Properties

Label 675.2.ba.b.407.11
Level $675$
Weight $2$
Character 675.407
Analytic conductor $5.390$
Analytic rank $0$
Dimension $192$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [675,2,Mod(32,675)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("675.32"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(675, base_ring=CyclotomicField(36)) chi = DirichletCharacter(H, H._module([10, 9])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 675 = 3^{3} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 675.ba (of order \(36\), degree \(12\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [192] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.38990213644\)
Analytic rank: \(0\)
Dimension: \(192\)
Relative dimension: \(16\) over \(\Q(\zeta_{36})\)
Twist minimal: no (minimal twist has level 135)
Sato-Tate group: $\mathrm{SU}(2)[C_{36}]$

Embedding invariants

Embedding label 407.11
Character \(\chi\) \(=\) 675.407
Dual form 675.2.ba.b.68.11

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.761943 + 1.08817i) q^{2} +(-1.60100 + 0.660916i) q^{3} +(0.0804885 - 0.221140i) q^{4} +(-1.93906 - 1.23857i) q^{6} +(-1.77434 - 0.827388i) q^{7} +(2.86825 - 0.768546i) q^{8} +(2.12638 - 2.11625i) q^{9} +(-2.76562 + 3.29594i) q^{11} +(0.0172933 + 0.407241i) q^{12} +(4.15220 + 2.90740i) q^{13} +(-0.451609 - 2.56120i) q^{14} +(2.66120 + 2.23301i) q^{16} +(3.09176 + 0.828434i) q^{17} +(3.92301 + 0.701399i) q^{18} +(0.776109 + 0.448087i) q^{19} +(3.38755 + 0.151957i) q^{21} +(-5.69379 - 0.498142i) q^{22} +(2.36525 + 5.07230i) q^{23} +(-4.08412 + 3.12611i) q^{24} +6.73356i q^{26} +(-2.00567 + 4.79346i) q^{27} +(-0.325783 + 0.325783i) q^{28} +(-1.14702 + 6.50507i) q^{29} +(2.27652 + 0.828586i) q^{31} +(0.115398 - 1.31900i) q^{32} +(2.24941 - 7.10463i) q^{33} +(1.45427 + 3.99557i) q^{34} +(-0.296839 - 0.640563i) q^{36} +(1.86654 - 6.96604i) q^{37} +(0.103757 + 1.18595i) q^{38} +(-8.56920 - 1.91049i) q^{39} +(8.33680 - 1.47000i) q^{41} +(2.41576 + 3.80200i) q^{42} +(-1.28541 + 0.112459i) q^{43} +(0.506265 + 0.876877i) q^{44} +(-3.71732 + 6.43859i) q^{46} +(-3.48305 + 7.46943i) q^{47} +(-5.73641 - 1.81622i) q^{48} +(-2.03580 - 2.42617i) q^{49} +(-5.49742 + 0.717071i) q^{51} +(0.977148 - 0.684206i) q^{52} +(-0.947342 - 0.947342i) q^{53} +(-6.74430 + 1.46984i) q^{54} +(-5.72514 - 1.00950i) q^{56} +(-1.53869 - 0.204443i) q^{57} +(-7.95258 + 3.70835i) q^{58} +(3.72879 - 3.12883i) q^{59} +(-7.90101 + 2.87573i) q^{61} +(0.832940 + 3.10857i) q^{62} +(-5.52388 + 1.99560i) q^{63} +(7.54029 - 4.35339i) q^{64} +(9.44496 - 2.96559i) q^{66} +(-5.53556 + 7.90560i) q^{67} +(0.432051 - 0.617033i) q^{68} +(-7.13912 - 6.55750i) q^{69} +(4.92123 - 2.84127i) q^{71} +(4.47256 - 7.70415i) q^{72} +(1.32285 + 4.93694i) q^{73} +(9.00242 - 3.27661i) q^{74} +(0.161558 - 0.135563i) q^{76} +(7.63418 - 3.55988i) q^{77} +(-4.45032 - 10.7804i) q^{78} +(0.410612 + 0.0724019i) q^{79} +(0.0429919 - 8.99990i) q^{81} +(7.95178 + 7.95178i) q^{82} +(7.59392 - 5.31732i) q^{83} +(0.306263 - 0.736893i) q^{84} +(-1.10179 - 1.31306i) q^{86} +(-2.46293 - 11.1727i) q^{87} +(-5.39942 + 11.5791i) q^{88} +(0.974450 - 1.68780i) q^{89} +(-4.96186 - 8.59420i) q^{91} +(1.31207 - 0.114791i) q^{92} +(-4.19233 + 0.178025i) q^{93} +(-10.7819 + 1.90114i) q^{94} +(0.686998 + 2.18799i) q^{96} +(-1.17718 - 13.4552i) q^{97} +(1.08892 - 4.06390i) q^{98} +(1.09426 + 12.8612i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 192 q + 12 q^{2} + 12 q^{3} - 36 q^{6} + 12 q^{7} + 18 q^{8} - 36 q^{11} + 12 q^{12} + 12 q^{13} - 24 q^{16} + 18 q^{17} + 54 q^{18} - 24 q^{21} + 12 q^{22} + 36 q^{23} + 36 q^{27} + 24 q^{28} - 24 q^{31}+ \cdots - 324 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/675\mathbb{Z}\right)^\times\).

\(n\) \(326\) \(352\)
\(\chi(n)\) \(e\left(\frac{1}{18}\right)\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.761943 + 1.08817i 0.538775 + 0.769451i 0.992573 0.121654i \(-0.0388198\pi\)
−0.453797 + 0.891105i \(0.649931\pi\)
\(3\) −1.60100 + 0.660916i −0.924336 + 0.381580i
\(4\) 0.0804885 0.221140i 0.0402443 0.110570i
\(5\) 0 0
\(6\) −1.93906 1.23857i −0.791616 0.505645i
\(7\) −1.77434 0.827388i −0.670638 0.312723i 0.0573098 0.998356i \(-0.481748\pi\)
−0.727947 + 0.685633i \(0.759526\pi\)
\(8\) 2.86825 0.768546i 1.01408 0.271722i
\(9\) 2.12638 2.11625i 0.708794 0.705416i
\(10\) 0 0
\(11\) −2.76562 + 3.29594i −0.833867 + 0.993764i 0.166104 + 0.986108i \(0.446881\pi\)
−0.999971 + 0.00765542i \(0.997563\pi\)
\(12\) 0.0172933 + 0.407241i 0.00499215 + 0.117560i
\(13\) 4.15220 + 2.90740i 1.15161 + 0.806368i 0.983768 0.179446i \(-0.0574305\pi\)
0.167844 + 0.985814i \(0.446319\pi\)
\(14\) −0.451609 2.56120i −0.120698 0.684510i
\(15\) 0 0
\(16\) 2.66120 + 2.23301i 0.665301 + 0.558253i
\(17\) 3.09176 + 0.828434i 0.749861 + 0.200925i 0.613456 0.789729i \(-0.289779\pi\)
0.136405 + 0.990653i \(0.456445\pi\)
\(18\) 3.92301 + 0.701399i 0.924663 + 0.165321i
\(19\) 0.776109 + 0.448087i 0.178052 + 0.102798i 0.586377 0.810038i \(-0.300554\pi\)
−0.408325 + 0.912836i \(0.633887\pi\)
\(20\) 0 0
\(21\) 3.38755 + 0.151957i 0.739223 + 0.0331597i
\(22\) −5.69379 0.498142i −1.21392 0.106204i
\(23\) 2.36525 + 5.07230i 0.493189 + 1.05765i 0.982624 + 0.185607i \(0.0594253\pi\)
−0.489435 + 0.872040i \(0.662797\pi\)
\(24\) −4.08412 + 3.12611i −0.833667 + 0.638115i
\(25\) 0 0
\(26\) 6.73356i 1.32056i
\(27\) −2.00567 + 4.79346i −0.385991 + 0.922503i
\(28\) −0.325783 + 0.325783i −0.0615672 + 0.0615672i
\(29\) −1.14702 + 6.50507i −0.212996 + 1.20796i 0.671354 + 0.741137i \(0.265713\pi\)
−0.884350 + 0.466825i \(0.845398\pi\)
\(30\) 0 0
\(31\) 2.27652 + 0.828586i 0.408875 + 0.148818i 0.538266 0.842775i \(-0.319080\pi\)
−0.129390 + 0.991594i \(0.541302\pi\)
\(32\) 0.115398 1.31900i 0.0203996 0.233169i
\(33\) 2.24941 7.10463i 0.391573 1.23676i
\(34\) 1.45427 + 3.99557i 0.249405 + 0.685235i
\(35\) 0 0
\(36\) −0.296839 0.640563i −0.0494731 0.106760i
\(37\) 1.86654 6.96604i 0.306858 1.14521i −0.624476 0.781044i \(-0.714688\pi\)
0.931334 0.364166i \(-0.118646\pi\)
\(38\) 0.103757 + 1.18595i 0.0168317 + 0.192387i
\(39\) −8.56920 1.91049i −1.37217 0.305922i
\(40\) 0 0
\(41\) 8.33680 1.47000i 1.30199 0.229576i 0.520697 0.853742i \(-0.325672\pi\)
0.781292 + 0.624166i \(0.214561\pi\)
\(42\) 2.41576 + 3.80200i 0.372761 + 0.586662i
\(43\) −1.28541 + 0.112459i −0.196024 + 0.0171499i −0.184745 0.982787i \(-0.559146\pi\)
−0.0112790 + 0.999936i \(0.503590\pi\)
\(44\) 0.506265 + 0.876877i 0.0763223 + 0.132194i
\(45\) 0 0
\(46\) −3.71732 + 6.43859i −0.548090 + 0.949319i
\(47\) −3.48305 + 7.46943i −0.508055 + 1.08953i 0.470283 + 0.882516i \(0.344152\pi\)
−0.978338 + 0.207013i \(0.933626\pi\)
\(48\) −5.73641 1.81622i −0.827979 0.262148i
\(49\) −2.03580 2.42617i −0.290829 0.346596i
\(50\) 0 0
\(51\) −5.49742 + 0.717071i −0.769792 + 0.100410i
\(52\) 0.977148 0.684206i 0.135506 0.0948823i
\(53\) −0.947342 0.947342i −0.130127 0.130127i 0.639043 0.769171i \(-0.279330\pi\)
−0.769171 + 0.639043i \(0.779330\pi\)
\(54\) −6.74430 + 1.46984i −0.917783 + 0.200021i
\(55\) 0 0
\(56\) −5.72514 1.00950i −0.765054 0.134900i
\(57\) −1.53869 0.204443i −0.203805 0.0270791i
\(58\) −7.95258 + 3.70835i −1.04422 + 0.486930i
\(59\) 3.72879 3.12883i 0.485447 0.407339i −0.366944 0.930243i \(-0.619596\pi\)
0.852391 + 0.522904i \(0.175151\pi\)
\(60\) 0 0
\(61\) −7.90101 + 2.87573i −1.01162 + 0.368200i −0.794055 0.607846i \(-0.792034\pi\)
−0.217566 + 0.976046i \(0.569812\pi\)
\(62\) 0.832940 + 3.10857i 0.105783 + 0.394789i
\(63\) −5.52388 + 1.99560i −0.695944 + 0.251422i
\(64\) 7.54029 4.35339i 0.942536 0.544173i
\(65\) 0 0
\(66\) 9.44496 2.96559i 1.16259 0.365039i
\(67\) −5.53556 + 7.90560i −0.676276 + 0.965822i 0.323532 + 0.946217i \(0.395130\pi\)
−0.999808 + 0.0196049i \(0.993759\pi\)
\(68\) 0.432051 0.617033i 0.0523939 0.0748262i
\(69\) −7.13912 6.55750i −0.859449 0.789430i
\(70\) 0 0
\(71\) 4.92123 2.84127i 0.584043 0.337197i −0.178696 0.983904i \(-0.557188\pi\)
0.762738 + 0.646707i \(0.223854\pi\)
\(72\) 4.47256 7.70415i 0.527097 0.907943i
\(73\) 1.32285 + 4.93694i 0.154828 + 0.577825i 0.999120 + 0.0419419i \(0.0133544\pi\)
−0.844292 + 0.535883i \(0.819979\pi\)
\(74\) 9.00242 3.27661i 1.04651 0.380898i
\(75\) 0 0
\(76\) 0.161558 0.135563i 0.0185320 0.0155502i
\(77\) 7.63418 3.55988i 0.869996 0.405686i
\(78\) −4.45032 10.7804i −0.503899 1.22064i
\(79\) 0.410612 + 0.0724019i 0.0461974 + 0.00814585i 0.196699 0.980464i \(-0.436978\pi\)
−0.150502 + 0.988610i \(0.548089\pi\)
\(80\) 0 0
\(81\) 0.0429919 8.99990i 0.00477688 0.999989i
\(82\) 7.95178 + 7.95178i 0.878127 + 0.878127i
\(83\) 7.59392 5.31732i 0.833541 0.583652i −0.0770185 0.997030i \(-0.524540\pi\)
0.910560 + 0.413378i \(0.135651\pi\)
\(84\) 0.306263 0.736893i 0.0334160 0.0804016i
\(85\) 0 0
\(86\) −1.10179 1.31306i −0.118809 0.141591i
\(87\) −2.46293 11.1727i −0.264054 1.19784i
\(88\) −5.39942 + 11.5791i −0.575580 + 1.23434i
\(89\) 0.974450 1.68780i 0.103292 0.178906i −0.809747 0.586779i \(-0.800396\pi\)
0.913039 + 0.407872i \(0.133729\pi\)
\(90\) 0 0
\(91\) −4.96186 8.59420i −0.520144 0.900917i
\(92\) 1.31207 0.114791i 0.136792 0.0119678i
\(93\) −4.19233 + 0.178025i −0.434724 + 0.0184604i
\(94\) −10.7819 + 1.90114i −1.11207 + 0.196087i
\(95\) 0 0
\(96\) 0.686998 + 2.18799i 0.0701164 + 0.223310i
\(97\) −1.17718 13.4552i −0.119524 1.36617i −0.784883 0.619644i \(-0.787277\pi\)
0.665359 0.746524i \(-0.268279\pi\)
\(98\) 1.08892 4.06390i 0.109997 0.410516i
\(99\) 1.09426 + 12.8612i 0.109977 + 1.29260i
\(100\) 0 0
\(101\) −1.45521 3.99814i −0.144798 0.397830i 0.845999 0.533185i \(-0.179005\pi\)
−0.990797 + 0.135354i \(0.956783\pi\)
\(102\) −4.96901 5.43575i −0.492006 0.538219i
\(103\) 1.16385 13.3028i 0.114677 1.31077i −0.692912 0.721022i \(-0.743673\pi\)
0.807589 0.589745i \(-0.200772\pi\)
\(104\) 14.1440 + 5.14800i 1.38694 + 0.504803i
\(105\) 0 0
\(106\) 0.309046 1.75269i 0.0300172 0.170236i
\(107\) −10.2616 + 10.2616i −0.992026 + 0.992026i −0.999968 0.00794276i \(-0.997472\pi\)
0.00794276 + 0.999968i \(0.497472\pi\)
\(108\) 0.898596 + 0.829353i 0.0864674 + 0.0798045i
\(109\) 14.3459i 1.37409i 0.726615 + 0.687045i \(0.241092\pi\)
−0.726615 + 0.687045i \(0.758908\pi\)
\(110\) 0 0
\(111\) 1.61563 + 12.3862i 0.153349 + 1.17565i
\(112\) −2.87431 6.16397i −0.271597 0.582441i
\(113\) 13.5865 + 1.18867i 1.27811 + 0.111821i 0.705916 0.708295i \(-0.250535\pi\)
0.572198 + 0.820116i \(0.306091\pi\)
\(114\) −0.949930 1.83013i −0.0889691 0.171408i
\(115\) 0 0
\(116\) 1.34621 + 0.777236i 0.124993 + 0.0721646i
\(117\) 14.9819 2.60484i 1.38508 0.240817i
\(118\) 6.24582 + 1.67356i 0.574974 + 0.154064i
\(119\) −4.80039 4.02801i −0.440051 0.369247i
\(120\) 0 0
\(121\) −1.30443 7.39778i −0.118584 0.672525i
\(122\) −9.14940 6.40648i −0.828348 0.580016i
\(123\) −12.3756 + 7.86339i −1.11587 + 0.709018i
\(124\) 0.366468 0.436739i 0.0329098 0.0392204i
\(125\) 0 0
\(126\) −6.38043 4.49038i −0.568414 0.400035i
\(127\) 3.47767 0.931838i 0.308593 0.0826872i −0.101199 0.994866i \(-0.532268\pi\)
0.409792 + 0.912179i \(0.365601\pi\)
\(128\) 8.08251 + 3.76894i 0.714400 + 0.333130i
\(129\) 1.98362 1.02960i 0.174648 0.0906510i
\(130\) 0 0
\(131\) 0.189922 0.521807i 0.0165936 0.0455905i −0.931119 0.364715i \(-0.881167\pi\)
0.947713 + 0.319124i \(0.103389\pi\)
\(132\) −1.39007 1.06928i −0.120990 0.0930687i
\(133\) −1.00634 1.43720i −0.0872607 0.124621i
\(134\) −12.8204 −1.10751
\(135\) 0 0
\(136\) 9.50463 0.815015
\(137\) 3.46624 + 4.95031i 0.296141 + 0.422934i 0.939457 0.342668i \(-0.111330\pi\)
−0.643315 + 0.765601i \(0.722442\pi\)
\(138\) 1.69606 12.7650i 0.144378 1.08663i
\(139\) 6.33390 17.4022i 0.537234 1.47604i −0.313061 0.949733i \(-0.601354\pi\)
0.850295 0.526306i \(-0.176423\pi\)
\(140\) 0 0
\(141\) 0.639692 14.2605i 0.0538718 1.20095i
\(142\) 6.84148 + 3.19024i 0.574125 + 0.267719i
\(143\) −21.0660 + 5.64463i −1.76163 + 0.472027i
\(144\) 10.3843 0.883525i 0.865362 0.0736271i
\(145\) 0 0
\(146\) −4.36428 + 5.20115i −0.361190 + 0.430450i
\(147\) 4.86281 + 2.53880i 0.401078 + 0.209397i
\(148\) −1.39024 0.973455i −0.114277 0.0800175i
\(149\) −1.50609 8.54145i −0.123384 0.699743i −0.982255 0.187551i \(-0.939945\pi\)
0.858871 0.512192i \(-0.171166\pi\)
\(150\) 0 0
\(151\) −12.2052 10.2414i −0.993244 0.833431i −0.00721007 0.999974i \(-0.502295\pi\)
−0.986034 + 0.166543i \(0.946740\pi\)
\(152\) 2.57045 + 0.688750i 0.208491 + 0.0558650i
\(153\) 8.32742 4.78136i 0.673232 0.386550i
\(154\) 9.69056 + 5.59485i 0.780887 + 0.450846i
\(155\) 0 0
\(156\) −1.11221 + 1.74122i −0.0890479 + 0.139410i
\(157\) −13.2243 1.15698i −1.05541 0.0923367i −0.453784 0.891112i \(-0.649926\pi\)
−0.601630 + 0.798775i \(0.705482\pi\)
\(158\) 0.234077 + 0.501981i 0.0186222 + 0.0399354i
\(159\) 2.14280 + 0.890578i 0.169935 + 0.0706274i
\(160\) 0 0
\(161\) 10.9570i 0.863530i
\(162\) 9.82616 6.81063i 0.772016 0.535094i
\(163\) −5.24760 + 5.24760i −0.411024 + 0.411024i −0.882095 0.471071i \(-0.843867\pi\)
0.471071 + 0.882095i \(0.343867\pi\)
\(164\) 0.345940 1.96192i 0.0270133 0.153200i
\(165\) 0 0
\(166\) 11.5723 + 4.21196i 0.898183 + 0.326912i
\(167\) 0.717512 8.20120i 0.0555227 0.634628i −0.916546 0.399930i \(-0.869034\pi\)
0.972068 0.234698i \(-0.0754101\pi\)
\(168\) 9.83313 2.16763i 0.758642 0.167237i
\(169\) 4.34150 + 11.9282i 0.333962 + 0.917553i
\(170\) 0 0
\(171\) 2.59856 0.689635i 0.198717 0.0527377i
\(172\) −0.0785918 + 0.293309i −0.00599257 + 0.0223646i
\(173\) −0.677506 7.74393i −0.0515098 0.588760i −0.977461 0.211116i \(-0.932290\pi\)
0.925951 0.377643i \(-0.123265\pi\)
\(174\) 10.2811 11.1930i 0.779412 0.848542i
\(175\) 0 0
\(176\) −14.7198 + 2.59549i −1.10954 + 0.195643i
\(177\) −3.90189 + 7.47366i −0.293284 + 0.561755i
\(178\) 2.57908 0.225641i 0.193310 0.0169125i
\(179\) −2.19929 3.80928i −0.164382 0.284719i 0.772053 0.635558i \(-0.219230\pi\)
−0.936436 + 0.350839i \(0.885896\pi\)
\(180\) 0 0
\(181\) −2.85830 + 4.95072i −0.212456 + 0.367984i −0.952483 0.304593i \(-0.901479\pi\)
0.740027 + 0.672577i \(0.234813\pi\)
\(182\) 5.57127 11.9476i 0.412970 0.885617i
\(183\) 10.7489 9.82594i 0.794580 0.726355i
\(184\) 10.6824 + 12.7308i 0.787519 + 0.938529i
\(185\) 0 0
\(186\) −3.38804 4.42631i −0.248423 0.324553i
\(187\) −11.2811 + 7.89911i −0.824956 + 0.577640i
\(188\) 1.37145 + 1.37145i 0.100023 + 0.100023i
\(189\) 7.52479 6.84577i 0.547348 0.497957i
\(190\) 0 0
\(191\) 14.2067 + 2.50503i 1.02796 + 0.181258i 0.662104 0.749412i \(-0.269664\pi\)
0.365860 + 0.930670i \(0.380775\pi\)
\(192\) −9.19475 + 11.9532i −0.663574 + 0.862651i
\(193\) −15.7247 + 7.33254i −1.13189 + 0.527808i −0.896036 0.443981i \(-0.853566\pi\)
−0.235852 + 0.971789i \(0.575788\pi\)
\(194\) 13.7446 11.5331i 0.986802 0.828025i
\(195\) 0 0
\(196\) −0.700384 + 0.254919i −0.0500274 + 0.0182085i
\(197\) 3.52289 + 13.1476i 0.250995 + 0.936727i 0.970275 + 0.242006i \(0.0778054\pi\)
−0.719280 + 0.694721i \(0.755528\pi\)
\(198\) −13.1613 + 10.9902i −0.935336 + 0.781041i
\(199\) 7.78555 4.49499i 0.551903 0.318641i −0.197986 0.980205i \(-0.563440\pi\)
0.749889 + 0.661564i \(0.230107\pi\)
\(200\) 0 0
\(201\) 3.63748 16.3154i 0.256568 1.15080i
\(202\) 3.24187 4.62987i 0.228097 0.325756i
\(203\) 7.41743 10.5932i 0.520601 0.743496i
\(204\) −0.283906 + 1.27342i −0.0198774 + 0.0891570i
\(205\) 0 0
\(206\) 15.3625 8.86955i 1.07036 0.617971i
\(207\) 15.7637 + 5.78018i 1.09565 + 0.401750i
\(208\) 4.55757 + 17.0091i 0.316011 + 1.17937i
\(209\) −3.62329 + 1.31877i −0.250628 + 0.0912212i
\(210\) 0 0
\(211\) −14.3607 + 12.0500i −0.988631 + 0.829559i −0.985369 0.170435i \(-0.945483\pi\)
−0.00326162 + 0.999995i \(0.501038\pi\)
\(212\) −0.285746 + 0.133245i −0.0196251 + 0.00915134i
\(213\) −6.00103 + 7.80139i −0.411184 + 0.534542i
\(214\) −18.9851 3.34758i −1.29779 0.228836i
\(215\) 0 0
\(216\) −2.06876 + 15.2903i −0.140762 + 1.04037i
\(217\) −3.35376 3.35376i −0.227668 0.227668i
\(218\) −15.6108 + 10.9308i −1.05729 + 0.740326i
\(219\) −5.38077 7.02973i −0.363599 0.475025i
\(220\) 0 0
\(221\) 10.4290 + 12.4288i 0.701530 + 0.836051i
\(222\) −12.2473 + 11.1957i −0.821984 + 0.751405i
\(223\) 7.00968 15.0323i 0.469403 1.00664i −0.518999 0.854775i \(-0.673695\pi\)
0.988402 0.151862i \(-0.0485270\pi\)
\(224\) −1.29608 + 2.24488i −0.0865981 + 0.149992i
\(225\) 0 0
\(226\) 9.05870 + 15.6901i 0.602576 + 1.04369i
\(227\) −18.0248 + 1.57696i −1.19634 + 0.104667i −0.667867 0.744281i \(-0.732793\pi\)
−0.528478 + 0.848947i \(0.677237\pi\)
\(228\) −0.169058 + 0.323812i −0.0111961 + 0.0214450i
\(229\) −18.7074 + 3.29862i −1.23622 + 0.217979i −0.753294 0.657684i \(-0.771536\pi\)
−0.482924 + 0.875662i \(0.660425\pi\)
\(230\) 0 0
\(231\) −9.86952 + 10.7449i −0.649367 + 0.706963i
\(232\) 1.70951 + 19.5397i 0.112235 + 1.28285i
\(233\) 1.95750 7.30551i 0.128240 0.478600i −0.871694 0.490050i \(-0.836978\pi\)
0.999934 + 0.0114509i \(0.00364501\pi\)
\(234\) 14.2499 + 14.3181i 0.931544 + 0.936005i
\(235\) 0 0
\(236\) −0.391785 1.07642i −0.0255031 0.0700691i
\(237\) −0.705239 + 0.155464i −0.0458102 + 0.0100985i
\(238\) 0.725521 8.29275i 0.0470286 0.537539i
\(239\) −11.7518 4.27731i −0.760162 0.276676i −0.0672867 0.997734i \(-0.521434\pi\)
−0.692875 + 0.721057i \(0.743656\pi\)
\(240\) 0 0
\(241\) 2.97320 16.8619i 0.191521 1.08617i −0.725766 0.687942i \(-0.758514\pi\)
0.917287 0.398227i \(-0.130374\pi\)
\(242\) 7.05612 7.05612i 0.453585 0.453585i
\(243\) 5.87934 + 14.4372i 0.377160 + 0.926148i
\(244\) 1.97870i 0.126673i
\(245\) 0 0
\(246\) −17.9862 7.47531i −1.14676 0.476609i
\(247\) 1.91979 + 4.11700i 0.122153 + 0.261958i
\(248\) 7.16645 + 0.626983i 0.455070 + 0.0398134i
\(249\) −8.64354 + 13.5320i −0.547762 + 0.857553i
\(250\) 0 0
\(251\) 4.66370 + 2.69259i 0.294370 + 0.169955i 0.639911 0.768449i \(-0.278971\pi\)
−0.345541 + 0.938404i \(0.612304\pi\)
\(252\) −0.00330126 + 1.38218i −0.000207960 + 0.0870690i
\(253\) −23.2594 6.23233i −1.46231 0.391823i
\(254\) 3.66378 + 3.07428i 0.229886 + 0.192897i
\(255\) 0 0
\(256\) −0.966651 5.48215i −0.0604157 0.342634i
\(257\) 10.0445 + 7.03325i 0.626560 + 0.438722i 0.843252 0.537518i \(-0.180638\pi\)
−0.216692 + 0.976240i \(0.569527\pi\)
\(258\) 2.63178 + 1.37401i 0.163847 + 0.0855424i
\(259\) −9.07550 + 10.8158i −0.563924 + 0.672059i
\(260\) 0 0
\(261\) 11.3273 + 16.2596i 0.701145 + 1.00645i
\(262\) 0.712524 0.190920i 0.0440199 0.0117951i
\(263\) −12.3505 5.75913i −0.761563 0.355123i 0.00272594 0.999996i \(-0.499132\pi\)
−0.764289 + 0.644873i \(0.776910\pi\)
\(264\) 0.991650 22.1067i 0.0610318 1.36057i
\(265\) 0 0
\(266\) 0.797143 2.19013i 0.0488760 0.134286i
\(267\) −0.444600 + 3.34619i −0.0272091 + 0.204783i
\(268\) 1.30270 + 1.86045i 0.0795749 + 0.113645i
\(269\) −12.3342 −0.752028 −0.376014 0.926614i \(-0.622706\pi\)
−0.376014 + 0.926614i \(0.622706\pi\)
\(270\) 0 0
\(271\) 19.7578 1.20020 0.600099 0.799926i \(-0.295128\pi\)
0.600099 + 0.799926i \(0.295128\pi\)
\(272\) 6.37789 + 9.10856i 0.386716 + 0.552288i
\(273\) 13.6240 + 10.4799i 0.824560 + 0.634273i
\(274\) −2.74569 + 7.54371i −0.165873 + 0.455732i
\(275\) 0 0
\(276\) −2.02475 + 1.05094i −0.121875 + 0.0632594i
\(277\) 1.83776 + 0.856962i 0.110420 + 0.0514898i 0.477044 0.878880i \(-0.341708\pi\)
−0.366623 + 0.930370i \(0.619486\pi\)
\(278\) 23.7626 6.36718i 1.42519 0.381878i
\(279\) 6.59425 3.05579i 0.394787 0.182946i
\(280\) 0 0
\(281\) −16.8041 + 20.0263i −1.00245 + 1.19467i −0.0216244 + 0.999766i \(0.506884\pi\)
−0.980822 + 0.194903i \(0.937561\pi\)
\(282\) 16.0053 10.1696i 0.953100 0.605593i
\(283\) 1.89971 + 1.33019i 0.112926 + 0.0790717i 0.628675 0.777668i \(-0.283597\pi\)
−0.515749 + 0.856740i \(0.672486\pi\)
\(284\) −0.232218 1.31697i −0.0137796 0.0781480i
\(285\) 0 0
\(286\) −22.1934 18.6225i −1.31232 1.10117i
\(287\) −16.0086 4.28949i −0.944956 0.253200i
\(288\) −2.54596 3.04891i −0.150022 0.179659i
\(289\) −5.84978 3.37737i −0.344105 0.198669i
\(290\) 0 0
\(291\) 10.7774 + 20.7637i 0.631783 + 1.21719i
\(292\) 1.19823 + 0.104832i 0.0701211 + 0.00613480i
\(293\) −5.09445 10.9251i −0.297621 0.638250i 0.699454 0.714677i \(-0.253426\pi\)
−0.997075 + 0.0764274i \(0.975649\pi\)
\(294\) 0.942540 + 7.22598i 0.0549701 + 0.421427i
\(295\) 0 0
\(296\) 21.4149i 1.24471i
\(297\) −10.2521 19.8675i −0.594885 1.15283i
\(298\) 8.14698 8.14698i 0.471942 0.471942i
\(299\) −4.92621 + 27.9379i −0.284890 + 1.61569i
\(300\) 0 0
\(301\) 2.37381 + 0.863996i 0.136824 + 0.0497999i
\(302\) 1.84467 21.0846i 0.106149 1.21328i
\(303\) 4.97222 + 5.43925i 0.285646 + 0.312477i
\(304\) 1.06480 + 2.92551i 0.0610704 + 0.167790i
\(305\) 0 0
\(306\) 11.5479 + 5.41851i 0.660152 + 0.309756i
\(307\) 6.08202 22.6984i 0.347119 1.29547i −0.542998 0.839734i \(-0.682711\pi\)
0.890117 0.455732i \(-0.150622\pi\)
\(308\) −0.172769 1.97476i −0.00984441 0.112522i
\(309\) 6.92874 + 22.0670i 0.394162 + 1.25535i
\(310\) 0 0
\(311\) 3.91683 0.690642i 0.222103 0.0391627i −0.0614891 0.998108i \(-0.519585\pi\)
0.283592 + 0.958945i \(0.408474\pi\)
\(312\) −26.0469 + 1.10607i −1.47462 + 0.0626189i
\(313\) 0.911077 0.0797089i 0.0514971 0.00450541i −0.0613781 0.998115i \(-0.519550\pi\)
0.112875 + 0.993609i \(0.463994\pi\)
\(314\) −8.81718 15.2718i −0.497582 0.861838i
\(315\) 0 0
\(316\) 0.0490605 0.0849753i 0.00275987 0.00478023i
\(317\) 11.1443 23.8990i 0.625924 1.34230i −0.296096 0.955158i \(-0.595685\pi\)
0.922021 0.387141i \(-0.126537\pi\)
\(318\) 0.663597 + 3.01030i 0.0372127 + 0.168809i
\(319\) −18.2681 21.7711i −1.02282 1.21895i
\(320\) 0 0
\(321\) 9.64673 23.2108i 0.538428 1.29550i
\(322\) 11.9230 8.34859i 0.664444 0.465249i
\(323\) 2.02833 + 2.02833i 0.112859 + 0.112859i
\(324\) −1.98678 0.733896i −0.110377 0.0407720i
\(325\) 0 0
\(326\) −9.70865 1.71190i −0.537712 0.0948132i
\(327\) −9.48144 22.9678i −0.524325 1.27012i
\(328\) 22.7823 10.6235i 1.25794 0.586587i
\(329\) 12.3602 10.3715i 0.681442 0.571798i
\(330\) 0 0
\(331\) −12.0746 + 4.39481i −0.663682 + 0.241561i −0.651825 0.758369i \(-0.725996\pi\)
−0.0118569 + 0.999930i \(0.503774\pi\)
\(332\) −0.564651 2.10731i −0.0309893 0.115653i
\(333\) −10.7729 18.7625i −0.590350 1.02818i
\(334\) 9.47099 5.46808i 0.518229 0.299200i
\(335\) 0 0
\(336\) 8.67563 + 7.96883i 0.473294 + 0.434735i
\(337\) −4.87543 + 6.96283i −0.265581 + 0.379290i −0.929688 0.368349i \(-0.879923\pi\)
0.664106 + 0.747638i \(0.268812\pi\)
\(338\) −9.67189 + 13.8129i −0.526081 + 0.751322i
\(339\) −22.5376 + 7.07650i −1.22408 + 0.384343i
\(340\) 0 0
\(341\) −9.02697 + 5.21173i −0.488838 + 0.282231i
\(342\) 2.73040 + 2.30221i 0.147643 + 0.124489i
\(343\) 5.15177 + 19.2267i 0.278169 + 1.03814i
\(344\) −3.60046 + 1.31046i −0.194124 + 0.0706553i
\(345\) 0 0
\(346\) 7.91047 6.63767i 0.425270 0.356844i
\(347\) −4.76851 + 2.22359i −0.255987 + 0.119369i −0.546376 0.837540i \(-0.683993\pi\)
0.290389 + 0.956909i \(0.406215\pi\)
\(348\) −2.66897 0.354620i −0.143072 0.0190096i
\(349\) 20.3047 + 3.58026i 1.08688 + 0.191647i 0.688258 0.725466i \(-0.258376\pi\)
0.398627 + 0.917113i \(0.369487\pi\)
\(350\) 0 0
\(351\) −22.2644 + 14.0721i −1.18839 + 0.751115i
\(352\) 4.02821 + 4.02821i 0.214704 + 0.214704i
\(353\) −23.6027 + 16.5268i −1.25624 + 0.879631i −0.996296 0.0859911i \(-0.972594\pi\)
−0.259948 + 0.965623i \(0.583705\pi\)
\(354\) −11.1056 + 1.44859i −0.590257 + 0.0769918i
\(355\) 0 0
\(356\) −0.294808 0.351339i −0.0156248 0.0186209i
\(357\) 10.3476 + 3.27617i 0.547652 + 0.173393i
\(358\) 2.46940 5.29565i 0.130512 0.279884i
\(359\) −8.91393 + 15.4394i −0.470459 + 0.814860i −0.999429 0.0337810i \(-0.989245\pi\)
0.528970 + 0.848641i \(0.322578\pi\)
\(360\) 0 0
\(361\) −9.09844 15.7590i −0.478865 0.829419i
\(362\) −7.56508 + 0.661859i −0.397612 + 0.0347865i
\(363\) 6.97769 + 10.9817i 0.366234 + 0.576390i
\(364\) −2.29990 + 0.405534i −0.120547 + 0.0212558i
\(365\) 0 0
\(366\) 18.8823 + 4.20977i 0.986994 + 0.220048i
\(367\) 1.91117 + 21.8448i 0.0997623 + 1.14029i 0.866790 + 0.498674i \(0.166179\pi\)
−0.767028 + 0.641614i \(0.778265\pi\)
\(368\) −5.03210 + 18.7800i −0.262316 + 0.978978i
\(369\) 14.6163 20.7685i 0.760895 1.08117i
\(370\) 0 0
\(371\) 0.897087 + 2.46473i 0.0465744 + 0.127962i
\(372\) −0.298066 + 0.941423i −0.0154540 + 0.0488105i
\(373\) 1.50421 17.1932i 0.0778848 0.890228i −0.852280 0.523086i \(-0.824781\pi\)
0.930165 0.367142i \(-0.119664\pi\)
\(374\) −17.1911 6.25706i −0.888932 0.323545i
\(375\) 0 0
\(376\) −4.24967 + 24.1011i −0.219160 + 1.24292i
\(377\) −23.6755 + 23.6755i −1.21935 + 1.21935i
\(378\) 13.1828 + 2.97215i 0.678051 + 0.152871i
\(379\) 27.1687i 1.39556i −0.716312 0.697780i \(-0.754171\pi\)
0.716312 0.697780i \(-0.245829\pi\)
\(380\) 0 0
\(381\) −4.95187 + 3.79031i −0.253692 + 0.194184i
\(382\) 8.09883 + 17.3680i 0.414372 + 0.888624i
\(383\) −7.32022 0.640436i −0.374046 0.0327248i −0.101417 0.994844i \(-0.532338\pi\)
−0.272629 + 0.962119i \(0.587893\pi\)
\(384\) −15.4310 0.692197i −0.787461 0.0353235i
\(385\) 0 0
\(386\) −19.9604 11.5241i −1.01596 0.586562i
\(387\) −2.49529 + 2.95939i −0.126843 + 0.150434i
\(388\) −3.07024 0.822667i −0.155868 0.0417646i
\(389\) 23.9421 + 20.0898i 1.21391 + 1.01859i 0.999120 + 0.0419334i \(0.0133517\pi\)
0.214792 + 0.976660i \(0.431093\pi\)
\(390\) 0 0
\(391\) 3.11072 + 17.6418i 0.157316 + 0.892182i
\(392\) −7.70382 5.39427i −0.389102 0.272452i
\(393\) 0.0408056 + 0.960934i 0.00205837 + 0.0484727i
\(394\) −11.6225 + 13.8512i −0.585535 + 0.697814i
\(395\) 0 0
\(396\) 2.93220 + 0.793192i 0.147349 + 0.0398594i
\(397\) 15.9305 4.26857i 0.799531 0.214234i 0.164153 0.986435i \(-0.447511\pi\)
0.635378 + 0.772201i \(0.280844\pi\)
\(398\) 10.8234 + 5.04706i 0.542530 + 0.252986i
\(399\) 2.56101 + 1.63585i 0.128211 + 0.0818949i
\(400\) 0 0
\(401\) −0.517022 + 1.42051i −0.0258188 + 0.0709367i −0.951932 0.306308i \(-0.900906\pi\)
0.926114 + 0.377245i \(0.123128\pi\)
\(402\) 20.5254 8.47320i 1.02371 0.422605i
\(403\) 7.04354 + 10.0592i 0.350864 + 0.501085i
\(404\) −1.00128 −0.0498155
\(405\) 0 0
\(406\) 17.1788 0.852571
\(407\) 17.7975 + 25.4175i 0.882189 + 1.25990i
\(408\) −15.2169 + 6.28176i −0.753348 + 0.310993i
\(409\) 8.02778 22.0561i 0.396948 1.09061i −0.566815 0.823845i \(-0.691825\pi\)
0.963763 0.266760i \(-0.0859532\pi\)
\(410\) 0 0
\(411\) −8.82118 5.63453i −0.435117 0.277931i
\(412\) −2.84812 1.32810i −0.140317 0.0654308i
\(413\) −9.20490 + 2.46645i −0.452944 + 0.121366i
\(414\) 5.72121 + 21.5577i 0.281182 + 1.05950i
\(415\) 0 0
\(416\) 4.31402 5.14125i 0.211512 0.252070i
\(417\) 1.36086 + 32.0471i 0.0666418 + 1.56935i
\(418\) −4.19579 2.93792i −0.205223 0.143698i
\(419\) 2.76242 + 15.6665i 0.134953 + 0.765357i 0.974892 + 0.222677i \(0.0714794\pi\)
−0.839939 + 0.542680i \(0.817409\pi\)
\(420\) 0 0
\(421\) 27.8051 + 23.3312i 1.35514 + 1.13709i 0.977452 + 0.211160i \(0.0677241\pi\)
0.377685 + 0.925934i \(0.376720\pi\)
\(422\) −24.0545 6.44539i −1.17096 0.313756i
\(423\) 8.40087 + 23.2539i 0.408464 + 1.13064i
\(424\) −3.44529 1.98914i −0.167318 0.0966012i
\(425\) 0 0
\(426\) −13.0617 0.585914i −0.632840 0.0283876i
\(427\) 16.3984 + 1.43468i 0.793576 + 0.0694289i
\(428\) 1.44331 + 3.09519i 0.0697652 + 0.149612i
\(429\) 29.9960 22.9599i 1.44822 1.10851i
\(430\) 0 0
\(431\) 10.7570i 0.518146i 0.965858 + 0.259073i \(0.0834169\pi\)
−0.965858 + 0.259073i \(0.916583\pi\)
\(432\) −16.0414 + 8.27769i −0.771790 + 0.398261i
\(433\) 25.8369 25.8369i 1.24164 1.24164i 0.282321 0.959320i \(-0.408896\pi\)
0.959320 0.282321i \(-0.0911042\pi\)
\(434\) 1.09408 6.20483i 0.0525175 0.297842i
\(435\) 0 0
\(436\) 3.17246 + 1.15468i 0.151933 + 0.0552992i
\(437\) −0.437136 + 4.99649i −0.0209111 + 0.239015i
\(438\) 3.54968 11.2114i 0.169610 0.535703i
\(439\) −4.76440 13.0901i −0.227393 0.624756i 0.772556 0.634947i \(-0.218978\pi\)
−0.999948 + 0.0101913i \(0.996756\pi\)
\(440\) 0 0
\(441\) −9.46327 0.850709i −0.450632 0.0405100i
\(442\) −5.57831 + 20.8185i −0.265333 + 0.990237i
\(443\) −0.993879 11.3601i −0.0472206 0.539734i −0.982555 0.185970i \(-0.940457\pi\)
0.935335 0.353764i \(-0.115098\pi\)
\(444\) 2.86914 + 0.639668i 0.136163 + 0.0303573i
\(445\) 0 0
\(446\) 21.6986 3.82606i 1.02746 0.181169i
\(447\) 8.05642 + 12.6794i 0.381056 + 0.599717i
\(448\) −16.9810 + 1.48564i −0.802276 + 0.0701900i
\(449\) −0.807925 1.39937i −0.0381283 0.0660402i 0.846332 0.532657i \(-0.178806\pi\)
−0.884460 + 0.466616i \(0.845473\pi\)
\(450\) 0 0
\(451\) −18.2114 + 31.5431i −0.857541 + 1.48530i
\(452\) 1.35642 2.90886i 0.0638008 0.136821i
\(453\) 26.3092 + 8.32980i 1.23611 + 0.391368i
\(454\) −15.4498 18.4124i −0.725097 0.864137i
\(455\) 0 0
\(456\) −4.57049 + 0.596164i −0.214033 + 0.0279180i
\(457\) −4.53775 + 3.17737i −0.212267 + 0.148631i −0.674875 0.737932i \(-0.735803\pi\)
0.462608 + 0.886563i \(0.346914\pi\)
\(458\) −17.8434 17.8434i −0.833768 0.833768i
\(459\) −10.1721 + 13.1587i −0.474793 + 0.614194i
\(460\) 0 0
\(461\) 14.9666 + 2.63902i 0.697065 + 0.122911i 0.510942 0.859615i \(-0.329297\pi\)
0.186123 + 0.982527i \(0.440408\pi\)
\(462\) −19.2123 2.55269i −0.893836 0.118762i
\(463\) 29.9580 13.9696i 1.39226 0.649224i 0.425516 0.904951i \(-0.360093\pi\)
0.966749 + 0.255727i \(0.0823148\pi\)
\(464\) −17.5784 + 14.7500i −0.816056 + 0.684752i
\(465\) 0 0
\(466\) 9.44112 3.43629i 0.437352 0.159183i
\(467\) −5.87822 21.9378i −0.272012 1.01516i −0.957818 0.287377i \(-0.907217\pi\)
0.685806 0.727784i \(-0.259450\pi\)
\(468\) 0.629839 3.52277i 0.0291143 0.162840i
\(469\) 16.3630 9.44716i 0.755571 0.436229i
\(470\) 0 0
\(471\) 21.9367 6.88783i 1.01079 0.317374i
\(472\) 8.29047 11.8400i 0.381600 0.544981i
\(473\) 3.18431 4.54767i 0.146415 0.209102i
\(474\) −0.706524 0.648964i −0.0324517 0.0298079i
\(475\) 0 0
\(476\) −1.27713 + 0.737352i −0.0585372 + 0.0337965i
\(477\) −4.01922 0.00959972i −0.184027 0.000439541i
\(478\) −4.29979 16.0470i −0.196668 0.733974i
\(479\) −21.4594 + 7.81060i −0.980507 + 0.356875i −0.782037 0.623232i \(-0.785819\pi\)
−0.198470 + 0.980107i \(0.563597\pi\)
\(480\) 0 0
\(481\) 28.0033 23.4976i 1.27684 1.07140i
\(482\) 20.6140 9.61245i 0.938941 0.437835i
\(483\) 7.24163 + 17.5421i 0.329506 + 0.798191i
\(484\) −1.74094 0.306975i −0.0791336 0.0139534i
\(485\) 0 0
\(486\) −11.2304 + 17.3981i −0.509421 + 0.789192i
\(487\) −13.1004 13.1004i −0.593634 0.593634i 0.344977 0.938611i \(-0.387887\pi\)
−0.938611 + 0.344977i \(0.887887\pi\)
\(488\) −20.4520 + 14.3206i −0.925817 + 0.648264i
\(489\) 4.93317 11.8696i 0.223086 0.536762i
\(490\) 0 0
\(491\) −5.95862 7.10121i −0.268909 0.320473i 0.614644 0.788805i \(-0.289300\pi\)
−0.883553 + 0.468332i \(0.844855\pi\)
\(492\) 0.742816 + 3.36967i 0.0334887 + 0.151916i
\(493\) −8.93533 + 19.1619i −0.402427 + 0.863007i
\(494\) −3.01722 + 5.22597i −0.135751 + 0.235128i
\(495\) 0 0
\(496\) 4.20804 + 7.28854i 0.188947 + 0.327265i
\(497\) −11.0828 + 0.969617i −0.497131 + 0.0434933i
\(498\) −21.3109 + 0.904958i −0.954965 + 0.0405521i
\(499\) 20.3482 3.58794i 0.910911 0.160618i 0.301494 0.953468i \(-0.402515\pi\)
0.609417 + 0.792850i \(0.291404\pi\)
\(500\) 0 0
\(501\) 4.27157 + 13.6043i 0.190840 + 0.607796i
\(502\) 0.623488 + 7.12650i 0.0278276 + 0.318071i
\(503\) −1.21585 + 4.53760i −0.0542119 + 0.202322i −0.987720 0.156235i \(-0.950064\pi\)
0.933508 + 0.358557i \(0.116731\pi\)
\(504\) −14.3102 + 9.96924i −0.637426 + 0.444065i
\(505\) 0 0
\(506\) −10.9405 30.0588i −0.486365 1.33628i
\(507\) −14.8343 16.2276i −0.658813 0.720694i
\(508\) 0.0738452 0.844055i 0.00327635 0.0374489i
\(509\) 30.3526 + 11.0475i 1.34536 + 0.489670i 0.911496 0.411309i \(-0.134928\pi\)
0.433862 + 0.900979i \(0.357151\pi\)
\(510\) 0 0
\(511\) 1.73758 9.85432i 0.0768661 0.435929i
\(512\) 17.8410 17.8410i 0.788469 0.788469i
\(513\) −3.70450 + 2.82154i −0.163558 + 0.124574i
\(514\) 16.2891i 0.718480i
\(515\) 0 0
\(516\) −0.0680271 0.521529i −0.00299472 0.0229590i
\(517\) −14.9860 32.1376i −0.659083 1.41341i
\(518\) −18.6844 1.63467i −0.820945 0.0718234i
\(519\) 6.20277 + 11.9502i 0.272271 + 0.524557i
\(520\) 0 0
\(521\) −2.29310 1.32392i −0.100463 0.0580021i 0.448927 0.893568i \(-0.351806\pi\)
−0.549390 + 0.835566i \(0.685140\pi\)
\(522\) −9.06243 + 24.7150i −0.396652 + 1.08175i
\(523\) 12.5901 + 3.37351i 0.550527 + 0.147513i 0.523351 0.852117i \(-0.324682\pi\)
0.0271764 + 0.999631i \(0.491348\pi\)
\(524\) −0.100106 0.0839990i −0.00437316 0.00366951i
\(525\) 0 0
\(526\) −3.14347 17.8275i −0.137062 0.777317i
\(527\) 6.35202 + 4.44773i 0.276698 + 0.193746i
\(528\) 21.8509 13.8839i 0.950938 0.604219i
\(529\) −5.34967 + 6.37549i −0.232594 + 0.277195i
\(530\) 0 0
\(531\) 1.30746 14.5441i 0.0567388 0.631161i
\(532\) −0.398822 + 0.106864i −0.0172911 + 0.00463314i
\(533\) 38.8899 + 18.1347i 1.68451 + 0.785499i
\(534\) −3.97997 + 2.06581i −0.172230 + 0.0893962i
\(535\) 0 0
\(536\) −9.80156 + 26.9296i −0.423363 + 1.16318i
\(537\) 6.03866 + 4.64510i 0.260587 + 0.200451i
\(538\) −9.39794 13.4217i −0.405174 0.578649i
\(539\) 13.6268 0.586947
\(540\) 0 0
\(541\) −42.0435 −1.80759 −0.903796 0.427963i \(-0.859231\pi\)
−0.903796 + 0.427963i \(0.859231\pi\)
\(542\) 15.0543 + 21.4998i 0.646637 + 0.923494i
\(543\) 1.30412 9.81518i 0.0559651 0.421210i
\(544\) 1.44949 3.98243i 0.0621463 0.170745i
\(545\) 0 0
\(546\) −1.02321 + 22.8103i −0.0437894 + 0.976189i
\(547\) 20.8870 + 9.73975i 0.893062 + 0.416442i 0.814295 0.580451i \(-0.197124\pi\)
0.0787671 + 0.996893i \(0.474902\pi\)
\(548\) 1.37371 0.368084i 0.0586818 0.0157238i
\(549\) −10.7148 + 22.8354i −0.457296 + 0.974591i
\(550\) 0 0
\(551\) −3.80505 + 4.53468i −0.162101 + 0.193184i
\(552\) −25.5165 13.3218i −1.08606 0.567014i
\(553\) −0.668660 0.468201i −0.0284343 0.0199099i
\(554\) 0.467751 + 2.65275i 0.0198728 + 0.112704i
\(555\) 0 0
\(556\) −3.33853 2.80136i −0.141585 0.118804i
\(557\) 34.3132 + 9.19419i 1.45390 + 0.389570i 0.897377 0.441265i \(-0.145470\pi\)
0.556519 + 0.830835i \(0.312137\pi\)
\(558\) 8.34966 + 4.84731i 0.353469 + 0.205203i
\(559\) −5.66426 3.27026i −0.239572 0.138317i
\(560\) 0 0
\(561\) 12.8404 20.1023i 0.542120 0.848720i
\(562\) −34.5957 3.02674i −1.45933 0.127675i
\(563\) −1.97748 4.24073i −0.0833410 0.178725i 0.860221 0.509922i \(-0.170326\pi\)
−0.943562 + 0.331196i \(0.892548\pi\)
\(564\) −3.10209 1.28927i −0.130622 0.0542881i
\(565\) 0 0
\(566\) 3.08073i 0.129493i
\(567\) −7.52269 + 15.9333i −0.315923 + 0.669136i
\(568\) 11.9317 11.9317i 0.500642 0.500642i
\(569\) −1.37633 + 7.80556i −0.0576988 + 0.327226i −0.999971 0.00762185i \(-0.997574\pi\)
0.942272 + 0.334848i \(0.108685\pi\)
\(570\) 0 0
\(571\) 4.65824 + 1.69546i 0.194941 + 0.0709528i 0.437646 0.899147i \(-0.355812\pi\)
−0.242705 + 0.970100i \(0.578035\pi\)
\(572\) −0.447319 + 5.11288i −0.0187033 + 0.213780i
\(573\) −24.4006 + 5.37891i −1.01935 + 0.224707i
\(574\) −7.52995 20.6884i −0.314294 0.863516i
\(575\) 0 0
\(576\) 6.82068 25.2141i 0.284195 1.05059i
\(577\) 5.90200 22.0266i 0.245703 0.916977i −0.727325 0.686293i \(-0.759237\pi\)
0.973029 0.230684i \(-0.0740965\pi\)
\(578\) −0.782053 8.93890i −0.0325291 0.371809i
\(579\) 20.3290 22.1321i 0.844844 0.919777i
\(580\) 0 0
\(581\) −17.8737 + 3.15161i −0.741526 + 0.130751i
\(582\) −14.3826 + 27.5484i −0.596179 + 1.14192i
\(583\) 5.74237 0.502393i 0.237825 0.0208070i
\(584\) 7.58853 + 13.1437i 0.314015 + 0.543891i
\(585\) 0 0
\(586\) 8.00664 13.8679i 0.330751 0.572878i
\(587\) 15.8151 33.9155i 0.652758 1.39984i −0.249384 0.968405i \(-0.580228\pi\)
0.902142 0.431439i \(-0.141994\pi\)
\(588\) 0.952832 0.871019i 0.0392941 0.0359202i
\(589\) 1.39555 + 1.66315i 0.0575026 + 0.0685290i
\(590\) 0 0
\(591\) −14.3296 18.7209i −0.589440 0.770075i
\(592\) 20.5225 14.3700i 0.843470 0.590604i
\(593\) −5.46266 5.46266i −0.224324 0.224324i 0.585992 0.810317i \(-0.300705\pi\)
−0.810317 + 0.585992i \(0.800705\pi\)
\(594\) 13.8077 26.2939i 0.566535 1.07885i
\(595\) 0 0
\(596\) −2.01008 0.354432i −0.0823362 0.0145181i
\(597\) −9.49383 + 12.3421i −0.388556 + 0.505126i
\(598\) −34.1546 + 15.9266i −1.39669 + 0.651286i
\(599\) 1.79656 1.50749i 0.0734055 0.0615946i −0.605347 0.795962i \(-0.706965\pi\)
0.678752 + 0.734367i \(0.262521\pi\)
\(600\) 0 0
\(601\) 38.1639 13.8905i 1.55674 0.566607i 0.586753 0.809766i \(-0.300406\pi\)
0.969987 + 0.243159i \(0.0781836\pi\)
\(602\) 0.868536 + 3.24142i 0.0353989 + 0.132110i
\(603\) 4.95949 + 28.5249i 0.201966 + 1.16162i
\(604\) −3.24716 + 1.87475i −0.132125 + 0.0762824i
\(605\) 0 0
\(606\) −2.13027 + 9.55500i −0.0865362 + 0.388146i
\(607\) −1.07501 + 1.53527i −0.0436332 + 0.0623147i −0.840376 0.542004i \(-0.817666\pi\)
0.796743 + 0.604319i \(0.206555\pi\)
\(608\) 0.680588 0.971981i 0.0276015 0.0394190i
\(609\) −4.87408 + 21.8619i −0.197508 + 0.885891i
\(610\) 0 0
\(611\) −36.1789 + 20.8879i −1.46364 + 0.845035i
\(612\) −0.387089 2.22637i −0.0156472 0.0899958i
\(613\) −4.71349 17.5910i −0.190376 0.710494i −0.993415 0.114568i \(-0.963452\pi\)
0.803039 0.595926i \(-0.203215\pi\)
\(614\) 29.3338 10.6766i 1.18382 0.430874i
\(615\) 0 0
\(616\) 19.1608 16.0778i 0.772012 0.647795i
\(617\) −16.8885 + 7.87526i −0.679907 + 0.317046i −0.731715 0.681611i \(-0.761280\pi\)
0.0518073 + 0.998657i \(0.483502\pi\)
\(618\) −18.7333 + 24.3534i −0.753564 + 0.979639i
\(619\) 28.0130 + 4.93945i 1.12594 + 0.198533i 0.705447 0.708763i \(-0.250746\pi\)
0.420492 + 0.907296i \(0.361858\pi\)
\(620\) 0 0
\(621\) −29.0578 + 1.16440i −1.16605 + 0.0467259i
\(622\) 3.73594 + 3.73594i 0.149797 + 0.149797i
\(623\) −3.12547 + 2.18848i −0.125219 + 0.0876795i
\(624\) −18.5382 24.2193i −0.742123 0.969549i
\(625\) 0 0
\(626\) 0.780926 + 0.930671i 0.0312121 + 0.0371971i
\(627\) 4.92928 4.50604i 0.196857 0.179954i
\(628\) −1.32026 + 2.83130i −0.0526840 + 0.112981i
\(629\) 11.5418 19.9910i 0.460202 0.797093i
\(630\) 0 0
\(631\) −16.2016 28.0619i −0.644974 1.11713i −0.984307 0.176462i \(-0.943535\pi\)
0.339333 0.940666i \(-0.389799\pi\)
\(632\) 1.23338 0.107907i 0.0490613 0.00429231i
\(633\) 15.0273 28.7833i 0.597283 1.14403i
\(634\) 34.4974 6.08282i 1.37007 0.241580i
\(635\) 0 0
\(636\) 0.369414 0.402179i 0.0146482 0.0159475i
\(637\) −1.39919 15.9928i −0.0554380 0.633659i
\(638\) 9.77134 36.4671i 0.386851 1.44375i
\(639\) 4.45157 16.4562i 0.176102 0.650996i
\(640\) 0 0
\(641\) −7.10695 19.5262i −0.280708 0.771238i −0.997279 0.0737239i \(-0.976512\pi\)
0.716571 0.697514i \(-0.245711\pi\)
\(642\) 32.6075 7.18807i 1.28692 0.283691i
\(643\) −3.44122 + 39.3334i −0.135709 + 1.55116i 0.557351 + 0.830277i \(0.311818\pi\)
−0.693060 + 0.720880i \(0.743738\pi\)
\(644\) −2.42303 0.881910i −0.0954807 0.0347521i
\(645\) 0 0
\(646\) −0.661691 + 3.75263i −0.0260339 + 0.147645i
\(647\) 27.7872 27.7872i 1.09243 1.09243i 0.0971593 0.995269i \(-0.469024\pi\)
0.995269 0.0971593i \(-0.0309756\pi\)
\(648\) −6.79352 25.8470i −0.266875 1.01537i
\(649\) 20.9430i 0.822086i
\(650\) 0 0
\(651\) 7.58592 + 3.15281i 0.297315 + 0.123568i
\(652\) 0.738085 + 1.58283i 0.0289056 + 0.0619884i
\(653\) −16.8852 1.47726i −0.660770 0.0578098i −0.248162 0.968719i \(-0.579826\pi\)
−0.412608 + 0.910909i \(0.635382\pi\)
\(654\) 17.7685 27.8175i 0.694802 1.08775i
\(655\) 0 0
\(656\) 25.4684 + 14.7042i 0.994375 + 0.574103i
\(657\) 13.2607 + 7.69833i 0.517348 + 0.300341i
\(658\) 20.7037 + 5.54754i 0.807115 + 0.216266i
\(659\) −36.7210 30.8125i −1.43045 1.20029i −0.945449 0.325770i \(-0.894376\pi\)
−0.484997 0.874516i \(-0.661179\pi\)
\(660\) 0 0
\(661\) −0.726513 4.12026i −0.0282581 0.160259i 0.967413 0.253202i \(-0.0814838\pi\)
−0.995671 + 0.0929427i \(0.970373\pi\)
\(662\) −13.9825 9.79064i −0.543445 0.380524i
\(663\) −24.9112 13.0058i −0.967470 0.505102i
\(664\) 17.6947 21.0877i 0.686687 0.818361i
\(665\) 0 0
\(666\) 12.2084 26.0187i 0.473068 1.00820i
\(667\) −35.7087 + 9.56811i −1.38264 + 0.370479i
\(668\) −1.75587 0.818774i −0.0679365 0.0316793i
\(669\) −1.28739 + 28.6995i −0.0497732 + 1.10959i
\(670\) 0 0
\(671\) 12.3730 33.9945i 0.477653 1.31234i
\(672\) 0.591347 4.45065i 0.0228117 0.171687i
\(673\) −13.6940 19.5570i −0.527863 0.753867i 0.463345 0.886178i \(-0.346649\pi\)
−0.991208 + 0.132311i \(0.957760\pi\)
\(674\) −11.2915 −0.434933
\(675\) 0 0
\(676\) 2.98725 0.114894
\(677\) 12.6903 + 18.1236i 0.487727 + 0.696547i 0.985292 0.170880i \(-0.0546611\pi\)
−0.497565 + 0.867427i \(0.665772\pi\)
\(678\) −24.8728 19.1328i −0.955235 0.734791i
\(679\) −9.04396 + 24.8481i −0.347075 + 0.953581i
\(680\) 0 0
\(681\) 27.8153 14.4376i 1.06589 0.553248i
\(682\) −12.5493 5.85182i −0.480537 0.224078i
\(683\) −24.3829 + 6.53337i −0.932985 + 0.249993i −0.693127 0.720815i \(-0.743768\pi\)
−0.239858 + 0.970808i \(0.577101\pi\)
\(684\) 0.0566484 0.630155i 0.00216601 0.0240946i
\(685\) 0 0
\(686\) −16.9965 + 20.2556i −0.648929 + 0.773363i
\(687\) 27.7703 17.6451i 1.05950 0.673201i
\(688\) −3.67187 2.57107i −0.139989 0.0980212i
\(689\) −1.17925 6.68785i −0.0449258 0.254787i
\(690\) 0 0
\(691\) 25.5999 + 21.4808i 0.973865 + 0.817170i 0.983153 0.182787i \(-0.0585118\pi\)
−0.00928734 + 0.999957i \(0.502956\pi\)
\(692\) −1.76703 0.473473i −0.0671723 0.0179988i
\(693\) 8.69959 23.7255i 0.330470 0.901256i
\(694\) −6.05298 3.49469i −0.229768 0.132657i
\(695\) 0 0
\(696\) −15.6510 30.1532i −0.593251 1.14295i
\(697\) 26.9931 + 2.36159i 1.02244 + 0.0894517i
\(698\) 11.5751 + 24.8229i 0.438124 + 0.939559i
\(699\) 1.69437 + 12.9898i 0.0640868 + 0.491321i
\(700\) 0 0
\(701\) 12.4042i 0.468499i −0.972177 0.234249i \(-0.924737\pi\)
0.972177 0.234249i \(-0.0752632\pi\)
\(702\) −32.2771 13.5053i −1.21822 0.509724i
\(703\) 4.57003 4.57003i 0.172362 0.172362i
\(704\) −6.50508 + 36.8922i −0.245170 + 1.39043i
\(705\) 0 0
\(706\) −35.9678 13.0912i −1.35367 0.492694i
\(707\) −0.725989 + 8.29809i −0.0273036 + 0.312082i
\(708\) 1.33867 + 1.46441i 0.0503103 + 0.0550359i
\(709\) 4.29127 + 11.7902i 0.161162 + 0.442789i 0.993821 0.110998i \(-0.0354046\pi\)
−0.832659 + 0.553786i \(0.813182\pi\)
\(710\) 0 0
\(711\) 1.02634 0.715002i 0.0384906 0.0268147i
\(712\) 1.49782 5.58994i 0.0561332 0.209492i
\(713\) 1.18171 + 13.5070i 0.0442554 + 0.505842i
\(714\) 4.31925 + 13.7562i 0.161644 + 0.514812i
\(715\) 0 0
\(716\) −1.01940 + 0.179748i −0.0380969 + 0.00671750i
\(717\) 21.6416 0.918999i 0.808219 0.0343206i
\(718\) −23.5926 + 2.06408i −0.880466 + 0.0770308i
\(719\) −9.10268 15.7663i −0.339473 0.587984i 0.644861 0.764300i \(-0.276915\pi\)
−0.984334 + 0.176316i \(0.943582\pi\)
\(720\) 0 0
\(721\) −13.0717 + 22.6408i −0.486815 + 0.843188i
\(722\) 10.2159 21.9081i 0.380196 0.815334i
\(723\) 6.38419 + 28.9608i 0.237431 + 1.07707i
\(724\) 0.864744 + 1.03056i 0.0321380 + 0.0383005i
\(725\) 0 0
\(726\) −6.63333 + 15.9603i −0.246186 + 0.592344i
\(727\) −8.06014 + 5.64377i −0.298934 + 0.209316i −0.713414 0.700742i \(-0.752852\pi\)
0.414480 + 0.910058i \(0.363963\pi\)
\(728\) −20.8369 20.8369i −0.772267 0.772267i
\(729\) −18.9546 19.2282i −0.702022 0.712155i
\(730\) 0 0
\(731\) −4.06735 0.717184i −0.150436 0.0265260i
\(732\) −1.30775 3.16789i −0.0483359 0.117088i
\(733\) 33.5024 15.6224i 1.23744 0.577027i 0.309905 0.950767i \(-0.399703\pi\)
0.927533 + 0.373740i \(0.121925\pi\)
\(734\) −22.3146 + 18.7242i −0.823646 + 0.691121i
\(735\) 0 0
\(736\) 6.96332 2.53444i 0.256671 0.0934207i
\(737\) −10.7471 40.1088i −0.395875 1.47743i
\(738\) 33.7364 + 0.0805779i 1.24186 + 0.00296611i
\(739\) 7.02338 4.05495i 0.258359 0.149164i −0.365227 0.930919i \(-0.619009\pi\)
0.623586 + 0.781755i \(0.285675\pi\)
\(740\) 0 0
\(741\) −5.79457 5.32249i −0.212869 0.195526i
\(742\) −1.99851 + 2.85416i −0.0733675 + 0.104780i
\(743\) −17.8592 + 25.5056i −0.655190 + 0.935709i −0.999996 0.00296531i \(-0.999056\pi\)
0.344805 + 0.938674i \(0.387945\pi\)
\(744\) −11.8878 + 3.73262i −0.435829 + 0.136844i
\(745\) 0 0
\(746\) 19.8552 11.4634i 0.726949 0.419704i
\(747\) 4.89480 27.3773i 0.179091 1.00168i
\(748\) 0.838814 + 3.13050i 0.0306701 + 0.114462i
\(749\) 26.6979 9.71724i 0.975519 0.355060i
\(750\) 0 0
\(751\) −13.4156 + 11.2570i −0.489541 + 0.410774i −0.853862 0.520500i \(-0.825746\pi\)
0.364321 + 0.931273i \(0.381301\pi\)
\(752\) −25.9484 + 12.1000i −0.946243 + 0.441240i
\(753\) −9.24615 1.22851i −0.336949 0.0447695i
\(754\) −43.8023 7.72353i −1.59519 0.281274i
\(755\) 0 0
\(756\) −0.908217 2.21504i −0.0330315 0.0805603i
\(757\) 20.1777 + 20.1777i 0.733371 + 0.733371i 0.971286 0.237915i \(-0.0764640\pi\)
−0.237915 + 0.971286i \(0.576464\pi\)
\(758\) 29.5641 20.7010i 1.07381 0.751893i
\(759\) 41.3572 5.39455i 1.50117 0.195810i
\(760\) 0 0
\(761\) 23.7584 + 28.3141i 0.861240 + 1.02639i 0.999353 + 0.0359689i \(0.0114517\pi\)
−0.138113 + 0.990416i \(0.544104\pi\)
\(762\) −7.89754 2.50046i −0.286098 0.0905820i
\(763\) 11.8696 25.4545i 0.429710 0.921516i
\(764\) 1.69744 2.94006i 0.0614113 0.106368i
\(765\) 0 0
\(766\) −4.88069 8.45360i −0.176346 0.305441i
\(767\) 24.5794 2.15042i 0.887512 0.0776472i
\(768\) 5.17084 + 8.13803i 0.186587 + 0.293656i
\(769\) −8.53754 + 1.50540i −0.307872 + 0.0542861i −0.325450 0.945559i \(-0.605516\pi\)
0.0175779 + 0.999845i \(0.494405\pi\)
\(770\) 0 0
\(771\) −20.7296 4.62163i −0.746559 0.166444i
\(772\) 0.355865 + 4.06755i 0.0128078 + 0.146394i
\(773\) −3.05417 + 11.3983i −0.109851 + 0.409969i −0.998850 0.0479396i \(-0.984734\pi\)
0.889000 + 0.457908i \(0.151401\pi\)
\(774\) −5.12158 0.460409i −0.184091 0.0165491i
\(775\) 0 0
\(776\) −13.7174 37.6882i −0.492425 1.35293i
\(777\) 7.38154 23.3141i 0.264811 0.836390i
\(778\) −3.61856 + 41.3603i −0.129732 + 1.48284i
\(779\) 7.12895 + 2.59472i 0.255421 + 0.0929657i
\(780\) 0 0
\(781\) −4.24560 + 24.0780i −0.151919 + 0.861578i
\(782\) −16.8270 + 16.8270i −0.601733 + 0.601733i
\(783\) −28.8813 18.5452i −1.03213 0.662752i
\(784\) 11.0025i 0.392947i
\(785\) 0 0
\(786\) −1.01457 + 0.776581i −0.0361884 + 0.0276997i
\(787\) −7.93722 17.0214i −0.282931 0.606748i 0.712559 0.701612i \(-0.247536\pi\)
−0.995490 + 0.0948643i \(0.969758\pi\)
\(788\) 3.19101 + 0.279178i 0.113675 + 0.00994529i
\(789\) 23.5794 + 1.05771i 0.839448 + 0.0376556i
\(790\) 0 0
\(791\) −23.1237 13.3505i −0.822183 0.474687i
\(792\) 13.0230 + 36.0481i 0.462753 + 1.28091i
\(793\) −41.1675 11.0308i −1.46190 0.391715i
\(794\) 16.7831 + 14.0827i 0.595610 + 0.499776i
\(795\) 0 0
\(796\) −0.367376 2.08349i −0.0130213 0.0738475i
\(797\) −17.6670 12.3706i −0.625797 0.438188i 0.217184 0.976131i \(-0.430313\pi\)
−0.842981 + 0.537943i \(0.819202\pi\)
\(798\) 0.171269 + 4.03324i 0.00606287 + 0.142775i
\(799\) −16.9567 + 20.2082i −0.599884 + 0.714914i
\(800\) 0 0
\(801\) −1.49974 5.65108i −0.0529909 0.199671i
\(802\) −1.93969 + 0.519739i −0.0684929 + 0.0183526i
\(803\) −19.9304 9.29368i −0.703327 0.327967i
\(804\) −3.31521 2.11759i −0.116919 0.0746818i
\(805\) 0 0
\(806\) −5.57934 + 15.3291i −0.196524 + 0.539945i
\(807\) 19.7470 8.15185i 0.695126 0.286959i
\(808\) −7.24665 10.3493i −0.254936 0.364087i
\(809\) 4.46938 0.157135 0.0785676 0.996909i \(-0.474965\pi\)
0.0785676 + 0.996909i \(0.474965\pi\)
\(810\) 0 0
\(811\) 37.9099 1.33120 0.665598 0.746311i \(-0.268177\pi\)
0.665598 + 0.746311i \(0.268177\pi\)
\(812\) −1.74556 2.49292i −0.0612573 0.0874845i
\(813\) −31.6321 + 13.0582i −1.10939 + 0.457971i
\(814\) −14.0978 + 38.7333i −0.494127 + 1.35760i
\(815\) 0 0
\(816\) −16.2310 10.3675i −0.568197 0.362936i
\(817\) −1.04801 0.488696i −0.0366653 0.0170973i
\(818\) 30.1175 8.06996i 1.05303 0.282159i
\(819\) −28.7383 7.77401i −1.00420 0.271646i
\(820\) 0 0
\(821\) 23.1674 27.6099i 0.808549 0.963591i −0.191290 0.981533i \(-0.561267\pi\)
0.999839 + 0.0179428i \(0.00571166\pi\)
\(822\) −0.589922 13.8921i −0.0205759 0.484544i
\(823\) 2.18095 + 1.52711i 0.0760230 + 0.0532319i 0.610970 0.791654i \(-0.290780\pi\)
−0.534947 + 0.844886i \(0.679668\pi\)
\(824\) −6.88563 39.0504i −0.239872 1.36038i
\(825\) 0 0
\(826\) −9.69752 8.13719i −0.337420 0.283129i
\(827\) −39.8859 10.6874i −1.38697 0.371637i −0.513321 0.858197i \(-0.671585\pi\)
−0.873647 + 0.486560i \(0.838252\pi\)
\(828\) 2.54703 3.02075i 0.0885153 0.104978i
\(829\) −19.6326 11.3349i −0.681869 0.393677i 0.118690 0.992931i \(-0.462131\pi\)
−0.800559 + 0.599254i \(0.795464\pi\)
\(830\) 0 0
\(831\) −3.50863 0.157388i −0.121713 0.00545974i
\(832\) 43.9658 + 3.84651i 1.52424 + 0.133354i
\(833\) −4.28428 9.18766i −0.148441 0.318334i
\(834\) −33.8357 + 25.8989i −1.17164 + 0.896806i
\(835\) 0 0
\(836\) 0.907402i 0.0313832i
\(837\) −8.53774 + 9.25056i −0.295108 + 0.319746i
\(838\) −14.9429 + 14.9429i −0.516195 + 0.516195i
\(839\) 1.44230 8.17971i 0.0497938 0.282395i −0.949736 0.313052i \(-0.898649\pi\)
0.999530 + 0.0306567i \(0.00975985\pi\)
\(840\) 0 0
\(841\) −13.7493 5.00432i −0.474112 0.172563i
\(842\) −4.20240 + 48.0337i −0.144824 + 1.65535i
\(843\) 13.6676 43.1681i 0.470736 1.48679i
\(844\) 1.50888 + 4.14562i 0.0519379 + 0.142698i
\(845\) 0 0
\(846\) −18.9031 + 26.8597i −0.649902 + 0.923455i
\(847\) −3.80634 + 14.2054i −0.130787 + 0.488105i
\(848\) −0.405641 4.63650i −0.0139298 0.159218i
\(849\) −3.92057 0.874084i −0.134554 0.0299985i
\(850\) 0 0
\(851\) 39.7487 7.00876i 1.36257 0.240257i
\(852\) 1.24219 + 1.95499i 0.0425567 + 0.0669770i
\(853\) 6.11455 0.534954i 0.209358 0.0183165i 0.0180058 0.999838i \(-0.494268\pi\)
0.191352 + 0.981521i \(0.438713\pi\)
\(854\) 10.9335 + 18.9374i 0.374137 + 0.648024i
\(855\) 0 0
\(856\) −21.5463 + 37.3193i −0.736439 + 1.27555i
\(857\) −14.6042 + 31.3187i −0.498869 + 1.06983i 0.482181 + 0.876072i \(0.339845\pi\)
−0.981050 + 0.193756i \(0.937933\pi\)
\(858\) 47.8395 + 15.1466i 1.63321 + 0.517095i
\(859\) 14.4078 + 17.1705i 0.491587 + 0.585850i 0.953620 0.301012i \(-0.0973245\pi\)
−0.462034 + 0.886862i \(0.652880\pi\)
\(860\) 0 0
\(861\) 28.4647 3.71287i 0.970073 0.126534i
\(862\) −11.7054 + 8.19621i −0.398688 + 0.279164i
\(863\) 34.4337 + 34.4337i 1.17214 + 1.17214i 0.981700 + 0.190436i \(0.0609900\pi\)
0.190436 + 0.981700i \(0.439010\pi\)
\(864\) 6.09114 + 3.19864i 0.207225 + 0.108820i
\(865\) 0 0
\(866\) 47.8011 + 8.42862i 1.62435 + 0.286416i
\(867\) 11.5976 + 1.54095i 0.393876 + 0.0523334i
\(868\) −1.01159 + 0.471713i −0.0343357 + 0.0160110i
\(869\) −1.37423 + 1.15312i −0.0466175 + 0.0391168i
\(870\) 0 0
\(871\) −45.9694 + 16.7315i −1.55762 + 0.566926i
\(872\) 11.0255 + 41.1477i 0.373370 + 1.39344i
\(873\) −30.9776 26.1197i −1.04843 0.884017i
\(874\) −5.77009 + 3.33137i −0.195176 + 0.112685i
\(875\) 0 0
\(876\) −1.98765 + 0.624094i −0.0671564 + 0.0210862i
\(877\) 7.94910 11.3525i 0.268422 0.383347i −0.662201 0.749327i \(-0.730377\pi\)
0.930623 + 0.365980i \(0.119266\pi\)
\(878\) 10.6140 15.1584i 0.358206 0.511571i
\(879\) 15.3768 + 14.1240i 0.518645 + 0.476391i
\(880\) 0 0
\(881\) −20.3929 + 11.7738i −0.687054 + 0.396671i −0.802507 0.596642i \(-0.796501\pi\)
0.115453 + 0.993313i \(0.463168\pi\)
\(882\) −6.28476 10.9458i −0.211619 0.368565i
\(883\) −4.25489 15.8795i −0.143188 0.534386i −0.999829 0.0184733i \(-0.994119\pi\)
0.856641 0.515913i \(-0.172547\pi\)
\(884\) 3.58792 1.30590i 0.120675 0.0439221i
\(885\) 0 0
\(886\) 11.6044 9.73725i 0.389857 0.327129i
\(887\) −9.29073 + 4.33234i −0.311952 + 0.145466i −0.572289 0.820052i \(-0.693944\pi\)
0.260336 + 0.965518i \(0.416167\pi\)
\(888\) 14.1534 + 34.2851i 0.474958 + 1.15053i
\(889\) −6.94156 1.22398i −0.232812 0.0410511i
\(890\) 0 0
\(891\) 29.5442 + 25.0320i 0.989769 + 0.838604i
\(892\) −2.76005 2.76005i −0.0924133 0.0924133i
\(893\) −6.05018 + 4.23638i −0.202461 + 0.141765i
\(894\) −7.65882 + 18.4278i −0.256149 + 0.616316i
\(895\) 0 0
\(896\) −11.2227 13.3748i −0.374926 0.446819i
\(897\) −10.5778 47.9843i −0.353181 1.60215i
\(898\) 0.907153 1.94540i 0.0302721 0.0649187i
\(899\) −8.00123 + 13.8585i −0.266856 + 0.462208i
\(900\) 0 0
\(901\) −2.14414 3.71376i −0.0714317 0.123723i
\(902\) −48.2002 + 4.21697i −1.60489 + 0.140410i
\(903\) −4.37149 + 0.185633i −0.145474 + 0.00617748i
\(904\) 39.8832 7.03248i 1.32649 0.233897i
\(905\) 0 0
\(906\) 10.9819 + 34.9756i 0.364848 + 1.16199i
\(907\) 1.17717 + 13.4551i 0.0390872 + 0.446769i 0.990370 + 0.138448i \(0.0442114\pi\)
−0.951283 + 0.308321i \(0.900233\pi\)
\(908\) −1.10206 + 4.11293i −0.0365730 + 0.136492i
\(909\) −11.5554 5.42200i −0.383268 0.179836i
\(910\) 0 0
\(911\) 4.95701 + 13.6193i 0.164233 + 0.451227i 0.994323 0.106403i \(-0.0339332\pi\)
−0.830090 + 0.557629i \(0.811711\pi\)
\(912\) −3.63825 3.97999i −0.120475 0.131791i
\(913\) −3.47635 + 39.7348i −0.115050 + 1.31503i
\(914\) −6.91502 2.51686i −0.228729 0.0832504i
\(915\) 0 0
\(916\) −0.776272 + 4.40246i −0.0256488 + 0.145461i
\(917\) −0.768724 + 0.768724i −0.0253855 + 0.0253855i
\(918\) −22.0694 1.04280i −0.728399 0.0344176i
\(919\) 11.7599i 0.387925i −0.981009 0.193962i \(-0.937866\pi\)
0.981009 0.193962i \(-0.0621340\pi\)
\(920\) 0 0
\(921\) 5.26444 + 40.3597i 0.173469 + 1.32990i
\(922\) 8.53202 + 18.2970i 0.280987 + 0.602579i
\(923\) 28.6946 + 2.51046i 0.944496 + 0.0826327i
\(924\) 1.58175 + 3.04739i 0.0520357 + 0.100252i
\(925\) 0 0
\(926\) 38.0276 + 21.9552i 1.24966 + 0.721494i
\(927\) −25.6773 30.7499i −0.843353 1.00996i
\(928\) 8.44784 + 2.26359i 0.277314 + 0.0743061i
\(929\) −36.0388 30.2401i −1.18239 0.992146i −0.999960 0.00892776i \(-0.997158\pi\)
−0.182433 0.983218i \(-0.558397\pi\)
\(930\) 0 0
\(931\) −0.492867 2.79519i −0.0161531 0.0916086i
\(932\) −1.45799 1.02089i −0.0477579 0.0334405i
\(933\) −5.81437 + 3.69441i −0.190354 + 0.120950i
\(934\) 19.3932 23.1119i 0.634563 0.756243i
\(935\) 0 0
\(936\) 40.9700 18.9856i 1.33915 0.620565i
\(937\) −36.6017 + 9.80740i −1.19573 + 0.320394i −0.801147 0.598468i \(-0.795776\pi\)
−0.394580 + 0.918862i \(0.629110\pi\)
\(938\) 22.7477 + 10.6074i 0.742740 + 0.346346i
\(939\) −1.40595 + 0.729759i −0.0458814 + 0.0238148i
\(940\) 0 0
\(941\) −3.79401 + 10.4240i −0.123681 + 0.339811i −0.986045 0.166477i \(-0.946761\pi\)
0.862364 + 0.506289i \(0.168983\pi\)
\(942\) 24.2096 + 18.6227i 0.788793 + 0.606760i
\(943\) 27.1749 + 38.8098i 0.884937 + 1.26382i
\(944\) 16.9098 0.550367
\(945\) 0 0
\(946\) 7.37489 0.239778
\(947\) 9.12331 + 13.0294i 0.296468 + 0.423400i 0.939558 0.342391i \(-0.111237\pi\)
−0.643090 + 0.765791i \(0.722348\pi\)
\(948\) −0.0223842 + 0.168470i −0.000727006 + 0.00547165i
\(949\) −8.86092 + 24.3452i −0.287638 + 0.790278i
\(950\) 0 0
\(951\) −2.04674 + 45.6276i −0.0663701 + 1.47958i
\(952\) −16.8644 7.86402i −0.546580 0.254874i
\(953\) 35.2746 9.45180i 1.14266 0.306174i 0.362638 0.931930i \(-0.381876\pi\)
0.780019 + 0.625756i \(0.215210\pi\)
\(954\) −3.05197 4.38090i −0.0988113 0.141837i
\(955\) 0 0
\(956\) −1.89177 + 2.25453i −0.0611843 + 0.0729167i
\(957\) 43.6361 + 22.7818i 1.41055 + 0.736430i
\(958\) −24.8501 17.4002i −0.802871 0.562176i
\(959\) −2.05447 11.6515i −0.0663422 0.376245i
\(960\) 0 0
\(961\) −19.2514 16.1538i −0.621012 0.521091i
\(962\) 46.9062 + 12.5685i 1.51232 + 0.405224i
\(963\) −0.103984 + 43.5361i −0.00335084 + 1.40293i
\(964\) −3.48953 2.01468i −0.112390 0.0648886i
\(965\) 0 0
\(966\) −13.5710 + 21.2462i −0.436640 + 0.683584i
\(967\) 1.95128 + 0.170714i 0.0627488 + 0.00548981i 0.118487 0.992956i \(-0.462196\pi\)
−0.0557381 + 0.998445i \(0.517751\pi\)
\(968\) −9.42696 20.2162i −0.302994 0.649773i
\(969\) −4.58790 1.90679i −0.147385 0.0612550i
\(970\) 0 0
\(971\) 27.5442i 0.883934i 0.897031 + 0.441967i \(0.145719\pi\)
−0.897031 + 0.441967i \(0.854281\pi\)
\(972\) 3.66587 0.138130i 0.117583 0.00443052i
\(973\) −25.6369 + 25.6369i −0.821881 + 0.821881i
\(974\) 4.27366 24.2371i 0.136937 0.776607i
\(975\) 0 0
\(976\) −27.4477 9.99016i −0.878581 0.319777i
\(977\) −2.84484 + 32.5167i −0.0910146 + 1.04030i 0.804108 + 0.594483i \(0.202643\pi\)
−0.895123 + 0.445819i \(0.852912\pi\)
\(978\) 16.6749 3.67586i 0.533205 0.117541i
\(979\) 2.86792 + 7.87954i 0.0916591 + 0.251831i
\(980\) 0 0
\(981\) 30.3595 + 30.5049i 0.969305 + 0.973946i
\(982\) 3.18718 11.8947i 0.101707 0.379575i
\(983\) −2.79155 31.9076i −0.0890367 1.01769i −0.900952 0.433919i \(-0.857130\pi\)
0.811915 0.583775i \(-0.198425\pi\)
\(984\) −29.4531 + 32.0654i −0.938930 + 1.02221i
\(985\) 0 0
\(986\) −27.6596 + 4.87713i −0.880860 + 0.155319i
\(987\) −12.9340 + 24.7738i −0.411695 + 0.788558i
\(988\) 1.06496 0.0931716i 0.0338808 0.00296418i
\(989\) −3.61075 6.25401i −0.114815 0.198866i
\(990\) 0 0
\(991\) 24.5859 42.5840i 0.780995 1.35272i −0.150367 0.988630i \(-0.548046\pi\)
0.931362 0.364094i \(-0.118621\pi\)
\(992\) 1.35561 2.90712i 0.0430407 0.0923012i
\(993\) 16.4269 15.0164i 0.521291 0.476531i
\(994\) −9.49956 11.3211i −0.301308 0.359084i
\(995\) 0 0
\(996\) 2.29676 + 3.00060i 0.0727755 + 0.0950778i
\(997\) −25.7299 + 18.0163i −0.814874 + 0.570581i −0.905031 0.425347i \(-0.860152\pi\)
0.0901563 + 0.995928i \(0.471263\pi\)
\(998\) 19.4085 + 19.4085i 0.614364 + 0.614364i
\(999\) 29.6478 + 22.9188i 0.938014 + 0.725118i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 675.2.ba.b.407.11 192
5.2 odd 4 135.2.q.a.83.6 yes 192
5.3 odd 4 inner 675.2.ba.b.218.11 192
5.4 even 2 135.2.q.a.2.6 192
15.2 even 4 405.2.r.a.8.11 192
15.14 odd 2 405.2.r.a.332.11 192
27.14 odd 18 inner 675.2.ba.b.257.11 192
135.14 odd 18 135.2.q.a.122.6 yes 192
135.67 odd 36 405.2.r.a.233.11 192
135.68 even 36 inner 675.2.ba.b.68.11 192
135.94 even 18 405.2.r.a.152.11 192
135.122 even 36 135.2.q.a.68.6 yes 192
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
135.2.q.a.2.6 192 5.4 even 2
135.2.q.a.68.6 yes 192 135.122 even 36
135.2.q.a.83.6 yes 192 5.2 odd 4
135.2.q.a.122.6 yes 192 135.14 odd 18
405.2.r.a.8.11 192 15.2 even 4
405.2.r.a.152.11 192 135.94 even 18
405.2.r.a.233.11 192 135.67 odd 36
405.2.r.a.332.11 192 15.14 odd 2
675.2.ba.b.68.11 192 135.68 even 36 inner
675.2.ba.b.218.11 192 5.3 odd 4 inner
675.2.ba.b.257.11 192 27.14 odd 18 inner
675.2.ba.b.407.11 192 1.1 even 1 trivial