Properties

Label 675.2.ba.b.443.9
Level $675$
Weight $2$
Character 675.443
Analytic conductor $5.390$
Analytic rank $0$
Dimension $192$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [675,2,Mod(32,675)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("675.32"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(675, base_ring=CyclotomicField(36)) chi = DirichletCharacter(H, H._module([10, 9])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 675 = 3^{3} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 675.ba (of order \(36\), degree \(12\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [192] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.38990213644\)
Analytic rank: \(0\)
Dimension: \(192\)
Relative dimension: \(16\) over \(\Q(\zeta_{36})\)
Twist minimal: no (minimal twist has level 135)
Sato-Tate group: $\mathrm{SU}(2)[C_{36}]$

Embedding invariants

Embedding label 443.9
Character \(\chi\) \(=\) 675.443
Dual form 675.2.ba.b.32.9

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.00133058 - 0.0152086i) q^{2} +(1.71244 - 0.259886i) q^{3} +(1.96939 - 0.347256i) q^{4} +(-0.00623106 - 0.0256981i) q^{6} +(0.148030 + 0.211408i) q^{7} +(-0.0158044 - 0.0589827i) q^{8} +(2.86492 - 0.890079i) q^{9} +(1.49616 + 4.11066i) q^{11} +(3.28221 - 1.10647i) q^{12} +(-2.14258 - 0.187451i) q^{13} +(0.00301826 - 0.00253263i) q^{14} +(3.75746 - 1.36760i) q^{16} +(-0.456091 + 1.70216i) q^{17} +(-0.0173489 - 0.0423872i) q^{18} +(-4.91894 - 2.83995i) q^{19} +(0.308434 + 0.323554i) q^{21} +(0.0605267 - 0.0282241i) q^{22} +(4.74660 + 3.32360i) q^{23} +(-0.0423928 - 0.0968971i) q^{24} +0.0328351i q^{26} +(4.67469 - 2.26876i) q^{27} +(0.364940 + 0.364940i) q^{28} +(-3.59567 - 3.01712i) q^{29} +(-0.912568 - 5.17543i) q^{31} +(-0.0774120 - 0.166010i) q^{32} +(3.63039 + 6.65044i) q^{33} +(0.0264943 + 0.00467167i) q^{34} +(5.33305 - 2.74777i) q^{36} +(-3.12552 - 0.837479i) q^{37} +(-0.0366467 + 0.0785891i) q^{38} +(-3.71775 + 0.235826i) q^{39} +(0.241984 + 0.288386i) q^{41} +(0.00451041 - 0.00512138i) q^{42} +(-8.25395 - 3.84888i) q^{43} +(4.37396 + 7.57592i) q^{44} +(0.0442317 - 0.0766116i) q^{46} +(3.28345 - 2.29910i) q^{47} +(6.07901 - 3.31845i) q^{48} +(2.37136 - 6.51526i) q^{49} +(-0.338664 + 3.03338i) q^{51} +(-4.28465 + 0.374859i) q^{52} +(-8.15900 + 8.15900i) q^{53} +(-0.0407248 - 0.0680769i) q^{54} +(0.0101299 - 0.0120724i) q^{56} +(-9.16146 - 3.58489i) q^{57} +(-0.0411020 + 0.0586997i) q^{58} +(-10.6146 - 3.86341i) q^{59} +(-2.10712 + 11.9501i) q^{61} +(-0.0774969 + 0.0207652i) q^{62} +(0.612263 + 0.473909i) q^{63} +(6.92336 - 3.99720i) q^{64} +(0.0963135 - 0.0640622i) q^{66} +(-0.160052 + 1.82940i) q^{67} +(-0.307136 + 3.51058i) q^{68} +(8.99203 + 4.45790i) q^{69} +(4.44360 - 2.56551i) q^{71} +(-0.0977775 - 0.154913i) q^{72} +(13.8702 - 3.71651i) q^{73} +(-0.00857816 + 0.0486492i) q^{74} +(-10.6735 - 3.88483i) q^{76} +(-0.647552 + 0.924799i) q^{77} +(0.00853337 + 0.0562282i) q^{78} +(-1.98949 + 2.37099i) q^{79} +(7.41552 - 5.10001i) q^{81} +(0.00406398 - 0.00406398i) q^{82} +(-4.94812 + 0.432904i) q^{83} +(0.719782 + 0.530096i) q^{84} +(-0.0475536 + 0.130653i) q^{86} +(-6.94148 - 4.23219i) q^{87} +(0.218812 - 0.153214i) q^{88} +(1.44584 - 2.50426i) q^{89} +(-0.277536 - 0.480707i) q^{91} +(10.5020 + 4.89717i) q^{92} +(-2.90774 - 8.62546i) q^{93} +(-0.0393351 - 0.0468777i) q^{94} +(-0.175707 - 0.264165i) q^{96} +(1.99162 - 4.27105i) q^{97} +(-0.102243 - 0.0273961i) q^{98} +(7.94518 + 10.4450i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 192 q + 12 q^{2} + 12 q^{3} - 36 q^{6} + 12 q^{7} + 18 q^{8} - 36 q^{11} + 12 q^{12} + 12 q^{13} - 24 q^{16} + 18 q^{17} + 54 q^{18} - 24 q^{21} + 12 q^{22} + 36 q^{23} + 36 q^{27} + 24 q^{28} - 24 q^{31}+ \cdots - 324 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/675\mathbb{Z}\right)^\times\).

\(n\) \(326\) \(352\)
\(\chi(n)\) \(e\left(\frac{13}{18}\right)\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.00133058 0.0152086i −0.000940864 0.0107541i 0.995710 0.0925315i \(-0.0294959\pi\)
−0.996651 + 0.0817774i \(0.973940\pi\)
\(3\) 1.71244 0.259886i 0.988679 0.150045i
\(4\) 1.96939 0.347256i 0.984693 0.173628i
\(5\) 0 0
\(6\) −0.00623106 0.0256981i −0.00254382 0.0104912i
\(7\) 0.148030 + 0.211408i 0.0559499 + 0.0799048i 0.846152 0.532941i \(-0.178913\pi\)
−0.790202 + 0.612846i \(0.790025\pi\)
\(8\) −0.0158044 0.0589827i −0.00558769 0.0208535i
\(9\) 2.86492 0.890079i 0.954973 0.296693i
\(10\) 0 0
\(11\) 1.49616 + 4.11066i 0.451108 + 1.23941i 0.931945 + 0.362600i \(0.118111\pi\)
−0.480836 + 0.876810i \(0.659667\pi\)
\(12\) 3.28221 1.10647i 0.947493 0.319411i
\(13\) −2.14258 0.187451i −0.594244 0.0519896i −0.213933 0.976848i \(-0.568627\pi\)
−0.380311 + 0.924859i \(0.624183\pi\)
\(14\) 0.00301826 0.00253263i 0.000806665 0.000676873i
\(15\) 0 0
\(16\) 3.75746 1.36760i 0.939364 0.341901i
\(17\) −0.456091 + 1.70216i −0.110618 + 0.412833i −0.998922 0.0464236i \(-0.985218\pi\)
0.888303 + 0.459257i \(0.151884\pi\)
\(18\) −0.0173489 0.0423872i −0.00408918 0.00999075i
\(19\) −4.91894 2.83995i −1.12848 0.651529i −0.184929 0.982752i \(-0.559206\pi\)
−0.943553 + 0.331222i \(0.892539\pi\)
\(20\) 0 0
\(21\) 0.308434 + 0.323554i 0.0673059 + 0.0706052i
\(22\) 0.0605267 0.0282241i 0.0129043 0.00601740i
\(23\) 4.74660 + 3.32360i 0.989734 + 0.693019i 0.951946 0.306267i \(-0.0990800\pi\)
0.0377879 + 0.999286i \(0.487969\pi\)
\(24\) −0.0423928 0.0968971i −0.00865340 0.0197790i
\(25\) 0 0
\(26\) 0.0328351i 0.00643949i
\(27\) 4.67469 2.26876i 0.899644 0.436623i
\(28\) 0.364940 + 0.364940i 0.0689672 + 0.0689672i
\(29\) −3.59567 3.01712i −0.667699 0.560266i 0.244685 0.969603i \(-0.421316\pi\)
−0.912383 + 0.409337i \(0.865760\pi\)
\(30\) 0 0
\(31\) −0.912568 5.17543i −0.163902 0.929534i −0.950189 0.311673i \(-0.899111\pi\)
0.786287 0.617861i \(-0.212001\pi\)
\(32\) −0.0774120 0.166010i −0.0136846 0.0293468i
\(33\) 3.63039 + 6.65044i 0.631969 + 1.15769i
\(34\) 0.0264943 + 0.00467167i 0.00454374 + 0.000801184i
\(35\) 0 0
\(36\) 5.33305 2.74777i 0.888841 0.457962i
\(37\) −3.12552 0.837479i −0.513832 0.137681i −0.00741968 0.999972i \(-0.502362\pi\)
−0.506412 + 0.862292i \(0.669028\pi\)
\(38\) −0.0366467 + 0.0785891i −0.00594488 + 0.0127488i
\(39\) −3.71775 + 0.235826i −0.595317 + 0.0377624i
\(40\) 0 0
\(41\) 0.241984 + 0.288386i 0.0377916 + 0.0450383i 0.784609 0.619991i \(-0.212864\pi\)
−0.746818 + 0.665029i \(0.768419\pi\)
\(42\) 0.00451041 0.00512138i 0.000695972 0.000790246i
\(43\) −8.25395 3.84888i −1.25872 0.586948i −0.325254 0.945627i \(-0.605450\pi\)
−0.933461 + 0.358678i \(0.883228\pi\)
\(44\) 4.37396 + 7.57592i 0.659400 + 1.14211i
\(45\) 0 0
\(46\) 0.0442317 0.0766116i 0.00652161 0.0112958i
\(47\) 3.28345 2.29910i 0.478941 0.335358i −0.309049 0.951046i \(-0.600011\pi\)
0.787990 + 0.615688i \(0.211122\pi\)
\(48\) 6.07901 3.31845i 0.877429 0.478977i
\(49\) 2.37136 6.51526i 0.338766 0.930751i
\(50\) 0 0
\(51\) −0.338664 + 3.03338i −0.0474224 + 0.424757i
\(52\) −4.28465 + 0.374859i −0.594174 + 0.0519835i
\(53\) −8.15900 + 8.15900i −1.12072 + 1.12072i −0.129092 + 0.991633i \(0.541206\pi\)
−0.991633 + 0.129092i \(0.958794\pi\)
\(54\) −0.0407248 0.0680769i −0.00554195 0.00926409i
\(55\) 0 0
\(56\) 0.0101299 0.0120724i 0.00135367 0.00161324i
\(57\) −9.16146 3.58489i −1.21347 0.474830i
\(58\) −0.0411020 + 0.0586997i −0.00539696 + 0.00770765i
\(59\) −10.6146 3.86341i −1.38191 0.502973i −0.459152 0.888358i \(-0.651847\pi\)
−0.922756 + 0.385385i \(0.874069\pi\)
\(60\) 0 0
\(61\) −2.10712 + 11.9501i −0.269790 + 1.53005i 0.485251 + 0.874375i \(0.338728\pi\)
−0.755040 + 0.655678i \(0.772383\pi\)
\(62\) −0.0774969 + 0.0207652i −0.00984212 + 0.00263719i
\(63\) 0.612263 + 0.473909i 0.0771379 + 0.0597070i
\(64\) 6.92336 3.99720i 0.865420 0.499650i
\(65\) 0 0
\(66\) 0.0963135 0.0640622i 0.0118554 0.00788551i
\(67\) −0.160052 + 1.82940i −0.0195534 + 0.223497i 0.980130 + 0.198354i \(0.0635595\pi\)
−0.999684 + 0.0251426i \(0.991996\pi\)
\(68\) −0.307136 + 3.51058i −0.0372457 + 0.425721i
\(69\) 8.99203 + 4.45790i 1.08251 + 0.536669i
\(70\) 0 0
\(71\) 4.44360 2.56551i 0.527358 0.304471i −0.212582 0.977143i \(-0.568187\pi\)
0.739940 + 0.672673i \(0.234854\pi\)
\(72\) −0.0977775 0.154913i −0.0115232 0.0182567i
\(73\) 13.8702 3.71651i 1.62338 0.434984i 0.671390 0.741104i \(-0.265697\pi\)
0.951993 + 0.306120i \(0.0990308\pi\)
\(74\) −0.00857816 + 0.0486492i −0.000997191 + 0.00565535i
\(75\) 0 0
\(76\) −10.6735 3.88483i −1.22433 0.445620i
\(77\) −0.647552 + 0.924799i −0.0737953 + 0.105391i
\(78\) 0.00853337 + 0.0562282i 0.000966214 + 0.00636659i
\(79\) −1.98949 + 2.37099i −0.223835 + 0.266757i −0.866261 0.499591i \(-0.833484\pi\)
0.642426 + 0.766348i \(0.277928\pi\)
\(80\) 0 0
\(81\) 7.41552 5.10001i 0.823946 0.566668i
\(82\) 0.00406398 0.00406398i 0.000448791 0.000448791i
\(83\) −4.94812 + 0.432904i −0.543127 + 0.0475174i −0.355418 0.934707i \(-0.615662\pi\)
−0.187708 + 0.982225i \(0.560106\pi\)
\(84\) 0.719782 + 0.530096i 0.0785347 + 0.0578383i
\(85\) 0 0
\(86\) −0.0475536 + 0.130653i −0.00512784 + 0.0140886i
\(87\) −6.94148 4.23219i −0.744205 0.453738i
\(88\) 0.218812 0.153214i 0.0233254 0.0163326i
\(89\) 1.44584 2.50426i 0.153259 0.265452i −0.779165 0.626819i \(-0.784357\pi\)
0.932424 + 0.361367i \(0.117690\pi\)
\(90\) 0 0
\(91\) −0.277536 0.480707i −0.0290937 0.0503917i
\(92\) 10.5020 + 4.89717i 1.09491 + 0.510565i
\(93\) −2.90774 8.62546i −0.301519 0.894418i
\(94\) −0.0393351 0.0468777i −0.00405710 0.00483507i
\(95\) 0 0
\(96\) −0.175707 0.264165i −0.0179331 0.0269612i
\(97\) 1.99162 4.27105i 0.202219 0.433659i −0.778879 0.627175i \(-0.784211\pi\)
0.981097 + 0.193516i \(0.0619890\pi\)
\(98\) −0.102243 0.0273961i −0.0103282 0.00276742i
\(99\) 7.94518 + 10.4450i 0.798521 + 1.04976i
\(100\) 0 0
\(101\) 2.84523 + 0.501690i 0.283110 + 0.0499200i 0.313400 0.949621i \(-0.398532\pi\)
−0.0302897 + 0.999541i \(0.509643\pi\)
\(102\) 0.0465841 + 0.00111446i 0.00461251 + 0.000110348i
\(103\) −4.26799 9.15274i −0.420538 0.901846i −0.996438 0.0843263i \(-0.973126\pi\)
0.575900 0.817520i \(-0.304652\pi\)
\(104\) 0.0228057 + 0.129337i 0.00223628 + 0.0126826i
\(105\) 0 0
\(106\) 0.134943 + 0.113231i 0.0131069 + 0.0109980i
\(107\) 10.6261 + 10.6261i 1.02727 + 1.02727i 0.999618 + 0.0276498i \(0.00880233\pi\)
0.0276498 + 0.999618i \(0.491198\pi\)
\(108\) 8.41843 6.09138i 0.810064 0.586143i
\(109\) 12.0030i 1.14968i 0.818265 + 0.574841i \(0.194936\pi\)
−0.818265 + 0.574841i \(0.805064\pi\)
\(110\) 0 0
\(111\) −5.56991 0.621858i −0.528673 0.0590241i
\(112\) 0.845337 + 0.591912i 0.0798769 + 0.0559304i
\(113\) −8.41851 + 3.92562i −0.791947 + 0.369291i −0.776121 0.630584i \(-0.782816\pi\)
−0.0158260 + 0.999875i \(0.505038\pi\)
\(114\) −0.0423312 + 0.144103i −0.00396468 + 0.0134965i
\(115\) 0 0
\(116\) −8.12897 4.69326i −0.754756 0.435759i
\(117\) −6.30515 + 1.37003i −0.582912 + 0.126659i
\(118\) −0.0446336 + 0.166575i −0.00410885 + 0.0153344i
\(119\) −0.427365 + 0.155548i −0.0391765 + 0.0142591i
\(120\) 0 0
\(121\) −6.23254 + 5.22972i −0.566595 + 0.475429i
\(122\) 0.184548 + 0.0161459i 0.0167082 + 0.00146178i
\(123\) 0.489332 + 0.430956i 0.0441216 + 0.0388580i
\(124\) −3.59440 9.87552i −0.322786 0.886848i
\(125\) 0 0
\(126\) 0.00639285 0.00994226i 0.000569520 0.000885727i
\(127\) 5.03035 + 18.7735i 0.446371 + 1.66588i 0.712290 + 0.701885i \(0.247658\pi\)
−0.265918 + 0.963996i \(0.585675\pi\)
\(128\) −0.280131 0.400068i −0.0247603 0.0353614i
\(129\) −15.1347 4.44590i −1.33253 0.391440i
\(130\) 0 0
\(131\) −4.49710 + 0.792959i −0.392913 + 0.0692812i −0.366614 0.930373i \(-0.619483\pi\)
−0.0262986 + 0.999654i \(0.508372\pi\)
\(132\) 9.45903 + 11.8366i 0.823303 + 1.03024i
\(133\) −0.127760 1.46030i −0.0110782 0.126624i
\(134\) 0.0280356 0.00242191
\(135\) 0 0
\(136\) 0.107606 0.00922713
\(137\) −0.609750 6.96948i −0.0520945 0.595443i −0.976713 0.214549i \(-0.931172\pi\)
0.924619 0.380894i \(-0.124384\pi\)
\(138\) 0.0558340 0.142688i 0.00475291 0.0121464i
\(139\) 8.03836 1.41738i 0.681805 0.120221i 0.177990 0.984032i \(-0.443041\pi\)
0.503815 + 0.863812i \(0.331929\pi\)
\(140\) 0 0
\(141\) 5.02522 4.79040i 0.423200 0.403424i
\(142\) −0.0449306 0.0641675i −0.00377049 0.00538482i
\(143\) −2.43508 9.08786i −0.203632 0.759965i
\(144\) 9.54753 7.26250i 0.795628 0.605209i
\(145\) 0 0
\(146\) −0.0749784 0.206002i −0.00620526 0.0170488i
\(147\) 2.36759 11.7733i 0.195276 0.971045i
\(148\) −6.44617 0.563966i −0.529872 0.0463578i
\(149\) −14.7726 + 12.3956i −1.21021 + 1.01549i −0.210937 + 0.977500i \(0.567651\pi\)
−0.999278 + 0.0379911i \(0.987904\pi\)
\(150\) 0 0
\(151\) −14.1147 + 5.13734i −1.14864 + 0.418070i −0.845026 0.534725i \(-0.820415\pi\)
−0.303613 + 0.952795i \(0.598193\pi\)
\(152\) −0.0897672 + 0.335016i −0.00728108 + 0.0271734i
\(153\) 0.208389 + 5.28249i 0.0168473 + 0.427064i
\(154\) 0.0149266 + 0.00861785i 0.00120282 + 0.000694446i
\(155\) 0 0
\(156\) −7.23980 + 1.75544i −0.579648 + 0.140548i
\(157\) −2.11753 + 0.987420i −0.168997 + 0.0788047i −0.505276 0.862958i \(-0.668609\pi\)
0.336279 + 0.941762i \(0.390832\pi\)
\(158\) 0.0387066 + 0.0271027i 0.00307933 + 0.00215617i
\(159\) −11.8514 + 16.0922i −0.939878 + 1.27620i
\(160\) 0 0
\(161\) 1.49546i 0.117859i
\(162\) −0.0874311 0.105994i −0.00686924 0.00832767i
\(163\) −10.7302 10.7302i −0.840451 0.840451i 0.148467 0.988917i \(-0.452566\pi\)
−0.988917 + 0.148467i \(0.952566\pi\)
\(164\) 0.576705 + 0.483913i 0.0450331 + 0.0377872i
\(165\) 0 0
\(166\) 0.0131678 + 0.0746781i 0.00102202 + 0.00579615i
\(167\) −8.20013 17.5852i −0.634545 1.36079i −0.915987 0.401208i \(-0.868590\pi\)
0.281442 0.959578i \(-0.409187\pi\)
\(168\) 0.0142095 0.0233058i 0.00109628 0.00179808i
\(169\) −8.24701 1.45417i −0.634385 0.111859i
\(170\) 0 0
\(171\) −16.6201 3.75798i −1.27097 0.287380i
\(172\) −17.5918 4.71370i −1.34136 0.359416i
\(173\) −2.45707 + 5.26921i −0.186808 + 0.400610i −0.977300 0.211862i \(-0.932047\pi\)
0.790492 + 0.612472i \(0.209825\pi\)
\(174\) −0.0551296 + 0.111202i −0.00417936 + 0.00843018i
\(175\) 0 0
\(176\) 11.2435 + 13.3995i 0.847510 + 1.01002i
\(177\) −19.1810 3.85728i −1.44173 0.289931i
\(178\) −0.0400103 0.0186571i −0.00299890 0.00139841i
\(179\) 4.77974 + 8.27875i 0.357254 + 0.618783i 0.987501 0.157612i \(-0.0503796\pi\)
−0.630247 + 0.776395i \(0.717046\pi\)
\(180\) 0 0
\(181\) 6.93879 12.0183i 0.515756 0.893315i −0.484077 0.875026i \(-0.660844\pi\)
0.999833 0.0182899i \(-0.00582219\pi\)
\(182\) −0.00694161 + 0.00486056i −0.000514546 + 0.000360289i
\(183\) −0.502668 + 21.0115i −0.0371583 + 1.55321i
\(184\) 0.121018 0.332494i 0.00892157 0.0245118i
\(185\) 0 0
\(186\) −0.127312 + 0.0556997i −0.00933500 + 0.00408410i
\(187\) −7.67937 + 0.671857i −0.561571 + 0.0491311i
\(188\) 5.66801 5.66801i 0.413382 0.413382i
\(189\) 1.17163 + 0.652424i 0.0852234 + 0.0474569i
\(190\) 0 0
\(191\) −7.63489 + 9.09890i −0.552441 + 0.658374i −0.967929 0.251225i \(-0.919167\pi\)
0.415488 + 0.909599i \(0.363611\pi\)
\(192\) 10.8170 8.64426i 0.780652 0.623846i
\(193\) 6.94425 9.91741i 0.499858 0.713871i −0.487368 0.873197i \(-0.662043\pi\)
0.987226 + 0.159325i \(0.0509319\pi\)
\(194\) −0.0676068 0.0246069i −0.00485389 0.00176667i
\(195\) 0 0
\(196\) 2.40766 13.6545i 0.171976 0.975323i
\(197\) −5.74222 + 1.53862i −0.409116 + 0.109622i −0.457507 0.889206i \(-0.651257\pi\)
0.0483907 + 0.998828i \(0.484591\pi\)
\(198\) 0.148283 0.134733i 0.0105380 0.00957508i
\(199\) 4.84519 2.79737i 0.343466 0.198300i −0.318337 0.947977i \(-0.603124\pi\)
0.661804 + 0.749677i \(0.269791\pi\)
\(200\) 0 0
\(201\) 0.201356 + 3.17433i 0.0142025 + 0.223900i
\(202\) 0.00384421 0.0439395i 0.000270478 0.00309157i
\(203\) 0.105579 1.20678i 0.00741022 0.0846992i
\(204\) 0.386398 + 6.09149i 0.0270533 + 0.426490i
\(205\) 0 0
\(206\) −0.133522 + 0.0770888i −0.00930290 + 0.00537103i
\(207\) 16.5569 + 5.29700i 1.15078 + 0.368167i
\(208\) −8.30699 + 2.22585i −0.575986 + 0.154335i
\(209\) 4.31456 24.4691i 0.298444 1.69256i
\(210\) 0 0
\(211\) 5.33826 + 1.94297i 0.367501 + 0.133759i 0.519168 0.854672i \(-0.326242\pi\)
−0.151667 + 0.988432i \(0.548464\pi\)
\(212\) −13.2350 + 18.9015i −0.908980 + 1.29816i
\(213\) 6.94267 5.54813i 0.475704 0.380151i
\(214\) 0.147470 0.175748i 0.0100808 0.0120139i
\(215\) 0 0
\(216\) −0.207698 0.239869i −0.0141321 0.0163210i
\(217\) 0.959041 0.959041i 0.0651039 0.0651039i
\(218\) 0.182550 0.0159710i 0.0123638 0.00108169i
\(219\) 22.7860 9.96897i 1.53974 0.673641i
\(220\) 0 0
\(221\) 1.29628 3.56150i 0.0871973 0.239573i
\(222\) −0.00204637 + 0.0855382i −0.000137344 + 0.00574095i
\(223\) −10.8010 + 7.56295i −0.723289 + 0.506452i −0.876296 0.481773i \(-0.839993\pi\)
0.153007 + 0.988225i \(0.451104\pi\)
\(224\) 0.0236367 0.0409400i 0.00157929 0.00273542i
\(225\) 0 0
\(226\) 0.0709048 + 0.122811i 0.00471652 + 0.00816925i
\(227\) −13.2080 6.15899i −0.876646 0.408787i −0.0684181 0.997657i \(-0.521795\pi\)
−0.808228 + 0.588870i \(0.799573\pi\)
\(228\) −19.2873 3.87866i −1.27733 0.256870i
\(229\) −5.35302 6.37948i −0.353738 0.421568i 0.559605 0.828759i \(-0.310953\pi\)
−0.913343 + 0.407191i \(0.866508\pi\)
\(230\) 0 0
\(231\) −0.868552 + 1.75196i −0.0571466 + 0.115270i
\(232\) −0.121131 + 0.259766i −0.00795262 + 0.0170545i
\(233\) 26.7094 + 7.15675i 1.74979 + 0.468854i 0.984581 0.174930i \(-0.0559699\pi\)
0.765207 + 0.643784i \(0.222637\pi\)
\(234\) 0.0292258 + 0.0940698i 0.00191055 + 0.00614954i
\(235\) 0 0
\(236\) −22.2459 3.92255i −1.44808 0.255336i
\(237\) −2.79071 + 4.57722i −0.181276 + 0.297322i
\(238\) 0.00293432 + 0.00629266i 0.000190204 + 0.000407893i
\(239\) 3.76477 + 21.3510i 0.243522 + 1.38108i 0.823899 + 0.566736i \(0.191794\pi\)
−0.580377 + 0.814348i \(0.697095\pi\)
\(240\) 0 0
\(241\) 3.99926 + 3.35578i 0.257615 + 0.216165i 0.762443 0.647055i \(-0.224000\pi\)
−0.504828 + 0.863220i \(0.668444\pi\)
\(242\) 0.0878299 + 0.0878299i 0.00564592 + 0.00564592i
\(243\) 11.3732 10.6607i 0.729593 0.683882i
\(244\) 24.2661i 1.55348i
\(245\) 0 0
\(246\) 0.00590315 0.00801549i 0.000376371 0.000511049i
\(247\) 10.0068 + 7.00687i 0.636721 + 0.445837i
\(248\) −0.290838 + 0.135620i −0.0184682 + 0.00861188i
\(249\) −8.36086 + 2.02727i −0.529848 + 0.128473i
\(250\) 0 0
\(251\) 12.0778 + 6.97313i 0.762345 + 0.440140i 0.830137 0.557560i \(-0.188262\pi\)
−0.0677923 + 0.997699i \(0.521596\pi\)
\(252\) 1.37035 + 0.720698i 0.0863239 + 0.0453997i
\(253\) −6.56054 + 24.4843i −0.412458 + 1.53931i
\(254\) 0.278826 0.101484i 0.0174951 0.00636770i
\(255\) 0 0
\(256\) 12.2424 10.2726i 0.765152 0.642039i
\(257\) 9.33717 + 0.816897i 0.582437 + 0.0509566i 0.374567 0.927200i \(-0.377791\pi\)
0.207870 + 0.978156i \(0.433347\pi\)
\(258\) −0.0474781 + 0.236093i −0.00295586 + 0.0146985i
\(259\) −0.285619 0.784731i −0.0177475 0.0487608i
\(260\) 0 0
\(261\) −12.9868 5.44338i −0.803861 0.336937i
\(262\) 0.0180436 + 0.0673396i 0.00111474 + 0.00416025i
\(263\) −5.75656 8.22122i −0.354965 0.506942i 0.601467 0.798897i \(-0.294583\pi\)
−0.956432 + 0.291955i \(0.905694\pi\)
\(264\) 0.334885 0.319236i 0.0206107 0.0196476i
\(265\) 0 0
\(266\) −0.0220392 + 0.00388610i −0.00135131 + 0.000238272i
\(267\) 1.82509 4.66416i 0.111694 0.285442i
\(268\) 0.320066 + 3.65837i 0.0195511 + 0.223470i
\(269\) 1.84882 0.112724 0.0563622 0.998410i \(-0.482050\pi\)
0.0563622 + 0.998410i \(0.482050\pi\)
\(270\) 0 0
\(271\) 14.0068 0.850851 0.425426 0.904993i \(-0.360124\pi\)
0.425426 + 0.904993i \(0.360124\pi\)
\(272\) 0.614129 + 7.01953i 0.0372370 + 0.425621i
\(273\) −0.600193 0.751055i −0.0363254 0.0454559i
\(274\) −0.105185 + 0.0185469i −0.00635445 + 0.00112046i
\(275\) 0 0
\(276\) 19.2568 + 5.65680i 1.15912 + 0.340499i
\(277\) −10.4313 14.8975i −0.626758 0.895103i 0.372703 0.927951i \(-0.378431\pi\)
−0.999460 + 0.0328481i \(0.989542\pi\)
\(278\) −0.0322521 0.120367i −0.00193435 0.00721911i
\(279\) −7.22097 14.0149i −0.432308 0.839051i
\(280\) 0 0
\(281\) −8.98091 24.6748i −0.535756 1.47198i −0.852124 0.523341i \(-0.824686\pi\)
0.316368 0.948637i \(-0.397537\pi\)
\(282\) −0.0795419 0.0700527i −0.00473665 0.00417158i
\(283\) 18.2738 + 1.59875i 1.08627 + 0.0950360i 0.616196 0.787593i \(-0.288673\pi\)
0.470071 + 0.882629i \(0.344228\pi\)
\(284\) 7.86028 6.59556i 0.466422 0.391374i
\(285\) 0 0
\(286\) −0.134974 + 0.0491264i −0.00798117 + 0.00290491i
\(287\) −0.0251463 + 0.0938472i −0.00148434 + 0.00553962i
\(288\) −0.369541 0.406704i −0.0217754 0.0239652i
\(289\) 12.0331 + 6.94732i 0.707830 + 0.408666i
\(290\) 0 0
\(291\) 2.30055 7.83152i 0.134861 0.459092i
\(292\) 26.0252 12.1357i 1.52301 0.710191i
\(293\) −8.60861 6.02781i −0.502920 0.352149i 0.294422 0.955675i \(-0.404873\pi\)
−0.797343 + 0.603527i \(0.793762\pi\)
\(294\) −0.182206 0.0203425i −0.0106265 0.00118640i
\(295\) 0 0
\(296\) 0.197587i 0.0114845i
\(297\) 16.3202 + 15.8216i 0.946993 + 0.918064i
\(298\) 0.208177 + 0.208177i 0.0120594 + 0.0120594i
\(299\) −9.54693 8.01082i −0.552113 0.463278i
\(300\) 0 0
\(301\) −0.408144 2.31470i −0.0235250 0.133417i
\(302\) 0.0969127 + 0.207830i 0.00557670 + 0.0119593i
\(303\) 5.00267 + 0.119681i 0.287396 + 0.00687551i
\(304\) −22.3666 3.94384i −1.28281 0.226195i
\(305\) 0 0
\(306\) 0.0800623 0.0101981i 0.00457685 0.000582987i
\(307\) 12.3714 + 3.31491i 0.706074 + 0.189192i 0.593949 0.804502i \(-0.297568\pi\)
0.112124 + 0.993694i \(0.464235\pi\)
\(308\) −0.954137 + 2.04615i −0.0543670 + 0.116590i
\(309\) −9.68736 14.5643i −0.551095 0.828537i
\(310\) 0 0
\(311\) 13.5014 + 16.0903i 0.765592 + 0.912397i 0.998188 0.0601768i \(-0.0191664\pi\)
−0.232596 + 0.972573i \(0.574722\pi\)
\(312\) 0.0726664 + 0.215556i 0.00411392 + 0.0122035i
\(313\) 26.7887 + 12.4918i 1.51419 + 0.706078i 0.989408 0.145159i \(-0.0463694\pi\)
0.524781 + 0.851237i \(0.324147\pi\)
\(314\) 0.0178349 + 0.0308909i 0.00100648 + 0.00174327i
\(315\) 0 0
\(316\) −3.09474 + 5.36025i −0.174093 + 0.301538i
\(317\) 21.7523 15.2311i 1.22173 0.855465i 0.228720 0.973492i \(-0.426546\pi\)
0.993010 + 0.118027i \(0.0376571\pi\)
\(318\) 0.260510 + 0.158832i 0.0146087 + 0.00890684i
\(319\) 7.02268 19.2947i 0.393195 1.08029i
\(320\) 0 0
\(321\) 20.9582 + 15.4351i 1.16977 + 0.861501i
\(322\) 0.0227439 0.00198984i 0.00126747 0.000110889i
\(323\) 7.07752 7.07752i 0.393804 0.393804i
\(324\) 12.8330 12.6190i 0.712945 0.701054i
\(325\) 0 0
\(326\) −0.148914 + 0.177468i −0.00824756 + 0.00982906i
\(327\) 3.11942 + 20.5545i 0.172504 + 1.13667i
\(328\) 0.0131854 0.0188306i 0.000728040 0.00103975i
\(329\) 0.972097 + 0.353814i 0.0535934 + 0.0195064i
\(330\) 0 0
\(331\) −1.72647 + 9.79132i −0.0948956 + 0.538179i 0.899884 + 0.436130i \(0.143651\pi\)
−0.994779 + 0.102050i \(0.967460\pi\)
\(332\) −9.59443 + 2.57082i −0.526563 + 0.141092i
\(333\) −9.69977 + 0.382646i −0.531544 + 0.0209689i
\(334\) −0.256536 + 0.148111i −0.0140371 + 0.00810430i
\(335\) 0 0
\(336\) 1.60142 + 0.793923i 0.0873647 + 0.0433121i
\(337\) 1.22264 13.9748i 0.0666015 0.761258i −0.887311 0.461172i \(-0.847429\pi\)
0.953912 0.300086i \(-0.0970154\pi\)
\(338\) −0.0111426 + 0.127361i −0.000606078 + 0.00692750i
\(339\) −13.3960 + 8.91025i −0.727571 + 0.483938i
\(340\) 0 0
\(341\) 19.9091 11.4945i 1.07814 0.622463i
\(342\) −0.0350393 + 0.257770i −0.00189471 + 0.0139386i
\(343\) 3.47343 0.930702i 0.187547 0.0502532i
\(344\) −0.0965688 + 0.547669i −0.00520664 + 0.0295283i
\(345\) 0 0
\(346\) 0.0834068 + 0.0303576i 0.00448397 + 0.00163203i
\(347\) −3.50208 + 5.00149i −0.188001 + 0.268494i −0.902077 0.431574i \(-0.857958\pi\)
0.714076 + 0.700068i \(0.246847\pi\)
\(348\) −15.1401 5.92434i −0.811595 0.317578i
\(349\) −2.45708 + 2.92823i −0.131524 + 0.156745i −0.827787 0.561042i \(-0.810400\pi\)
0.696263 + 0.717787i \(0.254845\pi\)
\(350\) 0 0
\(351\) −10.4412 + 3.98472i −0.557308 + 0.212689i
\(352\) 0.566592 0.566592i 0.0301995 0.0301995i
\(353\) 2.21879 0.194119i 0.118094 0.0103319i −0.0279554 0.999609i \(-0.508900\pi\)
0.146050 + 0.989277i \(0.453344\pi\)
\(354\) −0.0331420 + 0.296849i −0.00176148 + 0.0157774i
\(355\) 0 0
\(356\) 1.97779 5.43394i 0.104823 0.287998i
\(357\) −0.691413 + 0.377433i −0.0365934 + 0.0199759i
\(358\) 0.119549 0.0837088i 0.00631834 0.00442415i
\(359\) 5.90045 10.2199i 0.311414 0.539385i −0.667255 0.744829i \(-0.732531\pi\)
0.978669 + 0.205445i \(0.0658641\pi\)
\(360\) 0 0
\(361\) 6.63064 + 11.4846i 0.348981 + 0.604453i
\(362\) −0.192015 0.0895381i −0.0100921 0.00470602i
\(363\) −9.31374 + 10.5753i −0.488844 + 0.555062i
\(364\) −0.713504 0.850321i −0.0373978 0.0445689i
\(365\) 0 0
\(366\) 0.320225 0.0203126i 0.0167384 0.00106176i
\(367\) 0.896047 1.92158i 0.0467733 0.100306i −0.881532 0.472123i \(-0.843488\pi\)
0.928306 + 0.371818i \(0.121265\pi\)
\(368\) 22.3805 + 5.99683i 1.16666 + 0.312607i
\(369\) 0.949952 + 0.610817i 0.0494525 + 0.0317978i
\(370\) 0 0
\(371\) −2.93265 0.517106i −0.152256 0.0268468i
\(372\) −8.72170 15.9771i −0.452199 0.828376i
\(373\) −1.40277 3.00825i −0.0726328 0.155762i 0.866639 0.498936i \(-0.166276\pi\)
−0.939272 + 0.343174i \(0.888498\pi\)
\(374\) 0.0204361 + 0.115899i 0.00105672 + 0.00599298i
\(375\) 0 0
\(376\) −0.187500 0.157331i −0.00966957 0.00811373i
\(377\) 7.13843 + 7.13843i 0.367648 + 0.367648i
\(378\) 0.00836353 0.0186870i 0.000430173 0.000961153i
\(379\) 15.7634i 0.809713i 0.914380 + 0.404856i \(0.132678\pi\)
−0.914380 + 0.404856i \(0.867322\pi\)
\(380\) 0 0
\(381\) 13.4932 + 30.8413i 0.691276 + 1.58005i
\(382\) 0.148541 + 0.104009i 0.00760001 + 0.00532158i
\(383\) −24.9622 + 11.6401i −1.27551 + 0.594781i −0.938031 0.346552i \(-0.887352\pi\)
−0.337480 + 0.941333i \(0.609575\pi\)
\(384\) −0.583680 0.612292i −0.0297858 0.0312459i
\(385\) 0 0
\(386\) −0.160070 0.0924166i −0.00814736 0.00470388i
\(387\) −27.0727 3.68006i −1.37618 0.187068i
\(388\) 2.43913 9.10294i 0.123828 0.462132i
\(389\) 28.2091 10.2673i 1.43026 0.520571i 0.493252 0.869886i \(-0.335808\pi\)
0.937005 + 0.349315i \(0.113586\pi\)
\(390\) 0 0
\(391\) −7.82217 + 6.56358i −0.395584 + 0.331934i
\(392\) −0.421765 0.0368997i −0.0213024 0.00186372i
\(393\) −7.49494 + 2.52663i −0.378070 + 0.127452i
\(394\) 0.0310408 + 0.0852840i 0.00156382 + 0.00429655i
\(395\) 0 0
\(396\) 19.2742 + 17.8112i 0.968566 + 0.895048i
\(397\) 1.23812 + 4.62074i 0.0621397 + 0.231908i 0.990011 0.140993i \(-0.0450296\pi\)
−0.927871 + 0.372902i \(0.878363\pi\)
\(398\) −0.0489911 0.0699666i −0.00245570 0.00350711i
\(399\) −0.598293 2.46748i −0.0299521 0.123528i
\(400\) 0 0
\(401\) −8.47214 + 1.49387i −0.423078 + 0.0746001i −0.381134 0.924520i \(-0.624466\pi\)
−0.0419444 + 0.999120i \(0.513355\pi\)
\(402\) 0.0480094 0.00728606i 0.00239449 0.000363396i
\(403\) 0.985106 + 11.2598i 0.0490716 + 0.560891i
\(404\) 5.77756 0.287444
\(405\) 0 0
\(406\) −0.0184939 −0.000917838
\(407\) −1.23367 14.1009i −0.0611508 0.698957i
\(408\) 0.184269 0.0279653i 0.00912267 0.00138449i
\(409\) 8.33076 1.46894i 0.411930 0.0726343i 0.0361568 0.999346i \(-0.488488\pi\)
0.375773 + 0.926712i \(0.377377\pi\)
\(410\) 0 0
\(411\) −2.85543 11.7764i −0.140848 0.580885i
\(412\) −11.5837 16.5432i −0.570686 0.815024i
\(413\) −0.754524 2.81592i −0.0371277 0.138562i
\(414\) 0.0585299 0.258856i 0.00287659 0.0127221i
\(415\) 0 0
\(416\) 0.134742 + 0.370201i 0.00660628 + 0.0181506i
\(417\) 13.3969 4.51624i 0.656048 0.221161i
\(418\) −0.377882 0.0330604i −0.0184828 0.00161704i
\(419\) 6.72816 5.64560i 0.328692 0.275806i −0.463475 0.886110i \(-0.653397\pi\)
0.792167 + 0.610305i \(0.208953\pi\)
\(420\) 0 0
\(421\) 0.538899 0.196143i 0.0262643 0.00955944i −0.328855 0.944381i \(-0.606663\pi\)
0.355119 + 0.934821i \(0.384440\pi\)
\(422\) 0.0224469 0.0837730i 0.00109270 0.00407800i
\(423\) 7.36045 9.50926i 0.357877 0.462356i
\(424\) 0.610187 + 0.352292i 0.0296333 + 0.0171088i
\(425\) 0 0
\(426\) −0.0936172 0.0982063i −0.00453577 0.00475811i
\(427\) −2.83827 + 1.32351i −0.137353 + 0.0640489i
\(428\) 24.6170 + 17.2370i 1.18991 + 0.833181i
\(429\) −6.53175 14.9296i −0.315356 0.720807i
\(430\) 0 0
\(431\) 25.0117i 1.20477i −0.798205 0.602386i \(-0.794217\pi\)
0.798205 0.602386i \(-0.205783\pi\)
\(432\) 14.4622 14.9179i 0.695812 0.717737i
\(433\) 24.9892 + 24.9892i 1.20090 + 1.20090i 0.973892 + 0.227011i \(0.0728954\pi\)
0.227011 + 0.973892i \(0.427105\pi\)
\(434\) −0.0158618 0.0133096i −0.000761390 0.000638882i
\(435\) 0 0
\(436\) 4.16812 + 23.6386i 0.199617 + 1.13208i
\(437\) −13.9093 29.8287i −0.665374 1.42690i
\(438\) −0.181933 0.333280i −0.00869310 0.0159247i
\(439\) −4.64923 0.819785i −0.221896 0.0391262i 0.0615948 0.998101i \(-0.480381\pi\)
−0.283491 + 0.958975i \(0.591492\pi\)
\(440\) 0 0
\(441\) 0.994657 20.7764i 0.0473646 0.989352i
\(442\) −0.0558904 0.0149758i −0.00265844 0.000712326i
\(443\) 12.4959 26.7976i 0.593700 1.27319i −0.348238 0.937406i \(-0.613220\pi\)
0.941938 0.335787i \(-0.109002\pi\)
\(444\) −11.1853 + 0.709507i −0.530829 + 0.0336717i
\(445\) 0 0
\(446\) 0.129394 + 0.154205i 0.00612697 + 0.00730184i
\(447\) −22.0757 + 25.0660i −1.04414 + 1.18558i
\(448\) 1.86990 + 0.871951i 0.0883447 + 0.0411958i
\(449\) 3.36725 + 5.83225i 0.158910 + 0.275241i 0.934476 0.356026i \(-0.115869\pi\)
−0.775566 + 0.631267i \(0.782535\pi\)
\(450\) 0 0
\(451\) −0.823409 + 1.42619i −0.0387728 + 0.0671565i
\(452\) −15.2161 + 10.6544i −0.715706 + 0.501142i
\(453\) −22.8355 + 12.4656i −1.07291 + 0.585685i
\(454\) −0.0760955 + 0.209071i −0.00357134 + 0.00981217i
\(455\) 0 0
\(456\) −0.0666553 + 0.597025i −0.00312142 + 0.0279582i
\(457\) 36.1208 3.16016i 1.68966 0.147826i 0.798647 0.601800i \(-0.205550\pi\)
0.891015 + 0.453974i \(0.149994\pi\)
\(458\) −0.0899006 + 0.0899006i −0.00420078 + 0.00420078i
\(459\) 1.72970 + 8.99181i 0.0807355 + 0.419702i
\(460\) 0 0
\(461\) 16.9825 20.2390i 0.790956 0.942625i −0.208417 0.978040i \(-0.566831\pi\)
0.999373 + 0.0354156i \(0.0112755\pi\)
\(462\) 0.0278005 + 0.0108784i 0.00129340 + 0.000506108i
\(463\) −6.89825 + 9.85172i −0.320589 + 0.457848i −0.946808 0.321799i \(-0.895713\pi\)
0.626219 + 0.779647i \(0.284601\pi\)
\(464\) −17.6368 6.41927i −0.818767 0.298007i
\(465\) 0 0
\(466\) 0.0733054 0.415735i 0.00339581 0.0192586i
\(467\) 10.6775 2.86104i 0.494098 0.132393i −0.00316149 0.999995i \(-0.501006\pi\)
0.497260 + 0.867602i \(0.334340\pi\)
\(468\) −11.9415 + 4.88762i −0.551997 + 0.225930i
\(469\) −0.410442 + 0.236969i −0.0189525 + 0.0109422i
\(470\) 0 0
\(471\) −3.36953 + 2.24122i −0.155260 + 0.103270i
\(472\) −0.0601168 + 0.687138i −0.00276710 + 0.0316281i
\(473\) 3.47222 39.6877i 0.159653 1.82484i
\(474\) 0.0733265 + 0.0363525i 0.00336800 + 0.00166972i
\(475\) 0 0
\(476\) −0.787631 + 0.454739i −0.0361010 + 0.0208429i
\(477\) −16.1127 + 30.6370i −0.737750 + 1.40277i
\(478\) 0.319711 0.0856663i 0.0146232 0.00391828i
\(479\) −0.735877 + 4.17337i −0.0336231 + 0.190686i −0.996993 0.0774895i \(-0.975310\pi\)
0.963370 + 0.268175i \(0.0864207\pi\)
\(480\) 0 0
\(481\) 6.53967 + 2.38024i 0.298183 + 0.108530i
\(482\) 0.0457155 0.0652884i 0.00208228 0.00297381i
\(483\) 0.388649 + 2.56089i 0.0176842 + 0.116525i
\(484\) −10.4582 + 12.4636i −0.475374 + 0.566529i
\(485\) 0 0
\(486\) −0.177267 0.158786i −0.00804100 0.00720270i
\(487\) −16.7646 + 16.7646i −0.759676 + 0.759676i −0.976263 0.216587i \(-0.930507\pi\)
0.216587 + 0.976263i \(0.430507\pi\)
\(488\) 0.738151 0.0645798i 0.0334145 0.00292339i
\(489\) −21.1634 15.5862i −0.957041 0.704830i
\(490\) 0 0
\(491\) 0.697417 1.91614i 0.0314740 0.0864740i −0.922960 0.384895i \(-0.874238\pi\)
0.954434 + 0.298421i \(0.0964599\pi\)
\(492\) 1.11334 + 0.678795i 0.0501930 + 0.0306024i
\(493\) 6.77556 4.74430i 0.305156 0.213673i
\(494\) 0.0932500 0.161514i 0.00419552 0.00726685i
\(495\) 0 0
\(496\) −10.5069 18.1984i −0.471772 0.817133i
\(497\) 1.20016 + 0.559642i 0.0538343 + 0.0251034i
\(498\) 0.0419568 + 0.124460i 0.00188013 + 0.00557718i
\(499\) 8.77600 + 10.4588i 0.392868 + 0.468202i 0.925832 0.377937i \(-0.123366\pi\)
−0.532964 + 0.846138i \(0.678922\pi\)
\(500\) 0 0
\(501\) −18.6124 27.9826i −0.831541 1.25017i
\(502\) 0.0899812 0.192965i 0.00401606 0.00861246i
\(503\) −42.9050 11.4964i −1.91304 0.512597i −0.992552 0.121825i \(-0.961125\pi\)
−0.920487 0.390772i \(-0.872208\pi\)
\(504\) 0.0182760 0.0436027i 0.000814078 0.00194222i
\(505\) 0 0
\(506\) 0.381102 + 0.0671985i 0.0169420 + 0.00298734i
\(507\) −14.5004 0.346901i −0.643987 0.0154064i
\(508\) 16.4259 + 35.2255i 0.728782 + 1.56288i
\(509\) 0.883595 + 5.01112i 0.0391647 + 0.222114i 0.998108 0.0614836i \(-0.0195832\pi\)
−0.958943 + 0.283597i \(0.908472\pi\)
\(510\) 0 0
\(511\) 2.83890 + 2.38212i 0.125586 + 0.105379i
\(512\) −0.863214 0.863214i −0.0381490 0.0381490i
\(513\) −29.4377 2.11599i −1.29971 0.0934231i
\(514\) 0.143093i 0.00631155i
\(515\) 0 0
\(516\) −31.3499 3.50008i −1.38010 0.154083i
\(517\) 14.3634 + 10.0573i 0.631700 + 0.442321i
\(518\) −0.0115547 + 0.00538802i −0.000507682 + 0.000236736i
\(519\) −2.83820 + 9.66177i −0.124583 + 0.424105i
\(520\) 0 0
\(521\) −14.9219 8.61518i −0.653742 0.377438i 0.136146 0.990689i \(-0.456528\pi\)
−0.789888 + 0.613251i \(0.789862\pi\)
\(522\) −0.0655064 + 0.204754i −0.00286714 + 0.00896184i
\(523\) 3.45799 12.9054i 0.151207 0.564314i −0.848193 0.529688i \(-0.822309\pi\)
0.999400 0.0346265i \(-0.0110241\pi\)
\(524\) −8.58116 + 3.12329i −0.374870 + 0.136441i
\(525\) 0 0
\(526\) −0.117374 + 0.0984884i −0.00511775 + 0.00429430i
\(527\) 9.22560 + 0.807135i 0.401873 + 0.0351594i
\(528\) 22.7362 + 20.0238i 0.989465 + 0.871424i
\(529\) 3.61738 + 9.93866i 0.157277 + 0.432116i
\(530\) 0 0
\(531\) −33.8488 1.62049i −1.46891 0.0703233i
\(532\) −0.758707 2.83153i −0.0328941 0.122762i
\(533\) −0.464412 0.663249i −0.0201159 0.0287285i
\(534\) −0.0733640 0.0215511i −0.00317477 0.000932607i
\(535\) 0 0
\(536\) 0.110432 0.0194722i 0.00476995 0.000841071i
\(537\) 10.3366 + 12.9347i 0.446055 + 0.558173i
\(538\) −0.00246001 0.0281180i −0.000106058 0.00121225i
\(539\) 30.3299 1.30640
\(540\) 0 0
\(541\) 7.10549 0.305489 0.152745 0.988266i \(-0.451189\pi\)
0.152745 + 0.988266i \(0.451189\pi\)
\(542\) −0.0186372 0.213024i −0.000800535 0.00915016i
\(543\) 8.75888 22.3840i 0.375879 0.960589i
\(544\) 0.317883 0.0560513i 0.0136291 0.00240318i
\(545\) 0 0
\(546\) −0.0106239 + 0.0101275i −0.000454661 + 0.000433415i
\(547\) 5.89172 + 8.41425i 0.251912 + 0.359767i 0.925113 0.379692i \(-0.123970\pi\)
−0.673201 + 0.739459i \(0.735081\pi\)
\(548\) −3.62103 13.5139i −0.154683 0.577283i
\(549\) 4.59979 + 36.1116i 0.196314 + 1.54120i
\(550\) 0 0
\(551\) 9.11839 + 25.0526i 0.388456 + 1.06728i
\(552\) 0.120826 0.600828i 0.00514269 0.0255730i
\(553\) −0.795750 0.0696191i −0.0338387 0.00296050i
\(554\) −0.212691 + 0.178469i −0.00903636 + 0.00758240i
\(555\) 0 0
\(556\) 15.3384 5.58274i 0.650495 0.236761i
\(557\) 1.48759 5.55174i 0.0630310 0.235235i −0.927223 0.374511i \(-0.877811\pi\)
0.990254 + 0.139276i \(0.0444774\pi\)
\(558\) −0.203540 + 0.128469i −0.00861652 + 0.00543853i
\(559\) 16.9632 + 9.79373i 0.717468 + 0.414230i
\(560\) 0 0
\(561\) −12.9759 + 3.14628i −0.547841 + 0.132836i
\(562\) −0.363321 + 0.169419i −0.0153258 + 0.00714652i
\(563\) 20.2152 + 14.1548i 0.851969 + 0.596555i 0.915903 0.401399i \(-0.131476\pi\)
−0.0639343 + 0.997954i \(0.520365\pi\)
\(564\) 8.23311 11.1792i 0.346676 0.470728i
\(565\) 0 0
\(566\) 0.280047i 0.0117713i
\(567\) 2.17590 + 0.812749i 0.0913792 + 0.0341322i
\(568\) −0.221549 0.221549i −0.00929600 0.00929600i
\(569\) −1.46173 1.22654i −0.0612790 0.0514192i 0.611634 0.791141i \(-0.290513\pi\)
−0.672913 + 0.739722i \(0.734957\pi\)
\(570\) 0 0
\(571\) −7.82276 44.3651i −0.327372 1.85662i −0.492452 0.870340i \(-0.663899\pi\)
0.165080 0.986280i \(-0.447212\pi\)
\(572\) −7.95143 17.0519i −0.332466 0.712976i
\(573\) −10.7096 + 17.5655i −0.447401 + 0.733811i
\(574\) 0.00146075 0.000257569i 6.09704e−5 1.07507e-5i
\(575\) 0 0
\(576\) 16.2770 17.6140i 0.678210 0.733917i
\(577\) 21.9121 + 5.87132i 0.912211 + 0.244426i 0.684253 0.729245i \(-0.260128\pi\)
0.227958 + 0.973671i \(0.426795\pi\)
\(578\) 0.0896482 0.192251i 0.00372888 0.00799660i
\(579\) 9.31423 18.7877i 0.387086 0.780791i
\(580\) 0 0
\(581\) −0.823988 0.981990i −0.0341848 0.0407398i
\(582\) −0.122168 0.0245678i −0.00506402 0.00101837i
\(583\) −45.7460 21.3317i −1.89461 0.883469i
\(584\) −0.438419 0.759364i −0.0181419 0.0314227i
\(585\) 0 0
\(586\) −0.0802204 + 0.138946i −0.00331387 + 0.00573980i
\(587\) −7.01492 + 4.91190i −0.289537 + 0.202736i −0.709316 0.704890i \(-0.750996\pi\)
0.419780 + 0.907626i \(0.362107\pi\)
\(588\) 0.574363 24.0083i 0.0236863 0.990086i
\(589\) −10.2091 + 28.0493i −0.420659 + 1.15575i
\(590\) 0 0
\(591\) −9.43335 + 4.12712i −0.388036 + 0.169767i
\(592\) −12.8893 + 1.12767i −0.529748 + 0.0463469i
\(593\) 4.26261 4.26261i 0.175044 0.175044i −0.614147 0.789192i \(-0.710500\pi\)
0.789192 + 0.614147i \(0.210500\pi\)
\(594\) 0.218910 0.269260i 0.00898199 0.0110479i
\(595\) 0 0
\(596\) −24.7884 + 29.5417i −1.01537 + 1.21007i
\(597\) 7.57011 6.04953i 0.309824 0.247591i
\(598\) −0.109131 + 0.155855i −0.00446269 + 0.00637338i
\(599\) −13.5981 4.94929i −0.555602 0.202223i 0.0489318 0.998802i \(-0.484418\pi\)
−0.604534 + 0.796580i \(0.706641\pi\)
\(600\) 0 0
\(601\) −2.11215 + 11.9786i −0.0861565 + 0.488618i 0.910944 + 0.412529i \(0.135354\pi\)
−0.997101 + 0.0760891i \(0.975757\pi\)
\(602\) −0.0346604 + 0.00928722i −0.00141265 + 0.000378519i
\(603\) 1.16977 + 5.38353i 0.0476369 + 0.219234i
\(604\) −26.0133 + 15.0188i −1.05847 + 0.611107i
\(605\) 0 0
\(606\) −0.00483627 0.0762430i −0.000196460 0.00309716i
\(607\) −1.69592 + 19.3845i −0.0688354 + 0.786792i 0.880811 + 0.473468i \(0.156998\pi\)
−0.949646 + 0.313324i \(0.898557\pi\)
\(608\) −0.0906769 + 1.03644i −0.00367743 + 0.0420333i
\(609\) −0.132826 2.09398i −0.00538238 0.0848522i
\(610\) 0 0
\(611\) −7.46602 + 4.31051i −0.302043 + 0.174384i
\(612\) 2.24478 + 10.3309i 0.0907397 + 0.417602i
\(613\) 13.0162 3.48768i 0.525720 0.140866i 0.0138088 0.999905i \(-0.495604\pi\)
0.511911 + 0.859038i \(0.328938\pi\)
\(614\) 0.0339541 0.192563i 0.00137027 0.00777121i
\(615\) 0 0
\(616\) 0.0647813 + 0.0235785i 0.00261011 + 0.000950003i
\(617\) −26.0454 + 37.1967i −1.04855 + 1.49748i −0.192014 + 0.981392i \(0.561502\pi\)
−0.856535 + 0.516090i \(0.827387\pi\)
\(618\) −0.208614 + 0.166711i −0.00839169 + 0.00670608i
\(619\) 0.765342 0.912099i 0.0307617 0.0366604i −0.750444 0.660934i \(-0.770160\pi\)
0.781206 + 0.624273i \(0.214605\pi\)
\(620\) 0 0
\(621\) 29.7293 + 4.76791i 1.19300 + 0.191330i
\(622\) 0.226747 0.226747i 0.00909171 0.00909171i
\(623\) 0.743449 0.0650434i 0.0297857 0.00260591i
\(624\) −13.6468 + 5.97052i −0.546309 + 0.239012i
\(625\) 0 0
\(626\) 0.154339 0.424042i 0.00616861 0.0169481i
\(627\) 1.02927 43.0232i 0.0411049 1.71818i
\(628\) −3.82734 + 2.67993i −0.152728 + 0.106941i
\(629\) 2.85104 4.93815i 0.113678 0.196897i
\(630\) 0 0
\(631\) 10.8669 + 18.8220i 0.432605 + 0.749293i 0.997097 0.0761454i \(-0.0242613\pi\)
−0.564492 + 0.825438i \(0.690928\pi\)
\(632\) 0.171290 + 0.0798737i 0.00681354 + 0.00317721i
\(633\) 9.64642 + 1.93988i 0.383411 + 0.0771034i
\(634\) −0.260588 0.310556i −0.0103493 0.0123338i
\(635\) 0 0
\(636\) −17.7519 + 35.8073i −0.703908 + 1.41985i
\(637\) −6.30211 + 13.5149i −0.249699 + 0.535481i
\(638\) −0.302790 0.0811322i −0.0119876 0.00321206i
\(639\) 10.4470 11.3051i 0.413279 0.447225i
\(640\) 0 0
\(641\) 11.0540 + 1.94912i 0.436606 + 0.0769855i 0.387631 0.921815i \(-0.373293\pi\)
0.0489751 + 0.998800i \(0.484405\pi\)
\(642\) 0.206860 0.339284i 0.00816410 0.0133905i
\(643\) −10.0815 21.6198i −0.397575 0.852602i −0.998576 0.0533535i \(-0.983009\pi\)
0.601001 0.799248i \(-0.294769\pi\)
\(644\) 0.519308 + 2.94514i 0.0204636 + 0.116055i
\(645\) 0 0
\(646\) −0.117057 0.0982222i −0.00460553 0.00386450i
\(647\) −17.7336 17.7336i −0.697179 0.697179i 0.266622 0.963801i \(-0.414092\pi\)
−0.963801 + 0.266622i \(0.914092\pi\)
\(648\) −0.418010 0.356785i −0.0164210 0.0140158i
\(649\) 49.4134i 1.93965i
\(650\) 0 0
\(651\) 1.39306 1.89154i 0.0545984 0.0741355i
\(652\) −24.8579 17.4057i −0.973511 0.681660i
\(653\) 16.5274 7.70684i 0.646766 0.301592i −0.0714165 0.997447i \(-0.522752\pi\)
0.718183 + 0.695855i \(0.244974\pi\)
\(654\) 0.308455 0.0747915i 0.0120616 0.00292458i
\(655\) 0 0
\(656\) 1.30364 + 0.752659i 0.0508987 + 0.0293864i
\(657\) 36.4290 22.9931i 1.42123 0.897045i
\(658\) 0.00408758 0.0152550i 0.000159350 0.000594704i
\(659\) −32.1808 + 11.7129i −1.25359 + 0.456269i −0.881612 0.471974i \(-0.843542\pi\)
−0.371975 + 0.928243i \(0.621319\pi\)
\(660\) 0 0
\(661\) 3.43935 2.88596i 0.133775 0.112251i −0.573445 0.819244i \(-0.694393\pi\)
0.707220 + 0.706993i \(0.249949\pi\)
\(662\) 0.151210 + 0.0132291i 0.00587693 + 0.000514165i
\(663\) 1.29422 6.43575i 0.0502634 0.249944i
\(664\) 0.103736 + 0.285012i 0.00402573 + 0.0110606i
\(665\) 0 0
\(666\) 0.0187259 + 0.147011i 0.000725613 + 0.00569656i
\(667\) −7.03946 26.2716i −0.272569 1.01724i
\(668\) −22.2558 31.7846i −0.861103 1.22978i
\(669\) −16.5306 + 15.7581i −0.639110 + 0.609245i
\(670\) 0 0
\(671\) −52.2754 + 9.21756i −2.01807 + 0.355840i
\(672\) 0.0298368 0.0762502i 0.00115098 0.00294142i
\(673\) −1.31952 15.0821i −0.0508636 0.581374i −0.978272 0.207324i \(-0.933525\pi\)
0.927409 0.374050i \(-0.122031\pi\)
\(674\) −0.214165 −0.00824933
\(675\) 0 0
\(676\) −16.7465 −0.644096
\(677\) −0.848465 9.69800i −0.0326092 0.372724i −0.994912 0.100745i \(-0.967877\pi\)
0.962303 0.271979i \(-0.0876782\pi\)
\(678\) 0.153337 + 0.191879i 0.00588888 + 0.00736908i
\(679\) 1.19775 0.211196i 0.0459656 0.00810497i
\(680\) 0 0
\(681\) −24.2186 7.11435i −0.928058 0.272622i
\(682\) −0.201306 0.287495i −0.00770842 0.0110088i
\(683\) 6.02595 + 22.4891i 0.230577 + 0.860523i 0.980093 + 0.198538i \(0.0636193\pi\)
−0.749517 + 0.661985i \(0.769714\pi\)
\(684\) −34.0365 1.62948i −1.30142 0.0623045i
\(685\) 0 0
\(686\) −0.0187764 0.0515877i −0.000716886 0.00196963i
\(687\) −10.8247 9.53332i −0.412987 0.363719i
\(688\) −36.2776 3.17388i −1.38307 0.121003i
\(689\) 19.0107 15.9519i 0.724249 0.607717i
\(690\) 0 0
\(691\) −4.24724 + 1.54587i −0.161573 + 0.0588077i −0.421540 0.906810i \(-0.638510\pi\)
0.259968 + 0.965617i \(0.416288\pi\)
\(692\) −3.00916 + 11.2303i −0.114391 + 0.426913i
\(693\) −1.03204 + 3.22585i −0.0392039 + 0.122540i
\(694\) 0.0807256 + 0.0466069i 0.00306430 + 0.00176918i
\(695\) 0 0
\(696\) −0.139920 + 0.476314i −0.00530365 + 0.0180546i
\(697\) −0.601245 + 0.280365i −0.0227738 + 0.0106196i
\(698\) 0.0478038 + 0.0334725i 0.00180940 + 0.00126695i
\(699\) 47.5982 + 5.31414i 1.80033 + 0.200999i
\(700\) 0 0
\(701\) 28.3612i 1.07119i 0.844476 + 0.535593i \(0.179912\pi\)
−0.844476 + 0.535593i \(0.820088\pi\)
\(702\) 0.0744950 + 0.153494i 0.00281163 + 0.00579325i
\(703\) 12.9958 + 12.9958i 0.490147 + 0.490147i
\(704\) 26.7896 + 22.4791i 1.00967 + 0.847214i
\(705\) 0 0
\(706\) −0.00590457 0.0334865i −0.000222221 0.00126028i
\(707\) 0.315116 + 0.675769i 0.0118512 + 0.0254149i
\(708\) −39.1142 0.935750i −1.47000 0.0351676i
\(709\) 27.9978 + 4.93677i 1.05148 + 0.185404i 0.672574 0.740030i \(-0.265189\pi\)
0.378907 + 0.925435i \(0.376300\pi\)
\(710\) 0 0
\(711\) −3.58937 + 8.56349i −0.134612 + 0.321156i
\(712\) −0.170559 0.0457011i −0.00639196 0.00171272i
\(713\) 12.8695 27.5987i 0.481966 1.03358i
\(714\) 0.00666022 + 0.0100132i 0.000249253 + 0.000374736i
\(715\) 0 0
\(716\) 12.2880 + 14.6443i 0.459224 + 0.547282i
\(717\) 11.9958 + 35.5840i 0.447991 + 1.32891i
\(718\) −0.163281 0.0761394i −0.00609361 0.00284150i
\(719\) 8.97949 + 15.5529i 0.334878 + 0.580026i 0.983461 0.181118i \(-0.0579714\pi\)
−0.648583 + 0.761144i \(0.724638\pi\)
\(720\) 0 0
\(721\) 1.30318 2.25717i 0.0485328 0.0840612i
\(722\) 0.165843 0.116124i 0.00617202 0.00432170i
\(723\) 7.72062 + 4.70723i 0.287133 + 0.175064i
\(724\) 9.49171 26.0783i 0.352757 0.969191i
\(725\) 0 0
\(726\) 0.173229 + 0.127578i 0.00642914 + 0.00473486i
\(727\) −28.2887 + 2.47494i −1.04917 + 0.0917905i −0.598678 0.800990i \(-0.704307\pi\)
−0.450492 + 0.892780i \(0.648751\pi\)
\(728\) −0.0239671 + 0.0239671i −0.000888279 + 0.000888279i
\(729\) 16.7054 21.2115i 0.618720 0.785612i
\(730\) 0 0
\(731\) 10.3159 12.2941i 0.381549 0.454712i
\(732\) 6.30641 + 41.5542i 0.233092 + 1.53589i
\(733\) −5.80448 + 8.28966i −0.214393 + 0.306185i −0.911916 0.410378i \(-0.865397\pi\)
0.697522 + 0.716563i \(0.254286\pi\)
\(734\) −0.0304169 0.0110708i −0.00112271 0.000408632i
\(735\) 0 0
\(736\) 0.184310 1.04527i 0.00679374 0.0385292i
\(737\) −7.75949 + 2.07915i −0.285825 + 0.0765865i
\(738\) 0.00802570 0.0152602i 0.000295430 0.000561736i
\(739\) −35.8294 + 20.6861i −1.31801 + 0.760951i −0.983408 0.181410i \(-0.941934\pi\)
−0.334598 + 0.942361i \(0.608601\pi\)
\(740\) 0 0
\(741\) 18.9571 + 9.39823i 0.696408 + 0.345252i
\(742\) −0.00396233 + 0.0452897i −0.000145462 + 0.00166264i
\(743\) −0.674496 + 7.70953i −0.0247449 + 0.282835i 0.973734 + 0.227691i \(0.0731175\pi\)
−0.998478 + 0.0551445i \(0.982438\pi\)
\(744\) −0.462798 + 0.307826i −0.0169670 + 0.0112855i
\(745\) 0 0
\(746\) −0.0438849 + 0.0253370i −0.00160674 + 0.000927653i
\(747\) −13.7906 + 5.64445i −0.504573 + 0.206520i
\(748\) −14.8903 + 3.98985i −0.544444 + 0.145883i
\(749\) −0.673470 + 3.81944i −0.0246080 + 0.139559i
\(750\) 0 0
\(751\) −38.8916 14.1554i −1.41918 0.516537i −0.485367 0.874311i \(-0.661314\pi\)
−0.933808 + 0.357773i \(0.883536\pi\)
\(752\) 9.19318 13.1292i 0.335241 0.478773i
\(753\) 22.4948 + 8.80223i 0.819755 + 0.320771i
\(754\) 0.0990675 0.118064i 0.00360782 0.00429964i
\(755\) 0 0
\(756\) 2.53394 + 0.878020i 0.0921587 + 0.0319333i
\(757\) 10.7021 10.7021i 0.388975 0.388975i −0.485347 0.874322i \(-0.661307\pi\)
0.874322 + 0.485347i \(0.161307\pi\)
\(758\) 0.239740 0.0209745i 0.00870775 0.000761830i
\(759\) −4.87143 + 43.6329i −0.176822 + 1.58377i
\(760\) 0 0
\(761\) 16.8761 46.3666i 0.611756 1.68079i −0.114551 0.993417i \(-0.536543\pi\)
0.726308 0.687370i \(-0.241235\pi\)
\(762\) 0.451100 0.246249i 0.0163416 0.00892067i
\(763\) −2.53754 + 1.77680i −0.0918651 + 0.0643246i
\(764\) −11.8764 + 20.5705i −0.429673 + 0.744215i
\(765\) 0 0
\(766\) 0.210244 + 0.364154i 0.00759643 + 0.0131574i
\(767\) 22.0185 + 10.2674i 0.795040 + 0.370733i
\(768\) 18.2947 20.7729i 0.660155 0.749578i
\(769\) 4.55804 + 5.43206i 0.164367 + 0.195885i 0.841941 0.539570i \(-0.181413\pi\)
−0.677574 + 0.735455i \(0.736969\pi\)
\(770\) 0 0
\(771\) 16.2017 1.02771i 0.583489 0.0370121i
\(772\) 10.2320 21.9426i 0.368259 0.789733i
\(773\) −8.62644 2.31145i −0.310272 0.0831370i 0.100323 0.994955i \(-0.468012\pi\)
−0.410595 + 0.911818i \(0.634679\pi\)
\(774\) −0.0199462 + 0.416635i −0.000716950 + 0.0149756i
\(775\) 0 0
\(776\) −0.283394 0.0499700i −0.0101733 0.00179382i
\(777\) −0.693047 1.26958i −0.0248629 0.0455459i
\(778\) −0.193686 0.415360i −0.00694397 0.0148914i
\(779\) −0.371305 2.10578i −0.0133034 0.0754473i
\(780\) 0 0
\(781\) 17.1943 + 14.4277i 0.615260 + 0.516264i
\(782\) 0.110231 + 0.110231i 0.00394186 + 0.00394186i
\(783\) −23.6538 5.94640i −0.845316 0.212507i
\(784\) 27.7239i 0.990139i
\(785\) 0 0
\(786\) 0.0483992 + 0.110626i 0.00172634 + 0.00394589i
\(787\) 0.568328 + 0.397947i 0.0202587 + 0.0141853i 0.583662 0.811997i \(-0.301619\pi\)
−0.563403 + 0.826182i \(0.690508\pi\)
\(788\) −10.7743 + 5.02416i −0.383820 + 0.178978i
\(789\) −11.9944 12.5823i −0.427010 0.447942i
\(790\) 0 0
\(791\) −2.07610 1.19864i −0.0738175 0.0426186i
\(792\) 0.490506 0.633705i 0.0174294 0.0225177i
\(793\) 6.75473 25.2090i 0.239868 0.895198i
\(794\) 0.0686278 0.0249785i 0.00243551 0.000886453i
\(795\) 0 0
\(796\) 8.57065 7.19163i 0.303778 0.254900i
\(797\) 37.0354 + 3.24018i 1.31186 + 0.114773i 0.721528 0.692385i \(-0.243440\pi\)
0.590335 + 0.807158i \(0.298996\pi\)
\(798\) −0.0367309 + 0.0123824i −0.00130026 + 0.000438332i
\(799\) 2.41587 + 6.63755i 0.0854673 + 0.234820i
\(800\) 0 0
\(801\) 1.91321 8.46143i 0.0676001 0.298970i
\(802\) 0.0339926 + 0.126862i 0.00120032 + 0.00447965i
\(803\) 36.0293 + 51.4551i 1.27145 + 1.81581i
\(804\) 1.49885 + 6.18157i 0.0528605 + 0.218007i
\(805\) 0 0
\(806\) 0.169936 0.0299642i 0.00598573 0.00105544i
\(807\) 3.16599 0.480482i 0.111448 0.0169138i
\(808\) −0.0153759 0.175748i −0.000540924 0.00618279i
\(809\) −9.19706 −0.323351 −0.161676 0.986844i \(-0.551690\pi\)
−0.161676 + 0.986844i \(0.551690\pi\)
\(810\) 0 0
\(811\) −3.49413 −0.122695 −0.0613477 0.998116i \(-0.519540\pi\)
−0.0613477 + 0.998116i \(0.519540\pi\)
\(812\) −0.211134 2.41327i −0.00740935 0.0846893i
\(813\) 23.9858 3.64016i 0.841219 0.127666i
\(814\) −0.212814 + 0.0375249i −0.00745914 + 0.00131525i
\(815\) 0 0
\(816\) 2.87594 + 11.8609i 0.100678 + 0.415216i
\(817\) 29.6700 + 42.3732i 1.03802 + 1.48245i
\(818\) −0.0334253 0.124745i −0.00116869 0.00436160i
\(819\) −1.22299 1.13016i −0.0427346 0.0394908i
\(820\) 0 0
\(821\) −5.34053 14.6730i −0.186386 0.512091i 0.810944 0.585124i \(-0.198954\pi\)
−0.997329 + 0.0730336i \(0.976732\pi\)
\(822\) −0.175303 + 0.0590967i −0.00611440 + 0.00206123i
\(823\) 29.7914 + 2.60641i 1.03846 + 0.0908536i 0.593612 0.804752i \(-0.297702\pi\)
0.444850 + 0.895605i \(0.353257\pi\)
\(824\) −0.472400 + 0.396391i −0.0164568 + 0.0138089i
\(825\) 0 0
\(826\) −0.0418223 + 0.0152221i −0.00145519 + 0.000529644i
\(827\) −9.64511 + 35.9960i −0.335393 + 1.25171i 0.568049 + 0.822995i \(0.307699\pi\)
−0.903442 + 0.428710i \(0.858968\pi\)
\(828\) 34.4463 + 4.68237i 1.19709 + 0.162724i
\(829\) −6.82502 3.94043i −0.237043 0.136857i 0.376774 0.926305i \(-0.377033\pi\)
−0.613817 + 0.789448i \(0.710367\pi\)
\(830\) 0 0
\(831\) −21.7347 22.8001i −0.753968 0.790927i
\(832\) −15.5831 + 7.26652i −0.540247 + 0.251921i
\(833\) 10.0084 + 7.00798i 0.346771 + 0.242812i
\(834\) −0.0865115 0.197739i −0.00299565 0.00684714i
\(835\) 0 0
\(836\) 49.6874i 1.71847i
\(837\) −16.0078 22.1231i −0.553310 0.764687i
\(838\) −0.0948142 0.0948142i −0.00327530 0.00327530i
\(839\) −26.9906 22.6478i −0.931819 0.781889i 0.0443239 0.999017i \(-0.485887\pi\)
−0.976143 + 0.217128i \(0.930331\pi\)
\(840\) 0 0
\(841\) −1.21001 6.86229i −0.0417244 0.236631i
\(842\) −0.00370012 0.00793494i −0.000127515 0.000273456i
\(843\) −21.7919 39.9202i −0.750554 1.37493i
\(844\) 11.1878 + 1.97271i 0.385100 + 0.0679035i
\(845\) 0 0
\(846\) −0.154417 0.0992895i −0.00530895 0.00341364i
\(847\) −2.02821 0.543456i −0.0696900 0.0186734i
\(848\) −19.4988 + 41.8153i −0.669592 + 1.43594i
\(849\) 31.7084 2.01134i 1.08823 0.0690290i
\(850\) 0 0
\(851\) −12.0521 14.3631i −0.413141 0.492362i
\(852\) 11.7462 13.3373i 0.402417 0.456928i
\(853\) 22.1725 + 10.3392i 0.759171 + 0.354007i 0.763351 0.645984i \(-0.223553\pi\)
−0.00417979 + 0.999991i \(0.501330\pi\)
\(854\) 0.0239053 + 0.0414051i 0.000818021 + 0.00141685i
\(855\) 0 0
\(856\) 0.458819 0.794697i 0.0156821 0.0271622i
\(857\) −3.70630 + 2.59518i −0.126605 + 0.0886496i −0.635164 0.772378i \(-0.719067\pi\)
0.508559 + 0.861027i \(0.330178\pi\)
\(858\) −0.218368 + 0.119204i −0.00745495 + 0.00406956i
\(859\) −3.10612 + 8.53399i −0.105979 + 0.291176i −0.981336 0.192302i \(-0.938405\pi\)
0.875356 + 0.483478i \(0.160627\pi\)
\(860\) 0 0
\(861\) −0.0186720 + 0.167243i −0.000636340 + 0.00569963i
\(862\) −0.380394 + 0.0332801i −0.0129563 + 0.00113353i
\(863\) −21.0851 + 21.0851i −0.717746 + 0.717746i −0.968143 0.250398i \(-0.919439\pi\)
0.250398 + 0.968143i \(0.419439\pi\)
\(864\) −0.738515 0.600418i −0.0251248 0.0204266i
\(865\) 0 0
\(866\) 0.346801 0.413302i 0.0117848 0.0140446i
\(867\) 22.4115 + 8.76965i 0.761136 + 0.297833i
\(868\) 1.55569 2.22175i 0.0528035 0.0754113i
\(869\) −12.7229 4.63076i −0.431595 0.157088i
\(870\) 0 0
\(871\) 0.685845 3.88962i 0.0232390 0.131795i
\(872\) 0.707971 0.189700i 0.0239749 0.00642406i
\(873\) 1.90426 14.0089i 0.0644496 0.474130i
\(874\) −0.435146 + 0.251232i −0.0147190 + 0.00849804i
\(875\) 0 0
\(876\) 41.4127 27.5453i 1.39921 0.930671i
\(877\) 3.98890 45.5933i 0.134696 1.53958i −0.564973 0.825110i \(-0.691113\pi\)
0.699668 0.714468i \(-0.253331\pi\)
\(878\) −0.00628162 + 0.0717992i −0.000211994 + 0.00242311i
\(879\) −16.3083 8.08503i −0.550065 0.272701i
\(880\) 0 0
\(881\) −33.3855 + 19.2752i −1.12479 + 0.649396i −0.942619 0.333871i \(-0.891645\pi\)
−0.182169 + 0.983267i \(0.558312\pi\)
\(882\) −0.317304 + 0.0125173i −0.0106842 + 0.000421480i
\(883\) −18.1259 + 4.85682i −0.609986 + 0.163445i −0.550571 0.834788i \(-0.685590\pi\)
−0.0594144 + 0.998233i \(0.518923\pi\)
\(884\) 1.31612 7.46412i 0.0442661 0.251045i
\(885\) 0 0
\(886\) −0.424182 0.154390i −0.0142507 0.00518682i
\(887\) −21.0306 + 30.0349i −0.706140 + 1.00847i 0.292496 + 0.956267i \(0.405514\pi\)
−0.998636 + 0.0522057i \(0.983375\pi\)
\(888\) 0.0513501 + 0.338357i 0.00172320 + 0.0113545i
\(889\) −3.22424 + 3.84250i −0.108137 + 0.128873i
\(890\) 0 0
\(891\) 32.0592 + 22.8522i 1.07402 + 0.765579i
\(892\) −18.6451 + 18.6451i −0.624283 + 0.624283i
\(893\) −22.6804 + 1.98428i −0.758972 + 0.0664014i
\(894\) 0.410593 + 0.302389i 0.0137323 + 0.0101134i
\(895\) 0 0
\(896\) 0.0431100 0.118444i 0.00144021 0.00395693i
\(897\) −18.4305 11.2370i −0.615375 0.375191i
\(898\) 0.0842201 0.0589716i 0.00281046 0.00196791i
\(899\) −12.3336 + 21.3624i −0.411349 + 0.712477i
\(900\) 0 0
\(901\) −10.1666 17.6091i −0.338700 0.586645i
\(902\) 0.0227860 + 0.0106253i 0.000758690 + 0.000353783i
\(903\) −1.30048 3.85772i −0.0432773 0.128377i
\(904\) 0.364593 + 0.434505i 0.0121262 + 0.0144514i
\(905\) 0 0
\(906\) 0.219969 + 0.330710i 0.00730799 + 0.0109871i
\(907\) 8.15736 17.4935i 0.270861 0.580863i −0.723082 0.690762i \(-0.757275\pi\)
0.993943 + 0.109900i \(0.0350529\pi\)
\(908\) −28.1504 7.54288i −0.934204 0.250319i
\(909\) 8.59788 1.09518i 0.285174 0.0363247i
\(910\) 0 0
\(911\) 39.2363 + 6.91842i 1.29996 + 0.229217i 0.780433 0.625239i \(-0.214999\pi\)
0.519523 + 0.854456i \(0.326110\pi\)
\(912\) −39.3265 0.940828i −1.30223 0.0311539i
\(913\) −9.18269 19.6923i −0.303903 0.651721i
\(914\) −0.0961236 0.545144i −0.00317949 0.0180318i
\(915\) 0 0
\(916\) −12.7575 10.7048i −0.421519 0.353696i
\(917\) −0.833342 0.833342i −0.0275194 0.0275194i
\(918\) 0.134452 0.0382707i 0.00443757 0.00126312i
\(919\) 43.5953i 1.43808i −0.694971 0.719038i \(-0.744583\pi\)
0.694971 0.719038i \(-0.255417\pi\)
\(920\) 0 0
\(921\) 22.0468 + 2.46144i 0.726468 + 0.0811071i
\(922\) −0.330404 0.231352i −0.0108813 0.00761916i
\(923\) −10.0017 + 4.66385i −0.329209 + 0.153513i
\(924\) −1.10214 + 3.75189i −0.0362577 + 0.123428i
\(925\) 0 0
\(926\) 0.159010 + 0.0918044i 0.00522539 + 0.00301688i
\(927\) −20.3741 22.4230i −0.669174 0.736468i
\(928\) −0.222526 + 0.830480i −0.00730479 + 0.0272618i
\(929\) 32.4046 11.7943i 1.06316 0.386959i 0.249546 0.968363i \(-0.419719\pi\)
0.813615 + 0.581404i \(0.197496\pi\)
\(930\) 0 0
\(931\) −30.1676 + 25.3136i −0.988703 + 0.829620i
\(932\) 55.0863 + 4.81942i 1.80441 + 0.157865i
\(933\) 27.3019 + 24.0449i 0.893825 + 0.787194i
\(934\) −0.0577199 0.158584i −0.00188865 0.00518903i
\(935\) 0 0
\(936\) 0.180457 + 0.350242i 0.00589842 + 0.0114480i
\(937\) −11.9945 44.7642i −0.391845 1.46238i −0.827089 0.562072i \(-0.810005\pi\)
0.435244 0.900313i \(-0.356662\pi\)
\(938\) 0.00415010 + 0.00592696i 0.000135506 + 0.000193522i
\(939\) 49.1206 + 14.4295i 1.60299 + 0.470888i
\(940\) 0 0
\(941\) 8.77614 1.54747i 0.286094 0.0504461i −0.0287596 0.999586i \(-0.509156\pi\)
0.314854 + 0.949140i \(0.398045\pi\)
\(942\) 0.0385693 + 0.0482638i 0.00125665 + 0.00157252i
\(943\) 0.190123 + 2.17311i 0.00619124 + 0.0707662i
\(944\) −45.1676 −1.47008
\(945\) 0 0
\(946\) −0.608216 −0.0197748
\(947\) 3.21081 + 36.6998i 0.104337 + 1.19258i 0.850192 + 0.526473i \(0.176486\pi\)
−0.745854 + 0.666109i \(0.767959\pi\)
\(948\) −3.90651 + 9.98340i −0.126878 + 0.324246i
\(949\) −30.4146 + 5.36292i −0.987300 + 0.174088i
\(950\) 0 0
\(951\) 33.2912 31.7355i 1.07954 1.02910i
\(952\) 0.0159289 + 0.0227488i 0.000516257 + 0.000737292i
\(953\) 7.47785 + 27.9077i 0.242231 + 0.904020i 0.974755 + 0.223278i \(0.0716758\pi\)
−0.732523 + 0.680742i \(0.761658\pi\)
\(954\) 0.487387 + 0.204287i 0.0157797 + 0.00661404i
\(955\) 0 0
\(956\) 14.8286 + 40.7411i 0.479590 + 1.31766i
\(957\) 7.01153 34.8661i 0.226650 1.12706i
\(958\) 0.0644504 + 0.00563868i 0.00208230 + 0.000182177i
\(959\) 1.38314 1.16060i 0.0446641 0.0374776i
\(960\) 0 0
\(961\) 3.17820 1.15677i 0.102522 0.0373151i
\(962\) 0.0274987 0.102627i 0.000886594 0.00330881i
\(963\) 39.9011 + 20.9849i 1.28580 + 0.676229i
\(964\) 9.04140 + 5.22006i 0.291204 + 0.168127i
\(965\) 0 0
\(966\) 0.0384305 0.00931830i 0.00123648 0.000299811i
\(967\) −19.0304 + 8.87400i −0.611975 + 0.285369i −0.703791 0.710407i \(-0.748511\pi\)
0.0918158 + 0.995776i \(0.470733\pi\)
\(968\) 0.406964 + 0.284960i 0.0130803 + 0.00915895i
\(969\) 10.2805 13.9592i 0.330257 0.448434i
\(970\) 0 0
\(971\) 58.1766i 1.86697i 0.358610 + 0.933487i \(0.383251\pi\)
−0.358610 + 0.933487i \(0.616749\pi\)
\(972\) 18.6963 24.9444i 0.599684 0.800091i
\(973\) 1.48956 + 1.48956i 0.0477531 + 0.0477531i
\(974\) 0.277273 + 0.232660i 0.00888441 + 0.00745490i
\(975\) 0 0
\(976\) 8.42555 + 47.7837i 0.269695 + 1.52952i
\(977\) −18.3257 39.2996i −0.586291 1.25731i −0.945977 0.324232i \(-0.894894\pi\)
0.359686 0.933073i \(-0.382884\pi\)
\(978\) −0.208885 + 0.342605i −0.00667939 + 0.0109553i
\(979\) 12.4574 + 2.19657i 0.398140 + 0.0702028i
\(980\) 0 0
\(981\) 10.6836 + 34.3877i 0.341103 + 1.09791i
\(982\) −0.0300698 0.00805718i −0.000959566 0.000257115i
\(983\) −21.9924 + 47.1628i −0.701447 + 1.50426i 0.154940 + 0.987924i \(0.450482\pi\)
−0.856387 + 0.516335i \(0.827296\pi\)
\(984\) 0.0176854 0.0356731i 0.000563788 0.00113722i
\(985\) 0 0
\(986\) −0.0811698 0.0967344i −0.00258497 0.00308065i
\(987\) 1.75661 + 0.353252i 0.0559135 + 0.0112441i
\(988\) 22.1405 + 10.3243i 0.704384 + 0.328460i
\(989\) −26.3860 45.7019i −0.839026 1.45324i
\(990\) 0 0
\(991\) −1.64852 + 2.85532i −0.0523670 + 0.0907023i −0.891021 0.453963i \(-0.850010\pi\)
0.838654 + 0.544665i \(0.183343\pi\)
\(992\) −0.788532 + 0.552136i −0.0250359 + 0.0175303i
\(993\) −0.411861 + 17.2158i −0.0130700 + 0.546325i
\(994\) 0.00691448 0.0189974i 0.000219314 0.000602560i
\(995\) 0 0
\(996\) −15.7618 + 6.89584i −0.499431 + 0.218503i
\(997\) −23.3597 + 2.04371i −0.739808 + 0.0647248i −0.450829 0.892610i \(-0.648871\pi\)
−0.288979 + 0.957335i \(0.593316\pi\)
\(998\) 0.147387 0.147387i 0.00466546 0.00466546i
\(999\) −16.5109 + 3.17609i −0.522380 + 0.100487i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 675.2.ba.b.443.9 192
5.2 odd 4 inner 675.2.ba.b.632.8 192
5.3 odd 4 135.2.q.a.92.9 yes 192
5.4 even 2 135.2.q.a.38.8 yes 192
15.8 even 4 405.2.r.a.197.8 192
15.14 odd 2 405.2.r.a.278.9 192
27.5 odd 18 inner 675.2.ba.b.518.8 192
135.32 even 36 inner 675.2.ba.b.32.9 192
135.49 even 18 405.2.r.a.368.8 192
135.59 odd 18 135.2.q.a.113.9 yes 192
135.103 odd 36 405.2.r.a.287.9 192
135.113 even 36 135.2.q.a.32.8 192
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
135.2.q.a.32.8 192 135.113 even 36
135.2.q.a.38.8 yes 192 5.4 even 2
135.2.q.a.92.9 yes 192 5.3 odd 4
135.2.q.a.113.9 yes 192 135.59 odd 18
405.2.r.a.197.8 192 15.8 even 4
405.2.r.a.278.9 192 15.14 odd 2
405.2.r.a.287.9 192 135.103 odd 36
405.2.r.a.368.8 192 135.49 even 18
675.2.ba.b.32.9 192 135.32 even 36 inner
675.2.ba.b.443.9 192 1.1 even 1 trivial
675.2.ba.b.518.8 192 27.5 odd 18 inner
675.2.ba.b.632.8 192 5.2 odd 4 inner