Properties

Label 675.2.ba.b.407.5
Level $675$
Weight $2$
Character 675.407
Analytic conductor $5.390$
Analytic rank $0$
Dimension $192$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [675,2,Mod(32,675)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(675, base_ring=CyclotomicField(36))
 
chi = DirichletCharacter(H, H._module([10, 9]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("675.32");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 675 = 3^{3} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 675.ba (of order \(36\), degree \(12\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.38990213644\)
Analytic rank: \(0\)
Dimension: \(192\)
Relative dimension: \(16\) over \(\Q(\zeta_{36})\)
Twist minimal: no (minimal twist has level 135)
Sato-Tate group: $\mathrm{SU}(2)[C_{36}]$

Embedding invariants

Embedding label 407.5
Character \(\chi\) \(=\) 675.407
Dual form 675.2.ba.b.68.5

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.606324 - 0.865920i) q^{2} +(-1.47671 - 0.905161i) q^{3} +(0.301851 - 0.829330i) q^{4} +(0.111569 + 1.82754i) q^{6} +(2.61975 + 1.22161i) q^{7} +(-2.94330 + 0.788655i) q^{8} +(1.36137 + 2.67333i) q^{9} +(1.51740 - 1.80836i) q^{11} +(-1.19642 + 0.951458i) q^{12} +(4.45519 + 3.11956i) q^{13} +(-0.530600 - 3.00918i) q^{14} +(1.11535 + 0.935892i) q^{16} +(2.67549 + 0.716894i) q^{17} +(1.48946 - 2.79974i) q^{18} +(5.35751 + 3.09316i) q^{19} +(-2.76286 - 4.17526i) q^{21} +(-2.48593 - 0.217491i) q^{22} +(0.301527 + 0.646627i) q^{23} +(5.06027 + 1.49954i) q^{24} -5.74930i q^{26} +(0.409444 - 5.18000i) q^{27} +(1.80389 - 1.80389i) q^{28} +(-0.623300 + 3.53491i) q^{29} +(-5.18043 - 1.88552i) q^{31} +(-0.397007 + 4.53781i) q^{32} +(-3.87762 + 1.29695i) q^{33} +(-1.00144 - 2.75143i) q^{34} +(2.62800 - 0.322074i) q^{36} +(-1.14193 + 4.26173i) q^{37} +(-0.569956 - 6.51463i) q^{38} +(-3.75534 - 8.63936i) q^{39} +(5.70140 - 1.00531i) q^{41} +(-1.94025 + 4.92398i) q^{42} +(-1.44271 + 0.126221i) q^{43} +(-1.04170 - 1.80428i) q^{44} +(0.377104 - 0.653164i) q^{46} +(4.38688 - 9.40770i) q^{47} +(-0.799924 - 2.39162i) q^{48} +(0.871236 + 1.03830i) q^{49} +(-3.30202 - 3.48039i) q^{51} +(3.93195 - 2.75318i) q^{52} +(-7.22940 - 7.22940i) q^{53} +(-4.73372 + 2.78621i) q^{54} +(-8.67413 - 1.52948i) q^{56} +(-5.11170 - 9.41712i) q^{57} +(3.43887 - 1.60357i) q^{58} +(-6.27320 + 5.26384i) q^{59} +(2.64019 - 0.960952i) q^{61} +(1.50831 + 5.62907i) q^{62} +(0.300676 + 8.66650i) q^{63} +(6.69194 - 3.86359i) q^{64} +(3.47414 + 2.57134i) q^{66} +(4.28254 - 6.11610i) q^{67} +(1.40214 - 2.00246i) q^{68} +(0.140033 - 1.22781i) q^{69} +(-4.24004 + 2.44799i) q^{71} +(-6.11524 - 6.79476i) q^{72} +(-1.80353 - 6.73088i) q^{73} +(4.38269 - 1.59517i) q^{74} +(4.18242 - 3.50947i) q^{76} +(6.18430 - 2.88379i) q^{77} +(-5.20404 + 8.49007i) q^{78} +(12.8661 + 2.26863i) q^{79} +(-5.29336 + 7.27876i) q^{81} +(-4.32741 - 4.32741i) q^{82} +(3.90587 - 2.73492i) q^{83} +(-4.29664 + 1.03102i) q^{84} +(0.984048 + 1.17274i) q^{86} +(4.12010 - 4.65586i) q^{87} +(-3.03998 + 6.51925i) q^{88} +(-3.33276 + 5.77251i) q^{89} +(7.86060 + 13.6150i) q^{91} +(0.627283 - 0.0548802i) q^{92} +(5.94331 + 7.47350i) q^{93} +(-10.8062 + 1.90542i) q^{94} +(4.69371 - 6.34168i) q^{96} +(1.59893 + 18.2758i) q^{97} +(0.370833 - 1.38397i) q^{98} +(6.90008 + 1.59465i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 192 q + 12 q^{2} + 12 q^{3} - 36 q^{6} + 12 q^{7} + 18 q^{8} - 36 q^{11} + 12 q^{12} + 12 q^{13} - 24 q^{16} + 18 q^{17} + 54 q^{18} - 24 q^{21} + 12 q^{22} + 36 q^{23} + 36 q^{27} + 24 q^{28} - 24 q^{31}+ \cdots - 324 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/675\mathbb{Z}\right)^\times\).

\(n\) \(326\) \(352\)
\(\chi(n)\) \(e\left(\frac{1}{18}\right)\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.606324 0.865920i −0.428736 0.612298i 0.545424 0.838161i \(-0.316369\pi\)
−0.974159 + 0.225863i \(0.927480\pi\)
\(3\) −1.47671 0.905161i −0.852581 0.522595i
\(4\) 0.301851 0.829330i 0.150926 0.414665i
\(5\) 0 0
\(6\) 0.111569 + 1.82754i 0.0455480 + 0.746089i
\(7\) 2.61975 + 1.22161i 0.990171 + 0.461725i 0.849076 0.528271i \(-0.177160\pi\)
0.141096 + 0.989996i \(0.454937\pi\)
\(8\) −2.94330 + 0.788655i −1.04061 + 0.278832i
\(9\) 1.36137 + 2.67333i 0.453789 + 0.891109i
\(10\) 0 0
\(11\) 1.51740 1.80836i 0.457512 0.545242i −0.487136 0.873326i \(-0.661959\pi\)
0.944648 + 0.328084i \(0.106403\pi\)
\(12\) −1.19642 + 0.951458i −0.345378 + 0.274662i
\(13\) 4.45519 + 3.11956i 1.23565 + 0.865210i 0.994444 0.105265i \(-0.0335690\pi\)
0.241203 + 0.970475i \(0.422458\pi\)
\(14\) −0.530600 3.00918i −0.141809 0.804238i
\(15\) 0 0
\(16\) 1.11535 + 0.935892i 0.278838 + 0.233973i
\(17\) 2.67549 + 0.716894i 0.648901 + 0.173872i 0.568232 0.822869i \(-0.307628\pi\)
0.0806688 + 0.996741i \(0.474294\pi\)
\(18\) 1.48946 2.79974i 0.351069 0.659904i
\(19\) 5.35751 + 3.09316i 1.22910 + 0.709619i 0.966841 0.255379i \(-0.0822003\pi\)
0.262256 + 0.964998i \(0.415534\pi\)
\(20\) 0 0
\(21\) −2.76286 4.17526i −0.602906 0.911116i
\(22\) −2.48593 0.217491i −0.530002 0.0463692i
\(23\) 0.301527 + 0.646627i 0.0628728 + 0.134831i 0.935233 0.354032i \(-0.115190\pi\)
−0.872361 + 0.488863i \(0.837412\pi\)
\(24\) 5.06027 + 1.49954i 1.03292 + 0.306093i
\(25\) 0 0
\(26\) 5.74930i 1.12753i
\(27\) 0.409444 5.18000i 0.0787976 0.996891i
\(28\) 1.80389 1.80389i 0.340903 0.340903i
\(29\) −0.623300 + 3.53491i −0.115744 + 0.656416i 0.870635 + 0.491929i \(0.163708\pi\)
−0.986379 + 0.164487i \(0.947403\pi\)
\(30\) 0 0
\(31\) −5.18043 1.88552i −0.930432 0.338650i −0.168051 0.985778i \(-0.553747\pi\)
−0.762381 + 0.647129i \(0.775970\pi\)
\(32\) −0.397007 + 4.53781i −0.0701815 + 0.802178i
\(33\) −3.87762 + 1.29695i −0.675007 + 0.225769i
\(34\) −1.00144 2.75143i −0.171745 0.471866i
\(35\) 0 0
\(36\) 2.62800 0.322074i 0.438000 0.0536790i
\(37\) −1.14193 + 4.26173i −0.187732 + 0.700624i 0.806298 + 0.591510i \(0.201468\pi\)
−0.994029 + 0.109114i \(0.965199\pi\)
\(38\) −0.569956 6.51463i −0.0924591 1.05681i
\(39\) −3.75534 8.63936i −0.601335 1.38340i
\(40\) 0 0
\(41\) 5.70140 1.00531i 0.890409 0.157003i 0.290314 0.956932i \(-0.406240\pi\)
0.600095 + 0.799928i \(0.295129\pi\)
\(42\) −1.94025 + 4.92398i −0.299387 + 0.759786i
\(43\) −1.44271 + 0.126221i −0.220012 + 0.0192485i −0.196629 0.980478i \(-0.562999\pi\)
−0.0233831 + 0.999727i \(0.507444\pi\)
\(44\) −1.04170 1.80428i −0.157042 0.272005i
\(45\) 0 0
\(46\) 0.377104 0.653164i 0.0556010 0.0963037i
\(47\) 4.38688 9.40770i 0.639893 1.37225i −0.272188 0.962244i \(-0.587747\pi\)
0.912081 0.410010i \(-0.134475\pi\)
\(48\) −0.799924 2.39162i −0.115459 0.345201i
\(49\) 0.871236 + 1.03830i 0.124462 + 0.148328i
\(50\) 0 0
\(51\) −3.30202 3.48039i −0.462375 0.487353i
\(52\) 3.93195 2.75318i 0.545263 0.381797i
\(53\) −7.22940 7.22940i −0.993035 0.993035i 0.00694140 0.999976i \(-0.497790\pi\)
−0.999976 + 0.00694140i \(0.997790\pi\)
\(54\) −4.73372 + 2.78621i −0.644177 + 0.379155i
\(55\) 0 0
\(56\) −8.67413 1.52948i −1.15913 0.204386i
\(57\) −5.11170 9.41712i −0.677061 1.24733i
\(58\) 3.43887 1.60357i 0.451546 0.210559i
\(59\) −6.27320 + 5.26384i −0.816701 + 0.685293i −0.952197 0.305484i \(-0.901182\pi\)
0.135496 + 0.990778i \(0.456737\pi\)
\(60\) 0 0
\(61\) 2.64019 0.960952i 0.338042 0.123037i −0.167421 0.985885i \(-0.553544\pi\)
0.505463 + 0.862848i \(0.331322\pi\)
\(62\) 1.50831 + 5.62907i 0.191555 + 0.714893i
\(63\) 0.300676 + 8.66650i 0.0378817 + 1.09188i
\(64\) 6.69194 3.86359i 0.836493 0.482949i
\(65\) 0 0
\(66\) 3.47414 + 2.57134i 0.427637 + 0.316510i
\(67\) 4.28254 6.11610i 0.523196 0.747201i −0.467396 0.884048i \(-0.654808\pi\)
0.990592 + 0.136847i \(0.0436968\pi\)
\(68\) 1.40214 2.00246i 0.170034 0.242834i
\(69\) 0.140033 1.22781i 0.0168579 0.147811i
\(70\) 0 0
\(71\) −4.24004 + 2.44799i −0.503200 + 0.290523i −0.730034 0.683411i \(-0.760496\pi\)
0.226834 + 0.973933i \(0.427162\pi\)
\(72\) −6.11524 6.79476i −0.720688 0.800770i
\(73\) −1.80353 6.73088i −0.211088 0.787790i −0.987507 0.157574i \(-0.949633\pi\)
0.776420 0.630216i \(-0.217034\pi\)
\(74\) 4.38269 1.59517i 0.509478 0.185435i
\(75\) 0 0
\(76\) 4.18242 3.50947i 0.479756 0.402563i
\(77\) 6.18430 2.88379i 0.704767 0.328638i
\(78\) −5.20404 + 8.49007i −0.589242 + 0.961311i
\(79\) 12.8661 + 2.26863i 1.44754 + 0.255241i 0.841529 0.540212i \(-0.181656\pi\)
0.606015 + 0.795453i \(0.292767\pi\)
\(80\) 0 0
\(81\) −5.29336 + 7.27876i −0.588151 + 0.808751i
\(82\) −4.32741 4.32741i −0.477883 0.477883i
\(83\) 3.90587 2.73492i 0.428724 0.300196i −0.339227 0.940705i \(-0.610165\pi\)
0.767951 + 0.640509i \(0.221276\pi\)
\(84\) −4.29664 + 1.03102i −0.468802 + 0.112493i
\(85\) 0 0
\(86\) 0.984048 + 1.17274i 0.106113 + 0.126460i
\(87\) 4.12010 4.65586i 0.441721 0.499161i
\(88\) −3.03998 + 6.51925i −0.324063 + 0.694955i
\(89\) −3.33276 + 5.77251i −0.353272 + 0.611885i −0.986821 0.161818i \(-0.948264\pi\)
0.633549 + 0.773703i \(0.281598\pi\)
\(90\) 0 0
\(91\) 7.86060 + 13.6150i 0.824014 + 1.42723i
\(92\) 0.627283 0.0548802i 0.0653988 0.00572165i
\(93\) 5.94331 + 7.47350i 0.616292 + 0.774966i
\(94\) −10.8062 + 1.90542i −1.11457 + 0.196529i
\(95\) 0 0
\(96\) 4.69371 6.34168i 0.479050 0.647245i
\(97\) 1.59893 + 18.2758i 0.162346 + 1.85563i 0.443894 + 0.896079i \(0.353597\pi\)
−0.281548 + 0.959547i \(0.590848\pi\)
\(98\) 0.370833 1.38397i 0.0374597 0.139802i
\(99\) 6.90008 + 1.59465i 0.693484 + 0.160269i
\(100\) 0 0
\(101\) −1.15191 3.16484i −0.114619 0.314913i 0.869097 0.494641i \(-0.164701\pi\)
−0.983716 + 0.179728i \(0.942478\pi\)
\(102\) −1.01165 + 4.96953i −0.100168 + 0.492057i
\(103\) 0.316137 3.61346i 0.0311499 0.356045i −0.964584 0.263775i \(-0.915032\pi\)
0.995734 0.0922694i \(-0.0294121\pi\)
\(104\) −15.5732 5.66819i −1.52708 0.555812i
\(105\) 0 0
\(106\) −1.87673 + 10.6434i −0.182284 + 1.03378i
\(107\) −4.03460 + 4.03460i −0.390039 + 0.390039i −0.874701 0.484662i \(-0.838943\pi\)
0.484662 + 0.874701i \(0.338943\pi\)
\(108\) −4.17233 1.90315i −0.401483 0.183131i
\(109\) 15.8226i 1.51553i −0.652527 0.757765i \(-0.726291\pi\)
0.652527 0.757765i \(-0.273709\pi\)
\(110\) 0 0
\(111\) 5.54385 5.25972i 0.526199 0.499231i
\(112\) 1.77865 + 3.81433i 0.168067 + 0.360420i
\(113\) −2.65880 0.232615i −0.250119 0.0218825i −0.0385931 0.999255i \(-0.512288\pi\)
−0.211526 + 0.977372i \(0.567843\pi\)
\(114\) −5.05513 + 10.1361i −0.473456 + 0.949337i
\(115\) 0 0
\(116\) 2.74346 + 1.58394i 0.254724 + 0.147065i
\(117\) −2.27446 + 16.1570i −0.210273 + 1.49372i
\(118\) 8.36165 + 2.24050i 0.769753 + 0.206255i
\(119\) 6.13333 + 5.14648i 0.562242 + 0.471777i
\(120\) 0 0
\(121\) 0.942447 + 5.34488i 0.0856770 + 0.485898i
\(122\) −2.43292 1.70355i −0.220266 0.154232i
\(123\) −9.32930 3.67613i −0.841195 0.331466i
\(124\) −3.12744 + 3.72713i −0.280852 + 0.334707i
\(125\) 0 0
\(126\) 7.32219 5.51507i 0.652312 0.491321i
\(127\) −3.15881 + 0.846401i −0.280299 + 0.0751059i −0.396230 0.918151i \(-0.629682\pi\)
0.115931 + 0.993257i \(0.463015\pi\)
\(128\) 0.853671 + 0.398073i 0.0754546 + 0.0351850i
\(129\) 2.24472 + 1.11950i 0.197637 + 0.0985661i
\(130\) 0 0
\(131\) 0.497235 1.36614i 0.0434436 0.119360i −0.916074 0.401010i \(-0.868659\pi\)
0.959517 + 0.281649i \(0.0908815\pi\)
\(132\) −0.0948693 + 3.60731i −0.00825731 + 0.313976i
\(133\) 10.2567 + 14.6481i 0.889368 + 1.27015i
\(134\) −7.89266 −0.681822
\(135\) 0 0
\(136\) −8.44014 −0.723736
\(137\) 9.15193 + 13.0703i 0.781902 + 1.11667i 0.990343 + 0.138637i \(0.0442720\pi\)
−0.208442 + 0.978035i \(0.566839\pi\)
\(138\) −1.14809 + 0.623196i −0.0977322 + 0.0530499i
\(139\) 3.12149 8.57623i 0.264762 0.727426i −0.734069 0.679075i \(-0.762381\pi\)
0.998830 0.0483514i \(-0.0153967\pi\)
\(140\) 0 0
\(141\) −14.9937 + 9.92164i −1.26269 + 0.835553i
\(142\) 4.69060 + 2.18726i 0.393626 + 0.183551i
\(143\) 12.4016 3.32299i 1.03707 0.277883i
\(144\) −0.983543 + 4.25580i −0.0819619 + 0.354650i
\(145\) 0 0
\(146\) −4.73488 + 5.64281i −0.391861 + 0.467002i
\(147\) −0.346738 2.32188i −0.0285985 0.191505i
\(148\) 3.18968 + 2.23344i 0.262190 + 0.183588i
\(149\) −1.63395 9.26659i −0.133858 0.759149i −0.975648 0.219343i \(-0.929609\pi\)
0.841789 0.539806i \(-0.181502\pi\)
\(150\) 0 0
\(151\) −0.808803 0.678666i −0.0658194 0.0552291i 0.609284 0.792952i \(-0.291457\pi\)
−0.675104 + 0.737723i \(0.735901\pi\)
\(152\) −18.2082 4.87887i −1.47688 0.395729i
\(153\) 1.72582 + 8.12841i 0.139525 + 0.657143i
\(154\) −6.24682 3.60660i −0.503383 0.290628i
\(155\) 0 0
\(156\) −8.29843 + 0.506611i −0.664406 + 0.0405613i
\(157\) −22.2338 1.94520i −1.77445 0.155244i −0.847590 0.530652i \(-0.821947\pi\)
−0.926860 + 0.375408i \(0.877503\pi\)
\(158\) −5.83654 12.5165i −0.464330 0.995759i
\(159\) 4.13198 + 17.2195i 0.327687 + 1.36560i
\(160\) 0 0
\(161\) 2.06235i 0.162536i
\(162\) 9.51231 + 0.170346i 0.747358 + 0.0133837i
\(163\) 1.74889 1.74889i 0.136983 0.136983i −0.635290 0.772274i \(-0.719119\pi\)
0.772274 + 0.635290i \(0.219119\pi\)
\(164\) 0.887241 5.03179i 0.0692819 0.392917i
\(165\) 0 0
\(166\) −4.73644 1.72392i −0.367619 0.133802i
\(167\) 0.634893 7.25686i 0.0491295 0.561553i −0.931243 0.364399i \(-0.881275\pi\)
0.980373 0.197154i \(-0.0631699\pi\)
\(168\) 11.4248 + 10.1101i 0.881441 + 0.780011i
\(169\) 5.67082 + 15.5805i 0.436217 + 1.19850i
\(170\) 0 0
\(171\) −0.975496 + 18.5333i −0.0745981 + 1.41728i
\(172\) −0.330806 + 1.23458i −0.0252237 + 0.0941362i
\(173\) 1.78680 + 20.4232i 0.135848 + 1.55275i 0.692143 + 0.721760i \(0.256667\pi\)
−0.556295 + 0.830985i \(0.687778\pi\)
\(174\) −6.52972 0.744716i −0.495017 0.0564568i
\(175\) 0 0
\(176\) 3.38487 0.596843i 0.255144 0.0449887i
\(177\) 14.0283 2.09493i 1.05443 0.157464i
\(178\) 7.01926 0.614106i 0.526116 0.0460292i
\(179\) −7.17079 12.4202i −0.535970 0.928327i −0.999116 0.0420450i \(-0.986613\pi\)
0.463146 0.886282i \(-0.346721\pi\)
\(180\) 0 0
\(181\) 1.03474 1.79221i 0.0769112 0.133214i −0.825005 0.565126i \(-0.808828\pi\)
0.901916 + 0.431912i \(0.142161\pi\)
\(182\) 7.02339 15.0617i 0.520609 1.11645i
\(183\) −4.76862 0.970750i −0.352507 0.0717599i
\(184\) −1.39745 1.66542i −0.103021 0.122776i
\(185\) 0 0
\(186\) 2.86788 9.67779i 0.210283 0.709610i
\(187\) 5.35618 3.75043i 0.391682 0.274259i
\(188\) −6.47790 6.47790i −0.472449 0.472449i
\(189\) 7.40057 13.0701i 0.538312 0.950710i
\(190\) 0 0
\(191\) 22.9618 + 4.04878i 1.66145 + 0.292959i 0.923987 0.382424i \(-0.124911\pi\)
0.737467 + 0.675383i \(0.236022\pi\)
\(192\) −13.3793 0.351864i −0.965564 0.0253936i
\(193\) 0.282417 0.131693i 0.0203288 0.00947948i −0.412427 0.910991i \(-0.635319\pi\)
0.432756 + 0.901511i \(0.357541\pi\)
\(194\) 14.8559 12.4656i 1.06659 0.894977i
\(195\) 0 0
\(196\) 1.12408 0.409130i 0.0802911 0.0292236i
\(197\) 0.840756 + 3.13774i 0.0599014 + 0.223555i 0.989387 0.145303i \(-0.0464156\pi\)
−0.929486 + 0.368858i \(0.879749\pi\)
\(198\) −2.80284 6.94179i −0.199189 0.493332i
\(199\) −5.52277 + 3.18857i −0.391499 + 0.226032i −0.682809 0.730596i \(-0.739242\pi\)
0.291310 + 0.956629i \(0.405909\pi\)
\(200\) 0 0
\(201\) −11.8601 + 5.15534i −0.836550 + 0.363630i
\(202\) −2.04207 + 2.91638i −0.143679 + 0.205196i
\(203\) −5.95116 + 8.49914i −0.417690 + 0.596523i
\(204\) −3.88311 + 1.68790i −0.271872 + 0.118177i
\(205\) 0 0
\(206\) −3.32065 + 1.91718i −0.231360 + 0.133576i
\(207\) −1.31816 + 1.68638i −0.0916183 + 0.117211i
\(208\) 2.04954 + 7.64899i 0.142110 + 0.530362i
\(209\) 13.7230 4.99477i 0.949241 0.345495i
\(210\) 0 0
\(211\) 4.91430 4.12359i 0.338314 0.283879i −0.457763 0.889074i \(-0.651349\pi\)
0.796077 + 0.605195i \(0.206905\pi\)
\(212\) −8.17776 + 3.81335i −0.561651 + 0.261902i
\(213\) 8.47715 + 0.222942i 0.580844 + 0.0152757i
\(214\) 5.93991 + 1.04737i 0.406044 + 0.0715965i
\(215\) 0 0
\(216\) 2.88011 + 15.5692i 0.195967 + 1.05935i
\(217\) −11.2680 11.2680i −0.764925 0.764925i
\(218\) −13.7011 + 9.59362i −0.927956 + 0.649762i
\(219\) −3.42923 + 11.5721i −0.231726 + 0.781968i
\(220\) 0 0
\(221\) 9.68341 + 11.5402i 0.651376 + 0.776280i
\(222\) −7.91587 1.61143i −0.531278 0.108152i
\(223\) 4.39023 9.41489i 0.293992 0.630467i −0.702723 0.711464i \(-0.748032\pi\)
0.996714 + 0.0809965i \(0.0258103\pi\)
\(224\) −6.58348 + 11.4029i −0.439877 + 0.761889i
\(225\) 0 0
\(226\) 1.41067 + 2.44335i 0.0938361 + 0.162529i
\(227\) 3.11245 0.272304i 0.206580 0.0180734i 0.0166042 0.999862i \(-0.494714\pi\)
0.189976 + 0.981789i \(0.439159\pi\)
\(228\) −9.35287 + 1.39671i −0.619409 + 0.0924996i
\(229\) −23.1368 + 4.07964i −1.52892 + 0.269590i −0.873933 0.486047i \(-0.838438\pi\)
−0.654990 + 0.755638i \(0.727327\pi\)
\(230\) 0 0
\(231\) −11.7427 1.33926i −0.772616 0.0881170i
\(232\) −0.953265 10.8959i −0.0625849 0.715349i
\(233\) 0.858538 3.20411i 0.0562447 0.209908i −0.932085 0.362241i \(-0.882012\pi\)
0.988329 + 0.152333i \(0.0486785\pi\)
\(234\) 15.3698 7.82690i 1.00475 0.511661i
\(235\) 0 0
\(236\) 2.47188 + 6.79145i 0.160906 + 0.442085i
\(237\) −16.9460 14.9960i −1.10076 0.974093i
\(238\) 0.737653 8.43141i 0.0478149 0.546527i
\(239\) 15.9837 + 5.81759i 1.03390 + 0.376309i 0.802564 0.596566i \(-0.203468\pi\)
0.231335 + 0.972874i \(0.425691\pi\)
\(240\) 0 0
\(241\) 3.22231 18.2746i 0.207567 1.17717i −0.685782 0.727807i \(-0.740540\pi\)
0.893349 0.449364i \(-0.148349\pi\)
\(242\) 4.05681 4.05681i 0.260782 0.260782i
\(243\) 14.4052 5.95729i 0.924096 0.382160i
\(244\) 2.47965i 0.158744i
\(245\) 0 0
\(246\) 2.47334 + 10.3074i 0.157695 + 0.657173i
\(247\) 14.2194 + 30.4937i 0.904761 + 1.94027i
\(248\) 16.7346 + 1.46409i 1.06265 + 0.0929695i
\(249\) −8.24339 + 0.503250i −0.522403 + 0.0318922i
\(250\) 0 0
\(251\) −13.1493 7.59178i −0.829979 0.479189i 0.0238664 0.999715i \(-0.492402\pi\)
−0.853846 + 0.520527i \(0.825736\pi\)
\(252\) 7.27814 + 2.36663i 0.458480 + 0.149084i
\(253\) 1.62687 + 0.435919i 0.102281 + 0.0274060i
\(254\) 2.64818 + 2.22208i 0.166161 + 0.139426i
\(255\) 0 0
\(256\) −2.85653 16.2002i −0.178533 1.01251i
\(257\) −7.11815 4.98418i −0.444018 0.310905i 0.330100 0.943946i \(-0.392917\pi\)
−0.774118 + 0.633041i \(0.781806\pi\)
\(258\) −0.391636 2.62253i −0.0243822 0.163271i
\(259\) −8.19772 + 9.76966i −0.509382 + 0.607057i
\(260\) 0 0
\(261\) −10.2985 + 3.14602i −0.637462 + 0.194734i
\(262\) −1.48446 + 0.397759i −0.0917099 + 0.0245736i
\(263\) 21.3889 + 9.97382i 1.31890 + 0.615012i 0.949356 0.314203i \(-0.101737\pi\)
0.369541 + 0.929214i \(0.379515\pi\)
\(264\) 10.3902 6.87540i 0.639470 0.423152i
\(265\) 0 0
\(266\) 6.46518 17.7629i 0.396406 1.08912i
\(267\) 10.1466 5.50766i 0.620961 0.337063i
\(268\) −3.77957 5.39779i −0.230874 0.329723i
\(269\) −10.2124 −0.622659 −0.311330 0.950302i \(-0.600774\pi\)
−0.311330 + 0.950302i \(0.600774\pi\)
\(270\) 0 0
\(271\) 4.84409 0.294258 0.147129 0.989117i \(-0.452997\pi\)
0.147129 + 0.989117i \(0.452997\pi\)
\(272\) 2.31318 + 3.30356i 0.140257 + 0.200308i
\(273\) 0.715877 27.2205i 0.0433268 1.64746i
\(274\) 5.76881 15.8497i 0.348506 0.957514i
\(275\) 0 0
\(276\) −0.975993 0.486750i −0.0587479 0.0292989i
\(277\) 12.2491 + 5.71185i 0.735978 + 0.343192i 0.754203 0.656642i \(-0.228024\pi\)
−0.0182248 + 0.999834i \(0.505801\pi\)
\(278\) −9.31897 + 2.49701i −0.558914 + 0.149761i
\(279\) −2.01184 16.4159i −0.120446 0.982792i
\(280\) 0 0
\(281\) −10.1156 + 12.0553i −0.603445 + 0.719158i −0.978130 0.207994i \(-0.933306\pi\)
0.374685 + 0.927152i \(0.377751\pi\)
\(282\) 17.6824 + 6.96758i 1.05297 + 0.414913i
\(283\) −24.7001 17.2952i −1.46827 1.02809i −0.988587 0.150648i \(-0.951864\pi\)
−0.479680 0.877443i \(-0.659247\pi\)
\(284\) 0.750327 + 4.25532i 0.0445237 + 0.252507i
\(285\) 0 0
\(286\) −10.3968 8.72397i −0.614777 0.515859i
\(287\) 16.1643 + 4.33122i 0.954150 + 0.255664i
\(288\) −12.6715 + 5.11629i −0.746676 + 0.301480i
\(289\) −8.07815 4.66392i −0.475185 0.274348i
\(290\) 0 0
\(291\) 14.1814 28.4354i 0.831328 1.66691i
\(292\) −6.12652 0.536001i −0.358527 0.0313671i
\(293\) −3.10333 6.65512i −0.181299 0.388796i 0.794564 0.607180i \(-0.207699\pi\)
−0.975863 + 0.218384i \(0.929922\pi\)
\(294\) −1.80033 + 1.70806i −0.104997 + 0.0996160i
\(295\) 0 0
\(296\) 13.4441i 0.781424i
\(297\) −8.74602 8.60053i −0.507496 0.499053i
\(298\) −7.03343 + 7.03343i −0.407435 + 0.407435i
\(299\) −0.673830 + 3.82148i −0.0389686 + 0.221002i
\(300\) 0 0
\(301\) −3.93374 1.43176i −0.226737 0.0825254i
\(302\) −0.0972742 + 1.11185i −0.00559750 + 0.0639798i
\(303\) −1.16365 + 5.71622i −0.0668501 + 0.328388i
\(304\) 3.08065 + 8.46402i 0.176687 + 0.485445i
\(305\) 0 0
\(306\) 5.99214 6.42287i 0.342548 0.367171i
\(307\) 3.54038 13.2129i 0.202060 0.754099i −0.788265 0.615336i \(-0.789020\pi\)
0.990326 0.138764i \(-0.0443129\pi\)
\(308\) −0.524871 5.99930i −0.0299073 0.341842i
\(309\) −3.73760 + 5.04989i −0.212625 + 0.287278i
\(310\) 0 0
\(311\) 3.80231 0.670449i 0.215609 0.0380177i −0.0648001 0.997898i \(-0.520641\pi\)
0.280409 + 0.959881i \(0.409530\pi\)
\(312\) 17.8666 + 22.4666i 1.01149 + 1.27192i
\(313\) −24.5081 + 2.14418i −1.38528 + 0.121196i −0.755281 0.655401i \(-0.772500\pi\)
−0.629997 + 0.776597i \(0.716944\pi\)
\(314\) 11.7965 + 20.4321i 0.665714 + 1.15305i
\(315\) 0 0
\(316\) 5.76508 9.98541i 0.324311 0.561723i
\(317\) 6.97386 14.9555i 0.391691 0.839984i −0.607274 0.794493i \(-0.707737\pi\)
0.998965 0.0454916i \(-0.0144854\pi\)
\(318\) 12.4054 14.0186i 0.695661 0.786123i
\(319\) 5.44660 + 6.49101i 0.304951 + 0.363427i
\(320\) 0 0
\(321\) 9.60991 2.30598i 0.536373 0.128707i
\(322\) 1.78583 1.25045i 0.0995203 0.0696849i
\(323\) 12.1165 + 12.1165i 0.674178 + 0.674178i
\(324\) 4.43868 + 6.58704i 0.246593 + 0.365947i
\(325\) 0 0
\(326\) −2.57479 0.454005i −0.142604 0.0251450i
\(327\) −14.3220 + 23.3654i −0.792009 + 1.29211i
\(328\) −15.9881 + 7.45537i −0.882794 + 0.411654i
\(329\) 22.9851 19.2867i 1.26721 1.06331i
\(330\) 0 0
\(331\) −19.3973 + 7.06005i −1.06617 + 0.388056i −0.814744 0.579820i \(-0.803123\pi\)
−0.251429 + 0.967876i \(0.580901\pi\)
\(332\) −1.08916 4.06479i −0.0597752 0.223084i
\(333\) −12.9476 + 2.74903i −0.709523 + 0.150646i
\(334\) −6.66881 + 3.85024i −0.364901 + 0.210676i
\(335\) 0 0
\(336\) 0.826024 7.24263i 0.0450633 0.395118i
\(337\) −6.00115 + 8.57053i −0.326904 + 0.466867i −0.948639 0.316361i \(-0.897539\pi\)
0.621735 + 0.783227i \(0.286428\pi\)
\(338\) 10.0531 14.3573i 0.546815 0.780933i
\(339\) 3.71573 + 2.75015i 0.201811 + 0.149367i
\(340\) 0 0
\(341\) −11.2705 + 6.50701i −0.610330 + 0.352374i
\(342\) 16.6398 10.3925i 0.899778 0.561961i
\(343\) −4.22292 15.7602i −0.228016 0.850968i
\(344\) 4.14679 1.50931i 0.223580 0.0813765i
\(345\) 0 0
\(346\) 16.6015 13.9303i 0.892500 0.748896i
\(347\) −10.4146 + 4.85639i −0.559083 + 0.260705i −0.681554 0.731767i \(-0.738696\pi\)
0.122472 + 0.992472i \(0.460918\pi\)
\(348\) −2.61759 4.82230i −0.140317 0.258502i
\(349\) −15.6377 2.75735i −0.837067 0.147597i −0.261347 0.965245i \(-0.584167\pi\)
−0.575719 + 0.817647i \(0.695278\pi\)
\(350\) 0 0
\(351\) 17.9835 21.8006i 0.959886 1.16363i
\(352\) 7.60358 + 7.60358i 0.405272 + 0.405272i
\(353\) −7.10893 + 4.97772i −0.378370 + 0.264938i −0.747255 0.664538i \(-0.768629\pi\)
0.368885 + 0.929475i \(0.379740\pi\)
\(354\) −10.3198 10.8772i −0.548489 0.578118i
\(355\) 0 0
\(356\) 3.78131 + 4.50640i 0.200409 + 0.238838i
\(357\) −4.39878 13.1515i −0.232808 0.696053i
\(358\) −6.40706 + 13.7400i −0.338623 + 0.726180i
\(359\) −10.2032 + 17.6725i −0.538505 + 0.932718i 0.460480 + 0.887670i \(0.347677\pi\)
−0.998985 + 0.0450476i \(0.985656\pi\)
\(360\) 0 0
\(361\) 9.63526 + 16.6888i 0.507119 + 0.878356i
\(362\) −2.17930 + 0.190664i −0.114541 + 0.0100211i
\(363\) 3.44626 8.74593i 0.180881 0.459042i
\(364\) 13.6640 2.40933i 0.716189 0.126283i
\(365\) 0 0
\(366\) 2.05074 + 4.71784i 0.107194 + 0.246605i
\(367\) −2.26163 25.8506i −0.118056 1.34939i −0.791962 0.610571i \(-0.790940\pi\)
0.673906 0.738818i \(-0.264615\pi\)
\(368\) −0.268864 + 1.00341i −0.0140155 + 0.0523066i
\(369\) 10.4492 + 13.8731i 0.543965 + 0.722206i
\(370\) 0 0
\(371\) −10.1077 27.7707i −0.524766 1.44178i
\(372\) 7.99199 2.67308i 0.414365 0.138593i
\(373\) −0.416402 + 4.75950i −0.0215605 + 0.246438i 0.977765 + 0.209705i \(0.0672505\pi\)
−0.999325 + 0.0367323i \(0.988305\pi\)
\(374\) −6.49515 2.36404i −0.335856 0.122242i
\(375\) 0 0
\(376\) −5.49248 + 31.1494i −0.283253 + 1.60641i
\(377\) −13.8043 + 13.8043i −0.710956 + 0.710956i
\(378\) −15.8048 + 1.51641i −0.812911 + 0.0779958i
\(379\) 25.3002i 1.29958i −0.760112 0.649792i \(-0.774856\pi\)
0.760112 0.649792i \(-0.225144\pi\)
\(380\) 0 0
\(381\) 5.43079 + 1.60934i 0.278228 + 0.0824491i
\(382\) −10.4163 22.3379i −0.532946 1.14291i
\(383\) −12.2766 1.07406i −0.627303 0.0548819i −0.230929 0.972971i \(-0.574176\pi\)
−0.396375 + 0.918089i \(0.629732\pi\)
\(384\) −0.900307 1.36055i −0.0459436 0.0694303i
\(385\) 0 0
\(386\) −0.285272 0.164702i −0.0145200 0.00838310i
\(387\) −2.30149 3.68501i −0.116991 0.187320i
\(388\) 15.6393 + 4.19054i 0.793965 + 0.212742i
\(389\) −6.83430 5.73466i −0.346513 0.290759i 0.452875 0.891574i \(-0.350398\pi\)
−0.799388 + 0.600815i \(0.794843\pi\)
\(390\) 0 0
\(391\) 0.343168 + 1.94620i 0.0173548 + 0.0984238i
\(392\) −3.38317 2.36892i −0.170876 0.119649i
\(393\) −1.97085 + 1.56732i −0.0994164 + 0.0790610i
\(394\) 2.20727 2.63052i 0.111200 0.132524i
\(395\) 0 0
\(396\) 3.40529 5.24109i 0.171122 0.263375i
\(397\) 13.1660 3.52782i 0.660782 0.177056i 0.0871833 0.996192i \(-0.472213\pi\)
0.573599 + 0.819136i \(0.305547\pi\)
\(398\) 6.10964 + 2.84897i 0.306249 + 0.142806i
\(399\) −1.88733 30.9150i −0.0944846 1.54768i
\(400\) 0 0
\(401\) −1.00354 + 2.75721i −0.0501146 + 0.137689i −0.962225 0.272257i \(-0.912230\pi\)
0.912110 + 0.409945i \(0.134452\pi\)
\(402\) 11.6552 + 7.14413i 0.581309 + 0.356317i
\(403\) −17.1978 24.5610i −0.856683 1.22347i
\(404\) −2.97240 −0.147882
\(405\) 0 0
\(406\) 10.9679 0.544328
\(407\) 5.97399 + 8.53175i 0.296120 + 0.422903i
\(408\) 12.4637 + 7.63969i 0.617044 + 0.378221i
\(409\) −9.80467 + 26.9381i −0.484810 + 1.33200i 0.420515 + 0.907285i \(0.361849\pi\)
−0.905325 + 0.424719i \(0.860373\pi\)
\(410\) 0 0
\(411\) −1.68404 27.5851i −0.0830676 1.36067i
\(412\) −2.90132 1.35291i −0.142938 0.0666530i
\(413\) −22.8645 + 6.12654i −1.12509 + 0.301467i
\(414\) 2.25950 + 0.118928i 0.111048 + 0.00584500i
\(415\) 0 0
\(416\) −15.9247 + 18.9783i −0.780772 + 0.930488i
\(417\) −12.3724 + 9.83918i −0.605880 + 0.481827i
\(418\) −12.6457 8.85459i −0.618519 0.433092i
\(419\) 2.30839 + 13.0915i 0.112772 + 0.639563i 0.987829 + 0.155543i \(0.0497127\pi\)
−0.875057 + 0.484020i \(0.839176\pi\)
\(420\) 0 0
\(421\) 6.93437 + 5.81863i 0.337960 + 0.283582i 0.795934 0.605383i \(-0.206980\pi\)
−0.457974 + 0.888966i \(0.651425\pi\)
\(422\) −6.55035 1.75516i −0.318866 0.0854399i
\(423\) 31.1220 1.07975i 1.51320 0.0524993i
\(424\) 26.9798 + 15.5768i 1.31025 + 0.756476i
\(425\) 0 0
\(426\) −4.94684 7.47571i −0.239675 0.362199i
\(427\) 8.09054 + 0.707831i 0.391529 + 0.0342543i
\(428\) 2.12816 + 4.56386i 0.102869 + 0.220602i
\(429\) −21.3214 6.31832i −1.02941 0.305051i
\(430\) 0 0
\(431\) 0.295969i 0.0142563i −0.999975 0.00712817i \(-0.997731\pi\)
0.999975 0.00712817i \(-0.00226899\pi\)
\(432\) 5.30459 5.39433i 0.255217 0.259535i
\(433\) −12.8171 + 12.8171i −0.615949 + 0.615949i −0.944490 0.328541i \(-0.893443\pi\)
0.328541 + 0.944490i \(0.393443\pi\)
\(434\) −2.92514 + 16.5893i −0.140411 + 0.796312i
\(435\) 0 0
\(436\) −13.1221 4.77607i −0.628437 0.228732i
\(437\) −0.384686 + 4.39698i −0.0184020 + 0.210336i
\(438\) 12.0997 4.04698i 0.578146 0.193372i
\(439\) 9.75841 + 26.8110i 0.465743 + 1.27962i 0.921105 + 0.389313i \(0.127288\pi\)
−0.455362 + 0.890306i \(0.650490\pi\)
\(440\) 0 0
\(441\) −1.58964 + 3.74260i −0.0756972 + 0.178219i
\(442\) 4.12164 15.3822i 0.196046 0.731655i
\(443\) −3.51399 40.1651i −0.166955 1.90830i −0.369833 0.929098i \(-0.620585\pi\)
0.202878 0.979204i \(-0.434970\pi\)
\(444\) −2.68863 6.18533i −0.127597 0.293543i
\(445\) 0 0
\(446\) −10.8144 + 1.90688i −0.512079 + 0.0902933i
\(447\) −5.97488 + 15.1631i −0.282602 + 0.717190i
\(448\) 22.2510 1.94671i 1.05126 0.0919734i
\(449\) 3.91232 + 6.77634i 0.184634 + 0.319795i 0.943453 0.331506i \(-0.107557\pi\)
−0.758819 + 0.651301i \(0.774223\pi\)
\(450\) 0 0
\(451\) 6.83332 11.8357i 0.321768 0.557319i
\(452\) −0.995476 + 2.13480i −0.0468232 + 0.100413i
\(453\) 0.580068 + 1.73429i 0.0272540 + 0.0814841i
\(454\) −2.12294 2.53003i −0.0996347 0.118740i
\(455\) 0 0
\(456\) 22.4721 + 23.6860i 1.05235 + 1.10920i
\(457\) −4.48957 + 3.14363i −0.210013 + 0.147053i −0.673851 0.738867i \(-0.735361\pi\)
0.463838 + 0.885920i \(0.346472\pi\)
\(458\) 17.5610 + 17.5610i 0.820573 + 0.820573i
\(459\) 4.80897 13.5655i 0.224464 0.633182i
\(460\) 0 0
\(461\) 29.6880 + 5.23480i 1.38271 + 0.243809i 0.815019 0.579434i \(-0.196726\pi\)
0.567689 + 0.823243i \(0.307837\pi\)
\(462\) 5.96021 + 10.9803i 0.277294 + 0.510850i
\(463\) −0.163397 + 0.0761934i −0.00759371 + 0.00354101i −0.426411 0.904529i \(-0.640222\pi\)
0.418818 + 0.908070i \(0.362445\pi\)
\(464\) −4.00350 + 3.35933i −0.185858 + 0.155953i
\(465\) 0 0
\(466\) −3.29505 + 1.19930i −0.152640 + 0.0555566i
\(467\) 3.26672 + 12.1916i 0.151166 + 0.564158i 0.999403 + 0.0345422i \(0.0109973\pi\)
−0.848238 + 0.529616i \(0.822336\pi\)
\(468\) 12.7130 + 6.76330i 0.587657 + 0.312634i
\(469\) 18.6907 10.7911i 0.863055 0.498285i
\(470\) 0 0
\(471\) 31.0722 + 22.9977i 1.43173 + 1.05968i
\(472\) 14.3126 20.4404i 0.658789 0.940848i
\(473\) −1.96091 + 2.80048i −0.0901629 + 0.128766i
\(474\) −2.71055 + 23.7663i −0.124500 + 1.09162i
\(475\) 0 0
\(476\) 6.11948 3.53308i 0.280486 0.161939i
\(477\) 9.48470 29.1684i 0.434274 1.33553i
\(478\) −4.65373 17.3679i −0.212857 0.794391i
\(479\) 33.4923 12.1902i 1.53030 0.556985i 0.566607 0.823988i \(-0.308256\pi\)
0.963696 + 0.267003i \(0.0860335\pi\)
\(480\) 0 0
\(481\) −18.3822 + 15.4245i −0.838157 + 0.703297i
\(482\) −17.7781 + 8.29007i −0.809771 + 0.377602i
\(483\) 1.86676 3.04550i 0.0849404 0.138575i
\(484\) 4.71715 + 0.831760i 0.214416 + 0.0378073i
\(485\) 0 0
\(486\) −13.8928 8.86173i −0.630189 0.401976i
\(487\) −4.88907 4.88907i −0.221545 0.221545i 0.587604 0.809149i \(-0.300071\pi\)
−0.809149 + 0.587604i \(0.800071\pi\)
\(488\) −7.01302 + 4.91057i −0.317464 + 0.222291i
\(489\) −4.16563 + 0.999581i −0.188376 + 0.0452026i
\(490\) 0 0
\(491\) −16.6934 19.8944i −0.753361 0.897821i 0.244048 0.969763i \(-0.421525\pi\)
−0.997409 + 0.0719426i \(0.977080\pi\)
\(492\) −5.86479 + 6.62742i −0.264405 + 0.298787i
\(493\) −4.20179 + 9.01076i −0.189239 + 0.405824i
\(494\) 17.7835 30.8019i 0.800117 1.38584i
\(495\) 0 0
\(496\) −4.01336 6.95135i −0.180205 0.312125i
\(497\) −14.0983 + 1.23344i −0.632396 + 0.0553275i
\(498\) 5.43393 + 6.83298i 0.243500 + 0.306193i
\(499\) −11.0477 + 1.94801i −0.494564 + 0.0872050i −0.415367 0.909654i \(-0.636347\pi\)
−0.0791972 + 0.996859i \(0.525236\pi\)
\(500\) 0 0
\(501\) −7.50619 + 10.1416i −0.335352 + 0.453095i
\(502\) 1.39889 + 15.9894i 0.0624354 + 0.713640i
\(503\) −7.82118 + 29.1890i −0.348729 + 1.30147i 0.539466 + 0.842008i \(0.318626\pi\)
−0.888195 + 0.459467i \(0.848040\pi\)
\(504\) −7.71986 25.2710i −0.343870 1.12566i
\(505\) 0 0
\(506\) −0.608940 1.67305i −0.0270707 0.0743761i
\(507\) 5.72864 28.1409i 0.254418 1.24978i
\(508\) −0.251546 + 2.87518i −0.0111605 + 0.127566i
\(509\) −22.0511 8.02596i −0.977399 0.355744i −0.196571 0.980490i \(-0.562981\pi\)
−0.780829 + 0.624745i \(0.785203\pi\)
\(510\) 0 0
\(511\) 3.49769 19.8364i 0.154729 0.877511i
\(512\) −10.9640 + 10.9640i −0.484544 + 0.484544i
\(513\) 18.2162 26.4854i 0.804263 1.16936i
\(514\) 9.18578i 0.405167i
\(515\) 0 0
\(516\) 1.60600 1.52370i 0.0707004 0.0670769i
\(517\) −10.3559 22.2083i −0.455452 0.976719i
\(518\) 13.4302 + 1.17499i 0.590090 + 0.0516262i
\(519\) 15.8477 31.7765i 0.695636 1.39483i
\(520\) 0 0
\(521\) −14.2319 8.21681i −0.623512 0.359985i 0.154723 0.987958i \(-0.450551\pi\)
−0.778235 + 0.627973i \(0.783885\pi\)
\(522\) 8.96844 + 7.01018i 0.392538 + 0.306827i
\(523\) 14.1137 + 3.78176i 0.617150 + 0.165365i 0.553832 0.832629i \(-0.313165\pi\)
0.0633182 + 0.997993i \(0.479832\pi\)
\(524\) −0.982891 0.824743i −0.0429378 0.0360291i
\(525\) 0 0
\(526\) −4.33208 24.5685i −0.188888 1.07124i
\(527\) −12.5084 8.75850i −0.544876 0.381526i
\(528\) −5.53872 2.18248i −0.241042 0.0949804i
\(529\) 14.4569 17.2291i 0.628561 0.749090i
\(530\) 0 0
\(531\) −22.6121 9.60430i −0.981281 0.416791i
\(532\) 15.2441 4.08464i 0.660914 0.177091i
\(533\) 28.5370 + 13.3070i 1.23607 + 0.576390i
\(534\) −10.9213 5.44671i −0.472611 0.235702i
\(535\) 0 0
\(536\) −7.78131 + 21.3790i −0.336101 + 0.923431i
\(537\) −0.653055 + 24.8318i −0.0281814 + 1.07157i
\(538\) 6.19200 + 8.84309i 0.266956 + 0.381253i
\(539\) 3.19963 0.137818
\(540\) 0 0
\(541\) −28.4337 −1.22246 −0.611230 0.791453i \(-0.709325\pi\)
−0.611230 + 0.791453i \(0.709325\pi\)
\(542\) −2.93709 4.19460i −0.126159 0.180173i
\(543\) −3.15025 + 1.70998i −0.135190 + 0.0733824i
\(544\) −4.31531 + 11.8562i −0.185017 + 0.508331i
\(545\) 0 0
\(546\) −24.0048 + 15.8845i −1.02731 + 0.679795i
\(547\) −9.52924 4.44356i −0.407441 0.189993i 0.208083 0.978111i \(-0.433278\pi\)
−0.615524 + 0.788118i \(0.711055\pi\)
\(548\) 13.6021 3.64467i 0.581053 0.155693i
\(549\) 6.16321 + 5.74989i 0.263039 + 0.245399i
\(550\) 0 0
\(551\) −14.2734 + 17.0103i −0.608066 + 0.724665i
\(552\) 0.556164 + 3.72426i 0.0236719 + 0.158515i
\(553\) 30.9344 + 21.6605i 1.31547 + 0.921099i
\(554\) −2.48092 14.0700i −0.105404 0.597776i
\(555\) 0 0
\(556\) −6.17030 5.17749i −0.261679 0.219575i
\(557\) 16.7541 + 4.48926i 0.709896 + 0.190216i 0.595659 0.803238i \(-0.296891\pi\)
0.114237 + 0.993454i \(0.463558\pi\)
\(558\) −12.9950 + 11.6954i −0.550122 + 0.495107i
\(559\) −6.82132 3.93829i −0.288511 0.166572i
\(560\) 0 0
\(561\) −11.3043 + 0.690115i −0.477267 + 0.0291367i
\(562\) 16.5722 + 1.44988i 0.699057 + 0.0611596i
\(563\) 9.91099 + 21.2542i 0.417699 + 0.895758i 0.996757 + 0.0804714i \(0.0256426\pi\)
−0.579058 + 0.815286i \(0.696580\pi\)
\(564\) 3.70246 + 15.4295i 0.155902 + 0.649701i
\(565\) 0 0
\(566\) 31.8748i 1.33980i
\(567\) −22.7591 + 12.6021i −0.955791 + 0.529238i
\(568\) 10.5491 10.5491i 0.442630 0.442630i
\(569\) −6.84027 + 38.7931i −0.286759 + 1.62629i 0.412175 + 0.911105i \(0.364769\pi\)
−0.698934 + 0.715186i \(0.746342\pi\)
\(570\) 0 0
\(571\) 31.4980 + 11.4643i 1.31815 + 0.479767i 0.902865 0.429924i \(-0.141460\pi\)
0.415285 + 0.909691i \(0.363682\pi\)
\(572\) 0.987576 11.2880i 0.0412926 0.471977i
\(573\) −30.2431 26.7630i −1.26343 1.11804i
\(574\) −6.05032 16.6231i −0.252536 0.693836i
\(575\) 0 0
\(576\) 19.4388 + 12.6300i 0.809951 + 0.526249i
\(577\) −5.64888 + 21.0819i −0.235166 + 0.877651i 0.742908 + 0.669393i \(0.233446\pi\)
−0.978074 + 0.208257i \(0.933221\pi\)
\(578\) 0.859390 + 9.82287i 0.0357459 + 0.408578i
\(579\) −0.536252 0.0611597i −0.0222859 0.00254171i
\(580\) 0 0
\(581\) 13.5734 2.39335i 0.563119 0.0992930i
\(582\) −33.2213 + 4.96111i −1.37707 + 0.205645i
\(583\) −24.0432 + 2.10351i −0.995769 + 0.0871185i
\(584\) 10.6167 + 18.3886i 0.439321 + 0.760927i
\(585\) 0 0
\(586\) −3.88117 + 6.72239i −0.160330 + 0.277699i
\(587\) −10.3168 + 22.1244i −0.425819 + 0.913173i 0.569984 + 0.821656i \(0.306949\pi\)
−0.995804 + 0.0915170i \(0.970828\pi\)
\(588\) −2.03027 0.413302i −0.0837268 0.0170443i
\(589\) −21.9220 26.1256i −0.903279 1.07649i
\(590\) 0 0
\(591\) 1.59861 5.39457i 0.0657580 0.221903i
\(592\) −5.26217 + 3.68461i −0.216274 + 0.151437i
\(593\) −4.09490 4.09490i −0.168157 0.168157i 0.618012 0.786169i \(-0.287938\pi\)
−0.786169 + 0.618012i \(0.787938\pi\)
\(594\) −2.14445 + 12.7881i −0.0879879 + 0.524700i
\(595\) 0 0
\(596\) −8.17827 1.44205i −0.334995 0.0590687i
\(597\) 11.0417 + 0.290389i 0.451908 + 0.0118848i
\(598\) 3.71765 1.73357i 0.152026 0.0708910i
\(599\) −30.3866 + 25.4974i −1.24156 + 1.04180i −0.244163 + 0.969734i \(0.578513\pi\)
−0.997400 + 0.0720615i \(0.977042\pi\)
\(600\) 0 0
\(601\) −22.4811 + 8.18244i −0.917022 + 0.333769i −0.757053 0.653353i \(-0.773362\pi\)
−0.159969 + 0.987122i \(0.551139\pi\)
\(602\) 1.14533 + 4.27441i 0.0466800 + 0.174212i
\(603\) 22.1805 + 3.12238i 0.903258 + 0.127153i
\(604\) −0.806976 + 0.465908i −0.0328354 + 0.0189575i
\(605\) 0 0
\(606\) 5.65534 2.45825i 0.229733 0.0998596i
\(607\) −18.5771 + 26.5308i −0.754020 + 1.07685i 0.240329 + 0.970691i \(0.422745\pi\)
−0.994349 + 0.106160i \(0.966144\pi\)
\(608\) −16.1631 + 23.0833i −0.655501 + 0.936152i
\(609\) 16.4813 7.16404i 0.667854 0.290301i
\(610\) 0 0
\(611\) 48.8923 28.2280i 1.97797 1.14198i
\(612\) 7.26207 + 1.02229i 0.293552 + 0.0413238i
\(613\) 3.95860 + 14.7737i 0.159886 + 0.596704i 0.998637 + 0.0521885i \(0.0166197\pi\)
−0.838751 + 0.544515i \(0.816714\pi\)
\(614\) −13.5879 + 4.94560i −0.548364 + 0.199588i
\(615\) 0 0
\(616\) −15.9279 + 13.3651i −0.641755 + 0.538497i
\(617\) 24.2804 11.3221i 0.977492 0.455812i 0.132845 0.991137i \(-0.457589\pi\)
0.844646 + 0.535325i \(0.179811\pi\)
\(618\) 6.63900 + 0.174600i 0.267060 + 0.00702345i
\(619\) −18.6300 3.28497i −0.748802 0.132034i −0.213792 0.976879i \(-0.568581\pi\)
−0.535011 + 0.844845i \(0.679692\pi\)
\(620\) 0 0
\(621\) 3.47298 1.29715i 0.139366 0.0520529i
\(622\) −2.88598 2.88598i −0.115717 0.115717i
\(623\) −15.7827 + 11.0512i −0.632322 + 0.442757i
\(624\) 3.89698 13.1505i 0.156004 0.526443i
\(625\) 0 0
\(626\) 16.7165 + 19.9220i 0.668126 + 0.796242i
\(627\) −24.7860 5.04570i −0.989859 0.201506i
\(628\) −8.32451 + 17.8520i −0.332184 + 0.712371i
\(629\) −6.11042 + 10.5836i −0.243638 + 0.421994i
\(630\) 0 0
\(631\) 0.0126965 + 0.0219910i 0.000505440 + 0.000875448i 0.866278 0.499562i \(-0.166506\pi\)
−0.865773 + 0.500438i \(0.833172\pi\)
\(632\) −39.6578 + 3.46961i −1.57750 + 0.138014i
\(633\) −10.9895 + 1.64112i −0.436794 + 0.0652288i
\(634\) −17.1787 + 3.02907i −0.682253 + 0.120300i
\(635\) 0 0
\(636\) 15.5279 + 1.77096i 0.615722 + 0.0702232i
\(637\) 0.642490 + 7.34369i 0.0254564 + 0.290968i
\(638\) 2.31829 8.65198i 0.0917820 0.342535i
\(639\) −12.3165 8.00241i −0.487234 0.316570i
\(640\) 0 0
\(641\) 9.97230 + 27.3987i 0.393882 + 1.08218i 0.965214 + 0.261463i \(0.0842049\pi\)
−0.571331 + 0.820720i \(0.693573\pi\)
\(642\) −7.82351 6.92324i −0.308769 0.273238i
\(643\) 0.152914 1.74781i 0.00603033 0.0689270i −0.992583 0.121567i \(-0.961208\pi\)
0.998614 + 0.0526401i \(0.0167636\pi\)
\(644\) 1.71037 + 0.622522i 0.0673979 + 0.0245308i
\(645\) 0 0
\(646\) 3.14539 17.8384i 0.123754 0.701842i
\(647\) 14.7341 14.7341i 0.579259 0.579259i −0.355440 0.934699i \(-0.615669\pi\)
0.934699 + 0.355440i \(0.115669\pi\)
\(648\) 9.83953 25.5982i 0.386533 1.00559i
\(649\) 19.3315i 0.758830i
\(650\) 0 0
\(651\) 6.44028 + 26.8391i 0.252414 + 1.05191i
\(652\) −0.922501 1.97831i −0.0361279 0.0774766i
\(653\) 9.28810 + 0.812604i 0.363471 + 0.0317996i 0.267429 0.963578i \(-0.413826\pi\)
0.0960426 + 0.995377i \(0.469382\pi\)
\(654\) 28.9164 1.76532i 1.13072 0.0690293i
\(655\) 0 0
\(656\) 7.29994 + 4.21462i 0.285015 + 0.164553i
\(657\) 15.5386 13.9846i 0.606218 0.545592i
\(658\) −30.6372 8.20920i −1.19436 0.320028i
\(659\) 14.0775 + 11.8125i 0.548383 + 0.460148i 0.874393 0.485218i \(-0.161260\pi\)
−0.326010 + 0.945366i \(0.605704\pi\)
\(660\) 0 0
\(661\) 4.43306 + 25.1412i 0.172426 + 0.977878i 0.941073 + 0.338204i \(0.109819\pi\)
−0.768647 + 0.639674i \(0.779070\pi\)
\(662\) 17.8745 + 12.5159i 0.694712 + 0.486443i
\(663\) −3.85385 25.8067i −0.149671 1.00225i
\(664\) −9.33923 + 11.1301i −0.362432 + 0.431930i
\(665\) 0 0
\(666\) 10.2309 + 9.54476i 0.396438 + 0.369852i
\(667\) −2.47371 + 0.662829i −0.0957825 + 0.0256648i
\(668\) −5.82669 2.71703i −0.225441 0.105125i
\(669\) −15.0051 + 9.92922i −0.580131 + 0.383886i
\(670\) 0 0
\(671\) 2.26847 6.23257i 0.0875733 0.240606i
\(672\) 20.0434 10.8797i 0.773191 0.419695i
\(673\) 2.68248 + 3.83098i 0.103402 + 0.147673i 0.867518 0.497405i \(-0.165714\pi\)
−0.764117 + 0.645078i \(0.776825\pi\)
\(674\) 11.0600 0.426017
\(675\) 0 0
\(676\) 14.6331 0.562810
\(677\) 22.5105 + 32.1483i 0.865147 + 1.23556i 0.970495 + 0.241123i \(0.0775158\pi\)
−0.105347 + 0.994436i \(0.533595\pi\)
\(678\) 0.128472 4.88500i 0.00493392 0.187607i
\(679\) −18.1371 + 49.8312i −0.696038 + 1.91235i
\(680\) 0 0
\(681\) −4.84267 2.41515i −0.185572 0.0925488i
\(682\) 12.4681 + 5.81397i 0.477428 + 0.222628i
\(683\) −36.4765 + 9.77386i −1.39574 + 0.373986i −0.876812 0.480834i \(-0.840334\pi\)
−0.518924 + 0.854820i \(0.673667\pi\)
\(684\) 15.0758 + 6.40331i 0.576436 + 0.244837i
\(685\) 0 0
\(686\) −11.0866 + 13.2125i −0.423287 + 0.504454i
\(687\) 37.8592 + 14.9181i 1.44442 + 0.569160i
\(688\) −1.72726 1.20944i −0.0658513 0.0461096i
\(689\) −9.65582 54.7609i −0.367858 2.08622i
\(690\) 0 0
\(691\) 10.1478 + 8.51501i 0.386040 + 0.323926i 0.815068 0.579365i \(-0.196699\pi\)
−0.429028 + 0.903291i \(0.641144\pi\)
\(692\) 17.4769 + 4.68292i 0.664372 + 0.178018i
\(693\) 16.1284 + 12.6068i 0.612668 + 0.478892i
\(694\) 10.5198 + 6.07363i 0.399327 + 0.230552i
\(695\) 0 0
\(696\) −8.45482 + 16.9529i −0.320479 + 0.642599i
\(697\) 15.9747 + 1.39761i 0.605086 + 0.0529381i
\(698\) 7.09386 + 15.2128i 0.268507 + 0.575814i
\(699\) −4.16805 + 3.95443i −0.157650 + 0.149570i
\(700\) 0 0
\(701\) 1.42181i 0.0537011i −0.999639 0.0268505i \(-0.991452\pi\)
0.999639 0.0268505i \(-0.00854782\pi\)
\(702\) −29.7814 2.35402i −1.12402 0.0888467i
\(703\) −19.3001 + 19.3001i −0.727916 + 0.727916i
\(704\) 3.16755 17.9641i 0.119381 0.677046i
\(705\) 0 0
\(706\) 8.62062 + 3.13765i 0.324441 + 0.118087i
\(707\) 0.848488 9.69826i 0.0319107 0.364741i
\(708\) 2.49709 12.2665i 0.0938463 0.461002i
\(709\) −12.4901 34.3163i −0.469077 1.28878i −0.918487 0.395452i \(-0.870588\pi\)
0.449410 0.893325i \(-0.351634\pi\)
\(710\) 0 0
\(711\) 11.4506 + 37.4836i 0.429432 + 1.40575i
\(712\) 5.25679 19.6186i 0.197007 0.735239i
\(713\) −0.342810 3.91834i −0.0128384 0.146743i
\(714\) −8.72108 + 11.7831i −0.326378 + 0.440971i
\(715\) 0 0
\(716\) −12.4649 + 2.19790i −0.465836 + 0.0821395i
\(717\) −18.3375 23.0587i −0.684826 0.861144i
\(718\) 21.4894 1.88008i 0.801977 0.0701639i
\(719\) −12.9014 22.3459i −0.481142 0.833363i 0.518624 0.855003i \(-0.326445\pi\)
−0.999766 + 0.0216398i \(0.993111\pi\)
\(720\) 0 0
\(721\) 5.24243 9.08015i 0.195238 0.338162i
\(722\) 8.60904 18.4622i 0.320395 0.687090i
\(723\) −21.2999 + 24.0697i −0.792152 + 0.895160i
\(724\) −1.17400 1.39912i −0.0436314 0.0519978i
\(725\) 0 0
\(726\) −9.66282 + 2.31868i −0.358621 + 0.0860543i
\(727\) −1.32255 + 0.926059i −0.0490507 + 0.0343456i −0.597845 0.801612i \(-0.703976\pi\)
0.548794 + 0.835958i \(0.315087\pi\)
\(728\) −33.8736 33.8736i −1.25544 1.25544i
\(729\) −26.6647 4.24184i −0.987582 0.157105i
\(730\) 0 0
\(731\) −3.95045 0.696570i −0.146112 0.0257636i
\(732\) −2.24449 + 3.66174i −0.0829586 + 0.135342i
\(733\) 12.0574 5.62244i 0.445349 0.207669i −0.186990 0.982362i \(-0.559873\pi\)
0.632338 + 0.774692i \(0.282095\pi\)
\(734\) −21.0132 + 17.6322i −0.775613 + 0.650816i
\(735\) 0 0
\(736\) −3.05398 + 1.11156i −0.112571 + 0.0409725i
\(737\) −4.56182 17.0249i −0.168037 0.627122i
\(738\) 5.67740 17.4598i 0.208988 0.642704i
\(739\) −30.9063 + 17.8437i −1.13691 + 0.656393i −0.945663 0.325150i \(-0.894585\pi\)
−0.191243 + 0.981543i \(0.561252\pi\)
\(740\) 0 0
\(741\) 6.60366 57.9013i 0.242591 2.12706i
\(742\) −17.9187 + 25.5905i −0.657815 + 0.939457i
\(743\) 20.1985 28.8465i 0.741012 1.05828i −0.254813 0.966990i \(-0.582014\pi\)
0.995825 0.0912848i \(-0.0290974\pi\)
\(744\) −23.3869 17.3095i −0.857407 0.634598i
\(745\) 0 0
\(746\) 4.37382 2.52523i 0.160137 0.0924551i
\(747\) 12.6286 + 6.71844i 0.462058 + 0.245815i
\(748\) −1.49358 5.57411i −0.0546106 0.203810i
\(749\) −15.4983 + 5.64093i −0.566296 + 0.206115i
\(750\) 0 0
\(751\) 19.0262 15.9649i 0.694275 0.582566i −0.225864 0.974159i \(-0.572520\pi\)
0.920138 + 0.391593i \(0.128076\pi\)
\(752\) 13.6975 6.38726i 0.499497 0.232919i
\(753\) 12.5460 + 23.1132i 0.457203 + 0.842290i
\(754\) 20.3233 + 3.58354i 0.740130 + 0.130505i
\(755\) 0 0
\(756\) −8.60555 10.0827i −0.312981 0.366706i
\(757\) −17.8009 17.8009i −0.646986 0.646986i 0.305278 0.952263i \(-0.401251\pi\)
−0.952263 + 0.305278i \(0.901251\pi\)
\(758\) −21.9080 + 15.3401i −0.795733 + 0.557178i
\(759\) −2.00785 2.11631i −0.0728802 0.0768172i
\(760\) 0 0
\(761\) −31.3105 37.3144i −1.13500 1.35265i −0.927240 0.374467i \(-0.877826\pi\)
−0.207765 0.978179i \(-0.566619\pi\)
\(762\) −1.89925 5.67841i −0.0688027 0.205707i
\(763\) 19.3290 41.4512i 0.699757 1.50063i
\(764\) 10.2888 17.8207i 0.372236 0.644731i
\(765\) 0 0
\(766\) 6.51352 + 11.2818i 0.235343 + 0.407626i
\(767\) −44.3691 + 3.88180i −1.60208 + 0.140164i
\(768\) −10.4455 + 26.5086i −0.376919 + 0.956547i
\(769\) 43.1365 7.60612i 1.55554 0.274284i 0.671254 0.741227i \(-0.265756\pi\)
0.884287 + 0.466944i \(0.154645\pi\)
\(770\) 0 0
\(771\) 5.99998 + 13.8033i 0.216084 + 0.497113i
\(772\) −0.0239691 0.273968i −0.000862668 0.00986034i
\(773\) 5.91076 22.0592i 0.212595 0.793416i −0.774404 0.632691i \(-0.781950\pi\)
0.986999 0.160725i \(-0.0513831\pi\)
\(774\) −1.79548 + 4.22722i −0.0645371 + 0.151944i
\(775\) 0 0
\(776\) −19.1194 52.5302i −0.686347 1.88572i
\(777\) 20.9488 7.00674i 0.751534 0.251365i
\(778\) −0.821958 + 9.39502i −0.0294686 + 0.336828i
\(779\) 33.6549 + 12.2494i 1.20581 + 0.438879i
\(780\) 0 0
\(781\) −2.00697 + 11.3821i −0.0718150 + 0.407283i
\(782\) 1.47719 1.47719i 0.0528241 0.0528241i
\(783\) 18.0556 + 4.67604i 0.645255 + 0.167108i
\(784\) 1.97345i 0.0704805i
\(785\) 0 0
\(786\) 2.55215 + 0.756296i 0.0910322 + 0.0269762i
\(787\) 7.27876 + 15.6093i 0.259460 + 0.556413i 0.992281 0.124008i \(-0.0395748\pi\)
−0.732822 + 0.680421i \(0.761797\pi\)
\(788\) 2.85601 + 0.249868i 0.101741 + 0.00890119i
\(789\) −22.5574 34.0889i −0.803064 1.21360i
\(790\) 0 0
\(791\) −6.68122 3.85740i −0.237557 0.137153i
\(792\) −21.5666 + 0.748235i −0.766337 + 0.0265874i
\(793\) 14.7603 + 3.95501i 0.524154 + 0.140447i
\(794\) −11.0377 9.26170i −0.391712 0.328685i
\(795\) 0 0
\(796\) 0.977323 + 5.54267i 0.0346403 + 0.196455i
\(797\) −26.9373 18.8617i −0.954166 0.668115i −0.0108262 0.999941i \(-0.503446\pi\)
−0.943340 + 0.331827i \(0.892335\pi\)
\(798\) −25.6256 + 20.3787i −0.907135 + 0.721400i
\(799\) 18.4814 22.0252i 0.653824 0.779197i
\(800\) 0 0
\(801\) −19.9689 1.05106i −0.705567 0.0371374i
\(802\) 2.99600 0.802775i 0.105792 0.0283470i
\(803\) −14.9085 6.95197i −0.526111 0.245330i
\(804\) 0.695477 + 11.3921i 0.0245276 + 0.401769i
\(805\) 0 0
\(806\) −10.8404 + 29.7838i −0.381838 + 1.04909i
\(807\) 15.0807 + 9.24384i 0.530867 + 0.325399i
\(808\) 5.88637 + 8.40661i 0.207082 + 0.295744i
\(809\) 0.589848 0.0207379 0.0103690 0.999946i \(-0.496699\pi\)
0.0103690 + 0.999946i \(0.496699\pi\)
\(810\) 0 0
\(811\) −48.5224 −1.70385 −0.851925 0.523664i \(-0.824565\pi\)
−0.851925 + 0.523664i \(0.824565\pi\)
\(812\) 5.25222 + 7.50095i 0.184317 + 0.263232i
\(813\) −7.15334 4.38469i −0.250879 0.153778i
\(814\) 3.76564 10.3460i 0.131985 0.362627i
\(815\) 0 0
\(816\) −0.425646 6.97221i −0.0149006 0.244076i
\(817\) −8.11977 3.78631i −0.284075 0.132466i
\(818\) 29.2711 7.84316i 1.02344 0.274230i
\(819\) −25.6961 + 39.5489i −0.897894 + 1.38195i
\(820\) 0 0
\(821\) 12.3182 14.6802i 0.429907 0.512343i −0.506989 0.861953i \(-0.669241\pi\)
0.936895 + 0.349610i \(0.113686\pi\)
\(822\) −22.8654 + 18.1837i −0.797522 + 0.634230i
\(823\) −0.511895 0.358433i −0.0178435 0.0124942i 0.564621 0.825351i \(-0.309022\pi\)
−0.582464 + 0.812856i \(0.697911\pi\)
\(824\) 1.91929 + 10.8848i 0.0668615 + 0.379190i
\(825\) 0 0
\(826\) 19.1684 + 16.0842i 0.666954 + 0.559641i
\(827\) −11.3875 3.05127i −0.395981 0.106103i 0.0553328 0.998468i \(-0.482378\pi\)
−0.451314 + 0.892365i \(0.649045\pi\)
\(828\) 1.00068 + 1.60222i 0.0347759 + 0.0556811i
\(829\) 38.0844 + 21.9880i 1.32272 + 0.763675i 0.984163 0.177269i \(-0.0567261\pi\)
0.338562 + 0.940944i \(0.390059\pi\)
\(830\) 0 0
\(831\) −12.9183 19.5222i −0.448130 0.677217i
\(832\) 41.8666 + 3.66285i 1.45146 + 0.126986i
\(833\) 1.58663 + 3.40254i 0.0549735 + 0.117891i
\(834\) 16.0216 + 4.74780i 0.554784 + 0.164403i
\(835\) 0 0
\(836\) 12.8886i 0.445761i
\(837\) −11.8881 + 26.0626i −0.410913 + 0.900854i
\(838\) 9.93659 9.93659i 0.343254 0.343254i
\(839\) −0.173429 + 0.983567i −0.00598745 + 0.0339565i −0.987655 0.156644i \(-0.949932\pi\)
0.981668 + 0.190601i \(0.0610435\pi\)
\(840\) 0 0
\(841\) 15.1440 + 5.51197i 0.522207 + 0.190068i
\(842\) 0.833993 9.53258i 0.0287413 0.328514i
\(843\) 25.8498 8.64597i 0.890314 0.297783i
\(844\) −1.93642 5.32028i −0.0666545 0.183132i
\(845\) 0 0
\(846\) −19.8050 26.2945i −0.680910 0.904024i
\(847\) −4.06038 + 15.1535i −0.139516 + 0.520682i
\(848\) −1.29739 14.8293i −0.0445527 0.509239i
\(849\) 20.8200 + 47.8976i 0.714541 + 1.64384i
\(850\) 0 0
\(851\) −3.10007 + 0.546626i −0.106269 + 0.0187381i
\(852\) 2.74373 6.96305i 0.0939986 0.238550i
\(853\) −4.50805 + 0.394403i −0.154353 + 0.0135041i −0.164070 0.986449i \(-0.552462\pi\)
0.00971747 + 0.999953i \(0.496907\pi\)
\(854\) −4.29256 7.43494i −0.146889 0.254418i
\(855\) 0 0
\(856\) 8.69313 15.0569i 0.297125 0.514635i
\(857\) 24.1963 51.8892i 0.826531 1.77250i 0.223650 0.974670i \(-0.428203\pi\)
0.602881 0.797831i \(-0.294019\pi\)
\(858\) 7.45653 + 22.2936i 0.254562 + 0.761091i
\(859\) −20.9711 24.9924i −0.715526 0.852730i 0.278662 0.960389i \(-0.410109\pi\)
−0.994188 + 0.107659i \(0.965665\pi\)
\(860\) 0 0
\(861\) −19.9496 21.0273i −0.679881 0.716608i
\(862\) −0.256286 + 0.179453i −0.00872913 + 0.00611220i
\(863\) 28.5706 + 28.5706i 0.972554 + 0.972554i 0.999633 0.0270792i \(-0.00862062\pi\)
−0.0270792 + 0.999633i \(0.508621\pi\)
\(864\) 23.3433 + 3.91447i 0.794154 + 0.133173i
\(865\) 0 0
\(866\) 18.8698 + 3.32726i 0.641223 + 0.113065i
\(867\) 7.70751 + 14.1993i 0.261761 + 0.482233i
\(868\) −12.7462 + 5.94365i −0.432634 + 0.201741i
\(869\) 23.6254 19.8241i 0.801437 0.672486i
\(870\) 0 0
\(871\) 38.1591 13.8888i 1.29297 0.470603i
\(872\) 12.4786 + 46.5707i 0.422578 + 1.57708i
\(873\) −46.6805 + 29.1545i −1.57989 + 0.986731i
\(874\) 4.04068 2.33289i 0.136678 0.0789111i
\(875\) 0 0
\(876\) 8.56194 + 6.33700i 0.289281 + 0.214108i
\(877\) −20.3911 + 29.1215i −0.688559 + 0.983364i 0.310899 + 0.950443i \(0.399370\pi\)
−0.999458 + 0.0329214i \(0.989519\pi\)
\(878\) 17.2994 24.7062i 0.583828 0.833792i
\(879\) −1.44122 + 12.6367i −0.0486112 + 0.426226i
\(880\) 0 0
\(881\) −30.9752 + 17.8836i −1.04358 + 0.602512i −0.920846 0.389927i \(-0.872500\pi\)
−0.122736 + 0.992439i \(0.539167\pi\)
\(882\) 4.20463 0.892728i 0.141577 0.0300597i
\(883\) −0.905746 3.38029i −0.0304808 0.113756i 0.949009 0.315248i \(-0.102088\pi\)
−0.979490 + 0.201492i \(0.935421\pi\)
\(884\) 12.4936 4.54730i 0.420205 0.152942i
\(885\) 0 0
\(886\) −32.6492 + 27.3959i −1.09687 + 0.920383i
\(887\) 25.7899 12.0260i 0.865939 0.403794i 0.0616962 0.998095i \(-0.480349\pi\)
0.804243 + 0.594301i \(0.202571\pi\)
\(888\) −12.1691 + 19.8531i −0.408368 + 0.666227i
\(889\) −9.30926 1.64147i −0.312222 0.0550532i
\(890\) 0 0
\(891\) 5.13050 + 20.6171i 0.171878 + 0.690698i
\(892\) −6.48285 6.48285i −0.217062 0.217062i
\(893\) 52.6023 36.8325i 1.76027 1.23255i
\(894\) 16.7527 4.01997i 0.560296 0.134448i
\(895\) 0 0
\(896\) 1.75011 + 2.08570i 0.0584672 + 0.0696785i
\(897\) 4.45411 5.03331i 0.148718 0.168057i
\(898\) 3.49564 7.49641i 0.116651 0.250159i
\(899\) 9.89411 17.1371i 0.329987 0.571554i
\(900\) 0 0
\(901\) −14.1594 24.5249i −0.471719 0.817042i
\(902\) −14.3919 + 1.25913i −0.479199 + 0.0419245i
\(903\) 4.51303 + 5.67497i 0.150184 + 0.188851i
\(904\) 8.00909 1.41222i 0.266378 0.0469697i
\(905\) 0 0
\(906\) 1.15005 1.55383i 0.0382078 0.0516227i
\(907\) −2.85879 32.6761i −0.0949246 1.08499i −0.882987 0.469398i \(-0.844471\pi\)
0.788062 0.615596i \(-0.211085\pi\)
\(908\) 0.713667 2.66344i 0.0236839 0.0883894i
\(909\) 6.89249 7.38793i 0.228609 0.245042i
\(910\) 0 0
\(911\) 9.92857 + 27.2785i 0.328948 + 0.903778i 0.988379 + 0.152012i \(0.0485753\pi\)
−0.659430 + 0.751766i \(0.729202\pi\)
\(912\) 3.11206 15.2874i 0.103051 0.506217i
\(913\) 0.981025 11.2132i 0.0324672 0.371102i
\(914\) 5.44427 + 1.98155i 0.180080 + 0.0655439i
\(915\) 0 0
\(916\) −3.60050 + 20.4195i −0.118964 + 0.674678i
\(917\) 2.97152 2.97152i 0.0981282 0.0981282i
\(918\) −14.6624 + 4.06088i −0.483932 + 0.134029i
\(919\) 28.2931i 0.933302i −0.884442 0.466651i \(-0.845460\pi\)
0.884442 0.466651i \(-0.154540\pi\)
\(920\) 0 0
\(921\) −17.1879 + 16.3070i −0.566361 + 0.537335i
\(922\) −13.4676 28.8814i −0.443533 0.951159i
\(923\) −26.5268 2.32080i −0.873141 0.0763899i
\(924\) −4.65525 + 9.33434i −0.153147 + 0.307077i
\(925\) 0 0
\(926\) 0.165049 + 0.0952911i 0.00542385 + 0.00313146i
\(927\) 10.0903 4.07410i 0.331410 0.133811i
\(928\) −15.7933 4.23180i −0.518440 0.138916i
\(929\) −25.1788 21.1275i −0.826089 0.693171i 0.128300 0.991735i \(-0.459048\pi\)
−0.954390 + 0.298564i \(0.903492\pi\)
\(930\) 0 0
\(931\) 1.45603 + 8.25757i 0.0477195 + 0.270631i
\(932\) −2.39811 1.67917i −0.0785527 0.0550032i
\(933\) −6.22178 2.45164i −0.203692 0.0802630i
\(934\) 8.57623 10.2208i 0.280623 0.334433i
\(935\) 0 0
\(936\) −6.04793 49.3488i −0.197683 1.61302i
\(937\) −4.87347 + 1.30584i −0.159209 + 0.0426600i −0.337543 0.941310i \(-0.609596\pi\)
0.178334 + 0.983970i \(0.442929\pi\)
\(938\) −20.6768 9.64174i −0.675121 0.314814i
\(939\) 38.1322 + 19.0174i 1.24440 + 0.620610i
\(940\) 0 0
\(941\) 19.6715 54.0471i 0.641274 1.76189i −0.00641343 0.999979i \(-0.502041\pi\)
0.647687 0.761906i \(-0.275736\pi\)
\(942\) 1.07432 40.8501i 0.0350034 1.33097i
\(943\) 2.36919 + 3.38355i 0.0771514 + 0.110184i
\(944\) −11.9232 −0.388068
\(945\) 0 0
\(946\) 3.61394 0.117499
\(947\) 18.4673 + 26.3740i 0.600107 + 0.857041i 0.998180 0.0603125i \(-0.0192097\pi\)
−0.398073 + 0.917354i \(0.630321\pi\)
\(948\) −17.5518 + 9.52727i −0.570055 + 0.309431i
\(949\) 12.9623 35.6136i 0.420773 1.15607i
\(950\) 0 0
\(951\) −23.8355 + 15.7725i −0.772920 + 0.511459i
\(952\) −22.1110 10.3105i −0.716623 0.334167i
\(953\) 20.8927 5.59819i 0.676782 0.181343i 0.0959743 0.995384i \(-0.469403\pi\)
0.580808 + 0.814041i \(0.302737\pi\)
\(954\) −31.0083 + 9.47252i −1.00393 + 0.306684i
\(955\) 0 0
\(956\) 9.64940 11.4997i 0.312084 0.371927i
\(957\) −2.16766 14.5154i −0.0700706 0.469217i
\(958\) −30.8629 21.6105i −0.997136 0.698202i
\(959\) 8.00894 + 45.4210i 0.258622 + 1.46672i
\(960\) 0 0
\(961\) −0.465741 0.390803i −0.0150239 0.0126065i
\(962\) 24.5020 + 6.56528i 0.789975 + 0.211673i
\(963\) −16.2784 5.29324i −0.524563 0.170572i
\(964\) −14.1830 8.18857i −0.456804 0.263736i
\(965\) 0 0
\(966\) −3.76902 + 0.230095i −0.121266 + 0.00740317i
\(967\) −10.9923 0.961701i −0.353488 0.0309262i −0.0909711 0.995854i \(-0.528997\pi\)
−0.262517 + 0.964927i \(0.584553\pi\)
\(968\) −6.98917 14.9883i −0.224640 0.481743i
\(969\) −6.92520 28.8599i −0.222469 0.927114i
\(970\) 0 0
\(971\) 21.9387i 0.704047i 0.935991 + 0.352023i \(0.114506\pi\)
−0.935991 + 0.352023i \(0.885494\pi\)
\(972\) −0.592321 13.7449i −0.0189987 0.440868i
\(973\) 18.6543 18.6543i 0.598030 0.598030i
\(974\) −1.26918 + 7.19790i −0.0406673 + 0.230635i
\(975\) 0 0
\(976\) 3.84410 + 1.39914i 0.123046 + 0.0447853i
\(977\) −0.479546 + 5.48124i −0.0153420 + 0.175360i 0.984658 + 0.174498i \(0.0558301\pi\)
−1.00000 0.000862648i \(0.999725\pi\)
\(978\) 3.39128 + 3.00104i 0.108441 + 0.0959625i
\(979\) 5.38167 + 14.7860i 0.171999 + 0.472563i
\(980\) 0 0
\(981\) 42.2990 21.5404i 1.35050 0.687731i
\(982\) −7.10536 + 26.5176i −0.226741 + 0.846209i
\(983\) −2.39635 27.3904i −0.0764316 0.873618i −0.933538 0.358478i \(-0.883296\pi\)
0.857106 0.515139i \(-0.172260\pi\)
\(984\) 30.3581 + 3.46235i 0.967782 + 0.110376i
\(985\) 0 0
\(986\) 10.3502 1.82503i 0.329619 0.0581207i
\(987\) −51.4000 + 7.67583i −1.63608 + 0.244324i
\(988\) 29.5815 2.58804i 0.941111 0.0823366i
\(989\) −0.516635 0.894838i −0.0164280 0.0284542i
\(990\) 0 0
\(991\) 7.95205 13.7734i 0.252605 0.437525i −0.711637 0.702547i \(-0.752046\pi\)
0.964242 + 0.265022i \(0.0853793\pi\)
\(992\) 10.6128 22.7592i 0.336956 0.722606i
\(993\) 35.0348 + 7.13204i 1.11180 + 0.226328i
\(994\) 9.61620 + 11.4601i 0.305007 + 0.363494i
\(995\) 0 0
\(996\) −2.07092 + 6.98839i −0.0656195 + 0.221436i
\(997\) −3.00447 + 2.10376i −0.0951527 + 0.0666266i −0.620185 0.784456i \(-0.712942\pi\)
0.525032 + 0.851083i \(0.324053\pi\)
\(998\) 8.38532 + 8.38532i 0.265433 + 0.265433i
\(999\) 21.6082 + 7.66011i 0.683652 + 0.242355i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 675.2.ba.b.407.5 192
5.2 odd 4 135.2.q.a.83.12 yes 192
5.3 odd 4 inner 675.2.ba.b.218.5 192
5.4 even 2 135.2.q.a.2.12 192
15.2 even 4 405.2.r.a.8.5 192
15.14 odd 2 405.2.r.a.332.5 192
27.14 odd 18 inner 675.2.ba.b.257.5 192
135.14 odd 18 135.2.q.a.122.12 yes 192
135.67 odd 36 405.2.r.a.233.5 192
135.68 even 36 inner 675.2.ba.b.68.5 192
135.94 even 18 405.2.r.a.152.5 192
135.122 even 36 135.2.q.a.68.12 yes 192
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
135.2.q.a.2.12 192 5.4 even 2
135.2.q.a.68.12 yes 192 135.122 even 36
135.2.q.a.83.12 yes 192 5.2 odd 4
135.2.q.a.122.12 yes 192 135.14 odd 18
405.2.r.a.8.5 192 15.2 even 4
405.2.r.a.152.5 192 135.94 even 18
405.2.r.a.233.5 192 135.67 odd 36
405.2.r.a.332.5 192 15.14 odd 2
675.2.ba.b.68.5 192 135.68 even 36 inner
675.2.ba.b.218.5 192 5.3 odd 4 inner
675.2.ba.b.257.5 192 27.14 odd 18 inner
675.2.ba.b.407.5 192 1.1 even 1 trivial