Properties

Label 675.2.ba.b.518.8
Level $675$
Weight $2$
Character 675.518
Analytic conductor $5.390$
Analytic rank $0$
Dimension $192$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [675,2,Mod(32,675)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("675.32"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(675, base_ring=CyclotomicField(36)) chi = DirichletCharacter(H, H._module([10, 9])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 675 = 3^{3} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 675.ba (of order \(36\), degree \(12\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [192] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.38990213644\)
Analytic rank: \(0\)
Dimension: \(192\)
Relative dimension: \(16\) over \(\Q(\zeta_{36})\)
Twist minimal: no (minimal twist has level 135)
Sato-Tate group: $\mathrm{SU}(2)[C_{36}]$

Embedding invariants

Embedding label 518.8
Character \(\chi\) \(=\) 675.518
Dual form 675.2.ba.b.632.8

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.0152086 + 0.00133058i) q^{2} +(-0.259886 + 1.71244i) q^{3} +(-1.96939 - 0.347256i) q^{4} +(-0.00623106 + 0.0256981i) q^{6} +(-0.211408 - 0.148030i) q^{7} +(-0.0589827 - 0.0158044i) q^{8} +(-2.86492 - 0.890079i) q^{9} +(1.49616 - 4.11066i) q^{11} +(1.10647 - 3.28221i) q^{12} +(-0.187451 - 2.14258i) q^{13} +(-0.00301826 - 0.00253263i) q^{14} +(3.75746 + 1.36760i) q^{16} +(-1.70216 + 0.456091i) q^{17} +(-0.0423872 - 0.0173489i) q^{18} +(4.91894 - 2.83995i) q^{19} +(0.308434 - 0.323554i) q^{21} +(0.0282241 - 0.0605267i) q^{22} +(3.32360 + 4.74660i) q^{23} +(0.0423928 - 0.0968971i) q^{24} -0.0328351i q^{26} +(2.26876 - 4.67469i) q^{27} +(0.364940 + 0.364940i) q^{28} +(3.59567 - 3.01712i) q^{29} +(-0.912568 + 5.17543i) q^{31} +(0.166010 + 0.0774120i) q^{32} +(6.65044 + 3.63039i) q^{33} +(-0.0264943 + 0.00467167i) q^{34} +(5.33305 + 2.74777i) q^{36} +(0.837479 + 3.12552i) q^{37} +(0.0785891 - 0.0366467i) q^{38} +(3.71775 + 0.235826i) q^{39} +(0.241984 - 0.288386i) q^{41} +(0.00512138 - 0.00451041i) q^{42} +(-3.84888 - 8.25395i) q^{43} +(-4.37396 + 7.57592i) q^{44} +(0.0442317 + 0.0766116i) q^{46} +(2.29910 - 3.28345i) q^{47} +(-3.31845 + 6.07901i) q^{48} +(-2.37136 - 6.51526i) q^{49} +(-0.338664 - 3.03338i) q^{51} +(-0.374859 + 4.28465i) q^{52} +(8.15900 - 8.15900i) q^{53} +(0.0407248 - 0.0680769i) q^{54} +(0.0101299 + 0.0120724i) q^{56} +(3.58489 + 9.16146i) q^{57} +(0.0586997 - 0.0411020i) q^{58} +(10.6146 - 3.86341i) q^{59} +(-2.10712 - 11.9501i) q^{61} +(-0.0207652 + 0.0774969i) q^{62} +(0.473909 + 0.612263i) q^{63} +(-6.92336 - 3.99720i) q^{64} +(0.0963135 + 0.0640622i) q^{66} +(-1.82940 + 0.160052i) q^{67} +(3.51058 - 0.307136i) q^{68} +(-8.99203 + 4.45790i) q^{69} +(4.44360 + 2.56551i) q^{71} +(0.154913 + 0.0977775i) q^{72} +(-3.71651 + 13.8702i) q^{73} +(0.00857816 + 0.0486492i) q^{74} +(-10.6735 + 3.88483i) q^{76} +(-0.924799 + 0.647552i) q^{77} +(0.0562282 + 0.00853337i) q^{78} +(1.98949 + 2.37099i) q^{79} +(7.41552 + 5.10001i) q^{81} +(0.00406398 - 0.00406398i) q^{82} +(0.432904 - 4.94812i) q^{83} +(-0.719782 + 0.530096i) q^{84} +(-0.0475536 - 0.130653i) q^{86} +(4.23219 + 6.94148i) q^{87} +(-0.153214 + 0.218812i) q^{88} +(-1.44584 - 2.50426i) q^{89} +(-0.277536 + 0.480707i) q^{91} +(-4.89717 - 10.5020i) q^{92} +(-8.62546 - 2.90774i) q^{93} +(0.0393351 - 0.0468777i) q^{94} +(-0.175707 + 0.264165i) q^{96} +(4.27105 - 1.99162i) q^{97} +(-0.0273961 - 0.102243i) q^{98} +(-7.94518 + 10.4450i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 192 q + 12 q^{2} + 12 q^{3} - 36 q^{6} + 12 q^{7} + 18 q^{8} - 36 q^{11} + 12 q^{12} + 12 q^{13} - 24 q^{16} + 18 q^{17} + 54 q^{18} - 24 q^{21} + 12 q^{22} + 36 q^{23} + 36 q^{27} + 24 q^{28} - 24 q^{31}+ \cdots - 324 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/675\mathbb{Z}\right)^\times\).

\(n\) \(326\) \(352\)
\(\chi(n)\) \(e\left(\frac{5}{18}\right)\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.0152086 + 0.00133058i 0.0107541 + 0.000940864i 0.0925315 0.995710i \(-0.470504\pi\)
−0.0817774 + 0.996651i \(0.526060\pi\)
\(3\) −0.259886 + 1.71244i −0.150045 + 0.988679i
\(4\) −1.96939 0.347256i −0.984693 0.173628i
\(5\) 0 0
\(6\) −0.00623106 + 0.0256981i −0.00254382 + 0.0104912i
\(7\) −0.211408 0.148030i −0.0799048 0.0559499i 0.532941 0.846152i \(-0.321087\pi\)
−0.612846 + 0.790202i \(0.709975\pi\)
\(8\) −0.0589827 0.0158044i −0.0208535 0.00558769i
\(9\) −2.86492 0.890079i −0.954973 0.296693i
\(10\) 0 0
\(11\) 1.49616 4.11066i 0.451108 1.23941i −0.480836 0.876810i \(-0.659667\pi\)
0.931945 0.362600i \(-0.118111\pi\)
\(12\) 1.10647 3.28221i 0.319411 0.947493i
\(13\) −0.187451 2.14258i −0.0519896 0.594244i −0.976848 0.213933i \(-0.931373\pi\)
0.924859 0.380311i \(-0.124183\pi\)
\(14\) −0.00301826 0.00253263i −0.000806665 0.000676873i
\(15\) 0 0
\(16\) 3.75746 + 1.36760i 0.939364 + 0.341901i
\(17\) −1.70216 + 0.456091i −0.412833 + 0.110618i −0.459257 0.888303i \(-0.651884\pi\)
0.0464236 + 0.998922i \(0.485218\pi\)
\(18\) −0.0423872 0.0173489i −0.00999075 0.00408918i
\(19\) 4.91894 2.83995i 1.12848 0.651529i 0.184929 0.982752i \(-0.440794\pi\)
0.943553 + 0.331222i \(0.107461\pi\)
\(20\) 0 0
\(21\) 0.308434 0.323554i 0.0673059 0.0706052i
\(22\) 0.0282241 0.0605267i 0.00601740 0.0129043i
\(23\) 3.32360 + 4.74660i 0.693019 + 0.989734i 0.999286 + 0.0377879i \(0.0120311\pi\)
−0.306267 + 0.951946i \(0.599080\pi\)
\(24\) 0.0423928 0.0968971i 0.00865340 0.0197790i
\(25\) 0 0
\(26\) 0.0328351i 0.00643949i
\(27\) 2.26876 4.67469i 0.436623 0.899644i
\(28\) 0.364940 + 0.364940i 0.0689672 + 0.0689672i
\(29\) 3.59567 3.01712i 0.667699 0.560266i −0.244685 0.969603i \(-0.578684\pi\)
0.912383 + 0.409337i \(0.134240\pi\)
\(30\) 0 0
\(31\) −0.912568 + 5.17543i −0.163902 + 0.929534i 0.786287 + 0.617861i \(0.212001\pi\)
−0.950189 + 0.311673i \(0.899111\pi\)
\(32\) 0.166010 + 0.0774120i 0.0293468 + 0.0136846i
\(33\) 6.65044 + 3.63039i 1.15769 + 0.631969i
\(34\) −0.0264943 + 0.00467167i −0.00454374 + 0.000801184i
\(35\) 0 0
\(36\) 5.33305 + 2.74777i 0.888841 + 0.457962i
\(37\) 0.837479 + 3.12552i 0.137681 + 0.513832i 0.999972 + 0.00741968i \(0.00236178\pi\)
−0.862292 + 0.506412i \(0.830972\pi\)
\(38\) 0.0785891 0.0366467i 0.0127488 0.00594488i
\(39\) 3.71775 + 0.235826i 0.595317 + 0.0377624i
\(40\) 0 0
\(41\) 0.241984 0.288386i 0.0377916 0.0450383i −0.746818 0.665029i \(-0.768419\pi\)
0.784609 + 0.619991i \(0.212864\pi\)
\(42\) 0.00512138 0.00451041i 0.000790246 0.000695972i
\(43\) −3.84888 8.25395i −0.586948 1.25872i −0.945627 0.325254i \(-0.894550\pi\)
0.358678 0.933461i \(-0.383228\pi\)
\(44\) −4.37396 + 7.57592i −0.659400 + 1.14211i
\(45\) 0 0
\(46\) 0.0442317 + 0.0766116i 0.00652161 + 0.0112958i
\(47\) 2.29910 3.28345i 0.335358 0.478941i −0.615688 0.787990i \(-0.711122\pi\)
0.951046 + 0.309049i \(0.100011\pi\)
\(48\) −3.31845 + 6.07901i −0.478977 + 0.877429i
\(49\) −2.37136 6.51526i −0.338766 0.930751i
\(50\) 0 0
\(51\) −0.338664 3.03338i −0.0474224 0.424757i
\(52\) −0.374859 + 4.28465i −0.0519835 + 0.594174i
\(53\) 8.15900 8.15900i 1.12072 1.12072i 0.129092 0.991633i \(-0.458794\pi\)
0.991633 0.129092i \(-0.0412062\pi\)
\(54\) 0.0407248 0.0680769i 0.00554195 0.00926409i
\(55\) 0 0
\(56\) 0.0101299 + 0.0120724i 0.00135367 + 0.00161324i
\(57\) 3.58489 + 9.16146i 0.474830 + 1.21347i
\(58\) 0.0586997 0.0411020i 0.00770765 0.00539696i
\(59\) 10.6146 3.86341i 1.38191 0.502973i 0.459152 0.888358i \(-0.348153\pi\)
0.922756 + 0.385385i \(0.125931\pi\)
\(60\) 0 0
\(61\) −2.10712 11.9501i −0.269790 1.53005i −0.755040 0.655678i \(-0.772383\pi\)
0.485251 0.874375i \(-0.338728\pi\)
\(62\) −0.0207652 + 0.0774969i −0.00263719 + 0.00984212i
\(63\) 0.473909 + 0.612263i 0.0597070 + 0.0771379i
\(64\) −6.92336 3.99720i −0.865420 0.499650i
\(65\) 0 0
\(66\) 0.0963135 + 0.0640622i 0.0118554 + 0.00788551i
\(67\) −1.82940 + 0.160052i −0.223497 + 0.0195534i −0.198354 0.980130i \(-0.563560\pi\)
−0.0251426 + 0.999684i \(0.508004\pi\)
\(68\) 3.51058 0.307136i 0.425721 0.0372457i
\(69\) −8.99203 + 4.45790i −1.08251 + 0.536669i
\(70\) 0 0
\(71\) 4.44360 + 2.56551i 0.527358 + 0.304471i 0.739940 0.672673i \(-0.234854\pi\)
−0.212582 + 0.977143i \(0.568187\pi\)
\(72\) 0.154913 + 0.0977775i 0.0182567 + 0.0115232i
\(73\) −3.71651 + 13.8702i −0.434984 + 1.62338i 0.306120 + 0.951993i \(0.400969\pi\)
−0.741104 + 0.671390i \(0.765697\pi\)
\(74\) 0.00857816 + 0.0486492i 0.000997191 + 0.00565535i
\(75\) 0 0
\(76\) −10.6735 + 3.88483i −1.22433 + 0.445620i
\(77\) −0.924799 + 0.647552i −0.105391 + 0.0737953i
\(78\) 0.0562282 + 0.00853337i 0.00636659 + 0.000966214i
\(79\) 1.98949 + 2.37099i 0.223835 + 0.266757i 0.866261 0.499591i \(-0.166516\pi\)
−0.642426 + 0.766348i \(0.722072\pi\)
\(80\) 0 0
\(81\) 7.41552 + 5.10001i 0.823946 + 0.566668i
\(82\) 0.00406398 0.00406398i 0.000448791 0.000448791i
\(83\) 0.432904 4.94812i 0.0475174 0.543127i −0.934707 0.355418i \(-0.884338\pi\)
0.982225 0.187708i \(-0.0601060\pi\)
\(84\) −0.719782 + 0.530096i −0.0785347 + 0.0578383i
\(85\) 0 0
\(86\) −0.0475536 0.130653i −0.00512784 0.0140886i
\(87\) 4.23219 + 6.94148i 0.453738 + 0.744205i
\(88\) −0.153214 + 0.218812i −0.0163326 + 0.0233254i
\(89\) −1.44584 2.50426i −0.153259 0.265452i 0.779165 0.626819i \(-0.215643\pi\)
−0.932424 + 0.361367i \(0.882310\pi\)
\(90\) 0 0
\(91\) −0.277536 + 0.480707i −0.0290937 + 0.0503917i
\(92\) −4.89717 10.5020i −0.510565 1.09491i
\(93\) −8.62546 2.90774i −0.894418 0.301519i
\(94\) 0.0393351 0.0468777i 0.00405710 0.00483507i
\(95\) 0 0
\(96\) −0.175707 + 0.264165i −0.0179331 + 0.0269612i
\(97\) 4.27105 1.99162i 0.433659 0.202219i −0.193516 0.981097i \(-0.561989\pi\)
0.627175 + 0.778879i \(0.284211\pi\)
\(98\) −0.0273961 0.102243i −0.00276742 0.0103282i
\(99\) −7.94518 + 10.4450i −0.798521 + 1.04976i
\(100\) 0 0
\(101\) 2.84523 0.501690i 0.283110 0.0499200i −0.0302897 0.999541i \(-0.509643\pi\)
0.313400 + 0.949621i \(0.398532\pi\)
\(102\) −0.00111446 0.0465841i −0.000110348 0.00461251i
\(103\) −9.15274 4.26799i −0.901846 0.420538i −0.0843263 0.996438i \(-0.526874\pi\)
−0.817520 + 0.575900i \(0.804652\pi\)
\(104\) −0.0228057 + 0.129337i −0.00223628 + 0.0126826i
\(105\) 0 0
\(106\) 0.134943 0.113231i 0.0131069 0.0109980i
\(107\) −10.6261 10.6261i −1.02727 1.02727i −0.999618 0.0276498i \(-0.991198\pi\)
−0.0276498 0.999618i \(-0.508802\pi\)
\(108\) −6.09138 + 8.41843i −0.586143 + 0.810064i
\(109\) 12.0030i 1.14968i 0.818265 + 0.574841i \(0.194936\pi\)
−0.818265 + 0.574841i \(0.805064\pi\)
\(110\) 0 0
\(111\) −5.56991 + 0.621858i −0.528673 + 0.0590241i
\(112\) −0.591912 0.845337i −0.0559304 0.0798769i
\(113\) 3.92562 8.41851i 0.369291 0.791947i −0.630584 0.776121i \(-0.717184\pi\)
0.999875 0.0158260i \(-0.00503778\pi\)
\(114\) 0.0423312 + 0.144103i 0.00396468 + 0.0134965i
\(115\) 0 0
\(116\) −8.12897 + 4.69326i −0.754756 + 0.435759i
\(117\) −1.37003 + 6.30515i −0.126659 + 0.582912i
\(118\) 0.166575 0.0446336i 0.0153344 0.00410885i
\(119\) 0.427365 + 0.155548i 0.0391765 + 0.0142591i
\(120\) 0 0
\(121\) −6.23254 5.22972i −0.566595 0.475429i
\(122\) −0.0161459 0.184548i −0.00146178 0.0167082i
\(123\) 0.430956 + 0.489332i 0.0388580 + 0.0441216i
\(124\) 3.59440 9.87552i 0.322786 0.886848i
\(125\) 0 0
\(126\) 0.00639285 + 0.00994226i 0.000569520 + 0.000885727i
\(127\) −18.7735 5.03035i −1.66588 0.446371i −0.701885 0.712290i \(-0.747658\pi\)
−0.963996 + 0.265918i \(0.914325\pi\)
\(128\) −0.400068 0.280131i −0.0353614 0.0247603i
\(129\) 15.1347 4.44590i 1.33253 0.391440i
\(130\) 0 0
\(131\) −4.49710 0.792959i −0.392913 0.0692812i −0.0262986 0.999654i \(-0.508372\pi\)
−0.366614 + 0.930373i \(0.619483\pi\)
\(132\) −11.8366 9.45903i −1.03024 0.823303i
\(133\) −1.46030 0.127760i −0.126624 0.0110782i
\(134\) −0.0280356 −0.00242191
\(135\) 0 0
\(136\) 0.107606 0.00922713
\(137\) 6.96948 + 0.609750i 0.595443 + 0.0520945i 0.380894 0.924619i \(-0.375616\pi\)
0.214549 + 0.976713i \(0.431172\pi\)
\(138\) −0.142688 + 0.0558340i −0.0121464 + 0.00475291i
\(139\) −8.03836 1.41738i −0.681805 0.120221i −0.177990 0.984032i \(-0.556959\pi\)
−0.503815 + 0.863812i \(0.668071\pi\)
\(140\) 0 0
\(141\) 5.02522 + 4.79040i 0.423200 + 0.403424i
\(142\) 0.0641675 + 0.0449306i 0.00538482 + 0.00377049i
\(143\) −9.08786 2.43508i −0.759965 0.203632i
\(144\) −9.54753 7.26250i −0.795628 0.605209i
\(145\) 0 0
\(146\) −0.0749784 + 0.206002i −0.00620526 + 0.0170488i
\(147\) 11.7733 2.36759i 0.971045 0.195276i
\(148\) −0.563966 6.44617i −0.0463578 0.529872i
\(149\) 14.7726 + 12.3956i 1.21021 + 1.01549i 0.999278 + 0.0379911i \(0.0120959\pi\)
0.210937 + 0.977500i \(0.432349\pi\)
\(150\) 0 0
\(151\) −14.1147 5.13734i −1.14864 0.418070i −0.303613 0.952795i \(-0.598193\pi\)
−0.845026 + 0.534725i \(0.820415\pi\)
\(152\) −0.335016 + 0.0897672i −0.0271734 + 0.00728108i
\(153\) 5.28249 + 0.208389i 0.427064 + 0.0168473i
\(154\) −0.0149266 + 0.00861785i −0.00120282 + 0.000694446i
\(155\) 0 0
\(156\) −7.23980 1.75544i −0.579648 0.140548i
\(157\) −0.987420 + 2.11753i −0.0788047 + 0.168997i −0.941762 0.336279i \(-0.890832\pi\)
0.862958 + 0.505276i \(0.168609\pi\)
\(158\) 0.0271027 + 0.0387066i 0.00215617 + 0.00307933i
\(159\) 11.8514 + 16.0922i 0.939878 + 1.27620i
\(160\) 0 0
\(161\) 1.49546i 0.117859i
\(162\) 0.105994 + 0.0874311i 0.00832767 + 0.00686924i
\(163\) −10.7302 10.7302i −0.840451 0.840451i 0.148467 0.988917i \(-0.452566\pi\)
−0.988917 + 0.148467i \(0.952566\pi\)
\(164\) −0.576705 + 0.483913i −0.0450331 + 0.0377872i
\(165\) 0 0
\(166\) 0.0131678 0.0746781i 0.00102202 0.00579615i
\(167\) 17.5852 + 8.20013i 1.36079 + 0.634545i 0.959578 0.281442i \(-0.0908126\pi\)
0.401208 + 0.915987i \(0.368590\pi\)
\(168\) −0.0233058 + 0.0142095i −0.00179808 + 0.00109628i
\(169\) 8.24701 1.45417i 0.634385 0.111859i
\(170\) 0 0
\(171\) −16.6201 + 3.75798i −1.27097 + 0.287380i
\(172\) 4.71370 + 17.5918i 0.359416 + 1.34136i
\(173\) 5.26921 2.45707i 0.400610 0.186808i −0.211862 0.977300i \(-0.567953\pi\)
0.612472 + 0.790492i \(0.290175\pi\)
\(174\) 0.0551296 + 0.111202i 0.00417936 + 0.00843018i
\(175\) 0 0
\(176\) 11.2435 13.3995i 0.847510 1.01002i
\(177\) 3.85728 + 19.1810i 0.289931 + 1.44173i
\(178\) −0.0186571 0.0400103i −0.00139841 0.00299890i
\(179\) −4.77974 + 8.27875i −0.357254 + 0.618783i −0.987501 0.157612i \(-0.949620\pi\)
0.630247 + 0.776395i \(0.282954\pi\)
\(180\) 0 0
\(181\) 6.93879 + 12.0183i 0.515756 + 0.893315i 0.999833 + 0.0182899i \(0.00582219\pi\)
−0.484077 + 0.875026i \(0.660844\pi\)
\(182\) −0.00486056 + 0.00694161i −0.000360289 + 0.000514546i
\(183\) 21.0115 0.502668i 1.55321 0.0371583i
\(184\) −0.121018 0.332494i −0.00892157 0.0245118i
\(185\) 0 0
\(186\) −0.127312 0.0556997i −0.00933500 0.00408410i
\(187\) −0.671857 + 7.67937i −0.0491311 + 0.561571i
\(188\) −5.66801 + 5.66801i −0.413382 + 0.413382i
\(189\) −1.17163 + 0.652424i −0.0852234 + 0.0474569i
\(190\) 0 0
\(191\) −7.63489 9.09890i −0.552441 0.658374i 0.415488 0.909599i \(-0.363611\pi\)
−0.967929 + 0.251225i \(0.919167\pi\)
\(192\) 8.64426 10.8170i 0.623846 0.780652i
\(193\) −9.91741 + 6.94425i −0.713871 + 0.499858i −0.873197 0.487368i \(-0.837957\pi\)
0.159325 + 0.987226i \(0.449068\pi\)
\(194\) 0.0676068 0.0246069i 0.00485389 0.00176667i
\(195\) 0 0
\(196\) 2.40766 + 13.6545i 0.171976 + 0.975323i
\(197\) −1.53862 + 5.74222i −0.109622 + 0.409116i −0.998828 0.0483907i \(-0.984591\pi\)
0.889206 + 0.457507i \(0.151257\pi\)
\(198\) −0.134733 + 0.148283i −0.00957508 + 0.0105380i
\(199\) −4.84519 2.79737i −0.343466 0.198300i 0.318337 0.947977i \(-0.396876\pi\)
−0.661804 + 0.749677i \(0.730209\pi\)
\(200\) 0 0
\(201\) 0.201356 3.17433i 0.0142025 0.223900i
\(202\) 0.0439395 0.00384421i 0.00309157 0.000270478i
\(203\) −1.20678 + 0.105579i −0.0846992 + 0.00741022i
\(204\) −0.386398 + 6.09149i −0.0270533 + 0.426490i
\(205\) 0 0
\(206\) −0.133522 0.0770888i −0.00930290 0.00537103i
\(207\) −5.29700 16.5569i −0.368167 1.15078i
\(208\) 2.22585 8.30699i 0.154335 0.575986i
\(209\) −4.31456 24.4691i −0.298444 1.69256i
\(210\) 0 0
\(211\) 5.33826 1.94297i 0.367501 0.133759i −0.151667 0.988432i \(-0.548464\pi\)
0.519168 + 0.854672i \(0.326242\pi\)
\(212\) −18.9015 + 13.2350i −1.29816 + 0.908980i
\(213\) −5.54813 + 6.94267i −0.380151 + 0.475704i
\(214\) −0.147470 0.175748i −0.0100808 0.0120139i
\(215\) 0 0
\(216\) −0.207698 + 0.239869i −0.0141321 + 0.0163210i
\(217\) 0.959041 0.959041i 0.0651039 0.0651039i
\(218\) −0.0159710 + 0.182550i −0.00108169 + 0.0123638i
\(219\) −22.7860 9.96897i −1.53974 0.673641i
\(220\) 0 0
\(221\) 1.29628 + 3.56150i 0.0871973 + 0.239573i
\(222\) −0.0855382 + 0.00204637i −0.00574095 + 0.000137344i
\(223\) 7.56295 10.8010i 0.506452 0.723289i −0.481773 0.876296i \(-0.660007\pi\)
0.988225 + 0.153007i \(0.0488958\pi\)
\(224\) −0.0236367 0.0409400i −0.00157929 0.00273542i
\(225\) 0 0
\(226\) 0.0709048 0.122811i 0.00471652 0.00816925i
\(227\) 6.15899 + 13.2080i 0.408787 + 0.876646i 0.997657 + 0.0684181i \(0.0217952\pi\)
−0.588870 + 0.808228i \(0.700427\pi\)
\(228\) −3.87866 19.2873i −0.256870 1.27733i
\(229\) 5.35302 6.37948i 0.353738 0.421568i −0.559605 0.828759i \(-0.689047\pi\)
0.913343 + 0.407191i \(0.133492\pi\)
\(230\) 0 0
\(231\) −0.868552 1.75196i −0.0571466 0.115270i
\(232\) −0.259766 + 0.121131i −0.0170545 + 0.00795262i
\(233\) 7.15675 + 26.7094i 0.468854 + 1.74979i 0.643784 + 0.765207i \(0.277363\pi\)
−0.174930 + 0.984581i \(0.555970\pi\)
\(234\) −0.0292258 + 0.0940698i −0.00191055 + 0.00614954i
\(235\) 0 0
\(236\) −22.2459 + 3.92255i −1.44808 + 0.255336i
\(237\) −4.57722 + 2.79071i −0.297322 + 0.181276i
\(238\) 0.00629266 + 0.00293432i 0.000407893 + 0.000190204i
\(239\) −3.76477 + 21.3510i −0.243522 + 1.38108i 0.580377 + 0.814348i \(0.302905\pi\)
−0.823899 + 0.566736i \(0.808206\pi\)
\(240\) 0 0
\(241\) 3.99926 3.35578i 0.257615 0.216165i −0.504828 0.863220i \(-0.668444\pi\)
0.762443 + 0.647055i \(0.224000\pi\)
\(242\) −0.0878299 0.0878299i −0.00564592 0.00564592i
\(243\) −10.6607 + 11.3732i −0.683882 + 0.729593i
\(244\) 24.2661i 1.55348i
\(245\) 0 0
\(246\) 0.00590315 + 0.00801549i 0.000376371 + 0.000511049i
\(247\) −7.00687 10.0068i −0.445837 0.636721i
\(248\) 0.135620 0.290838i 0.00861188 0.0184682i
\(249\) 8.36086 + 2.02727i 0.529848 + 0.128473i
\(250\) 0 0
\(251\) 12.0778 6.97313i 0.762345 0.440140i −0.0677923 0.997699i \(-0.521596\pi\)
0.830137 + 0.557560i \(0.188262\pi\)
\(252\) −0.720698 1.37035i −0.0453997 0.0863239i
\(253\) 24.4843 6.56054i 1.53931 0.412458i
\(254\) −0.278826 0.101484i −0.0174951 0.00636770i
\(255\) 0 0
\(256\) 12.2424 + 10.2726i 0.765152 + 0.642039i
\(257\) −0.816897 9.33717i −0.0509566 0.582437i −0.978156 0.207870i \(-0.933347\pi\)
0.927200 0.374567i \(-0.122209\pi\)
\(258\) 0.236093 0.0474781i 0.0146985 0.00295586i
\(259\) 0.285619 0.784731i 0.0177475 0.0487608i
\(260\) 0 0
\(261\) −12.9868 + 5.44338i −0.803861 + 0.336937i
\(262\) −0.0673396 0.0180436i −0.00416025 0.00111474i
\(263\) −8.22122 5.75656i −0.506942 0.354965i 0.291955 0.956432i \(-0.405694\pi\)
−0.798897 + 0.601467i \(0.794583\pi\)
\(264\) −0.334885 0.319236i −0.0206107 0.0196476i
\(265\) 0 0
\(266\) −0.0220392 0.00388610i −0.00135131 0.000238272i
\(267\) 4.66416 1.82509i 0.285442 0.111694i
\(268\) 3.65837 + 0.320066i 0.223470 + 0.0195511i
\(269\) −1.84882 −0.112724 −0.0563622 0.998410i \(-0.517950\pi\)
−0.0563622 + 0.998410i \(0.517950\pi\)
\(270\) 0 0
\(271\) 14.0068 0.850851 0.425426 0.904993i \(-0.360124\pi\)
0.425426 + 0.904993i \(0.360124\pi\)
\(272\) −7.01953 0.614129i −0.425621 0.0372370i
\(273\) −0.751055 0.600193i −0.0454559 0.0363254i
\(274\) 0.105185 + 0.0185469i 0.00635445 + 0.00112046i
\(275\) 0 0
\(276\) 19.2568 5.65680i 1.15912 0.340499i
\(277\) 14.8975 + 10.4313i 0.895103 + 0.626758i 0.927951 0.372703i \(-0.121569\pi\)
−0.0328481 + 0.999460i \(0.510458\pi\)
\(278\) −0.120367 0.0322521i −0.00721911 0.00193435i
\(279\) 7.22097 14.0149i 0.432308 0.839051i
\(280\) 0 0
\(281\) −8.98091 + 24.6748i −0.535756 + 1.47198i 0.316368 + 0.948637i \(0.397537\pi\)
−0.852124 + 0.523341i \(0.824686\pi\)
\(282\) 0.0700527 + 0.0795419i 0.00417158 + 0.00473665i
\(283\) 1.59875 + 18.2738i 0.0950360 + 1.08627i 0.882629 + 0.470071i \(0.155772\pi\)
−0.787593 + 0.616196i \(0.788673\pi\)
\(284\) −7.86028 6.59556i −0.466422 0.391374i
\(285\) 0 0
\(286\) −0.134974 0.0491264i −0.00798117 0.00290491i
\(287\) −0.0938472 + 0.0251463i −0.00553962 + 0.00148434i
\(288\) −0.406704 0.369541i −0.0239652 0.0217754i
\(289\) −12.0331 + 6.94732i −0.707830 + 0.408666i
\(290\) 0 0
\(291\) 2.30055 + 7.83152i 0.134861 + 0.459092i
\(292\) 12.1357 26.0252i 0.710191 1.52301i
\(293\) −6.02781 8.60861i −0.352149 0.502920i 0.603527 0.797343i \(-0.293762\pi\)
−0.955675 + 0.294422i \(0.904873\pi\)
\(294\) 0.182206 0.0203425i 0.0106265 0.00118640i
\(295\) 0 0
\(296\) 0.197587i 0.0114845i
\(297\) −15.8216 16.3202i −0.918064 0.946993i
\(298\) 0.208177 + 0.208177i 0.0120594 + 0.0120594i
\(299\) 9.54693 8.01082i 0.552113 0.463278i
\(300\) 0 0
\(301\) −0.408144 + 2.31470i −0.0235250 + 0.133417i
\(302\) −0.207830 0.0969127i −0.0119593 0.00557670i
\(303\) 0.119681 + 5.00267i 0.00687551 + 0.287396i
\(304\) 22.3666 3.94384i 1.28281 0.226195i
\(305\) 0 0
\(306\) 0.0800623 + 0.0101981i 0.00457685 + 0.000582987i
\(307\) −3.31491 12.3714i −0.189192 0.706074i −0.993694 0.112124i \(-0.964235\pi\)
0.804502 0.593949i \(-0.202432\pi\)
\(308\) 2.04615 0.954137i 0.116590 0.0543670i
\(309\) 9.68736 14.5643i 0.551095 0.828537i
\(310\) 0 0
\(311\) 13.5014 16.0903i 0.765592 0.912397i −0.232596 0.972573i \(-0.574722\pi\)
0.998188 + 0.0601768i \(0.0191664\pi\)
\(312\) −0.215556 0.0726664i −0.0122035 0.00411392i
\(313\) 12.4918 + 26.7887i 0.706078 + 1.51419i 0.851237 + 0.524781i \(0.175853\pi\)
−0.145159 + 0.989408i \(0.546369\pi\)
\(314\) −0.0178349 + 0.0308909i −0.00100648 + 0.00174327i
\(315\) 0 0
\(316\) −3.09474 5.36025i −0.174093 0.301538i
\(317\) 15.2311 21.7523i 0.855465 1.22173i −0.118027 0.993010i \(-0.537657\pi\)
0.973492 0.228720i \(-0.0734540\pi\)
\(318\) 0.158832 + 0.260510i 0.00890684 + 0.0146087i
\(319\) −7.02268 19.2947i −0.393195 1.08029i
\(320\) 0 0
\(321\) 20.9582 15.4351i 1.16977 0.861501i
\(322\) 0.00198984 0.0227439i 0.000110889 0.00126747i
\(323\) −7.07752 + 7.07752i −0.393804 + 0.393804i
\(324\) −12.8330 12.6190i −0.712945 0.701054i
\(325\) 0 0
\(326\) −0.148914 0.177468i −0.00824756 0.00982906i
\(327\) −20.5545 3.11942i −1.13667 0.172504i
\(328\) −0.0188306 + 0.0131854i −0.00103975 + 0.000728040i
\(329\) −0.972097 + 0.353814i −0.0535934 + 0.0195064i
\(330\) 0 0
\(331\) −1.72647 9.79132i −0.0948956 0.538179i −0.994779 0.102050i \(-0.967460\pi\)
0.899884 0.436130i \(-0.143651\pi\)
\(332\) −2.57082 + 9.59443i −0.141092 + 0.526563i
\(333\) 0.382646 9.69977i 0.0209689 0.531544i
\(334\) 0.256536 + 0.148111i 0.0140371 + 0.00810430i
\(335\) 0 0
\(336\) 1.60142 0.793923i 0.0873647 0.0433121i
\(337\) 13.9748 1.22264i 0.761258 0.0666015i 0.300086 0.953912i \(-0.402985\pi\)
0.461172 + 0.887311i \(0.347429\pi\)
\(338\) 0.127361 0.0111426i 0.00692750 0.000606078i
\(339\) 13.3960 + 8.91025i 0.727571 + 0.483938i
\(340\) 0 0
\(341\) 19.9091 + 11.4945i 1.07814 + 0.622463i
\(342\) −0.257770 + 0.0350393i −0.0139386 + 0.00189471i
\(343\) −0.930702 + 3.47343i −0.0502532 + 0.187547i
\(344\) 0.0965688 + 0.547669i 0.00520664 + 0.0295283i
\(345\) 0 0
\(346\) 0.0834068 0.0303576i 0.00448397 0.00163203i
\(347\) −5.00149 + 3.50208i −0.268494 + 0.188001i −0.700068 0.714076i \(-0.746847\pi\)
0.431574 + 0.902077i \(0.357958\pi\)
\(348\) −5.92434 15.1401i −0.317578 0.811595i
\(349\) 2.45708 + 2.92823i 0.131524 + 0.156745i 0.827787 0.561042i \(-0.189600\pi\)
−0.696263 + 0.717787i \(0.745155\pi\)
\(350\) 0 0
\(351\) −10.4412 3.98472i −0.557308 0.212689i
\(352\) 0.566592 0.566592i 0.0301995 0.0301995i
\(353\) −0.194119 + 2.21879i −0.0103319 + 0.118094i −0.999609 0.0279554i \(-0.991100\pi\)
0.989277 + 0.146050i \(0.0466559\pi\)
\(354\) 0.0331420 + 0.296849i 0.00176148 + 0.0157774i
\(355\) 0 0
\(356\) 1.97779 + 5.43394i 0.104823 + 0.287998i
\(357\) −0.377433 + 0.691413i −0.0199759 + 0.0365934i
\(358\) −0.0837088 + 0.119549i −0.00442415 + 0.00631834i
\(359\) −5.90045 10.2199i −0.311414 0.539385i 0.667255 0.744829i \(-0.267469\pi\)
−0.978669 + 0.205445i \(0.934136\pi\)
\(360\) 0 0
\(361\) 6.63064 11.4846i 0.348981 0.604453i
\(362\) 0.0895381 + 0.192015i 0.00470602 + 0.0100921i
\(363\) 10.5753 9.31374i 0.555062 0.488844i
\(364\) 0.713504 0.850321i 0.0373978 0.0445689i
\(365\) 0 0
\(366\) 0.320225 + 0.0203126i 0.0167384 + 0.00106176i
\(367\) 1.92158 0.896047i 0.100306 0.0467733i −0.371818 0.928306i \(-0.621265\pi\)
0.472123 + 0.881532i \(0.343488\pi\)
\(368\) 5.99683 + 22.3805i 0.312607 + 1.16666i
\(369\) −0.949952 + 0.610817i −0.0494525 + 0.0317978i
\(370\) 0 0
\(371\) −2.93265 + 0.517106i −0.152256 + 0.0268468i
\(372\) 15.9771 + 8.72170i 0.828376 + 0.452199i
\(373\) −3.00825 1.40277i −0.155762 0.0726328i 0.343174 0.939272i \(-0.388498\pi\)
−0.498936 + 0.866639i \(0.666276\pi\)
\(374\) −0.0204361 + 0.115899i −0.00105672 + 0.00599298i
\(375\) 0 0
\(376\) −0.187500 + 0.157331i −0.00966957 + 0.00811373i
\(377\) −7.13843 7.13843i −0.367648 0.367648i
\(378\) −0.0186870 + 0.00836353i −0.000961153 + 0.000430173i
\(379\) 15.7634i 0.809713i 0.914380 + 0.404856i \(0.132678\pi\)
−0.914380 + 0.404856i \(0.867322\pi\)
\(380\) 0 0
\(381\) 13.4932 30.8413i 0.691276 1.58005i
\(382\) −0.104009 0.148541i −0.00532158 0.00760001i
\(383\) 11.6401 24.9622i 0.594781 1.27551i −0.346552 0.938031i \(-0.612648\pi\)
0.941333 0.337480i \(-0.109575\pi\)
\(384\) 0.583680 0.612292i 0.0297858 0.0312459i
\(385\) 0 0
\(386\) −0.160070 + 0.0924166i −0.00814736 + 0.00470388i
\(387\) 3.68006 + 27.0727i 0.187068 + 1.37618i
\(388\) −9.10294 + 2.43913i −0.462132 + 0.123828i
\(389\) −28.2091 10.2673i −1.43026 0.520571i −0.493252 0.869886i \(-0.664192\pi\)
−0.937005 + 0.349315i \(0.886414\pi\)
\(390\) 0 0
\(391\) −7.82217 6.56358i −0.395584 0.331934i
\(392\) 0.0368997 + 0.421765i 0.00186372 + 0.0213024i
\(393\) 2.52663 7.49494i 0.127452 0.378070i
\(394\) −0.0310408 + 0.0852840i −0.00156382 + 0.00429655i
\(395\) 0 0
\(396\) 19.2742 17.8112i 0.968566 0.895048i
\(397\) −4.62074 1.23812i −0.231908 0.0621397i 0.140993 0.990011i \(-0.454970\pi\)
−0.372902 + 0.927871i \(0.621637\pi\)
\(398\) −0.0699666 0.0489911i −0.00350711 0.00245570i
\(399\) 0.598293 2.46748i 0.0299521 0.123528i
\(400\) 0 0
\(401\) −8.47214 1.49387i −0.423078 0.0746001i −0.0419444 0.999120i \(-0.513355\pi\)
−0.381134 + 0.924520i \(0.624466\pi\)
\(402\) 0.00728606 0.0480094i 0.000363396 0.00239449i
\(403\) 11.2598 + 0.985106i 0.560891 + 0.0490716i
\(404\) −5.77756 −0.287444
\(405\) 0 0
\(406\) −0.0184939 −0.000917838
\(407\) 14.1009 + 1.23367i 0.698957 + 0.0611508i
\(408\) −0.0279653 + 0.184269i −0.00138449 + 0.00912267i
\(409\) −8.33076 1.46894i −0.411930 0.0726343i −0.0361568 0.999346i \(-0.511512\pi\)
−0.375773 + 0.926712i \(0.622623\pi\)
\(410\) 0 0
\(411\) −2.85543 + 11.7764i −0.140848 + 0.580885i
\(412\) 16.5432 + 11.5837i 0.815024 + 0.570686i
\(413\) −2.81592 0.754524i −0.138562 0.0371277i
\(414\) −0.0585299 0.258856i −0.00287659 0.0127221i
\(415\) 0 0
\(416\) 0.134742 0.370201i 0.00660628 0.0181506i
\(417\) 4.51624 13.3969i 0.221161 0.656048i
\(418\) −0.0330604 0.377882i −0.00161704 0.0184828i
\(419\) −6.72816 5.64560i −0.328692 0.275806i 0.463475 0.886110i \(-0.346603\pi\)
−0.792167 + 0.610305i \(0.791047\pi\)
\(420\) 0 0
\(421\) 0.538899 + 0.196143i 0.0262643 + 0.00955944i 0.355119 0.934821i \(-0.384440\pi\)
−0.328855 + 0.944381i \(0.606663\pi\)
\(422\) 0.0837730 0.0224469i 0.00407800 0.00109270i
\(423\) −9.50926 + 7.36045i −0.462356 + 0.357877i
\(424\) −0.610187 + 0.352292i −0.0296333 + 0.0171088i
\(425\) 0 0
\(426\) −0.0936172 + 0.0982063i −0.00453577 + 0.00475811i
\(427\) −1.32351 + 2.83827i −0.0640489 + 0.137353i
\(428\) 17.2370 + 24.6170i 0.833181 + 1.18991i
\(429\) 6.53175 14.9296i 0.315356 0.720807i
\(430\) 0 0
\(431\) 25.0117i 1.20477i 0.798205 + 0.602386i \(0.205783\pi\)
−0.798205 + 0.602386i \(0.794217\pi\)
\(432\) 14.9179 14.4622i 0.717737 0.695812i
\(433\) 24.9892 + 24.9892i 1.20090 + 1.20090i 0.973892 + 0.227011i \(0.0728954\pi\)
0.227011 + 0.973892i \(0.427105\pi\)
\(434\) 0.0158618 0.0133096i 0.000761390 0.000638882i
\(435\) 0 0
\(436\) 4.16812 23.6386i 0.199617 1.13208i
\(437\) 29.8287 + 13.9093i 1.42690 + 0.665374i
\(438\) −0.333280 0.181933i −0.0159247 0.00869310i
\(439\) 4.64923 0.819785i 0.221896 0.0391262i −0.0615948 0.998101i \(-0.519619\pi\)
0.283491 + 0.958975i \(0.408508\pi\)
\(440\) 0 0
\(441\) 0.994657 + 20.7764i 0.0473646 + 0.989352i
\(442\) 0.0149758 + 0.0558904i 0.000712326 + 0.00265844i
\(443\) −26.7976 + 12.4959i −1.27319 + 0.593700i −0.937406 0.348238i \(-0.886780\pi\)
−0.335787 + 0.941938i \(0.609002\pi\)
\(444\) 11.1853 + 0.709507i 0.530829 + 0.0336717i
\(445\) 0 0
\(446\) 0.129394 0.154205i 0.00612697 0.00730184i
\(447\) −25.0660 + 22.0757i −1.18558 + 1.04414i
\(448\) 0.871951 + 1.86990i 0.0411958 + 0.0883447i
\(449\) −3.36725 + 5.83225i −0.158910 + 0.275241i −0.934476 0.356026i \(-0.884131\pi\)
0.775566 + 0.631267i \(0.217465\pi\)
\(450\) 0 0
\(451\) −0.823409 1.42619i −0.0387728 0.0671565i
\(452\) −10.6544 + 15.2161i −0.501142 + 0.715706i
\(453\) 12.4656 22.8355i 0.585685 1.07291i
\(454\) 0.0760955 + 0.209071i 0.00357134 + 0.00981217i
\(455\) 0 0
\(456\) −0.0666553 0.597025i −0.00312142 0.0279582i
\(457\) 3.16016 36.1208i 0.147826 1.68966i −0.453974 0.891015i \(-0.649994\pi\)
0.601800 0.798647i \(-0.294450\pi\)
\(458\) 0.0899006 0.0899006i 0.00420078 0.00420078i
\(459\) −1.72970 + 8.99181i −0.0807355 + 0.419702i
\(460\) 0 0
\(461\) 16.9825 + 20.2390i 0.790956 + 0.942625i 0.999373 0.0354156i \(-0.0112755\pi\)
−0.208417 + 0.978040i \(0.566831\pi\)
\(462\) −0.0108784 0.0278005i −0.000506108 0.00129340i
\(463\) 9.85172 6.89825i 0.457848 0.320589i −0.321799 0.946808i \(-0.604287\pi\)
0.779647 + 0.626219i \(0.215399\pi\)
\(464\) 17.6368 6.41927i 0.818767 0.298007i
\(465\) 0 0
\(466\) 0.0733054 + 0.415735i 0.00339581 + 0.0192586i
\(467\) 2.86104 10.6775i 0.132393 0.494098i −0.867602 0.497260i \(-0.834340\pi\)
0.999995 + 0.00316149i \(0.00100633\pi\)
\(468\) 4.88762 11.9415i 0.225930 0.551997i
\(469\) 0.410442 + 0.236969i 0.0189525 + 0.0109422i
\(470\) 0 0
\(471\) −3.36953 2.24122i −0.155260 0.103270i
\(472\) −0.687138 + 0.0601168i −0.0316281 + 0.00276710i
\(473\) −39.6877 + 3.47222i −1.82484 + 0.159653i
\(474\) −0.0733265 + 0.0363525i −0.00336800 + 0.00166972i
\(475\) 0 0
\(476\) −0.787631 0.454739i −0.0361010 0.0208429i
\(477\) −30.6370 + 16.1127i −1.40277 + 0.737750i
\(478\) −0.0856663 + 0.319711i −0.00391828 + 0.0146232i
\(479\) 0.735877 + 4.17337i 0.0336231 + 0.190686i 0.996993 0.0774895i \(-0.0246904\pi\)
−0.963370 + 0.268175i \(0.913579\pi\)
\(480\) 0 0
\(481\) 6.53967 2.38024i 0.298183 0.108530i
\(482\) 0.0652884 0.0457155i 0.00297381 0.00208228i
\(483\) 2.56089 + 0.388649i 0.116525 + 0.0176842i
\(484\) 10.4582 + 12.4636i 0.475374 + 0.566529i
\(485\) 0 0
\(486\) −0.177267 + 0.158786i −0.00804100 + 0.00720270i
\(487\) −16.7646 + 16.7646i −0.759676 + 0.759676i −0.976263 0.216587i \(-0.930507\pi\)
0.216587 + 0.976263i \(0.430507\pi\)
\(488\) −0.0645798 + 0.738151i −0.00292339 + 0.0334145i
\(489\) 21.1634 15.5862i 0.957041 0.704830i
\(490\) 0 0
\(491\) 0.697417 + 1.91614i 0.0314740 + 0.0864740i 0.954434 0.298421i \(-0.0964599\pi\)
−0.922960 + 0.384895i \(0.874238\pi\)
\(492\) −0.678795 1.11334i −0.0306024 0.0501930i
\(493\) −4.74430 + 6.77556i −0.213673 + 0.305156i
\(494\) −0.0932500 0.161514i −0.00419552 0.00726685i
\(495\) 0 0
\(496\) −10.5069 + 18.1984i −0.471772 + 0.817133i
\(497\) −0.559642 1.20016i −0.0251034 0.0538343i
\(498\) 0.124460 + 0.0419568i 0.00557718 + 0.00188013i
\(499\) −8.77600 + 10.4588i −0.392868 + 0.468202i −0.925832 0.377937i \(-0.876634\pi\)
0.532964 + 0.846138i \(0.321078\pi\)
\(500\) 0 0
\(501\) −18.6124 + 27.9826i −0.831541 + 1.25017i
\(502\) 0.192965 0.0899812i 0.00861246 0.00401606i
\(503\) −11.4964 42.9050i −0.512597 1.91304i −0.390772 0.920487i \(-0.627792\pi\)
−0.121825 0.992552i \(-0.538875\pi\)
\(504\) −0.0182760 0.0436027i −0.000814078 0.00194222i
\(505\) 0 0
\(506\) 0.381102 0.0671985i 0.0169420 0.00298734i
\(507\) 0.346901 + 14.5004i 0.0154064 + 0.643987i
\(508\) 35.2255 + 16.4259i 1.56288 + 0.728782i
\(509\) −0.883595 + 5.01112i −0.0391647 + 0.222114i −0.998108 0.0614836i \(-0.980417\pi\)
0.958943 + 0.283597i \(0.0915279\pi\)
\(510\) 0 0
\(511\) 2.83890 2.38212i 0.125586 0.105379i
\(512\) 0.863214 + 0.863214i 0.0381490 + 0.0381490i
\(513\) −2.11599 29.4377i −0.0934231 1.29971i
\(514\) 0.143093i 0.00631155i
\(515\) 0 0
\(516\) −31.3499 + 3.50008i −1.38010 + 0.154083i
\(517\) −10.0573 14.3634i −0.442321 0.631700i
\(518\) 0.00538802 0.0115547i 0.000236736 0.000507682i
\(519\) 2.83820 + 9.66177i 0.124583 + 0.424105i
\(520\) 0 0
\(521\) −14.9219 + 8.61518i −0.653742 + 0.377438i −0.789888 0.613251i \(-0.789862\pi\)
0.136146 + 0.990689i \(0.456528\pi\)
\(522\) −0.204754 + 0.0655064i −0.00896184 + 0.00286714i
\(523\) −12.9054 + 3.45799i −0.564314 + 0.151207i −0.529688 0.848193i \(-0.677691\pi\)
−0.0346265 + 0.999400i \(0.511024\pi\)
\(524\) 8.58116 + 3.12329i 0.374870 + 0.136441i
\(525\) 0 0
\(526\) −0.117374 0.0984884i −0.00511775 0.00429430i
\(527\) −0.807135 9.22560i −0.0351594 0.401873i
\(528\) 20.0238 + 22.7362i 0.871424 + 0.989465i
\(529\) −3.61738 + 9.93866i −0.157277 + 0.432116i
\(530\) 0 0
\(531\) −33.8488 + 1.62049i −1.46891 + 0.0703233i
\(532\) 2.83153 + 0.758707i 0.122762 + 0.0328941i
\(533\) −0.663249 0.464412i −0.0287285 0.0201159i
\(534\) 0.0733640 0.0215511i 0.00317477 0.000932607i
\(535\) 0 0
\(536\) 0.110432 + 0.0194722i 0.00476995 + 0.000841071i
\(537\) −12.9347 10.3366i −0.558173 0.446055i
\(538\) −0.0281180 0.00246001i −0.00121225 0.000106058i
\(539\) −30.3299 −1.30640
\(540\) 0 0
\(541\) 7.10549 0.305489 0.152745 0.988266i \(-0.451189\pi\)
0.152745 + 0.988266i \(0.451189\pi\)
\(542\) 0.213024 + 0.0186372i 0.00915016 + 0.000800535i
\(543\) −22.3840 + 8.75888i −0.960589 + 0.375879i
\(544\) −0.317883 0.0560513i −0.0136291 0.00240318i
\(545\) 0 0
\(546\) −0.0106239 0.0101275i −0.000454661 0.000433415i
\(547\) −8.41425 5.89172i −0.359767 0.251912i 0.379692 0.925113i \(-0.376030\pi\)
−0.739459 + 0.673201i \(0.764919\pi\)
\(548\) −13.5139 3.62103i −0.577283 0.154683i
\(549\) −4.59979 + 36.1116i −0.196314 + 1.54120i
\(550\) 0 0
\(551\) 9.11839 25.0526i 0.388456 1.06728i
\(552\) 0.600828 0.120826i 0.0255730 0.00514269i
\(553\) −0.0696191 0.795750i −0.00296050 0.0338387i
\(554\) 0.212691 + 0.178469i 0.00903636 + 0.00758240i
\(555\) 0 0
\(556\) 15.3384 + 5.58274i 0.650495 + 0.236761i
\(557\) 5.55174 1.48759i 0.235235 0.0630310i −0.139276 0.990254i \(-0.544477\pi\)
0.374511 + 0.927223i \(0.377811\pi\)
\(558\) 0.128469 0.203540i 0.00543853 0.00861652i
\(559\) −16.9632 + 9.79373i −0.717468 + 0.414230i
\(560\) 0 0
\(561\) −12.9759 3.14628i −0.547841 0.132836i
\(562\) −0.169419 + 0.363321i −0.00714652 + 0.0153258i
\(563\) 14.1548 + 20.2152i 0.596555 + 0.851969i 0.997954 0.0639343i \(-0.0203648\pi\)
−0.401399 + 0.915903i \(0.631476\pi\)
\(564\) −8.23311 11.1792i −0.346676 0.470728i
\(565\) 0 0
\(566\) 0.280047i 0.0117713i
\(567\) −0.812749 2.17590i −0.0341322 0.0913792i
\(568\) −0.221549 0.221549i −0.00929600 0.00929600i
\(569\) 1.46173 1.22654i 0.0612790 0.0514192i −0.611634 0.791141i \(-0.709487\pi\)
0.672913 + 0.739722i \(0.265043\pi\)
\(570\) 0 0
\(571\) −7.82276 + 44.3651i −0.327372 + 1.85662i 0.165080 + 0.986280i \(0.447212\pi\)
−0.492452 + 0.870340i \(0.663899\pi\)
\(572\) 17.0519 + 7.95143i 0.712976 + 0.332466i
\(573\) 17.5655 10.7096i 0.733811 0.447401i
\(574\) −0.00146075 0.000257569i −6.09704e−5 1.07507e-5i
\(575\) 0 0
\(576\) 16.2770 + 17.6140i 0.678210 + 0.733917i
\(577\) −5.87132 21.9121i −0.244426 0.912211i −0.973671 0.227958i \(-0.926795\pi\)
0.729245 0.684253i \(-0.239872\pi\)
\(578\) −0.192251 + 0.0896482i −0.00799660 + 0.00372888i
\(579\) −9.31423 18.7877i −0.387086 0.780791i
\(580\) 0 0
\(581\) −0.823988 + 0.981990i −0.0341848 + 0.0407398i
\(582\) 0.0245678 + 0.122168i 0.00101837 + 0.00506402i
\(583\) −21.3317 45.7460i −0.883469 1.89461i
\(584\) 0.438419 0.759364i 0.0181419 0.0314227i
\(585\) 0 0
\(586\) −0.0802204 0.138946i −0.00331387 0.00573980i
\(587\) −4.91190 + 7.01492i −0.202736 + 0.289537i −0.907626 0.419780i \(-0.862107\pi\)
0.704890 + 0.709316i \(0.250996\pi\)
\(588\) −24.0083 + 0.574363i −0.990086 + 0.0236863i
\(589\) 10.2091 + 28.0493i 0.420659 + 1.15575i
\(590\) 0 0
\(591\) −9.43335 4.12712i −0.388036 0.169767i
\(592\) −1.12767 + 12.8893i −0.0463469 + 0.529748i
\(593\) −4.26261 + 4.26261i −0.175044 + 0.175044i −0.789192 0.614147i \(-0.789500\pi\)
0.614147 + 0.789192i \(0.289500\pi\)
\(594\) −0.218910 0.269260i −0.00898199 0.0110479i
\(595\) 0 0
\(596\) −24.7884 29.5417i −1.01537 1.21007i
\(597\) 6.04953 7.57011i 0.247591 0.309824i
\(598\) 0.155855 0.109131i 0.00637338 0.00446269i
\(599\) 13.5981 4.94929i 0.555602 0.202223i −0.0489318 0.998802i \(-0.515582\pi\)
0.604534 + 0.796580i \(0.293359\pi\)
\(600\) 0 0
\(601\) −2.11215 11.9786i −0.0861565 0.488618i −0.997101 0.0760891i \(-0.975757\pi\)
0.910944 0.412529i \(-0.135354\pi\)
\(602\) −0.00928722 + 0.0346604i −0.000378519 + 0.00141265i
\(603\) 5.38353 + 1.16977i 0.219234 + 0.0476369i
\(604\) 26.0133 + 15.0188i 1.05847 + 0.611107i
\(605\) 0 0
\(606\) −0.00483627 + 0.0762430i −0.000196460 + 0.00309716i
\(607\) −19.3845 + 1.69592i −0.786792 + 0.0688354i −0.473468 0.880811i \(-0.656998\pi\)
−0.313324 + 0.949646i \(0.601443\pi\)
\(608\) 1.03644 0.0906769i 0.0420333 0.00367743i
\(609\) 0.132826 2.09398i 0.00538238 0.0848522i
\(610\) 0 0
\(611\) −7.46602 4.31051i −0.302043 0.174384i
\(612\) −10.3309 2.24478i −0.417602 0.0907397i
\(613\) −3.48768 + 13.0162i −0.140866 + 0.525720i 0.859038 + 0.511911i \(0.171062\pi\)
−0.999905 + 0.0138088i \(0.995604\pi\)
\(614\) −0.0339541 0.192563i −0.00137027 0.00777121i
\(615\) 0 0
\(616\) 0.0647813 0.0235785i 0.00261011 0.000950003i
\(617\) −37.1967 + 26.0454i −1.49748 + 1.04855i −0.516090 + 0.856535i \(0.672613\pi\)
−0.981392 + 0.192014i \(0.938498\pi\)
\(618\) 0.166711 0.208614i 0.00670608 0.00839169i
\(619\) −0.765342 0.912099i −0.0307617 0.0366604i 0.750444 0.660934i \(-0.229840\pi\)
−0.781206 + 0.624273i \(0.785395\pi\)
\(620\) 0 0
\(621\) 29.7293 4.76791i 1.19300 0.191330i
\(622\) 0.226747 0.226747i 0.00909171 0.00909171i
\(623\) −0.0650434 + 0.743449i −0.00260591 + 0.0297857i
\(624\) 13.6468 + 5.97052i 0.546309 + 0.239012i
\(625\) 0 0
\(626\) 0.154339 + 0.424042i 0.00616861 + 0.0169481i
\(627\) 43.0232 1.02927i 1.71818 0.0411049i
\(628\) 2.67993 3.82734i 0.106941 0.152728i
\(629\) −2.85104 4.93815i −0.113678 0.196897i
\(630\) 0 0
\(631\) 10.8669 18.8220i 0.432605 0.749293i −0.564492 0.825438i \(-0.690928\pi\)
0.997097 + 0.0761454i \(0.0242613\pi\)
\(632\) −0.0798737 0.171290i −0.00317721 0.00681354i
\(633\) 1.93988 + 9.64642i 0.0771034 + 0.383411i
\(634\) 0.260588 0.310556i 0.0103493 0.0123338i
\(635\) 0 0
\(636\) −17.7519 35.8073i −0.703908 1.41985i
\(637\) −13.5149 + 6.30211i −0.535481 + 0.249699i
\(638\) −0.0811322 0.302790i −0.00321206 0.0119876i
\(639\) −10.4470 11.3051i −0.413279 0.447225i
\(640\) 0 0
\(641\) 11.0540 1.94912i 0.436606 0.0769855i 0.0489751 0.998800i \(-0.484405\pi\)
0.387631 + 0.921815i \(0.373293\pi\)
\(642\) 0.339284 0.206860i 0.0133905 0.00816410i
\(643\) −21.6198 10.0815i −0.852602 0.397575i −0.0533535 0.998576i \(-0.516991\pi\)
−0.799248 + 0.601001i \(0.794769\pi\)
\(644\) −0.519308 + 2.94514i −0.0204636 + 0.116055i
\(645\) 0 0
\(646\) −0.117057 + 0.0982222i −0.00460553 + 0.00386450i
\(647\) 17.7336 + 17.7336i 0.697179 + 0.697179i 0.963801 0.266622i \(-0.0859076\pi\)
−0.266622 + 0.963801i \(0.585908\pi\)
\(648\) −0.356785 0.418010i −0.0140158 0.0164210i
\(649\) 49.4134i 1.93965i
\(650\) 0 0
\(651\) 1.39306 + 1.89154i 0.0545984 + 0.0741355i
\(652\) 17.4057 + 24.8579i 0.681660 + 0.973511i
\(653\) −7.70684 + 16.5274i −0.301592 + 0.646766i −0.997447 0.0714165i \(-0.977248\pi\)
0.695855 + 0.718183i \(0.255026\pi\)
\(654\) −0.308455 0.0747915i −0.0120616 0.00292458i
\(655\) 0 0
\(656\) 1.30364 0.752659i 0.0508987 0.0293864i
\(657\) 22.9931 36.4290i 0.897045 1.42123i
\(658\) −0.0152550 + 0.00408758i −0.000594704 + 0.000159350i
\(659\) 32.1808 + 11.7129i 1.25359 + 0.456269i 0.881612 0.471974i \(-0.156458\pi\)
0.371975 + 0.928243i \(0.378681\pi\)
\(660\) 0 0
\(661\) 3.43935 + 2.88596i 0.133775 + 0.112251i 0.707220 0.706993i \(-0.249949\pi\)
−0.573445 + 0.819244i \(0.694393\pi\)
\(662\) −0.0132291 0.151210i −0.000514165 0.00587693i
\(663\) −6.43575 + 1.29422i −0.249944 + 0.0502634i
\(664\) −0.103736 + 0.285012i −0.00402573 + 0.0110606i
\(665\) 0 0
\(666\) 0.0187259 0.147011i 0.000725613 0.00569656i
\(667\) 26.2716 + 7.03946i 1.01724 + 0.272569i
\(668\) −31.7846 22.2558i −1.22978 0.861103i
\(669\) 16.5306 + 15.7581i 0.639110 + 0.609245i
\(670\) 0 0
\(671\) −52.2754 9.21756i −2.01807 0.355840i
\(672\) 0.0762502 0.0298368i 0.00294142 0.00115098i
\(673\) −15.0821 1.31952i −0.581374 0.0508636i −0.207324 0.978272i \(-0.566475\pi\)
−0.374050 + 0.927409i \(0.622031\pi\)
\(674\) 0.214165 0.00824933
\(675\) 0 0
\(676\) −16.7465 −0.644096
\(677\) 9.69800 + 0.848465i 0.372724 + 0.0326092i 0.271979 0.962303i \(-0.412322\pi\)
0.100745 + 0.994912i \(0.467877\pi\)
\(678\) 0.191879 + 0.153337i 0.00736908 + 0.00588888i
\(679\) −1.19775 0.211196i −0.0459656 0.00810497i
\(680\) 0 0
\(681\) −24.2186 + 7.11435i −0.928058 + 0.272622i
\(682\) 0.287495 + 0.201306i 0.0110088 + 0.00770842i
\(683\) 22.4891 + 6.02595i 0.860523 + 0.230577i 0.661985 0.749517i \(-0.269714\pi\)
0.198538 + 0.980093i \(0.436381\pi\)
\(684\) 34.0365 1.62948i 1.30142 0.0623045i
\(685\) 0 0
\(686\) −0.0187764 + 0.0515877i −0.000716886 + 0.00196963i
\(687\) 9.53332 + 10.8247i 0.363719 + 0.412987i
\(688\) −3.17388 36.2776i −0.121003 1.38307i
\(689\) −19.0107 15.9519i −0.724249 0.607717i
\(690\) 0 0
\(691\) −4.24724 1.54587i −0.161573 0.0588077i 0.259968 0.965617i \(-0.416288\pi\)
−0.421540 + 0.906810i \(0.638510\pi\)
\(692\) −11.2303 + 3.00916i −0.426913 + 0.114391i
\(693\) 3.22585 1.03204i 0.122540 0.0392039i
\(694\) −0.0807256 + 0.0466069i −0.00306430 + 0.00176918i
\(695\) 0 0
\(696\) −0.139920 0.476314i −0.00530365 0.0180546i
\(697\) −0.280365 + 0.601245i −0.0106196 + 0.0227738i
\(698\) 0.0334725 + 0.0478038i 0.00126695 + 0.00180940i
\(699\) −47.5982 + 5.31414i −1.80033 + 0.200999i
\(700\) 0 0
\(701\) 28.3612i 1.07119i −0.844476 0.535593i \(-0.820088\pi\)
0.844476 0.535593i \(-0.179912\pi\)
\(702\) −0.153494 0.0744950i −0.00579325 0.00281163i
\(703\) 12.9958 + 12.9958i 0.490147 + 0.490147i
\(704\) −26.7896 + 22.4791i −1.00967 + 0.847214i
\(705\) 0 0
\(706\) −0.00590457 + 0.0334865i −0.000222221 + 0.00126028i
\(707\) −0.675769 0.315116i −0.0254149 0.0118512i
\(708\) −0.935750 39.1142i −0.0351676 1.47000i
\(709\) −27.9978 + 4.93677i −1.05148 + 0.185404i −0.672574 0.740030i \(-0.734811\pi\)
−0.378907 + 0.925435i \(0.623700\pi\)
\(710\) 0 0
\(711\) −3.58937 8.56349i −0.134612 0.321156i
\(712\) 0.0457011 + 0.170559i 0.00171272 + 0.00639196i
\(713\) −27.5987 + 12.8695i −1.03358 + 0.481966i
\(714\) −0.00666022 + 0.0100132i −0.000249253 + 0.000374736i
\(715\) 0 0
\(716\) 12.2880 14.6443i 0.459224 0.547282i
\(717\) −35.5840 11.9958i −1.32891 0.447991i
\(718\) −0.0761394 0.163281i −0.00284150 0.00609361i
\(719\) −8.97949 + 15.5529i −0.334878 + 0.580026i −0.983461 0.181118i \(-0.942029\pi\)
0.648583 + 0.761144i \(0.275362\pi\)
\(720\) 0 0
\(721\) 1.30318 + 2.25717i 0.0485328 + 0.0840612i
\(722\) 0.116124 0.165843i 0.00432170 0.00617202i
\(723\) 4.70723 + 7.72062i 0.175064 + 0.287133i
\(724\) −9.49171 26.0783i −0.352757 0.969191i
\(725\) 0 0
\(726\) 0.173229 0.127578i 0.00642914 0.00473486i
\(727\) −2.47494 + 28.2887i −0.0917905 + 1.04917i 0.800990 + 0.598678i \(0.204307\pi\)
−0.892780 + 0.450492i \(0.851249\pi\)
\(728\) 0.0239671 0.0239671i 0.000888279 0.000888279i
\(729\) −16.7054 21.2115i −0.618720 0.785612i
\(730\) 0 0
\(731\) 10.3159 + 12.2941i 0.381549 + 0.454712i
\(732\) −41.5542 6.30641i −1.53589 0.233092i
\(733\) 8.28966 5.80448i 0.306185 0.214393i −0.410378 0.911916i \(-0.634603\pi\)
0.716563 + 0.697522i \(0.245714\pi\)
\(734\) 0.0304169 0.0110708i 0.00112271 0.000408632i
\(735\) 0 0
\(736\) 0.184310 + 1.04527i 0.00679374 + 0.0385292i
\(737\) −2.07915 + 7.75949i −0.0765865 + 0.285825i
\(738\) −0.0152602 + 0.00802570i −0.000561736 + 0.000295430i
\(739\) 35.8294 + 20.6861i 1.31801 + 0.760951i 0.983408 0.181410i \(-0.0580660\pi\)
0.334598 + 0.942361i \(0.391399\pi\)
\(740\) 0 0
\(741\) 18.9571 9.39823i 0.696408 0.345252i
\(742\) −0.0452897 + 0.00396233i −0.00166264 + 0.000145462i
\(743\) 7.70953 0.674496i 0.282835 0.0247449i 0.0551445 0.998478i \(-0.482438\pi\)
0.227691 + 0.973734i \(0.426882\pi\)
\(744\) 0.462798 + 0.307826i 0.0169670 + 0.0112855i
\(745\) 0 0
\(746\) −0.0438849 0.0253370i −0.00160674 0.000927653i
\(747\) −5.64445 + 13.7906i −0.206520 + 0.504573i
\(748\) 3.98985 14.8903i 0.145883 0.544444i
\(749\) 0.673470 + 3.81944i 0.0246080 + 0.139559i
\(750\) 0 0
\(751\) −38.8916 + 14.1554i −1.41918 + 0.516537i −0.933808 0.357773i \(-0.883536\pi\)
−0.485367 + 0.874311i \(0.661314\pi\)
\(752\) 13.1292 9.19318i 0.478773 0.335241i
\(753\) 8.80223 + 22.4948i 0.320771 + 0.819755i
\(754\) −0.0990675 0.118064i −0.00360782 0.00429964i
\(755\) 0 0
\(756\) 2.53394 0.878020i 0.0921587 0.0319333i
\(757\) 10.7021 10.7021i 0.388975 0.388975i −0.485347 0.874322i \(-0.661307\pi\)
0.874322 + 0.485347i \(0.161307\pi\)
\(758\) −0.0209745 + 0.239740i −0.000761830 + 0.00870775i
\(759\) 4.87143 + 43.6329i 0.176822 + 1.58377i
\(760\) 0 0
\(761\) 16.8761 + 46.3666i 0.611756 + 1.68079i 0.726308 + 0.687370i \(0.241235\pi\)
−0.114551 + 0.993417i \(0.536543\pi\)
\(762\) 0.246249 0.451100i 0.00892067 0.0163416i
\(763\) 1.77680 2.53754i 0.0643246 0.0918651i
\(764\) 11.8764 + 20.5705i 0.429673 + 0.744215i
\(765\) 0 0
\(766\) 0.210244 0.364154i 0.00759643 0.0131574i
\(767\) −10.2674 22.0185i −0.370733 0.795040i
\(768\) −20.7729 + 18.2947i −0.749578 + 0.660155i
\(769\) −4.55804 + 5.43206i −0.164367 + 0.195885i −0.841941 0.539570i \(-0.818587\pi\)
0.677574 + 0.735455i \(0.263031\pi\)
\(770\) 0 0
\(771\) 16.2017 + 1.02771i 0.583489 + 0.0370121i
\(772\) 21.9426 10.2320i 0.789733 0.368259i
\(773\) −2.31145 8.62644i −0.0831370 0.310272i 0.911818 0.410595i \(-0.134679\pi\)
−0.994955 + 0.100323i \(0.968012\pi\)
\(774\) 0.0199462 + 0.416635i 0.000716950 + 0.0149756i
\(775\) 0 0
\(776\) −0.283394 + 0.0499700i −0.0101733 + 0.00179382i
\(777\) 1.26958 + 0.693047i 0.0455459 + 0.0248629i
\(778\) −0.415360 0.193686i −0.0148914 0.00694397i
\(779\) 0.371305 2.10578i 0.0133034 0.0754473i
\(780\) 0 0
\(781\) 17.1943 14.4277i 0.615260 0.516264i
\(782\) −0.110231 0.110231i −0.00394186 0.00394186i
\(783\) −5.94640 23.6538i −0.212507 0.845316i
\(784\) 27.7239i 0.990139i
\(785\) 0 0
\(786\) 0.0483992 0.110626i 0.00172634 0.00394589i
\(787\) −0.397947 0.568328i −0.0141853 0.0202587i 0.811997 0.583662i \(-0.198381\pi\)
−0.826182 + 0.563403i \(0.809492\pi\)
\(788\) 5.02416 10.7743i 0.178978 0.383820i
\(789\) 11.9944 12.5823i 0.427010 0.447942i
\(790\) 0 0
\(791\) −2.07610 + 1.19864i −0.0738175 + 0.0426186i
\(792\) 0.633705 0.490506i 0.0225177 0.0174294i
\(793\) −25.2090 + 6.75473i −0.895198 + 0.239868i
\(794\) −0.0686278 0.0249785i −0.00243551 0.000886453i
\(795\) 0 0
\(796\) 8.57065 + 7.19163i 0.303778 + 0.254900i
\(797\) −3.24018 37.0354i −0.114773 1.31186i −0.807158 0.590335i \(-0.798996\pi\)
0.692385 0.721528i \(-0.256560\pi\)
\(798\) 0.0123824 0.0367309i 0.000438332 0.00130026i
\(799\) −2.41587 + 6.63755i −0.0854673 + 0.234820i
\(800\) 0 0
\(801\) 1.91321 + 8.46143i 0.0676001 + 0.298970i
\(802\) −0.126862 0.0339926i −0.00447965 0.00120032i
\(803\) 51.4551 + 36.0293i 1.81581 + 1.27145i
\(804\) −1.49885 + 6.18157i −0.0528605 + 0.218007i
\(805\) 0 0
\(806\) 0.169936 + 0.0299642i 0.00598573 + 0.00105544i
\(807\) 0.480482 3.16599i 0.0169138 0.111448i
\(808\) −0.175748 0.0153759i −0.00618279 0.000540924i
\(809\) 9.19706 0.323351 0.161676 0.986844i \(-0.448310\pi\)
0.161676 + 0.986844i \(0.448310\pi\)
\(810\) 0 0
\(811\) −3.49413 −0.122695 −0.0613477 0.998116i \(-0.519540\pi\)
−0.0613477 + 0.998116i \(0.519540\pi\)
\(812\) 2.41327 + 0.211134i 0.0846893 + 0.00740935i
\(813\) −3.64016 + 23.9858i −0.127666 + 0.841219i
\(814\) 0.212814 + 0.0375249i 0.00745914 + 0.00131525i
\(815\) 0 0
\(816\) 2.87594 11.8609i 0.100678 0.415216i
\(817\) −42.3732 29.6700i −1.48245 1.03802i
\(818\) −0.124745 0.0334253i −0.00436160 0.00116869i
\(819\) 1.22299 1.13016i 0.0427346 0.0394908i
\(820\) 0 0
\(821\) −5.34053 + 14.6730i −0.186386 + 0.512091i −0.997329 0.0730336i \(-0.976732\pi\)
0.810944 + 0.585124i \(0.198954\pi\)
\(822\) −0.0590967 + 0.175303i −0.00206123 + 0.00611440i
\(823\) 2.60641 + 29.7914i 0.0908536 + 1.03846i 0.895605 + 0.444850i \(0.146743\pi\)
−0.804752 + 0.593612i \(0.797702\pi\)
\(824\) 0.472400 + 0.396391i 0.0164568 + 0.0138089i
\(825\) 0 0
\(826\) −0.0418223 0.0152221i −0.00145519 0.000529644i
\(827\) −35.9960 + 9.64511i −1.25171 + 0.335393i −0.822995 0.568049i \(-0.807699\pi\)
−0.428710 + 0.903442i \(0.641032\pi\)
\(828\) 4.68237 + 34.4463i 0.162724 + 1.19709i
\(829\) 6.82502 3.94043i 0.237043 0.136857i −0.376774 0.926305i \(-0.622967\pi\)
0.613817 + 0.789448i \(0.289633\pi\)
\(830\) 0 0
\(831\) −21.7347 + 22.8001i −0.753968 + 0.790927i
\(832\) −7.26652 + 15.5831i −0.251921 + 0.540247i
\(833\) 7.00798 + 10.0084i 0.242812 + 0.346771i
\(834\) 0.0865115 0.197739i 0.00299565 0.00684714i
\(835\) 0 0
\(836\) 49.6874i 1.71847i
\(837\) 22.1231 + 16.0078i 0.764687 + 0.553310i
\(838\) −0.0948142 0.0948142i −0.00327530 0.00327530i
\(839\) 26.9906 22.6478i 0.931819 0.781889i −0.0443239 0.999017i \(-0.514113\pi\)
0.976143 + 0.217128i \(0.0696689\pi\)
\(840\) 0 0
\(841\) −1.21001 + 6.86229i −0.0417244 + 0.236631i
\(842\) 0.00793494 + 0.00370012i 0.000273456 + 0.000127515i
\(843\) −39.9202 21.7919i −1.37493 0.750554i
\(844\) −11.1878 + 1.97271i −0.385100 + 0.0679035i
\(845\) 0 0
\(846\) −0.154417 + 0.0992895i −0.00530895 + 0.00341364i
\(847\) 0.543456 + 2.02821i 0.0186734 + 0.0696900i
\(848\) 41.8153 19.4988i 1.43594 0.669592i
\(849\) −31.7084 2.01134i −1.08823 0.0690290i
\(850\) 0 0
\(851\) −12.0521 + 14.3631i −0.413141 + 0.492362i
\(852\) 13.3373 11.7462i 0.456928 0.402417i
\(853\) 10.3392 + 22.1725i 0.354007 + 0.759171i 0.999991 0.00417979i \(-0.00133047\pi\)
−0.645984 + 0.763351i \(0.723553\pi\)
\(854\) −0.0239053 + 0.0414051i −0.000818021 + 0.00141685i
\(855\) 0 0
\(856\) 0.458819 + 0.794697i 0.0156821 + 0.0271622i
\(857\) −2.59518 + 3.70630i −0.0886496 + 0.126605i −0.861027 0.508559i \(-0.830178\pi\)
0.772378 + 0.635164i \(0.219067\pi\)
\(858\) 0.119204 0.218368i 0.00406956 0.00745495i
\(859\) 3.10612 + 8.53399i 0.105979 + 0.291176i 0.981336 0.192302i \(-0.0615954\pi\)
−0.875356 + 0.483478i \(0.839373\pi\)
\(860\) 0 0
\(861\) −0.0186720 0.167243i −0.000636340 0.00569963i
\(862\) −0.0332801 + 0.380394i −0.00113353 + 0.0129563i
\(863\) 21.0851 21.0851i 0.717746 0.717746i −0.250398 0.968143i \(-0.580561\pi\)
0.968143 + 0.250398i \(0.0805613\pi\)
\(864\) 0.738515 0.600418i 0.0251248 0.0204266i
\(865\) 0 0
\(866\) 0.346801 + 0.413302i 0.0117848 + 0.0140446i
\(867\) −8.76965 22.4115i −0.297833 0.761136i
\(868\) −2.22175 + 1.55569i −0.0754113 + 0.0528035i
\(869\) 12.7229 4.63076i 0.431595 0.157088i
\(870\) 0 0
\(871\) 0.685845 + 3.88962i 0.0232390 + 0.131795i
\(872\) 0.189700 0.707971i 0.00642406 0.0239749i
\(873\) −14.0089 + 1.90426i −0.474130 + 0.0644496i
\(874\) 0.435146 + 0.251232i 0.0147190 + 0.00849804i
\(875\) 0 0
\(876\) 41.4127 + 27.5453i 1.39921 + 0.930671i
\(877\) 45.5933 3.98890i 1.53958 0.134696i 0.714468 0.699668i \(-0.246669\pi\)
0.825110 + 0.564973i \(0.191113\pi\)
\(878\) 0.0717992 0.00628162i 0.00242311 0.000211994i
\(879\) 16.3083 8.08503i 0.550065 0.272701i
\(880\) 0 0
\(881\) −33.3855 19.2752i −1.12479 0.649396i −0.182169 0.983267i \(-0.558312\pi\)
−0.942619 + 0.333871i \(0.891645\pi\)
\(882\) −0.0125173 + 0.317304i −0.000421480 + 0.0106842i
\(883\) 4.85682 18.1259i 0.163445 0.609986i −0.834788 0.550571i \(-0.814410\pi\)
0.998233 0.0594144i \(-0.0189233\pi\)
\(884\) −1.31612 7.46412i −0.0442661 0.251045i
\(885\) 0 0
\(886\) −0.424182 + 0.154390i −0.0142507 + 0.00518682i
\(887\) −30.0349 + 21.0306i −1.00847 + 0.706140i −0.956267 0.292496i \(-0.905514\pi\)
−0.0522057 + 0.998636i \(0.516625\pi\)
\(888\) 0.338357 + 0.0513501i 0.0113545 + 0.00172320i
\(889\) 3.22424 + 3.84250i 0.108137 + 0.128873i
\(890\) 0 0
\(891\) 32.0592 22.8522i 1.07402 0.765579i
\(892\) −18.6451 + 18.6451i −0.624283 + 0.624283i
\(893\) 1.98428 22.6804i 0.0664014 0.758972i
\(894\) −0.410593 + 0.302389i −0.0137323 + 0.0101134i
\(895\) 0 0
\(896\) 0.0431100 + 0.118444i 0.00144021 + 0.00395693i
\(897\) 11.2370 + 18.4305i 0.375191 + 0.615375i
\(898\) −0.0589716 + 0.0842201i −0.00196791 + 0.00281046i
\(899\) 12.3336 + 21.3624i 0.411349 + 0.712477i
\(900\) 0 0
\(901\) −10.1666 + 17.6091i −0.338700 + 0.586645i
\(902\) −0.0106253 0.0227860i −0.000353783 0.000758690i
\(903\) −3.85772 1.30048i −0.128377 0.0432773i
\(904\) −0.364593 + 0.434505i −0.0121262 + 0.0144514i
\(905\) 0 0
\(906\) 0.219969 0.330710i 0.00730799 0.0109871i
\(907\) 17.4935 8.15736i 0.580863 0.270861i −0.109900 0.993943i \(-0.535053\pi\)
0.690762 + 0.723082i \(0.257275\pi\)
\(908\) −7.54288 28.1504i −0.250319 0.934204i
\(909\) −8.59788 1.09518i −0.285174 0.0363247i
\(910\) 0 0
\(911\) 39.2363 6.91842i 1.29996 0.229217i 0.519523 0.854456i \(-0.326110\pi\)
0.780433 + 0.625239i \(0.214999\pi\)
\(912\) 0.940828 + 39.3265i 0.0311539 + 1.30223i
\(913\) −19.6923 9.18269i −0.651721 0.303903i
\(914\) 0.0961236 0.545144i 0.00317949 0.0180318i
\(915\) 0 0
\(916\) −12.7575 + 10.7048i −0.421519 + 0.353696i
\(917\) 0.833342 + 0.833342i 0.0275194 + 0.0275194i
\(918\) −0.0382707 + 0.134452i −0.00126312 + 0.00443757i
\(919\) 43.5953i 1.43808i −0.694971 0.719038i \(-0.744583\pi\)
0.694971 0.719038i \(-0.255417\pi\)
\(920\) 0 0
\(921\) 22.0468 2.46144i 0.726468 0.0811071i
\(922\) 0.231352 + 0.330404i 0.00761916 + 0.0108813i
\(923\) 4.66385 10.0017i 0.153513 0.329209i
\(924\) 1.10214 + 3.75189i 0.0362577 + 0.123428i
\(925\) 0 0
\(926\) 0.159010 0.0918044i 0.00522539 0.00301688i
\(927\) 22.4230 + 20.3741i 0.736468 + 0.669174i
\(928\) 0.830480 0.222526i 0.0272618 0.00730479i
\(929\) −32.4046 11.7943i −1.06316 0.386959i −0.249546 0.968363i \(-0.580281\pi\)
−0.813615 + 0.581404i \(0.802504\pi\)
\(930\) 0 0
\(931\) −30.1676 25.3136i −0.988703 0.829620i
\(932\) −4.81942 55.0863i −0.157865 1.80441i
\(933\) 24.0449 + 27.3019i 0.787194 + 0.893825i
\(934\) 0.0577199 0.158584i 0.00188865 0.00518903i
\(935\) 0 0
\(936\) 0.180457 0.350242i 0.00589842 0.0114480i
\(937\) 44.7642 + 11.9945i 1.46238 + 0.391845i 0.900313 0.435244i \(-0.143338\pi\)
0.562072 + 0.827089i \(0.310005\pi\)
\(938\) 0.00592696 + 0.00415010i 0.000193522 + 0.000135506i
\(939\) −49.1206 + 14.4295i −1.60299 + 0.470888i
\(940\) 0 0
\(941\) 8.77614 + 1.54747i 0.286094 + 0.0504461i 0.314854 0.949140i \(-0.398045\pi\)
−0.0287596 + 0.999586i \(0.509156\pi\)
\(942\) −0.0482638 0.0385693i −0.00157252 0.00125665i
\(943\) 2.17311 + 0.190123i 0.0707662 + 0.00619124i
\(944\) 45.1676 1.47008
\(945\) 0 0
\(946\) −0.608216 −0.0197748
\(947\) −36.6998 3.21081i −1.19258 0.104337i −0.526473 0.850192i \(-0.676486\pi\)
−0.666109 + 0.745854i \(0.732041\pi\)
\(948\) 9.98340 3.90651i 0.324246 0.126878i
\(949\) 30.4146 + 5.36292i 0.987300 + 0.174088i
\(950\) 0 0
\(951\) 33.2912 + 31.7355i 1.07954 + 1.02910i
\(952\) −0.0227488 0.0159289i −0.000737292 0.000516257i
\(953\) 27.9077 + 7.47785i 0.904020 + 0.242231i 0.680742 0.732523i \(-0.261658\pi\)
0.223278 + 0.974755i \(0.428324\pi\)
\(954\) −0.487387 + 0.204287i −0.0157797 + 0.00661404i
\(955\) 0 0
\(956\) 14.8286 40.7411i 0.479590 1.31766i
\(957\) 34.8661 7.01153i 1.12706 0.226650i
\(958\) 0.00563868 + 0.0644504i 0.000182177 + 0.00208230i
\(959\) −1.38314 1.16060i −0.0446641 0.0374776i
\(960\) 0 0
\(961\) 3.17820 + 1.15677i 0.102522 + 0.0373151i
\(962\) 0.102627 0.0274987i 0.00330881 0.000886594i
\(963\) 20.9849 + 39.9011i 0.676229 + 1.28580i
\(964\) −9.04140 + 5.22006i −0.291204 + 0.168127i
\(965\) 0 0
\(966\) 0.0384305 + 0.00931830i 0.00123648 + 0.000299811i
\(967\) −8.87400 + 19.0304i −0.285369 + 0.611975i −0.995776 0.0918158i \(-0.970733\pi\)
0.710407 + 0.703791i \(0.248511\pi\)
\(968\) 0.284960 + 0.406964i 0.00915895 + 0.0130803i
\(969\) −10.2805 13.9592i −0.330257 0.448434i
\(970\) 0 0
\(971\) 58.1766i 1.86697i −0.358610 0.933487i \(-0.616749\pi\)
0.358610 0.933487i \(-0.383251\pi\)
\(972\) 24.9444 18.6963i 0.800091 0.599684i
\(973\) 1.48956 + 1.48956i 0.0477531 + 0.0477531i
\(974\) −0.277273 + 0.232660i −0.00888441 + 0.00745490i
\(975\) 0 0
\(976\) 8.42555 47.7837i 0.269695 1.52952i
\(977\) 39.2996 + 18.3257i 1.25731 + 0.586291i 0.933073 0.359686i \(-0.117116\pi\)
0.324232 + 0.945977i \(0.394894\pi\)
\(978\) 0.342605 0.208885i 0.0109553 0.00667939i
\(979\) −12.4574 + 2.19657i −0.398140 + 0.0702028i
\(980\) 0 0
\(981\) 10.6836 34.3877i 0.341103 1.09791i
\(982\) 0.00805718 + 0.0300698i 0.000257115 + 0.000959566i
\(983\) 47.1628 21.9924i 1.50426 0.701447i 0.516335 0.856387i \(-0.327296\pi\)
0.987924 + 0.154940i \(0.0495183\pi\)
\(984\) −0.0176854 0.0356731i −0.000563788 0.00113722i
\(985\) 0 0
\(986\) −0.0811698 + 0.0967344i −0.00258497 + 0.00308065i
\(987\) −0.353252 1.75661i −0.0112441 0.0559135i
\(988\) 10.3243 + 22.1405i 0.328460 + 0.704384i
\(989\) 26.3860 45.7019i 0.839026 1.45324i
\(990\) 0 0
\(991\) −1.64852 2.85532i −0.0523670 0.0907023i 0.838654 0.544665i \(-0.183343\pi\)
−0.891021 + 0.453963i \(0.850010\pi\)
\(992\) −0.552136 + 0.788532i −0.0175303 + 0.0250359i
\(993\) 17.2158 0.411861i 0.546325 0.0130700i
\(994\) −0.00691448 0.0189974i −0.000219314 0.000602560i
\(995\) 0 0
\(996\) −15.7618 6.89584i −0.499431 0.218503i
\(997\) −2.04371 + 23.3597i −0.0647248 + 0.739808i 0.892610 + 0.450829i \(0.148871\pi\)
−0.957335 + 0.288979i \(0.906684\pi\)
\(998\) −0.147387 + 0.147387i −0.00466546 + 0.00466546i
\(999\) 16.5109 + 3.17609i 0.522380 + 0.100487i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 675.2.ba.b.518.8 192
5.2 odd 4 inner 675.2.ba.b.32.9 192
5.3 odd 4 135.2.q.a.32.8 192
5.4 even 2 135.2.q.a.113.9 yes 192
15.8 even 4 405.2.r.a.287.9 192
15.14 odd 2 405.2.r.a.368.8 192
27.11 odd 18 inner 675.2.ba.b.443.9 192
135.38 even 36 135.2.q.a.92.9 yes 192
135.43 odd 36 405.2.r.a.197.8 192
135.92 even 36 inner 675.2.ba.b.632.8 192
135.119 odd 18 135.2.q.a.38.8 yes 192
135.124 even 18 405.2.r.a.278.9 192
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
135.2.q.a.32.8 192 5.3 odd 4
135.2.q.a.38.8 yes 192 135.119 odd 18
135.2.q.a.92.9 yes 192 135.38 even 36
135.2.q.a.113.9 yes 192 5.4 even 2
405.2.r.a.197.8 192 135.43 odd 36
405.2.r.a.278.9 192 135.124 even 18
405.2.r.a.287.9 192 15.8 even 4
405.2.r.a.368.8 192 15.14 odd 2
675.2.ba.b.32.9 192 5.2 odd 4 inner
675.2.ba.b.443.9 192 27.11 odd 18 inner
675.2.ba.b.518.8 192 1.1 even 1 trivial
675.2.ba.b.632.8 192 135.92 even 36 inner