2.50426i) q^{89} +(-0.277536 - 0.480707i) q^{91} +(-4.89717 + 10.5020i) q^{92} +(-8.62546 + 2.90774i) q^{93} +(0.0393351 + 0.0468777i) q^{94} +(-0.175707 - 0.264165i) q^{96} +(4.27105 + 1.99162i) q^{97} +(-0.0273961 + 0.102243i) q^{98} +(-7.94518 - 10.4450i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 192 q + 12 q^{2} + 12 q^{3} - 36 q^{6} + 12 q^{7} + 18 q^{8} - 36 q^{11} + 12 q^{12} + 12 q^{13} - 24 q^{16} + 18 q^{17} + 54 q^{18} - 24 q^{21} + 12 q^{22} + 36 q^{23} + 36 q^{27} + 24 q^{28} - 24 q^{31}+ \cdots - 324 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/675\mathbb{Z}\right)^\times\).

\(n\) \(326\) \(352\)
\(\chi(n)\) \(e\left(\frac{13}{18}\right)\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.0152086 0.00133058i 0.0107541 0.000940864i −0.0817774 0.996651i \(-0.526060\pi\)
0.0925315 + 0.995710i \(0.470504\pi\)
\(3\) −0.259886 1.71244i −0.150045 0.988679i
\(4\) −1.96939 + 0.347256i −0.984693 + 0.173628i
\(5\) 0 0
\(6\) −0.00623106 0.0256981i −0.00254382 0.0104912i
\(7\) −0.211408 + 0.148030i −0.0799048 + 0.0559499i −0.612846 0.790202i \(-0.709975\pi\)
0.532941 + 0.846152i \(0.321087\pi\)
\(8\) −0.0589827 + 0.0158044i −0.0208535 + 0.00558769i
\(9\) −2.86492 + 0.890079i −0.954973 + 0.296693i
\(10\) 0 0
\(11\) 1.49616 + 4.11066i 0.451108 + 1.23941i 0.931945 + 0.362600i \(0.118111\pi\)
−0.480836 + 0.876810i \(0.659667\pi\)
\(12\) 1.10647 + 3.28221i 0.319411 + 0.947493i
\(13\) −0.187451 + 2.14258i −0.0519896 + 0.594244i 0.924859 + 0.380311i \(0.124183\pi\)
−0.976848 + 0.213933i \(0.931373\pi\)
\(14\) −0.00301826 + 0.00253263i −0.000806665 + 0.000676873i
\(15\) 0 0
\(16\) 3.75746 1.36760i 0.939364 0.341901i
\(17\) −1.70216 0.456091i −0.412833 0.110618i 0.0464236 0.998922i \(-0.485218\pi\)
−0.459257 + 0.888303i \(0.651884\pi\)
\(18\) −0.0423872 + 0.0173489i −0.00999075 + 0.00408918i
\(19\) 4.91894 + 2.83995i 1.12848 + 0.651529i 0.943553 0.331222i \(-0.107461\pi\)
0.184929 + 0.982752i \(0.440794\pi\)
\(20\) 0 0
\(21\) 0.308434 + 0.323554i 0.0673059 + 0.0706052i
\(22\) 0.0282241 + 0.0605267i 0.00601740 + 0.0129043i
\(23\) 3.32360 4.74660i 0.693019 0.989734i −0.306267 0.951946i \(-0.599080\pi\)
0.999286 0.0377879i \(-0.0120311\pi\)
\(24\) 0.0423928 + 0.0968971i 0.00865340 + 0.0197790i
\(25\) 0 0
\(26\) 0.0328351i 0.00643949i
\(27\) 2.26876 + 4.67469i 0.436623 + 0.899644i
\(28\) 0.364940 0.364940i 0.0689672 0.0689672i
\(29\) 3.59567 + 3.01712i 0.667699 + 0.560266i 0.912383 0.409337i \(-0.134240\pi\)
−0.244685 + 0.969603i \(0.578684\pi\)
\(30\) 0 0
\(31\) −0.912568 5.17543i −0.163902 0.929534i −0.950189 0.311673i \(-0.899111\pi\)
0.786287 0.617861i \(-0.212001\pi\)
\(32\) 0.166010 0.0774120i 0.0293468 0.0136846i
\(33\) 6.65044 3.63039i 1.15769 0.631969i
\(34\) −0.0264943 0.00467167i −0.00454374 0.000801184i
\(35\) 0 0
\(36\) 5.33305 2.74777i 0.888841 0.457962i
\(37\) 0.837479 3.12552i 0.137681 0.513832i −0.862292 0.506412i \(-0.830972\pi\)
0.999972 0.00741968i \(-0.00236178\pi\)
\(38\) 0.0785891 + 0.0366467i 0.0127488 + 0.00594488i
\(39\) 3.71775 0.235826i 0.595317 0.0377624i
\(40\) 0 0
\(41\) 0.241984 + 0.288386i 0.0377916 + 0.0450383i 0.784609 0.619991i \(-0.212864\pi\)
−0.746818 + 0.665029i \(0.768419\pi\)
\(42\) 0.00512138 + 0.00451041i 0.000790246 + 0.000695972i
\(43\) −3.84888 + 8.25395i −0.586948 + 1.25872i 0.358678 + 0.933461i \(0.383228\pi\)
−0.945627 + 0.325254i \(0.894550\pi\)
\(44\) −4.37396 7.57592i −0.659400 1.14211i
\(45\) 0 0
\(46\) 0.0442317 0.0766116i 0.00652161 0.0112958i
\(47\) 2.29910 + 3.28345i 0.335358 + 0.478941i 0.951046 0.309049i \(-0.100011\pi\)
−0.615688 + 0.787990i \(0.711122\pi\)
\(48\) −3.31845 6.07901i −0.478977 0.877429i
\(49\) −2.37136 + 6.51526i −0.338766 + 0.930751i
\(50\) 0 0
\(51\) −0.338664 + 3.03338i −0.0474224 + 0.424757i
\(52\) −0.374859 4.28465i −0.0519835 0.594174i
\(53\) 8.15900 + 8.15900i 1.12072 + 1.12072i 0.991633 + 0.129092i \(0.0412062\pi\)
0.129092 + 0.991633i \(0.458794\pi\)
\(54\) 0.0407248 + 0.0680769i 0.00554195 + 0.00926409i
\(55\) 0 0
\(56\) 0.0101299 0.0120724i 0.00135367 0.00161324i
\(57\) 3.58489 9.16146i 0.474830 1.21347i
\(58\) 0.0586997 + 0.0411020i 0.00770765 + 0.00539696i
\(59\) 10.6146 + 3.86341i 1.38191 + 0.502973i 0.922756 0.385385i \(-0.125931\pi\)
0.459152 + 0.888358i \(0.348153\pi\)
\(60\) 0 0
\(61\) −2.10712 + 11.9501i −0.269790 + 1.53005i 0.485251 + 0.874375i \(0.338728\pi\)
−0.755040 + 0.655678i \(0.772383\pi\)
\(62\) −0.0207652 0.0774969i −0.00263719 0.00984212i
\(63\) 0.473909 0.612263i 0.0597070 0.0771379i
\(64\) −6.92336 + 3.99720i −0.865420 + 0.499650i
\(65\) 0 0
\(66\) 0.0963135 0.0640622i 0.0118554 0.00788551i
\(67\) −1.82940 0.160052i −0.223497 0.0195534i −0.0251426 0.999684i \(-0.508004\pi\)
−0.198354 + 0.980130i \(0.563560\pi\)
\(68\) 3.51058 + 0.307136i 0.425721 + 0.0372457i
\(69\) −8.99203 4.45790i −1.08251 0.536669i
\(70\) 0 0
\(71\) 4.44360 2.56551i 0.527358 0.304471i −0.212582 0.977143i \(-0.568187\pi\)
0.739940 + 0.672673i \(0.234854\pi\)
\(72\) 0.154913 0.0977775i 0.0182567 0.0115232i
\(73\) −3.71651 13.8702i −0.434984 1.62338i −0.741104 0.671390i \(-0.765697\pi\)
0.306120 0.951993i \(-0.400969\pi\)
\(74\) 0.00857816 0.0486492i 0.000997191 0.00565535i
\(75\) 0 0
\(76\) −10.6735 3.88483i −1.22433 0.445620i
\(77\) −0.924799 0.647552i −0.105391 0.0737953i
\(78\) 0.0562282 0.00853337i 0.00636659 0.000966214i
\(79\) 1.98949 2.37099i 0.223835 0.266757i −0.642426 0.766348i \(-0.722072\pi\)
0.866261 + 0.499591i \(0.166516\pi\)
\(80\) 0 0
\(81\) 7.41552 5.10001i 0.823946 0.566668i
\(82\) 0.00406398 + 0.00406398i 0.000448791 + 0.000448791i
\(83\) 0.432904 + 4.94812i 0.0475174 + 0.543127i 0.982225 + 0.187708i \(0.0601060\pi\)
−0.934707 + 0.355418i \(0.884338\pi\)
\(84\) −0.719782 0.530096i −0.0785347 0.0578383i
\(85\) 0 0
\(86\) −0.0475536 + 0.130653i −0.00512784 + 0.0140886i
\(87\) 4.23219 6.94148i 0.453738 0.744205i
\(88\) −0.153214 0.218812i −0.0163326 0.0233254i
\(89\) −1.44584 + 2.50426i −0.153259 + 0.265452i −0.932424 0.361367i \(-0.882310\pi\)
0.779165 + 0.626819i \(0.215643\pi\)
\(90\) 0 0
\(91\) −0.277536 0.480707i −0.0290937 0.0503917i
\(92\) −4.89717 + 10.5020i −0.510565 + 1.09491i
\(93\) −8.62546 + 2.90774i −0.894418 + 0.301519i
\(94\) 0.0393351 + 0.0468777i 0.00405710 + 0.00483507i
\(95\) 0 0
\(96\) −0.175707 0.264165i −0.0179331 0.0269612i
\(97\) 4.27105 + 1.99162i 0.433659 + 0.202219i 0.627175 0.778879i \(-0.284211\pi\)
−0.193516 + 0.981097i \(0.561989\pi\)
\(98\) −0.0273961 + 0.102243i −0.00276742 + 0.0103282i
\(99\) −7.94518 10.4450i −0.798521 1.04976i
\(100\) 0 0
\(101\) 2.84523 + 0.501690i 0.283110 + 0.0499200i 0.313400 0.949621i \(-0.398532\pi\)
−0.0302897 + 0.999541i \(0.509643\pi\)
\(102\) −0.00111446 + 0.0465841i −0.000110348 + 0.00461251i
\(103\) −9.15274 + 4.26799i −0.901846 + 0.420538i −0.817520 0.575900i \(-0.804652\pi\)
−0.0843263 + 0.996438i \(0.526874\pi\)
\(104\) −0.0228057 0.129337i −0.00223628 0.0126826i
\(105\) 0 0
\(106\) 0.134943 + 0.113231i 0.0131069 + 0.0109980i
\(107\) −10.6261 + 10.6261i −1.02727 + 1.02727i −0.0276498 + 0.999618i \(0.508802\pi\)
−0.999618 + 0.0276498i \(0.991198\pi\)
\(108\) −6.09138 8.41843i −0.586143 0.810064i
\(109\) 12.0030i 1.14968i −0.818265 0.574841i \(-0.805064\pi\)
0.818265 0.574841i \(-0.194936\pi\)
\(110\) 0 0
\(111\) −5.56991 0.621858i −0.528673 0.0590241i
\(112\) −0.591912 + 0.845337i −0.0559304 + 0.0798769i
\(113\) 3.92562 + 8.41851i 0.369291 + 0.791947i 0.999875 + 0.0158260i \(0.00503778\pi\)
−0.630584 + 0.776121i \(0.717184\pi\)
\(114\) 0.0423312 0.144103i 0.00396468 0.0134965i
\(115\) 0 0
\(116\) −8.12897 4.69326i −0.754756 0.435759i
\(117\) −1.37003 6.30515i −0.126659 0.582912i
\(118\) 0.166575 + 0.0446336i 0.0153344 + 0.00410885i
\(119\) 0.427365 0.155548i 0.0391765 0.0142591i
\(120\) 0 0
\(121\) −6.23254 + 5.22972i −0.566595 + 0.475429i
\(122\) −0.0161459 + 0.184548i −0.00146178 + 0.0167082i
\(123\) 0.430956 0.489332i 0.0388580 0.0441216i
\(124\) 3.59440 + 9.87552i 0.322786 + 0.886848i
\(125\) 0 0
\(126\) 0.00639285 0.00994226i 0.000569520 0.000885727i
\(127\) −18.7735 + 5.03035i −1.66588 + 0.446371i −0.963996 0.265918i \(-0.914325\pi\)
−0.701885 + 0.712290i \(0.747658\pi\)
\(128\) −0.400068 + 0.280131i −0.0353614 + 0.0247603i
\(129\) 15.1347 + 4.44590i 1.33253 + 0.391440i
\(130\) 0 0
\(131\) −4.49710 + 0.792959i −0.392913 + 0.0692812i −0.366614 0.930373i \(-0.619483\pi\)
−0.0262986 + 0.999654i \(0.508372\pi\)
\(132\) −11.8366 + 9.45903i −1.03024 + 0.823303i
\(133\) −1.46030 + 0.127760i −0.126624 + 0.0110782i
\(134\) −0.0280356 −0.00242191
\(135\) 0 0
\(136\) 0.107606 0.00922713
\(137\) 6.96948 0.609750i 0.595443 0.0520945i 0.214549 0.976713i \(-0.431172\pi\)
0.380894 + 0.924619i \(0.375616\pi\)
\(138\) −0.142688 0.0558340i −0.0121464 0.00475291i
\(139\) −8.03836 + 1.41738i −0.681805 + 0.120221i −0.503815 0.863812i \(-0.668071\pi\)
−0.177990 + 0.984032i \(0.556959\pi\)
\(140\) 0 0
\(141\) 5.02522 4.79040i 0.423200 0.403424i
\(142\) 0.0641675 0.0449306i 0.00538482 0.00377049i
\(143\) −9.08786 + 2.43508i −0.759965 + 0.203632i
\(144\) −9.54753 + 7.26250i −0.795628 + 0.605209i
\(145\) 0 0
\(146\) −0.0749784 0.206002i −0.00620526 0.0170488i
\(147\) 11.7733 + 2.36759i 0.971045 + 0.195276i
\(148\) −0.563966 + 6.44617i −0.0463578 + 0.529872i
\(149\) 14.7726 12.3956i 1.21021 1.01549i 0.210937 0.977500i \(-0.432349\pi\)
0.999278 0.0379911i \(-0.0120959\pi\)
\(150\) 0 0
\(151\) −14.1147 + 5.13734i −1.14864 + 0.418070i −0.845026 0.534725i \(-0.820415\pi\)
−0.303613 + 0.952795i \(0.598193\pi\)
\(152\) −0.335016 0.0897672i −0.0271734 0.00728108i
\(153\) 5.28249 0.208389i 0.427064 0.0168473i
\(154\) −0.0149266 0.00861785i −0.00120282 0.000694446i
\(155\) 0 0
\(156\) −7.23980 + 1.75544i −0.579648 + 0.140548i
\(157\) −0.987420 2.11753i −0.0788047 0.168997i 0.862958 0.505276i \(-0.168609\pi\)
−0.941762 + 0.336279i \(0.890832\pi\)
\(158\) 0.0271027 0.0387066i 0.00215617 0.00307933i
\(159\) 11.8514 16.0922i 0.939878 1.27620i
\(160\) 0 0
\(161\) 1.49546i 0.117859i
\(162\) 0.105994 0.0874311i 0.00832767 0.00686924i
\(163\) −10.7302 + 10.7302i −0.840451 + 0.840451i −0.988917 0.148467i \(-0.952566\pi\)
0.148467 + 0.988917i \(0.452566\pi\)
\(164\) −0.576705 0.483913i −0.0450331 0.0377872i
\(165\) 0 0
\(166\) 0.0131678 + 0.0746781i 0.00102202 + 0.00579615i
\(167\) 17.5852 8.20013i 1.36079 0.634545i 0.401208 0.915987i \(-0.368590\pi\)
0.959578 + 0.281442i \(0.0908126\pi\)
\(168\) −0.0233058 0.0142095i −0.00179808 0.00109628i
\(169\) 8.24701 + 1.45417i 0.634385 + 0.111859i
\(170\) 0 0
\(171\) −16.6201 3.75798i −1.27097 0.287380i
\(172\) 4.71370 17.5918i 0.359416 1.34136i
\(173\) 5.26921 + 2.45707i 0.400610 + 0.186808i 0.612472 0.790492i \(-0.290175\pi\)
−0.211862 + 0.977300i \(0.567953\pi\)
\(174\) 0.0551296 0.111202i 0.00417936 0.00843018i
\(175\) 0 0
\(176\) 11.2435 + 13.3995i 0.847510 + 1.01002i
\(177\) 3.85728 19.1810i 0.289931 1.44173i
\(178\) −0.0186571 + 0.0400103i −0.00139841 + 0.00299890i
\(179\) −4.77974 8.27875i −0.357254 0.618783i 0.630247 0.776395i \(-0.282954\pi\)
−0.987501 + 0.157612i \(0.949620\pi\)
\(180\) 0 0
\(181\) 6.93879 12.0183i 0.515756 0.893315i −0.484077 0.875026i \(-0.660844\pi\)
0.999833 0.0182899i \(-0.00582219\pi\)
\(182\) −0.00486056 0.00694161i −0.000360289 0.000514546i
\(183\) 21.0115 + 0.502668i 1.55321 + 0.0371583i
\(184\) −0.121018 + 0.332494i −0.00892157 + 0.0245118i
\(185\) 0 0
\(186\) −0.127312 + 0.0556997i −0.00933500 + 0.00408410i
\(187\) −0.671857 7.67937i −0.0491311 0.561571i
\(188\) −5.66801 5.66801i −0.413382 0.413382i
\(189\) −1.17163 0.652424i −0.0852234 0.0474569i
\(190\) 0 0
\(191\) −7.63489 + 9.09890i −0.552441 + 0.658374i −0.967929 0.251225i \(-0.919167\pi\)
0.415488 + 0.909599i \(0.363611\pi\)
\(192\) 8.64426 + 10.8170i 0.623846 + 0.780652i
\(193\) −9.91741 6.94425i −0.713871 0.499858i 0.159325 0.987226i \(-0.449068\pi\)
−0.873197 + 0.487368i \(0.837957\pi\)
\(194\) 0.0676068 + 0.0246069i 0.00485389 + 0.00176667i
\(195\) 0 0
\(196\) 2.40766 13.6545i 0.171976 0.975323i
\(197\) −1.53862 5.74222i −0.109622 0.409116i 0.889206 0.457507i \(-0.151257\pi\)
−0.998828 + 0.0483907i \(0.984591\pi\)
\(198\) −0.134733 0.148283i −0.00957508 0.0105380i
\(199\) −4.84519 + 2.79737i −0.343466 + 0.198300i −0.661804 0.749677i \(-0.730209\pi\)
0.318337 + 0.947977i \(0.396876\pi\)
\(200\) 0 0
\(201\) 0.201356 + 3.17433i 0.0142025 + 0.223900i
\(202\) 0.0439395 + 0.00384421i 0.00309157 + 0.000270478i
\(203\) −1.20678 0.105579i −0.0846992 0.00741022i
\(204\) −0.386398 6.09149i −0.0270533 0.426490i
\(205\) 0 0
\(206\) −0.133522 + 0.0770888i −0.00930290 + 0.00537103i
\(207\) −5.29700 + 16.5569i −0.368167 + 1.15078i
\(208\) 2.22585 + 8.30699i 0.154335 + 0.575986i
\(209\) −4.31456 + 24.4691i −0.298444 + 1.69256i
\(210\) 0 0
\(211\) 5.33826 + 1.94297i 0.367501 + 0.133759i 0.519168 0.854672i \(-0.326242\pi\)
−0.151667 + 0.988432i \(0.548464\pi\)
\(212\) −18.9015 13.2350i −1.29816 0.908980i
\(213\) −5.54813 6.94267i −0.380151 0.475704i
\(214\) −0.147470 + 0.175748i −0.0100808 + 0.0120139i
\(215\) 0 0
\(216\) −0.207698 0.239869i −0.0141321 0.0163210i
\(217\) 0.959041 + 0.959041i 0.0651039 + 0.0651039i
\(218\) −0.0159710 0.182550i −0.00108169 0.0123638i
\(219\) −22.7860 + 9.96897i −1.53974 + 0.673641i
\(220\) 0 0
\(221\) 1.29628 3.56150i 0.0871973 0.239573i
\(222\) −0.0855382 0.00204637i −0.00574095 0.000137344i
\(223\) 7.56295 + 10.8010i 0.506452 + 0.723289i 0.988225 0.153007i \(-0.0488958\pi\)
−0.481773 + 0.876296i \(0.660007\pi\)
\(224\) −0.0236367 + 0.0409400i −0.00157929 + 0.00273542i
\(225\) 0 0
\(226\) 0.0709048 + 0.122811i 0.00471652 + 0.00816925i
\(227\) 6.15899 13.2080i 0.408787 0.876646i −0.588870 0.808228i \(-0.700427\pi\)
0.997657 0.0684181i \(-0.0217952\pi\)
\(228\) −3.87866 + 19.2873i −0.256870 + 1.27733i
\(229\) 5.35302 + 6.37948i 0.353738 + 0.421568i 0.913343 0.407191i \(-0.133492\pi\)
−0.559605 + 0.828759i \(0.689047\pi\)
\(230\) 0 0
\(231\) −0.868552 + 1.75196i −0.0571466 + 0.115270i
\(232\) −0.259766 0.121131i −0.0170545 0.00795262i
\(233\) 7.15675 26.7094i 0.468854 1.74979i −0.174930 0.984581i \(-0.555970\pi\)
0.643784 0.765207i \(-0.277363\pi\)
\(234\) −0.0292258 0.0940698i −0.00191055 0.00614954i
\(235\) 0 0
\(236\) −22.2459 3.92255i −1.44808 0.255336i
\(237\) −4.57722 2.79071i −0.297322 0.181276i
\(238\) 0.00629266 0.00293432i 0.000407893 0.000190204i
\(239\) −3.76477 21.3510i −0.243522 1.38108i −0.823899 0.566736i \(-0.808206\pi\)
0.580377 0.814348i \(-0.302905\pi\)
\(240\) 0 0
\(241\) 3.99926 + 3.35578i 0.257615 + 0.216165i 0.762443 0.647055i \(-0.224000\pi\)
−0.504828 + 0.863220i \(0.668444\pi\)
\(242\) −0.0878299 + 0.0878299i −0.00564592 + 0.00564592i
\(243\) −10.6607 11.3732i −0.683882 0.729593i
\(244\) 24.2661i 1.55348i
\(245\) 0 0
\(246\) 0.00590315 0.00801549i 0.000376371 0.000511049i
\(247\) −7.00687 + 10.0068i −0.445837 + 0.636721i
\(248\) 0.135620 + 0.290838i 0.00861188 + 0.0184682i
\(249\) 8.36086 2.02727i 0.529848 0.128473i
\(250\) 0 0
\(251\) 12.0778 + 6.97313i 0.762345 + 0.440140i 0.830137 0.557560i \(-0.188262\pi\)
−0.0677923 + 0.997699i \(0.521596\pi\)
\(252\) −0.720698 + 1.37035i −0.0453997 + 0.0863239i
\(253\) 24.4843 + 6.56054i 1.53931 + 0.412458i
\(254\) −0.278826 + 0.101484i −0.0174951 + 0.00636770i
\(255\) 0 0
\(256\) 12.2424 10.2726i 0.765152 0.642039i
\(257\) −0.816897 + 9.33717i −0.0509566 + 0.582437i 0.927200 + 0.374567i \(0.122209\pi\)
−0.978156 + 0.207870i \(0.933347\pi\)
\(258\) 0.236093 + 0.0474781i 0.0146985 + 0.00295586i
\(259\) 0.285619 + 0.784731i 0.0177475 + 0.0487608i
\(260\) 0 0
\(261\) −12.9868 5.44338i −0.803861 0.336937i
\(262\) −0.0673396 + 0.0180436i −0.00416025 + 0.00111474i
\(263\) −8.22122 + 5.75656i −0.506942 + 0.354965i −0.798897 0.601467i \(-0.794583\pi\)
0.291955 + 0.956432i \(0.405694\pi\)
\(264\) −0.334885 + 0.319236i −0.0206107 + 0.0196476i
\(265\) 0 0
\(266\) −0.0220392 + 0.00388610i −0.00135131 + 0.000238272i
\(267\) 4.66416 + 1.82509i 0.285442 + 0.111694i
\(268\) 3.65837 0.320066i 0.223470 0.0195511i
\(269\) −1.84882 −0.112724 −0.0563622 0.998410i \(-0.517950\pi\)
−0.0563622 + 0.998410i \(0.517950\pi\)
\(270\) 0 0
\(271\) 14.0068 0.850851 0.425426 0.904993i \(-0.360124\pi\)
0.425426 + 0.904993i \(0.360124\pi\)
\(272\) −7.01953 + 0.614129i −0.425621 + 0.0372370i
\(273\) −0.751055 + 0.600193i −0.0454559 + 0.0363254i
\(274\) 0.105185 0.0185469i 0.00635445 0.00112046i
\(275\) 0 0
\(276\) 19.2568 + 5.65680i 1.15912 + 0.340499i
\(277\) 14.8975 10.4313i 0.895103 0.626758i −0.0328481 0.999460i \(-0.510458\pi\)
0.927951 + 0.372703i \(0.121569\pi\)
\(278\) −0.120367 + 0.0322521i −0.00721911 + 0.00193435i
\(279\) 7.22097 + 14.0149i 0.432308 + 0.839051i
\(280\) 0 0
\(281\) −8.98091 24.6748i −0.535756 1.47198i −0.852124 0.523341i \(-0.824686\pi\)
0.316368 0.948637i \(-0.397537\pi\)
\(282\) 0.0700527 0.0795419i 0.00417158 0.00473665i
\(283\) 1.59875 18.2738i 0.0950360 1.08627i −0.787593 0.616196i \(-0.788673\pi\)
0.882629 0.470071i \(-0.155772\pi\)
\(284\) −7.86028 + 6.59556i −0.466422 + 0.391374i
\(285\) 0 0
\(286\) −0.134974 + 0.0491264i −0.00798117 + 0.00290491i
\(287\) −0.0938472 0.0251463i −0.00553962 0.00148434i
\(288\) −0.406704 + 0.369541i −0.0239652 + 0.0217754i
\(289\) −12.0331 6.94732i −0.707830 0.408666i
\(290\) 0 0
\(291\) 2.30055 7.83152i 0.134861 0.459092i
\(292\) 12.1357 + 26.0252i 0.710191 + 1.52301i
\(293\) −6.02781 + 8.60861i −0.352149 + 0.502920i −0.955675 0.294422i \(-0.904873\pi\)
0.603527 + 0.797343i \(0.293762\pi\)
\(294\) 0.182206 + 0.0203425i 0.0106265 + 0.00118640i
\(295\) 0 0
\(296\) 0.197587i 0.0114845i
\(297\) −15.8216 + 16.3202i −0.918064 + 0.946993i
\(298\) 0.208177 0.208177i 0.0120594 0.0120594i
\(299\) 9.54693 + 8.01082i 0.552113 + 0.463278i
\(300\) 0 0
\(301\) −0.408144 2.31470i −0.0235250 0.133417i
\(302\) −0.207830 + 0.0969127i −0.0119593 + 0.00557670i
\(303\) 0.119681 5.00267i 0.00687551 0.287396i
\(304\) 22.3666 + 3.94384i 1.28281 + 0.226195i
\(305\) 0 0
\(306\) 0.0800623 0.0101981i 0.00457685 0.000582987i
\(307\) −3.31491 + 12.3714i −0.189192 + 0.706074i 0.804502 + 0.593949i \(0.202432\pi\)
−0.993694 + 0.112124i \(0.964235\pi\)
\(308\) 2.04615 + 0.954137i 0.116590 + 0.0543670i
\(309\) 9.68736 + 14.5643i 0.551095 + 0.828537i
\(310\) 0 0
\(311\) 13.5014 + 16.0903i 0.765592 + 0.912397i 0.998188 0.0601768i \(-0.0191664\pi\)
−0.232596 + 0.972573i \(0.574722\pi\)
\(312\) −0.215556 + 0.0726664i −0.0122035 + 0.00411392i
\(313\) 12.4918 26.7887i 0.706078 1.51419i −0.145159 0.989408i \(-0.546369\pi\)
0.851237 0.524781i \(-0.175853\pi\)
\(314\) −0.0178349 0.0308909i −0.00100648 0.00174327i
\(315\) 0 0
\(316\) −3.09474 + 5.36025i −0.174093 + 0.301538i
\(317\) 15.2311 + 21.7523i 0.855465 + 1.22173i 0.973492 + 0.228720i \(0.0734540\pi\)
−0.118027 + 0.993010i \(0.537657\pi\)
\(318\) 0.158832 0.260510i 0.00890684 0.0146087i
\(319\) −7.02268 + 19.2947i −0.393195 + 1.08029i
\(320\) 0 0
\(321\) 20.9582 + 15.4351i 1.16977 + 0.861501i
\(322\) 0.00198984 + 0.0227439i 0.000110889 + 0.00126747i
\(323\) −7.07752 7.07752i −0.393804 0.393804i
\(324\) −12.8330 + 12.6190i −0.712945 + 0.701054i
\(325\) 0 0
\(326\) −0.148914 + 0.177468i −0.00824756 + 0.00982906i
\(327\) −20.5545 + 3.11942i −1.13667 + 0.172504i
\(328\) −0.0188306 0.0131854i −0.00103975 0.000728040i
\(329\) −0.972097 0.353814i −0.0535934 0.0195064i
\(330\) 0 0
\(331\) −1.72647 + 9.79132i −0.0948956 + 0.538179i 0.899884 + 0.436130i \(0.143651\pi\)
−0.994779 + 0.102050i \(0.967460\pi\)
\(332\) −2.57082 9.59443i −0.141092 0.526563i
\(333\) 0.382646 + 9.69977i 0.0209689 + 0.531544i
\(334\) 0.256536 0.148111i 0.0140371 0.00810430i
\(335\) 0 0
\(336\) 1.60142 + 0.793923i 0.0873647 + 0.0433121i
\(337\) 13.9748 + 1.22264i 0.761258 + 0.0666015i 0.461172 0.887311i \(-0.347429\pi\)
0.300086 + 0.953912i \(0.402985\pi\)
\(338\) 0.127361 + 0.0111426i 0.00692750 + 0.000606078i
\(339\) 13.3960 8.91025i 0.727571 0.483938i
\(340\) 0 0
\(341\) 19.9091 11.4945i 1.07814 0.622463i
\(342\) −0.257770 0.0350393i −0.0139386 0.00189471i
\(343\) −0.930702 3.47343i −0.0502532 0.187547i
\(344\) 0.0965688 0.547669i 0.00520664 0.0295283i
\(345\) 0 0
\(346\) 0.0834068 + 0.0303576i 0.00448397 + 0.00163203i
\(347\) −5.00149 3.50208i −0.268494 0.188001i 0.431574 0.902077i \(-0.357958\pi\)
−0.700068 + 0.714076i \(0.746847\pi\)
\(348\) −5.92434 + 15.1401i −0.317578 + 0.811595i
\(349\) 2.45708 2.92823i 0.131524 0.156745i −0.696263 0.717787i \(-0.745155\pi\)
0.827787 + 0.561042i \(0.189600\pi\)
\(350\) 0 0
\(351\) −10.4412 + 3.98472i −0.557308 + 0.212689i
\(352\) 0.566592 + 0.566592i 0.0301995 + 0.0301995i
\(353\) −0.194119 2.21879i −0.0103319 0.118094i 0.989277 0.146050i \(-0.0466559\pi\)
−0.999609 + 0.0279554i \(0.991100\pi\)
\(354\) 0.0331420 0.296849i 0.00176148 0.0157774i
\(355\) 0 0
\(356\) 1.97779 5.43394i 0.104823 0.287998i
\(357\) −0.377433 0.691413i −0.0199759 0.0365934i
\(358\) −0.0837088 0.119549i −0.00442415 0.00631834i
\(359\) −5.90045 + 10.2199i −0.311414 + 0.539385i −0.978669 0.205445i \(-0.934136\pi\)
0.667255 + 0.744829i \(0.267469\pi\)
\(360\) 0 0
\(361\) 6.63064 + 11.4846i 0.348981 + 0.604453i
\(362\) 0.0895381 0.192015i 0.00470602 0.0100921i
\(363\) 10.5753 + 9.31374i 0.555062 + 0.488844i
\(364\) 0.713504 + 0.850321i 0.0373978 + 0.0445689i
\(365\) 0 0
\(366\) 0.320225 0.0203126i 0.0167384 0.00106176i
\(367\) 1.92158 + 0.896047i 0.100306 + 0.0467733i 0.472123 0.881532i \(-0.343488\pi\)
−0.371818 + 0.928306i \(0.621265\pi\)
\(368\) 5.99683 22.3805i 0.312607 1.16666i
\(369\) −0.949952 0.610817i −0.0494525 0.0317978i
\(370\) 0 0
\(371\) −2.93265 0.517106i −0.152256 0.0268468i
\(372\) 15.9771 8.72170i 0.828376 0.452199i
\(373\) −3.00825 + 1.40277i −0.155762 + 0.0726328i −0.498936 0.866639i \(-0.666276\pi\)
0.343174 + 0.939272i \(0.388498\pi\)
\(374\) −0.0204361 0.115899i −0.00105672 0.00599298i
\(375\) 0 0
\(376\) −0.187500 0.157331i −0.00966957 0.00811373i
\(377\) −7.13843 + 7.13843i −0.367648 + 0.367648i
\(378\) −0.0186870 0.00836353i −0.000961153 0.000430173i
\(379\) 15.7634i 0.809713i −0.914380 0.404856i \(-0.867322\pi\)
0.914380 0.404856i \(-0.132678\pi\)
\(380\) 0 0
\(381\) 13.4932 + 30.8413i 0.691276 + 1.58005i
\(382\) −0.104009 + 0.148541i −0.00532158 + 0.00760001i
\(383\) 11.6401 + 24.9622i 0.594781 + 1.27551i 0.941333 + 0.337480i \(0.109575\pi\)
−0.346552 + 0.938031i \(0.612648\pi\)
\(384\) 0.583680 + 0.612292i 0.0297858 + 0.0312459i
\(385\) 0 0
\(386\) −0.160070 0.0924166i −0.00814736 0.00470388i
\(387\) 3.68006 27.0727i 0.187068 1.37618i
\(388\) −9.10294 2.43913i −0.462132 0.123828i
\(389\) −28.2091 + 10.2673i −1.43026 + 0.520571i −0.937005 0.349315i \(-0.886414\pi\)
−0.493252 + 0.869886i \(0.664192\pi\)
\(390\) 0 0
\(391\) −7.82217 + 6.56358i −0.395584 + 0.331934i
\(392\) 0.0368997 0.421765i 0.00186372 0.0213024i
\(393\) 2.52663 + 7.49494i 0.127452 + 0.378070i
\(394\) −0.0310408 0.0852840i −0.00156382 0.00429655i
\(395\) 0 0
\(396\) 19.2742 + 17.8112i 0.968566 + 0.895048i
\(397\) −4.62074 + 1.23812i −0.231908 + 0.0621397i −0.372902 0.927871i \(-0.621637\pi\)
0.140993 + 0.990011i \(0.454970\pi\)
\(398\) −0.0699666 + 0.0489911i −0.00350711 + 0.00245570i
\(399\) 0.598293 + 2.46748i 0.0299521 + 0.123528i
\(400\) 0 0
\(401\) −8.47214 + 1.49387i −0.423078 + 0.0746001i −0.381134 0.924520i \(-0.624466\pi\)
−0.0419444 + 0.999120i \(0.513355\pi\)
\(402\) 0.00728606 + 0.0480094i 0.000363396 + 0.00239449i
\(403\) 11.2598 0.985106i 0.560891 0.0490716i
\(404\) −5.77756 −0.287444
\(405\) 0 0
\(406\) −0.0184939 −0.000917838
\(407\) 14.1009 1.23367i 0.698957 0.0611508i
\(408\) −0.0279653 0.184269i −0.00138449 0.00912267i
\(409\) −8.33076 + 1.46894i −0.411930 + 0.0726343i −0.375773 0.926712i \(-0.622623\pi\)
−0.0361568 + 0.999346i \(0.511512\pi\)
\(410\) 0 0
\(411\) −2.85543 11.7764i −0.140848 0.580885i
\(412\) 16.5432 11.5837i 0.815024 0.570686i
\(413\) −2.81592 + 0.754524i −0.138562 + 0.0371277i
\(414\) −0.0585299 + 0.258856i −0.00287659 + 0.0127221i
\(415\) 0 0
\(416\) 0.134742 + 0.370201i 0.00660628 + 0.0181506i
\(417\) 4.51624 + 13.3969i 0.221161 + 0.656048i
\(418\) −0.0330604 + 0.377882i −0.00161704 + 0.0184828i
\(419\) −6.72816 + 5.64560i −0.328692 + 0.275806i −0.792167 0.610305i \(-0.791047\pi\)
0.463475 + 0.886110i \(0.346603\pi\)
\(420\) 0 0
\(421\) 0.538899 0.196143i 0.0262643 0.00955944i −0.328855 0.944381i \(-0.606663\pi\)
0.355119 + 0.934821i \(0.384440\pi\)
\(422\) 0.0837730 + 0.0224469i 0.00407800 + 0.00109270i
\(423\) −9.50926 7.36045i −0.462356 0.357877i
\(424\) −0.610187 0.352292i −0.0296333 0.0171088i
\(425\) 0 0
\(426\) −0.0936172 0.0982063i −0.00453577 0.00475811i
\(427\) −1.32351 2.83827i −0.0640489 0.137353i
\(428\) 17.2370 24.6170i 0.833181 1.18991i
\(429\) 6.53175 + 14.9296i 0.315356 + 0.720807i
\(430\) 0 0
\(431\) 25.0117i 1.20477i −0.798205 0.602386i \(-0.794217\pi\)
0.798205 0.602386i \(-0.205783\pi\)
\(432\) 14.9179 + 14.4622i 0.717737 + 0.695812i
\(433\) 24.9892 24.9892i 1.20090 1.20090i 0.227011 0.973892i \(-0.427105\pi\)
0.973892 0.227011i \(-0.0728954\pi\)
\(434\) 0.0158618 + 0.0133096i 0.000761390 + 0.000638882i
\(435\) 0 0
\(436\) 4.16812 + 23.6386i 0.199617 + 1.13208i
\(437\) 29.8287 13.9093i 1.42690 0.665374i
\(438\) −0.333280 + 0.181933i −0.0159247 + 0.00869310i
\(439\) 4.64923 + 0.819785i 0.221896 + 0.0391262i 0.283491 0.958975i \(-0.408508\pi\)
−0.0615948 + 0.998101i \(0.519619\pi\)
\(440\) 0 0
\(441\) 0.994657 20.7764i 0.0473646 0.989352i
\(442\) 0.0149758 0.0558904i 0.000712326 0.00265844i
\(443\) −26.7976 12.4959i −1.27319 0.593700i −0.335787 0.941938i \(-0.609002\pi\)
−0.937406 + 0.348238i \(0.886780\pi\)
\(444\) 11.1853 0.709507i 0.530829 0.0336717i
\(445\) 0 0
\(446\) 0.129394 + 0.154205i 0.00612697 + 0.00730184i
\(447\) −25.0660 22.0757i −1.18558 1.04414i
\(448\) 0.871951 1.86990i 0.0411958 0.0883447i
\(449\) −3.36725 5.83225i −0.158910 0.275241i 0.775566 0.631267i \(-0.217465\pi\)
−0.934476 + 0.356026i \(0.884131\pi\)
\(450\) 0 0
\(451\) −0.823409 + 1.42619i −0.0387728 + 0.0671565i
\(452\) −10.6544 15.2161i −0.501142 0.715706i
\(453\) 12.4656 + 22.8355i 0.585685 + 1.07291i
\(454\) 0.0760955 0.209071i 0.00357134 0.00981217i
\(455\) 0 0
\(456\) −0.0666553 + 0.597025i −0.00312142 + 0.0279582i
\(457\) 3.16016 + 36.1208i 0.147826 + 1.68966i 0.601800 + 0.798647i \(0.294450\pi\)
−0.453974 + 0.891015i \(0.649994\pi\)
\(458\) 0.0899006 + 0.0899006i 0.00420078 + 0.00420078i
\(459\) −1.72970 8.99181i −0.0807355 0.419702i
\(460\) 0 0
\(461\) 16.9825 20.2390i 0.790956 0.942625i −0.208417 0.978040i \(-0.566831\pi\)
0.999373 + 0.0354156i \(0.0112755\pi\)
\(462\) −0.0108784 + 0.0278005i −0.000506108 + 0.00129340i
\(463\) 9.85172 + 6.89825i 0.457848 + 0.320589i 0.779647 0.626219i \(-0.215399\pi\)
−0.321799 + 0.946808i \(0.604287\pi\)
\(464\) 17.6368 + 6.41927i 0.818767 + 0.298007i
\(465\) 0 0
\(466\) 0.0733054 0.415735i 0.00339581 0.0192586i
\(467\) 2.86104 + 10.6775i 0.132393 + 0.494098i 0.999995 0.00316149i \(-0.00100633\pi\)
−0.867602 + 0.497260i \(0.834340\pi\)
\(468\) 4.88762 + 11.9415i 0.225930 + 0.551997i
\(469\) 0.410442 0.236969i 0.0189525 0.0109422i
\(470\) 0 0
\(471\) −3.36953 + 2.24122i −0.155260 + 0.103270i
\(472\) −0.687138 0.0601168i −0.0316281 0.00276710i
\(473\) −39.6877 3.47222i −1.82484 0.159653i
\(474\) −0.0733265 0.0363525i −0.00336800 0.00166972i
\(475\) 0 0
\(476\) −0.787631 + 0.454739i −0.0361010 + 0.0208429i
\(477\) −30.6370 16.1127i −1.40277 0.737750i
\(478\) −0.0856663 0.319711i −0.00391828 0.0146232i
\(479\) 0.735877 4.17337i 0.0336231 0.190686i −0.963370 0.268175i \(-0.913579\pi\)
0.996993 + 0.0774895i \(0.0246904\pi\)
\(480\) 0 0
\(481\) 6.53967 + 2.38024i 0.298183 + 0.108530i
\(482\) 0.0652884 + 0.0457155i 0.00297381 + 0.00208228i
\(483\) 2.56089 0.388649i 0.116525 0.0176842i
\(484\) 10.4582 12.4636i 0.475374 0.566529i
\(485\) 0 0
\(486\) −0.177267 0.158786i −0.00804100 0.00720270i
\(487\) −16.7646 16.7646i −0.759676 0.759676i 0.216587 0.976263i \(-0.430507\pi\)
−0.976263 + 0.216587i \(0.930507\pi\)
\(488\) −0.0645798 0.738151i −0.00292339 0.0334145i
\(489\) 21.1634 + 15.5862i 0.957041 + 0.704830i
\(490\) 0 0
\(491\) 0.697417 1.91614i 0.0314740 0.0864740i −0.922960 0.384895i \(-0.874238\pi\)
0.954434 + 0.298421i \(0.0964599\pi\)
\(492\) −0.678795 + 1.11334i −0.0306024 + 0.0501930i
\(493\) −4.74430 6.77556i −0.213673 0.305156i
\(494\) −0.0932500 + 0.161514i −0.00419552 + 0.00726685i
\(495\) 0 0
\(496\) −10.5069 18.1984i −0.471772 0.817133i
\(497\) −0.559642 + 1.20016i −0.0251034 + 0.0538343i
\(498\) 0.124460 0.0419568i 0.00557718 0.00188013i
\(499\) −8.77600 10.4588i −0.392868 0.468202i 0.532964 0.846138i \(-0.321078\pi\)
−0.925832 + 0.377937i \(0.876634\pi\)
\(500\) 0 0
\(501\) −18.6124 27.9826i −0.831541 1.25017i
\(502\) 0.192965 + 0.0899812i 0.00861246 + 0.00401606i
\(503\) −11.4964 + 42.9050i −0.512597 + 1.91304i −0.121825 + 0.992552i \(0.538875\pi\)
−0.390772 + 0.920487i \(0.627792\pi\)
\(504\) −0.0182760 + 0.0436027i −0.000814078 + 0.00194222i
\(505\) 0 0
\(506\) 0.381102 + 0.0671985i 0.0169420 + 0.00298734i
\(507\) 0.346901 14.5004i 0.0154064 0.643987i
\(508\) 35.2255 16.4259i 1.56288 0.728782i
\(509\) −0.883595 5.01112i −0.0391647 0.222114i 0.958943 0.283597i \(-0.0915279\pi\)
−0.998108 + 0.0614836i \(0.980417\pi\)
\(510\) 0 0
\(511\) 2.83890 + 2.38212i 0.125586 + 0.105379i
\(512\) 0.863214 0.863214i 0.0381490 0.0381490i
\(513\) −2.11599 + 29.4377i −0.0934231 + 1.29971i
\(514\) 0.143093i 0.00631155i
\(515\) 0 0
\(516\) −31.3499 3.50008i −1.38010 0.154083i
\(517\) −10.0573 + 14.3634i −0.442321 + 0.631700i
\(518\) 0.00538802 + 0.0115547i 0.000236736 + 0.000507682i
\(519\) 2.83820 9.66177i 0.124583 0.424105i
\(520\) 0 0
\(521\) −14.9219 8.61518i −0.653742 0.377438i 0.136146 0.990689i \(-0.456528\pi\)
−0.789888 + 0.613251i \(0.789862\pi\)
\(522\) −0.204754 0.0655064i −0.00896184 0.00286714i
\(523\) −12.9054 3.45799i −0.564314 0.151207i −0.0346265 0.999400i \(-0.511024\pi\)
−0.529688 + 0.848193i \(0.677691\pi\)
\(524\) 8.58116 3.12329i 0.374870 0.136441i
\(525\) 0 0
\(526\) −0.117374 + 0.0984884i −0.00511775 + 0.00429430i
\(527\) −0.807135 + 9.22560i −0.0351594 + 0.401873i
\(528\) 20.0238 22.7362i 0.871424 0.989465i
\(529\) −3.61738 9.93866i −0.157277 0.432116i
\(530\) 0 0
\(531\) −33.8488 1.62049i −1.46891 0.0703233i
\(532\) 2.83153 0.758707i 0.122762 0.0328941i
\(533\) −0.663249 + 0.464412i −0.0287285 + 0.0201159i
\(534\) 0.0733640 + 0.0215511i 0.00317477 + 0.000932607i
\(535\) 0 0
\(536\) 0.110432 0.0194722i 0.00476995 0.000841071i
\(537\) −12.9347 + 10.3366i −0.558173 + 0.446055i
\(538\) −0.0281180 + 0.00246001i −0.00121225 + 0.000106058i
\(539\) −30.3299 −1.30640
\(540\) 0 0
\(541\) 7.10549 0.305489 0.152745 0.988266i \(-0.451189\pi\)
0.152745 + 0.988266i \(0.451189\pi\)
\(542\) 0.213024 0.0186372i 0.00915016 0.000800535i
\(543\) −22.3840 8.75888i −0.960589 0.375879i
\(544\) −0.317883 + 0.0560513i −0.0136291 + 0.00240318i
\(545\) 0 0
\(546\) −0.0106239 + 0.0101275i −0.000454661 + 0.000433415i
\(547\) −8.41425 + 5.89172i −0.359767 + 0.251912i −0.739459 0.673201i \(-0.764919\pi\)
0.379692 + 0.925113i \(0.376030\pi\)
\(548\) −13.5139 + 3.62103i −0.577283 + 0.154683i
\(549\) −4.59979 36.1116i −0.196314 1.54120i
\(550\) 0 0
\(551\) 9.11839 + 25.0526i 0.388456 + 1.06728i
\(552\) 0.600828 + 0.120826i 0.0255730 + 0.00514269i
\(553\) −0.0696191 + 0.795750i −0.00296050 + 0.0338387i
\(554\) 0.212691 0.178469i 0.00903636 0.00758240i
\(555\) 0 0
\(556\) 15.3384 5.58274i 0.650495 0.236761i
\(557\) 5.55174 + 1.48759i 0.235235 + 0.0630310i 0.374511 0.927223i \(-0.377811\pi\)
−0.139276 + 0.990254i \(0.544477\pi\)
\(558\) 0.128469 + 0.203540i 0.00543853 + 0.00861652i
\(559\) −16.9632 9.79373i −0.717468 0.414230i
\(560\) 0 0
\(561\) −12.9759 + 3.14628i −0.547841 + 0.132836i
\(562\) −0.169419 0.363321i −0.00714652 0.0153258i
\(563\) 14.1548 20.2152i 0.596555 0.851969i −0.401399 0.915903i \(-0.631476\pi\)
0.997954 + 0.0639343i \(0.0203648\pi\)
\(564\) −8.23311 + 11.1792i −0.346676 + 0.470728i
\(565\) 0 0
\(566\) 0.280047i 0.0117713i
\(567\) −0.812749 + 2.17590i −0.0341322 + 0.0913792i
\(568\) −0.221549 + 0.221549i −0.00929600 + 0.00929600i
\(569\) 1.46173 + 1.22654i 0.0612790 + 0.0514192i 0.672913 0.739722i \(-0.265043\pi\)
−0.611634 + 0.791141i \(0.709487\pi\)
\(570\) 0 0
\(571\) −7.82276 44.3651i −0.327372 1.85662i −0.492452 0.870340i \(-0.663899\pi\)
0.165080 0.986280i \(-0.447212\pi\)
\(572\) 17.0519 7.95143i 0.712976 0.332466i
\(573\) 17.5655 + 10.7096i 0.733811 + 0.447401i
\(574\) −0.00146075 0.000257569i −6.09704e−5 1.07507e-5i
\(575\) 0 0
\(576\) 16.2770 17.6140i 0.678210 0.733917i
\(577\) −5.87132 + 21.9121i −0.244426 + 0.912211i 0.729245 + 0.684253i \(0.239872\pi\)
−0.973671 + 0.227958i \(0.926795\pi\)
\(578\) −0.192251 0.0896482i −0.00799660 0.00372888i
\(579\) −9.31423 + 18.7877i −0.387086 + 0.780791i
\(580\) 0 0
\(581\) −0.823988 0.981990i −0.0341848 0.0407398i
\(582\) 0.0245678 0.122168i 0.00101837 0.00506402i
\(583\) −21.3317 + 45.7460i −0.883469 + 1.89461i
\(584\) 0.438419 + 0.759364i 0.0181419 + 0.0314227i
\(585\) 0 0
\(586\) −0.0802204 + 0.138946i −0.00331387 + 0.00573980i
\(587\) −4.91190 7.01492i −0.202736 0.289537i 0.704890 0.709316i \(-0.250996\pi\)
−0.907626 + 0.419780i \(0.862107\pi\)
\(588\) −24.0083 0.574363i −0.990086 0.0236863i
\(589\) 10.2091 28.0493i 0.420659 1.15575i
\(590\) 0 0
\(591\) −9.43335 + 4.12712i −0.388036 + 0.169767i
\(592\) −1.12767 12.8893i −0.0463469 0.529748i
\(593\) −4.26261 4.26261i −0.175044 0.175044i 0.614147 0.789192i \(-0.289500\pi\)
−0.789192 + 0.614147i \(0.789500\pi\)
\(594\) −0.218910 + 0.269260i −0.00898199 + 0.0110479i
\(595\) 0 0
\(596\) −24.7884 + 29.5417i −1.01537 + 1.21007i
\(597\) 6.04953 + 7.57011i 0.247591 + 0.309824i
\(598\) 0.155855 + 0.109131i 0.00637338 + 0.00446269i
\(599\) 13.5981 + 4.94929i 0.555602 + 0.202223i 0.604534 0.796580i \(-0.293359\pi\)
−0.0489318 + 0.998802i \(0.515582\pi\)
\(600\) 0 0
\(601\) −2.11215 + 11.9786i −0.0861565 + 0.488618i 0.910944 + 0.412529i \(0.135354\pi\)
−0.997101 + 0.0760891i \(0.975757\pi\)
\(602\) −0.00928722 0.0346604i −0.000378519 0.00141265i
\(603\) 5.38353 1.16977i 0.219234 0.0476369i
\(604\) 26.0133 15.0188i 1.05847 0.611107i
\(605\) 0 0
\(606\) −0.00483627 0.0762430i −0.000196460 0.00309716i
\(607\) −19.3845 1.69592i −0.786792 0.0688354i −0.313324 0.949646i \(-0.601443\pi\)
−0.473468 + 0.880811i \(0.656998\pi\)
\(608\) 1.03644 + 0.0906769i 0.0420333 + 0.00367743i
\(609\) 0.132826 + 2.09398i 0.00538238 + 0.0848522i
\(610\) 0 0
\(611\) −7.46602 + 4.31051i −0.302043 + 0.174384i
\(612\) −10.3309 + 2.24478i −0.417602 + 0.0907397i
\(613\) −3.48768 13.0162i −0.140866 0.525720i −0.999905 0.0138088i \(-0.995604\pi\)
0.859038 0.511911i \(-0.171062\pi\)
\(614\) −0.0339541 + 0.192563i −0.00137027 + 0.00777121i
\(615\) 0 0
\(616\) 0.0647813 + 0.0235785i 0.00261011 + 0.000950003i
\(617\) −37.1967 26.0454i −1.49748 1.04855i −0.981392 0.192014i \(-0.938498\pi\)
−0.516090 0.856535i \(-0.672613\pi\)
\(618\) 0.166711 + 0.208614i 0.00670608 + 0.00839169i
\(619\) −0.765342 + 0.912099i −0.0307617 + 0.0366604i −0.781206 0.624273i \(-0.785395\pi\)
0.750444 + 0.660934i \(0.229840\pi\)
\(620\) 0 0
\(621\) 29.7293 + 4.76791i 1.19300 + 0.191330i
\(622\) 0.226747 + 0.226747i 0.00909171 + 0.00909171i
\(623\) −0.0650434 0.743449i −0.00260591 0.0297857i
\(624\) 13.6468 5.97052i 0.546309 0.239012i
\(625\) 0 0
\(626\) 0.154339 0.424042i 0.00616861 0.0169481i
\(627\) 43.0232 + 1.02927i 1.71818 + 0.0411049i
\(628\) 2.67993 + 3.82734i 0.106941 + 0.152728i
\(629\) −2.85104 + 4.93815i −0.113678 + 0.196897i
\(630\) 0 0
\(631\) 10.8669 + 18.8220i 0.432605 + 0.749293i 0.997097 0.0761454i \(-0.0242613\pi\)
−0.564492 + 0.825438i \(0.690928\pi\)
\(632\) −0.0798737 + 0.171290i −0.00317721 + 0.00681354i
\(633\) 1.93988 9.64642i 0.0771034 0.383411i
\(634\) 0.260588 + 0.310556i 0.0103493 + 0.0123338i
\(635\) 0 0
\(636\) −17.7519 + 35.8073i −0.703908 + 1.41985i
\(637\) −13.5149 6.30211i −0.535481 0.249699i
\(638\) −0.0811322 + 0.302790i −0.00321206 + 0.0119876i
\(639\) −10.4470 + 11.3051i −0.413279 + 0.447225i
\(640\) 0 0
\(641\) 11.0540 + 1.94912i 0.436606 + 0.0769855i 0.387631 0.921815i \(-0.373293\pi\)
0.0489751 + 0.998800i \(0.484405\pi\)
\(642\) 0.339284 + 0.206860i 0.0133905 + 0.00816410i
\(643\) −21.6198 + 10.0815i −0.852602 + 0.397575i −0.799248 0.601001i \(-0.794769\pi\)
−0.0533535 + 0.998576i \(0.516991\pi\)
\(644\) −0.519308 2.94514i −0.0204636 0.116055i
\(645\) 0 0
\(646\) −0.117057 0.0982222i −0.00460553 0.00386450i
\(647\) 17.7336 17.7336i 0.697179 0.697179i −0.266622 0.963801i \(-0.585908\pi\)
0.963801 + 0.266622i \(0.0859076\pi\)
\(648\) −0.356785 + 0.418010i −0.0140158 + 0.0164210i
\(649\) 49.4134i 1.93965i
\(650\) 0 0
\(651\) 1.39306 1.89154i 0.0545984 0.0741355i
\(652\) 17.4057 24.8579i 0.681660 0.973511i
\(653\) −7.70684 16.5274i −0.301592 0.646766i 0.695855 0.718183i \(-0.255026\pi\)
−0.997447 + 0.0714165i \(0.977248\pi\)
\(654\) −0.308455 + 0.0747915i −0.0120616 + 0.00292458i
\(655\) 0 0
\(656\) 1.30364 + 0.752659i 0.0508987 + 0.0293864i
\(657\) 22.9931 + 36.4290i 0.897045 + 1.42123i
\(658\) −0.0152550 0.00408758i −0.000594704 0.000159350i
\(659\) 32.1808 11.7129i 1.25359 0.456269i 0.371975 0.928243i \(-0.378681\pi\)
0.881612 + 0.471974i \(0.156458\pi\)
\(660\) 0 0
\(661\) 3.43935 2.88596i 0.133775 0.112251i −0.573445 0.819244i \(-0.694393\pi\)
0.707220 + 0.706993i \(0.249949\pi\)
\(662\) −0.0132291 + 0.151210i −0.000514165 + 0.00587693i
\(663\) −6.43575 1.29422i −0.249944 0.0502634i
\(664\) −0.103736 0.285012i −0.00402573 0.0110606i
\(665\) 0 0
\(666\) 0.0187259 + 0.147011i 0.000725613 + 0.00569656i
\(667\) 26.2716 7.03946i 1.01724 0.272569i
\(668\) −31.7846 + 22.2558i −1.22978 + 0.861103i
\(669\) 16.5306 15.7581i 0.639110 0.609245i
\(670\) 0 0
\(671\) −52.2754 + 9.21756i −2.01807 + 0.355840i
\(672\) 0.0762502 + 0.0298368i 0.00294142 + 0.00115098i
\(673\) −15.0821 + 1.31952i −0.581374 + 0.0508636i −0.374050 0.927409i \(-0.622031\pi\)
−0.207324 + 0.978272i \(0.566475\pi\)
\(674\) 0.214165 0.00824933
\(675\) 0 0
\(676\) −16.7465 −0.644096
\(677\) 9.69800 0.848465i 0.372724 0.0326092i 0.100745 0.994912i \(-0.467877\pi\)
0.271979 + 0.962303i \(0.412322\pi\)
\(678\) 0.191879 0.153337i 0.00736908 0.00588888i
\(679\) −1.19775 + 0.211196i −0.0459656 + 0.00810497i
\(680\) 0 0
\(681\) −24.2186 7.11435i −0.928058 0.272622i
\(682\) 0.287495 0.201306i 0.0110088 0.00770842i
\(683\) 22.4891 6.02595i 0.860523 0.230577i 0.198538 0.980093i \(-0.436381\pi\)
0.661985 + 0.749517i \(0.269714\pi\)
\(684\) 34.0365 + 1.62948i 1.30142 + 0.0623045i
\(685\) 0 0
\(686\) −0.0187764 0.0515877i −0.000716886 0.00196963i
\(687\) 9.53332 10.8247i 0.363719 0.412987i
\(688\) −3.17388 + 36.2776i −0.121003 + 1.38307i
\(689\) −19.0107 + 15.9519i −0.724249 + 0.607717i
\(690\) 0 0
\(691\) −4.24724 + 1.54587i −0.161573 + 0.0588077i −0.421540 0.906810i \(-0.638510\pi\)
0.259968 + 0.965617i \(0.416288\pi\)
\(692\) −11.2303 3.00916i −0.426913 0.114391i
\(693\) 3.22585 + 1.03204i 0.122540 + 0.0392039i
\(694\) −0.0807256 0.0466069i −0.00306430 0.00176918i
\(695\) 0 0
\(696\) −0.139920 + 0.476314i −0.00530365 + 0.0180546i
\(697\) −0.280365 0.601245i −0.0106196 0.0227738i
\(698\) 0.0334725 0.0478038i 0.00126695 0.00180940i
\(699\) −47.5982 5.31414i −1.80033 0.200999i
\(700\) 0 0
\(701\) 28.3612i 1.07119i 0.844476 + 0.535593i \(0.179912\pi\)
−0.844476 + 0.535593i \(0.820088\pi\)
\(702\) −0.153494 + 0.0744950i −0.00579325 + 0.00281163i
\(703\) 12.9958 12.9958i 0.490147 0.490147i
\(704\) −26.7896 22.4791i −1.00967 0.847214i
\(705\) 0 0
\(706\) −0.00590457 0.0334865i −0.000222221 0.00126028i
\(707\) −0.675769 + 0.315116i −0.0254149 + 0.0118512i
\(708\) −0.935750 + 39.1142i −0.0351676 + 1.47000i
\(709\) −27.9978 4.93677i −1.05148 0.185404i −0.378907 0.925435i \(-0.623700\pi\)
−0.672574 + 0.740030i \(0.734811\pi\)
\(710\) 0 0
\(711\) −3.58937 + 8.56349i −0.134612 + 0.321156i
\(712\) 0.0457011 0.170559i 0.00171272 0.00639196i
\(713\) −27.5987 12.8695i −1.03358 0.481966i
\(714\) −0.00666022 0.0100132i −0.000249253 0.000374736i
\(715\) 0 0
\(716\) 12.2880 + 14.6443i 0.459224 + 0.547282i
\(717\) −35.5840 + 11.9958i −1.32891 + 0.447991i
\(718\) −0.0761394 + 0.163281i −0.00284150 + 0.00609361i
\(719\) −8.97949 15.5529i −0.334878 0.580026i 0.648583 0.761144i \(-0.275362\pi\)
−0.983461 + 0.181118i \(0.942029\pi\)
\(720\) 0 0
\(721\) 1.30318 2.25717i 0.0485328 0.0840612i
\(722\) 0.116124 + 0.165843i 0.00432170 + 0.00617202i
\(723\) 4.70723 7.72062i 0.175064 0.287133i
\(724\) −9.49171 + 26.0783i −0.352757 + 0.969191i
\(725\) 0 0
\(726\) 0.173229 + 0.127578i 0.00642914 + 0.00473486i
\(727\) −2.47494 28.2887i −0.0917905 1.04917i −0.892780 0.450492i \(-0.851249\pi\)
0.800990 0.598678i \(-0.204307\pi\)
\(728\) 0.0239671 + 0.0239671i 0.000888279 + 0.000888279i
\(729\) −16.7054 + 21.2115i −0.618720 + 0.785612i
\(730\) 0 0
\(731\) 10.3159 12.2941i 0.381549 0.454712i
\(732\) −41.5542 + 6.30641i −1.53589 + 0.233092i
\(733\) 8.28966 + 5.80448i 0.306185 + 0.214393i 0.716563 0.697522i \(-0.245714\pi\)
−0.410378 + 0.911916i \(0.634603\pi\)
\(734\) 0.0304169 + 0.0110708i 0.00112271 + 0.000408632i
\(735\) 0 0
\(736\) 0.184310 1.04527i 0.00679374 0.0385292i
\(737\) −2.07915 7.75949i −0.0765865 0.285825i
\(738\) −0.0152602 0.00802570i −0.000561736 0.000295430i
\(739\) 35.8294 20.6861i 1.31801 0.760951i 0.334598 0.942361i \(-0.391399\pi\)
0.983408 + 0.181410i \(0.0580660\pi\)
\(740\) 0 0
\(741\) 18.9571 + 9.39823i 0.696408 + 0.345252i
\(742\) −0.0452897 0.00396233i −0.00166264 0.000145462i
\(743\) 7.70953 + 0.674496i 0.282835 + 0.0247449i 0.227691 0.973734i \(-0.426882\pi\)
0.0551445 + 0.998478i \(0.482438\pi\)
\(744\) 0.462798 0.307826i 0.0169670 0.0112855i
\(745\) 0 0
\(746\) −0.0438849 + 0.0253370i −0.00160674 + 0.000927653i
\(747\) −5.64445 13.7906i −0.206520 0.504573i
\(748\) 3.98985 + 14.8903i 0.145883 + 0.544444i
\(749\) 0.673470 3.81944i 0.0246080 0.139559i
\(750\) 0 0
\(751\) −38.8916 14.1554i −1.41918 0.516537i −0.485367 0.874311i \(-0.661314\pi\)
−0.933808 + 0.357773i \(0.883536\pi\)
\(752\) 13.1292 + 9.19318i 0.478773 + 0.335241i
\(753\) 8.80223 22.4948i 0.320771 0.819755i
\(754\) −0.0990675 + 0.118064i −0.00360782 + 0.00429964i
\(755\) 0 0
\(756\) 2.53394 + 0.878020i 0.0921587 + 0.0319333i
\(757\) 10.7021 + 10.7021i 0.388975 + 0.388975i 0.874322 0.485347i \(-0.161307\pi\)
−0.485347 + 0.874322i \(0.661307\pi\)
\(758\) −0.0209745 0.239740i −0.000761830 0.00870775i
\(759\) 4.87143 43.6329i 0.176822 1.58377i
\(760\) 0 0
\(761\) 16.8761 46.3666i 0.611756 1.68079i −0.114551 0.993417i \(-0.536543\pi\)
0.726308 0.687370i \(-0.241235\pi\)
\(762\) 0.246249 + 0.451100i 0.00892067 + 0.0163416i
\(763\) 1.77680 + 2.53754i 0.0643246 + 0.0918651i
\(764\) 11.8764 20.5705i 0.429673 0.744215i
\(765\) 0 0
\(766\) 0.210244 + 0.364154i 0.00759643 + 0.0131574i
\(767\) −10.2674 + 22.0185i −0.370733 + 0.795040i
\(768\) −20.7729 18.2947i −0.749578 0.660155i
\(769\) −4.55804 5.43206i −0.164367 0.195885i 0.677574 0.735455i \(-0.263031\pi\)
−0.841941 + 0.539570i \(0.818587\pi\)
\(770\) 0 0
\(771\) 16.2017 1.02771i 0.583489 0.0370121i
\(772\) 21.9426 + 10.2320i 0.789733 + 0.368259i
\(773\) −2.31145 + 8.62644i −0.0831370 + 0.310272i −0.994955 0.100323i \(-0.968012\pi\)
0.911818 + 0.410595i \(0.134679\pi\)
\(774\) 0.0199462 0.416635i 0.000716950 0.0149756i
\(775\) 0 0
\(776\) −0.283394 0.0499700i −0.0101733 0.00179382i
\(777\) 1.26958 0.693047i 0.0455459 0.0248629i
\(778\) −0.415360 + 0.193686i −0.0148914 + 0.00694397i
\(779\) 0.371305 + 2.10578i 0.0133034 + 0.0754473i
\(780\) 0 0
\(781\) 17.1943 + 14.4277i 0.615260 + 0.516264i
\(782\) −0.110231 + 0.110231i −0.00394186 + 0.00394186i
\(783\) −5.94640 + 23.6538i −0.212507 + 0.845316i
\(784\) 27.7239i 0.990139i
\(785\) 0 0
\(786\) 0.0483992 + 0.110626i 0.00172634 + 0.00394589i
\(787\) −0.397947 + 0.568328i −0.0141853 + 0.0202587i −0.826182 0.563403i \(-0.809492\pi\)
0.811997 + 0.583662i \(0.198381\pi\)
\(788\) 5.02416 + 10.7743i 0.178978 + 0.383820i
\(789\) 11.9944 + 12.5823i 0.427010 + 0.447942i
\(790\) 0 0
\(791\) −2.07610 1.19864i −0.0738175 0.0426186i
\(792\) 0.633705 + 0.490506i 0.0225177 + 0.0174294i
\(793\) −25.2090 6.75473i −0.895198 0.239868i
\(794\) −0.0686278 + 0.0249785i −0.00243551 + 0.000886453i
\(795\) 0 0
\(796\) 8.57065 7.19163i 0.303778 0.254900i
\(797\) −3.24018 + 37.0354i −0.114773 + 1.31186i 0.692385 + 0.721528i \(0.256560\pi\)
−0.807158 + 0.590335i \(0.798996\pi\)
\(798\) 0.0123824 + 0.0367309i 0.000438332 + 0.00130026i
\(799\) −2.41587 6.63755i −0.0854673 0.234820i
\(800\) 0 0
\(801\) 1.91321 8.46143i 0.0676001 0.298970i
\(802\) −0.126862 + 0.0339926i −0.00447965 + 0.00120032i
\(803\) 51.4551 36.0293i 1.81581 1.27145i
\(804\) −1.49885 6.18157i −0.0528605 0.218007i
\(805\) 0 0
\(806\) 0.169936 0.0299642i 0.00598573 0.00105544i
\(807\) 0.480482 + 3.16599i 0.0169138 + 0.111448i
\(808\) −0.175748 + 0.0153759i −0.00618279 + 0.000540924i
\(809\) 9.19706 0.323351 0.161676 0.986844i \(-0.448310\pi\)
0.161676 + 0.986844i \(0.448310\pi\)
\(810\) 0 0
\(811\) −3.49413 −0.122695 −0.0613477 0.998116i \(-0.519540\pi\)
−0.0613477 + 0.998116i \(0.519540\pi\)
\(812\) 2.41327 0.211134i 0.0846893 0.00740935i
\(813\) −3.64016 23.9858i −0.127666 0.841219i
\(814\) 0.212814 0.0375249i 0.00745914 0.00131525i
\(815\) 0 0
\(816\) 2.87594 + 11.8609i 0.100678 + 0.415216i
\(817\) −42.3732 + 29.6700i −1.48245 + 1.03802i
\(818\) −0.124745 + 0.0334253i −0.00436160 + 0.00116869i
\(819\) 1.22299 + 1.13016i 0.0427346 + 0.0394908i
\(820\) 0 0
\(821\) −5.34053 14.6730i −0.186386 0.512091i 0.810944 0.585124i \(-0.198954\pi\)
−0.997329 + 0.0730336i \(0.976732\pi\)
\(822\) −0.0590967 0.175303i −0.00206123 0.00611440i
\(823\) 2.60641 29.7914i 0.0908536 1.03846i −0.804752 0.593612i \(-0.797702\pi\)
0.895605 0.444850i \(-0.146743\pi\)
\(824\) 0.472400 0.396391i 0.0164568 0.0138089i
\(825\) 0 0
\(826\) −0.0418223 + 0.0152221i −0.00145519 + 0.000529644i
\(827\) −35.9960 9.64511i −1.25171 0.335393i −0.428710 0.903442i \(-0.641032\pi\)
−0.822995 + 0.568049i \(0.807699\pi\)
\(828\) 4.68237 34.4463i 0.162724 1.19709i
\(829\) 6.82502 + 3.94043i 0.237043 + 0.136857i 0.613817 0.789448i \(-0.289633\pi\)
−0.376774 + 0.926305i \(0.622967\pi\)
\(830\) 0 0
\(831\) −21.7347 22.8001i −0.753968 0.790927i
\(832\) −7.26652 15.5831i −0.251921 0.540247i
\(833\) 7.00798 10.0084i 0.242812 0.346771i
\(834\) 0.0865115 + 0.197739i 0.00299565 + 0.00684714i
\(835\) 0 0
\(836\) 49.6874i 1.71847i
\(837\) 22.1231 16.0078i 0.764687 0.553310i
\(838\) −0.0948142 + 0.0948142i −0.00327530 + 0.00327530i
\(839\) 26.9906 + 22.6478i 0.931819 + 0.781889i 0.976143 0.217128i \(-0.0696689\pi\)
−0.0443239 + 0.999017i \(0.514113\pi\)
\(840\) 0 0
\(841\) −1.21001 6.86229i −0.0417244 0.236631i
\(842\) 0.00793494 0.00370012i 0.000273456 0.000127515i
\(843\) −39.9202 + 21.7919i −1.37493 + 0.750554i
\(844\) −11.1878 1.97271i −0.385100 0.0679035i
\(845\) 0 0
\(846\) −0.154417 0.0992895i −0.00530895 0.00341364i
\(847\) 0.543456 2.02821i 0.0186734 0.0696900i
\(848\) 41.8153 + 19.4988i 1.43594 + 0.669592i
\(849\) −31.7084 + 2.01134i −1.08823 + 0.0690290i
\(850\) 0 0
\(851\) −12.0521 14.3631i −0.413141 0.492362i
\(852\) 13.3373 + 11.7462i 0.456928 + 0.402417i
\(853\) 10.3392 22.1725i 0.354007 0.759171i −0.645984 0.763351i \(-0.723553\pi\)
0.999991 + 0.00417979i \(0.00133047\pi\)
\(854\) −0.0239053 0.0414051i −0.000818021 0.00141685i
\(855\) 0 0
\(856\) 0.458819 0.794697i 0.0156821 0.0271622i
\(857\) −2.59518 3.70630i −0.0886496 0.126605i 0.772378 0.635164i \(-0.219067\pi\)
−0.861027 + 0.508559i \(0.830178\pi\)
\(858\) 0.119204 + 0.218368i 0.00406956 + 0.00745495i
\(859\) 3.10612 8.53399i 0.105979 0.291176i −0.875356 0.483478i \(-0.839373\pi\)
0.981336 + 0.192302i \(0.0615954\pi\)
\(860\) 0 0
\(861\) −0.0186720 + 0.167243i −0.000636340 + 0.00569963i
\(862\) −0.0332801 0.380394i −0.00113353 0.0129563i
\(863\) 21.0851 + 21.0851i 0.717746 + 0.717746i 0.968143 0.250398i \(-0.0805613\pi\)
−0.250398 + 0.968143i \(0.580561\pi\)
\(864\) 0.738515 + 0.600418i 0.0251248 + 0.0204266i
\(865\) 0 0
\(866\) 0.346801 0.413302i 0.0117848 0.0140446i
\(867\) −8.76965 + 22.4115i −0.297833 + 0.761136i
\(868\) −2.22175 1.55569i −0.0754113 0.0528035i
\(869\) 12.7229 + 4.63076i 0.431595 + 0.157088i
\(870\) 0 0
\(871\) 0.685845 3.88962i 0.0232390 0.131795i
\(872\) 0.189700 + 0.707971i 0.00642406 + 0.0239749i
\(873\) −14.0089 1.90426i −0.474130 0.0644496i
\(874\) 0.435146 0.251232i 0.0147190 0.00849804i
\(875\) 0 0
\(876\) 41.4127 27.5453i 1.39921 0.930671i
\(877\) 45.5933 + 3.98890i 1.53958 + 0.134696i 0.825110 0.564973i \(-0.191113\pi\)
0.714468 + 0.699668i \(0.246669\pi\)
\(878\) 0.0717992 + 0.00628162i 0.00242311 + 0.000211994i
\(879\) 16.3083 + 8.08503i 0.550065 + 0.272701i
\(880\) 0 0
\(881\) −33.3855 + 19.2752i −1.12479 + 0.649396i −0.942619 0.333871i \(-0.891645\pi\)
−0.182169 + 0.983267i \(0.558312\pi\)
\(882\) −0.0125173 0.317304i −0.000421480 0.0106842i
\(883\) 4.85682 + 18.1259i 0.163445 + 0.609986i 0.998233 + 0.0594144i \(0.0189233\pi\)
−0.834788 + 0.550571i \(0.814410\pi\)
\(884\) −1.31612 + 7.46412i −0.0442661 + 0.251045i
\(885\) 0 0
\(886\) −0.424182 0.154390i −0.0142507 0.00518682i
\(887\) −30.0349 21.0306i −1.00847 0.706140i −0.0522057 0.998636i \(-0.516625\pi\)
−0.956267 + 0.292496i \(0.905514\pi\)
\(888\) 0.338357 0.0513501i 0.0113545 0.00172320i
\(889\) 3.22424 3.84250i 0.108137 0.128873i
\(890\) 0 0
\(891\) 32.0592 + 22.8522i 1.07402 + 0.765579i
\(892\) −18.6451 18.6451i −0.624283 0.624283i
\(893\) 1.98428 + 22.6804i 0.0664014 + 0.758972i
\(894\) −0.410593 0.302389i −0.0137323 0.0101134i
\(895\) 0 0
\(896\) 0.0431100 0.118444i 0.00144021 0.00395693i
\(897\) 11.2370 18.4305i 0.375191 0.615375i
\(898\) −0.0589716 0.0842201i −0.00196791 0.00281046i
\(899\) 12.3336 21.3624i 0.411349 0.712477i
\(900\) 0 0
\(901\) −10.1666 17.6091i −0.338700 0.586645i
\(902\) −0.0106253 + 0.0227860i −0.000353783 + 0.000758690i
\(903\) −3.85772 + 1.30048i −0.128377 + 0.0432773i
\(904\) −0.364593 0.434505i −0.0121262 0.0144514i
\(905\) 0 0
\(906\) 0.219969 + 0.330710i 0.00730799 + 0.0109871i
\(907\) 17.4935 + 8.15736i 0.580863 + 0.270861i 0.690762 0.723082i \(-0.257275\pi\)
−0.109900 + 0.993943i \(0.535053\pi\)
\(908\) −7.54288 + 28.1504i −0.250319 + 0.934204i
\(909\) −8.59788 + 1.09518i −0.285174 + 0.0363247i
\(910\) 0 0
\(911\) 39.2363 + 6.91842i 1.29996 + 0.229217i 0.780433 0.625239i \(-0.214999\pi\)
0.519523 + 0.854456i \(0.326110\pi\)
\(912\) 0.940828 39.3265i 0.0311539 1.30223i
\(913\) −19.6923 + 9.18269i −0.651721 + 0.303903i
\(914\) 0.0961236 + 0.545144i 0.00317949 + 0.0180318i
\(915\) 0 0
\(916\) −12.7575 10.7048i −0.421519 0.353696i
\(917\) 0.833342 0.833342i 0.0275194 0.0275194i
\(918\) −0.0382707 0.134452i −0.00126312 0.00443757i
\(919\) 43.5953i 1.43808i 0.694971 + 0.719038i \(0.255417\pi\)
−0.694971 + 0.719038i \(0.744583\pi\)
\(920\) 0 0
\(921\) 22.0468 + 2.46144i 0.726468 + 0.0811071i
\(922\) 0.231352 0.330404i 0.00761916 0.0108813i
\(923\) 4.66385 + 10.0017i 0.153513 + 0.329209i
\(924\) 1.10214 3.75189i 0.0362577 0.123428i
\(925\) 0 0
\(926\) 0.159010 + 0.0918044i 0.00522539 + 0.00301688i
\(927\) 22.4230 20.3741i 0.736468 0.669174i
\(928\) 0.830480 + 0.222526i 0.0272618 + 0.00730479i
\(929\) −32.4046 + 11.7943i −1.06316 + 0.386959i −0.813615 0.581404i \(-0.802504\pi\)
−0.249546 + 0.968363i \(0.580281\pi\)
\(930\) 0 0
\(931\) −30.1676 + 25.3136i −0.988703 + 0.829620i
\(932\) −4.81942 + 55.0863i −0.157865 + 1.80441i
\(933\) 24.0449 27.3019i 0.787194 0.893825i
\(934\) 0.0577199 + 0.158584i 0.00188865 + 0.00518903i
\(935\) 0 0
\(936\) 0.180457 + 0.350242i 0.00589842 + 0.0114480i
\(937\) 44.7642 11.9945i 1.46238 0.391845i 0.562072 0.827089i \(-0.310005\pi\)
0.900313 + 0.435244i \(0.143338\pi\)
\(938\) 0.00592696 0.00415010i 0.000193522 0.000135506i
\(939\) −49.1206 14.4295i −1.60299 0.470888i
\(940\) 0 0
\(941\) 8.77614 1.54747i 0.286094 0.0504461i −0.0287596 0.999586i \(-0.509156\pi\)
0.314854 + 0.949140i \(0.398045\pi\)
\(942\) −0.0482638 + 0.0385693i −0.00157252 + 0.00125665i
\(943\) 2.17311 0.190123i 0.0707662 0.00619124i
\(944\) 45.1676 1.47008
\(945\) 0 0
\(946\) −0.608216 −0.0197748
\(947\) −36.6998 + 3.21081i −1.19258 + 0.104337i −0.666109 0.745854i \(-0.732041\pi\)
−0.526473 + 0.850192i \(0.676486\pi\)
\(948\) 9.98340 + 3.90651i 0.324246 + 0.126878i
\(949\) 30.4146 5.36292i 0.987300 0.174088i
\(950\) 0 0
\(951\) 33.2912 31.7355i 1.07954 1.02910i
\(952\) −0.0227488 + 0.0159289i −0.000737292 + 0.000516257i
\(953\) 27.9077 7.47785i 0.904020 0.242231i 0.223278 0.974755i \(-0.428324\pi\)
0.680742 + 0.732523i \(0.261658\pi\)
\(954\) −0.487387 0.204287i −0.0157797 0.00661404i
\(955\) 0 0
\(956\) 14.8286 + 40.7411i 0.479590 + 1.31766i
\(957\) 34.8661 + 7.01153i 1.12706 + 0.226650i
\(958\) 0.00563868 0.0644504i 0.000182177 0.00208230i
\(959\) −1.38314 + 1.16060i −0.0446641 + 0.0374776i
\(960\) 0 0
\(961\) 3.17820 1.15677i 0.102522 0.0373151i
\(962\) 0.102627 + 0.0274987i 0.00330881 + 0.000886594i
\(963\) 20.9849 39.9011i 0.676229 1.28580i
\(964\) −9.04140 5.22006i −0.291204 0.168127i
\(965\) 0 0
\(966\) 0.0384305 0.00931830i 0.00123648 0.000299811i
\(967\) −8.87400 19.0304i −0.285369 0.611975i 0.710407 0.703791i \(-0.248511\pi\)
−0.995776 + 0.0918158i \(0.970733\pi\)
\(968\) 0.284960 0.406964i 0.00915895 0.0130803i
\(969\) −10.2805 + 13.9592i −0.330257 + 0.448434i
\(970\) 0 0
\(971\) 58.1766i 1.86697i 0.358610 + 0.933487i \(0.383251\pi\)
−0.358610 + 0.933487i \(0.616749\pi\)
\(972\) 24.9444 + 18.6963i 0.800091 + 0.599684i
\(973\) 1.48956 1.48956i 0.0477531 0.0477531i
\(974\) −0.277273 0.232660i −0.00888441 0.00745490i
\(975\) 0 0
\(976\) 8.42555 + 47.7837i 0.269695 + 1.52952i
\(977\) 39.2996 18.3257i 1.25731 0.586291i 0.324232 0.945977i \(-0.394894\pi\)
0.933073 + 0.359686i \(0.117116\pi\)
\(978\) 0.342605 + 0.208885i 0.0109553 + 0.00667939i
\(979\) −12.4574 2.19657i −0.398140 0.0702028i
\(980\) 0 0
\(981\) 10.6836 + 34.3877i 0.341103 + 1.09791i
\(982\) 0.00805718 0.0300698i 0.000257115 0.000959566i
\(983\) 47.1628 + 21.9924i 1.50426 + 0.701447i 0.987924 0.154940i \(-0.0495183\pi\)
0.516335 + 0.856387i \(0.327296\pi\)
\(984\) −0.0176854 + 0.0356731i −0.000563788 + 0.00113722i
\(985\) 0 0
\(986\) −0.0811698 0.0967344i −0.00258497 0.00308065i
\(987\) −0.353252 + 1.75661i −0.0112441 + 0.0559135i
\(988\) 10.3243 22.1405i 0.328460 0.704384i
\(989\) 26.3860 + 45.7019i 0.839026 + 1.45324i
\(990\) 0 0
\(991\) −1.64852 + 2.85532i −0.0523670 + 0.0907023i −0.891021 0.453963i \(-0.850010\pi\)
0.838654 + 0.544665i \(0.183343\pi\)
\(992\) −0.552136 0.788532i −0.0175303 0.0250359i
\(993\) 17.2158 + 0.411861i 0.546325 + 0.0130700i
\(994\) −0.00691448 + 0.0189974i −0.000219314 + 0.000602560i
\(995\) 0 0
\(996\) −15.7618 + 6.89584i −0.499431 + 0.218503i
\(997\) −2.04371 23.3597i −0.0647248 0.739808i −0.957335 0.288979i \(-0.906684\pi\)
0.892610 0.450829i \(-0.148871\pi\)
\(998\) −0.147387 0.147387i −0.00466546 0.00466546i
\(999\) 16.5109 3.17609i 0.522380 0.100487i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 675.2.ba.b.632.8 192
5.2 odd 4 135.2.q.a.38.8 yes 192
5.3 odd 4 inner 675.2.ba.b.443.9 192
5.4 even 2 135.2.q.a.92.9 yes 192
15.2 even 4 405.2.r.a.278.9 192
15.14 odd 2 405.2.r.a.197.8 192
27.5 odd 18 inner 675.2.ba.b.32.9 192
135.22 odd 36 405.2.r.a.368.8 192
135.32 even 36 135.2.q.a.113.9 yes 192
135.49 even 18 405.2.r.a.287.9 192
135.59 odd 18 135.2.q.a.32.8 192
135.113 even 36 inner 675.2.ba.b.518.8 192
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
135.2.q.a.32.8 192 135.59 odd 18
135.2.q.a.38.8 yes 192 5.2 odd 4
135.2.q.a.92.9 yes 192 5.4 even 2
135.2.q.a.113.9 yes 192 135.32 even 36
405.2.r.a.197.8 192 15.14 odd 2
405.2.r.a.278.9 192 15.2 even 4
405.2.r.a.287.9 192 135.49 even 18
405.2.r.a.368.8 192 135.22 odd 36
675.2.ba.b.32.9 192 27.5 odd 18 inner
675.2.ba.b.443.9 192 5.3 odd 4 inner
675.2.ba.b.518.8 192 135.113 even 36 inner
675.2.ba.b.632.8 192 1.1 even 1 trivial