Properties

Label 675.2.ba.b.32.11
Level $675$
Weight $2$
Character 675.32
Analytic conductor $5.390$
Analytic rank $0$
Dimension $192$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [675,2,Mod(32,675)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("675.32"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(675, base_ring=CyclotomicField(36)) chi = DirichletCharacter(H, H._module([10, 9])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 675 = 3^{3} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 675.ba (of order \(36\), degree \(12\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [192] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.38990213644\)
Analytic rank: \(0\)
Dimension: \(192\)
Relative dimension: \(16\) over \(\Q(\zeta_{36})\)
Twist minimal: no (minimal twist has level 135)
Sato-Tate group: $\mathrm{SU}(2)[C_{36}]$

Embedding invariants

Embedding label 32.11
Character \(\chi\) \(=\) 675.32
Dual form 675.2.ba.b.443.11

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.0909691 - 1.03978i) q^{2} +(-1.49497 + 0.874685i) q^{3} +(0.896746 + 0.158121i) q^{4} +(0.773485 + 1.63401i) q^{6} +(-0.397456 + 0.567627i) q^{7} +(0.786273 - 2.93441i) q^{8} +(1.46985 - 2.61525i) q^{9} +(0.597632 - 1.64198i) q^{11} +(-1.47891 + 0.547986i) q^{12} +(0.720360 - 0.0630233i) q^{13} +(0.554051 + 0.464904i) q^{14} +(-1.26829 - 0.461619i) q^{16} +(0.792096 + 2.95614i) q^{17} +(-2.58558 - 1.76623i) q^{18} +(-3.38781 + 1.95596i) q^{19} +(0.0976895 - 1.19623i) q^{21} +(-1.65293 - 0.770776i) q^{22} +(6.61310 - 4.63055i) q^{23} +(1.39123 + 5.07459i) q^{24} -0.754750i q^{26} +(0.0901428 + 5.19537i) q^{27} +(-0.446171 + 0.446171i) q^{28} +(5.68683 - 4.77181i) q^{29} +(0.764639 - 4.33648i) q^{31} +(1.97241 - 4.22984i) q^{32} +(0.542776 + 2.97745i) q^{33} +(3.14580 - 0.554689i) q^{34} +(1.73161 - 2.11280i) q^{36} +(10.6938 - 2.86540i) q^{37} +(1.72558 + 3.70052i) q^{38} +(-1.02179 + 0.724306i) q^{39} +(2.71443 - 3.23493i) q^{41} +(-1.23493 - 0.210396i) q^{42} +(-5.87799 + 2.74095i) q^{43} +(0.795555 - 1.37794i) q^{44} +(-4.21317 - 7.29742i) q^{46} +(3.32527 + 2.32838i) q^{47} +(2.29982 - 0.419248i) q^{48} +(2.22991 + 6.12663i) q^{49} +(-3.76985 - 3.72650i) q^{51} +(0.655945 + 0.0573878i) q^{52} +(-5.90884 - 5.90884i) q^{53} +(5.41025 + 0.378889i) q^{54} +(1.35314 + 1.61261i) q^{56} +(3.35382 - 5.88736i) q^{57} +(-4.44432 - 6.34714i) q^{58} +(-2.63750 + 0.959971i) q^{59} +(1.13591 + 6.44205i) q^{61} +(-4.43943 - 1.18954i) q^{62} +(0.900284 + 1.87378i) q^{63} +(-6.55640 - 3.78534i) q^{64} +(3.14527 - 0.293513i) q^{66} +(-0.978397 - 11.1831i) q^{67} +(0.242882 + 2.77616i) q^{68} +(-5.83610 + 12.7069i) q^{69} +(5.58689 + 3.22559i) q^{71} +(-6.51852 - 6.36945i) q^{72} +(-8.08612 - 2.16667i) q^{73} +(-2.00658 - 11.3799i) q^{74} +(-3.34729 + 1.21831i) q^{76} +(0.694499 + 0.991847i) q^{77} +(0.660168 + 1.12833i) q^{78} +(1.04738 + 1.24822i) q^{79} +(-4.67907 - 7.68806i) q^{81} +(-3.11669 - 3.11669i) q^{82} +(1.78607 + 0.156261i) q^{83} +(0.276752 - 1.05727i) q^{84} +(2.31528 + 6.36117i) q^{86} +(-4.32778 + 12.1079i) q^{87} +(-4.34834 - 3.04474i) q^{88} +(-2.78132 - 4.81739i) q^{89} +(-0.250538 + 0.433944i) q^{91} +(6.66246 - 3.10676i) q^{92} +(2.64995 + 7.15171i) q^{93} +(2.72350 - 3.24574i) q^{94} +(0.751097 + 8.04871i) q^{96} +(1.95866 + 4.20036i) q^{97} +(6.57321 - 1.76129i) q^{98} +(-3.41576 - 3.97642i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 192 q + 12 q^{2} + 12 q^{3} - 36 q^{6} + 12 q^{7} + 18 q^{8} - 36 q^{11} + 12 q^{12} + 12 q^{13} - 24 q^{16} + 18 q^{17} + 54 q^{18} - 24 q^{21} + 12 q^{22} + 36 q^{23} + 36 q^{27} + 24 q^{28} - 24 q^{31}+ \cdots - 324 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/675\mathbb{Z}\right)^\times\).

\(n\) \(326\) \(352\)
\(\chi(n)\) \(e\left(\frac{5}{18}\right)\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.0909691 1.03978i 0.0643248 0.735236i −0.893721 0.448622i \(-0.851915\pi\)
0.958046 0.286614i \(-0.0925296\pi\)
\(3\) −1.49497 + 0.874685i −0.863119 + 0.505000i
\(4\) 0.896746 + 0.158121i 0.448373 + 0.0790603i
\(5\) 0 0
\(6\) 0.773485 + 1.63401i 0.315774 + 0.667081i
\(7\) −0.397456 + 0.567627i −0.150224 + 0.214543i −0.887210 0.461366i \(-0.847360\pi\)
0.736986 + 0.675908i \(0.236249\pi\)
\(8\) 0.786273 2.93441i 0.277990 1.03747i
\(9\) 1.46985 2.61525i 0.489950 0.871750i
\(10\) 0 0
\(11\) 0.597632 1.64198i 0.180193 0.495076i −0.816406 0.577478i \(-0.804037\pi\)
0.996599 + 0.0824022i \(0.0262592\pi\)
\(12\) −1.47891 + 0.547986i −0.426925 + 0.158190i
\(13\) 0.720360 0.0630233i 0.199792 0.0174795i 0.0131795 0.999913i \(-0.495805\pi\)
0.186612 + 0.982434i \(0.440249\pi\)
\(14\) 0.554051 + 0.464904i 0.148076 + 0.124251i
\(15\) 0 0
\(16\) −1.26829 0.461619i −0.317072 0.115405i
\(17\) 0.792096 + 2.95614i 0.192112 + 0.716970i 0.992996 + 0.118151i \(0.0376966\pi\)
−0.800884 + 0.598819i \(0.795637\pi\)
\(18\) −2.58558 1.76623i −0.609426 0.416304i
\(19\) −3.38781 + 1.95596i −0.777218 + 0.448727i −0.835443 0.549576i \(-0.814789\pi\)
0.0582254 + 0.998303i \(0.481456\pi\)
\(20\) 0 0
\(21\) 0.0976895 1.19623i 0.0213176 0.261039i
\(22\) −1.65293 0.770776i −0.352407 0.164330i
\(23\) 6.61310 4.63055i 1.37893 0.965535i 0.379746 0.925091i \(-0.376011\pi\)
0.999182 0.0404446i \(-0.0128774\pi\)
\(24\) 1.39123 + 5.07459i 0.283985 + 1.03585i
\(25\) 0 0
\(26\) 0.754750i 0.148019i
\(27\) 0.0901428 + 5.19537i 0.0173480 + 0.999850i
\(28\) −0.446171 + 0.446171i −0.0843184 + 0.0843184i
\(29\) 5.68683 4.77181i 1.05602 0.886103i 0.0623035 0.998057i \(-0.480155\pi\)
0.993713 + 0.111954i \(0.0357109\pi\)
\(30\) 0 0
\(31\) 0.764639 4.33648i 0.137333 0.778855i −0.835873 0.548922i \(-0.815038\pi\)
0.973207 0.229933i \(-0.0738506\pi\)
\(32\) 1.97241 4.22984i 0.348676 0.747738i
\(33\) 0.542776 + 2.97745i 0.0944852 + 0.518307i
\(34\) 3.14580 0.554689i 0.539500 0.0951284i
\(35\) 0 0
\(36\) 1.73161 2.11280i 0.288601 0.352134i
\(37\) 10.6938 2.86540i 1.75805 0.471069i 0.771739 0.635939i \(-0.219387\pi\)
0.986315 + 0.164870i \(0.0527205\pi\)
\(38\) 1.72558 + 3.70052i 0.279926 + 0.600303i
\(39\) −1.02179 + 0.724306i −0.163617 + 0.115982i
\(40\) 0 0
\(41\) 2.71443 3.23493i 0.423923 0.505212i −0.511236 0.859441i \(-0.670812\pi\)
0.935159 + 0.354229i \(0.115257\pi\)
\(42\) −1.23493 0.210396i −0.190554 0.0324648i
\(43\) −5.87799 + 2.74095i −0.896385 + 0.417991i −0.815517 0.578733i \(-0.803547\pi\)
−0.0808685 + 0.996725i \(0.525769\pi\)
\(44\) 0.795555 1.37794i 0.119934 0.207733i
\(45\) 0 0
\(46\) −4.21317 7.29742i −0.621197 1.07595i
\(47\) 3.32527 + 2.32838i 0.485040 + 0.339628i 0.790382 0.612614i \(-0.209882\pi\)
−0.305342 + 0.952243i \(0.598771\pi\)
\(48\) 2.29982 0.419248i 0.331950 0.0605132i
\(49\) 2.22991 + 6.12663i 0.318559 + 0.875234i
\(50\) 0 0
\(51\) −3.76985 3.72650i −0.527885 0.521815i
\(52\) 0.655945 + 0.0573878i 0.0909632 + 0.00795825i
\(53\) −5.90884 5.90884i −0.811642 0.811642i 0.173238 0.984880i \(-0.444577\pi\)
−0.984880 + 0.173238i \(0.944577\pi\)
\(54\) 5.41025 + 0.378889i 0.736241 + 0.0515603i
\(55\) 0 0
\(56\) 1.35314 + 1.61261i 0.180821 + 0.215494i
\(57\) 3.35382 5.88736i 0.444225 0.779800i
\(58\) −4.44432 6.34714i −0.583567 0.833420i
\(59\) −2.63750 + 0.959971i −0.343373 + 0.124978i −0.507950 0.861387i \(-0.669596\pi\)
0.164577 + 0.986364i \(0.447374\pi\)
\(60\) 0 0
\(61\) 1.13591 + 6.44205i 0.145438 + 0.824820i 0.967014 + 0.254722i \(0.0819838\pi\)
−0.821576 + 0.570098i \(0.806905\pi\)
\(62\) −4.43943 1.18954i −0.563808 0.151072i
\(63\) 0.900284 + 1.87378i 0.113425 + 0.236073i
\(64\) −6.55640 3.78534i −0.819551 0.473168i
\(65\) 0 0
\(66\) 3.14527 0.293513i 0.387156 0.0361289i
\(67\) −0.978397 11.1831i −0.119530 1.36624i −0.784853 0.619682i \(-0.787262\pi\)
0.665323 0.746556i \(-0.268294\pi\)
\(68\) 0.242882 + 2.77616i 0.0294538 + 0.336659i
\(69\) −5.83610 + 12.7069i −0.702584 + 1.52973i
\(70\) 0 0
\(71\) 5.58689 + 3.22559i 0.663042 + 0.382807i 0.793435 0.608655i \(-0.208291\pi\)
−0.130393 + 0.991462i \(0.541624\pi\)
\(72\) −6.51852 6.36945i −0.768215 0.750647i
\(73\) −8.08612 2.16667i −0.946409 0.253589i −0.247571 0.968870i \(-0.579632\pi\)
−0.698838 + 0.715280i \(0.746299\pi\)
\(74\) −2.00658 11.3799i −0.233261 1.32289i
\(75\) 0 0
\(76\) −3.34729 + 1.21831i −0.383960 + 0.139750i
\(77\) 0.694499 + 0.991847i 0.0791455 + 0.113032i
\(78\) 0.660168 + 1.12833i 0.0747494 + 0.127758i
\(79\) 1.04738 + 1.24822i 0.117840 + 0.140436i 0.821739 0.569863i \(-0.193004\pi\)
−0.703899 + 0.710300i \(0.748559\pi\)
\(80\) 0 0
\(81\) −4.67907 7.68806i −0.519897 0.854229i
\(82\) −3.11669 3.11669i −0.344181 0.344181i
\(83\) 1.78607 + 0.156261i 0.196046 + 0.0171518i 0.184756 0.982784i \(-0.440851\pi\)
0.0112903 + 0.999936i \(0.496406\pi\)
\(84\) 0.276752 1.05727i 0.0301961 0.115358i
\(85\) 0 0
\(86\) 2.31528 + 6.36117i 0.249663 + 0.685942i
\(87\) −4.32778 + 12.1079i −0.463987 + 1.29810i
\(88\) −4.34834 3.04474i −0.463535 0.324571i
\(89\) −2.78132 4.81739i −0.294820 0.510643i 0.680123 0.733098i \(-0.261926\pi\)
−0.974943 + 0.222455i \(0.928593\pi\)
\(90\) 0 0
\(91\) −0.250538 + 0.433944i −0.0262635 + 0.0454897i
\(92\) 6.66246 3.10676i 0.694610 0.323902i
\(93\) 2.64995 + 7.15171i 0.274787 + 0.741598i
\(94\) 2.72350 3.24574i 0.280907 0.334772i
\(95\) 0 0
\(96\) 0.751097 + 8.04871i 0.0766585 + 0.821468i
\(97\) 1.95866 + 4.20036i 0.198872 + 0.426482i 0.980300 0.197513i \(-0.0632865\pi\)
−0.781429 + 0.623995i \(0.785509\pi\)
\(98\) 6.57321 1.76129i 0.663995 0.177917i
\(99\) −3.41576 3.97642i −0.343297 0.399646i
\(100\) 0 0
\(101\) 11.1359 1.96356i 1.10806 0.195381i 0.410469 0.911875i \(-0.365365\pi\)
0.697594 + 0.716493i \(0.254254\pi\)
\(102\) −4.21769 + 3.58083i −0.417613 + 0.354555i
\(103\) 2.08661 4.47475i 0.205600 0.440911i −0.776287 0.630380i \(-0.782899\pi\)
0.981887 + 0.189470i \(0.0606768\pi\)
\(104\) 0.381463 2.16339i 0.0374055 0.212137i
\(105\) 0 0
\(106\) −6.68142 + 5.60638i −0.648957 + 0.544540i
\(107\) −11.1511 + 11.1511i −1.07801 + 1.07801i −0.0813251 + 0.996688i \(0.525915\pi\)
−0.996688 + 0.0813251i \(0.974085\pi\)
\(108\) −0.740660 + 4.67318i −0.0712700 + 0.449677i
\(109\) 20.3152i 1.94584i 0.231133 + 0.972922i \(0.425757\pi\)
−0.231133 + 0.972922i \(0.574243\pi\)
\(110\) 0 0
\(111\) −13.4806 + 13.6374i −1.27952 + 1.29441i
\(112\) 0.766117 0.536441i 0.0723912 0.0506889i
\(113\) 0.110679 + 0.0516106i 0.0104118 + 0.00485512i 0.427817 0.903865i \(-0.359283\pi\)
−0.417405 + 0.908720i \(0.637060\pi\)
\(114\) −5.81647 4.02281i −0.544763 0.376771i
\(115\) 0 0
\(116\) 5.85416 3.37990i 0.543545 0.313816i
\(117\) 0.894000 1.97656i 0.0826503 0.182733i
\(118\) 0.758229 + 2.82975i 0.0698006 + 0.260500i
\(119\) −1.99281 0.725323i −0.182681 0.0664903i
\(120\) 0 0
\(121\) 6.08755 + 5.10806i 0.553414 + 0.464369i
\(122\) 6.80165 0.595068i 0.615793 0.0538749i
\(123\) −1.22844 + 7.21039i −0.110764 + 0.650139i
\(124\) 1.37137 3.76782i 0.123153 0.338360i
\(125\) 0 0
\(126\) 2.03021 0.765643i 0.180866 0.0682089i
\(127\) −4.29687 + 16.0361i −0.381286 + 1.42298i 0.462654 + 0.886539i \(0.346897\pi\)
−0.843939 + 0.536439i \(0.819769\pi\)
\(128\) 0.821539 1.17328i 0.0726144 0.103704i
\(129\) 6.38993 9.23903i 0.562602 0.813451i
\(130\) 0 0
\(131\) −22.1825 3.91138i −1.93810 0.341739i −0.938109 0.346341i \(-0.887424\pi\)
−0.999989 + 0.00460251i \(0.998535\pi\)
\(132\) 0.0159371 + 2.75584i 0.00138714 + 0.239865i
\(133\) 0.236256 2.70042i 0.0204860 0.234156i
\(134\) −11.7170 −1.01220
\(135\) 0 0
\(136\) 9.29735 0.797241
\(137\) 0.454409 5.19392i 0.0388228 0.443747i −0.951761 0.306840i \(-0.900728\pi\)
0.990584 0.136907i \(-0.0437161\pi\)
\(138\) 12.6815 + 7.22420i 1.07952 + 0.614965i
\(139\) −12.7974 2.25653i −1.08546 0.191396i −0.397833 0.917458i \(-0.630238\pi\)
−0.687630 + 0.726061i \(0.741349\pi\)
\(140\) 0 0
\(141\) −7.00776 0.572284i −0.590160 0.0481950i
\(142\) 3.86214 5.51571i 0.324104 0.462868i
\(143\) 0.327027 1.22048i 0.0273474 0.102062i
\(144\) −3.07144 + 2.63838i −0.255954 + 0.219865i
\(145\) 0 0
\(146\) −2.98845 + 8.21069i −0.247326 + 0.679522i
\(147\) −8.69252 7.20864i −0.716947 0.594559i
\(148\) 10.0427 0.878625i 0.825507 0.0722225i
\(149\) 8.70742 + 7.30639i 0.713340 + 0.598563i 0.925534 0.378664i \(-0.123617\pi\)
−0.212194 + 0.977227i \(0.568061\pi\)
\(150\) 0 0
\(151\) −8.54652 3.11068i −0.695506 0.253143i −0.0300149 0.999549i \(-0.509555\pi\)
−0.665491 + 0.746406i \(0.731778\pi\)
\(152\) 3.07583 + 11.4792i 0.249483 + 0.931083i
\(153\) 8.89532 + 2.27356i 0.719144 + 0.183806i
\(154\) 1.09448 0.631900i 0.0881959 0.0509199i
\(155\) 0 0
\(156\) −1.03081 + 0.487953i −0.0825311 + 0.0390675i
\(157\) −3.03444 1.41498i −0.242175 0.112928i 0.297742 0.954646i \(-0.403767\pi\)
−0.539917 + 0.841718i \(0.681544\pi\)
\(158\) 1.39316 0.975501i 0.110834 0.0776067i
\(159\) 14.0019 + 3.66515i 1.11042 + 0.290665i
\(160\) 0 0
\(161\) 5.59421i 0.440886i
\(162\) −8.41955 + 4.16584i −0.661502 + 0.327299i
\(163\) −9.97670 + 9.97670i −0.781435 + 0.781435i −0.980073 0.198638i \(-0.936348\pi\)
0.198638 + 0.980073i \(0.436348\pi\)
\(164\) 2.94567 2.47171i 0.230018 0.193008i
\(165\) 0 0
\(166\) 0.324953 1.84290i 0.0252213 0.143037i
\(167\) −5.88249 + 12.6150i −0.455201 + 0.976182i 0.536049 + 0.844187i \(0.319916\pi\)
−0.991250 + 0.131995i \(0.957862\pi\)
\(168\) −3.43343 1.22723i −0.264895 0.0946826i
\(169\) −12.2876 + 2.16663i −0.945196 + 0.166664i
\(170\) 0 0
\(171\) 0.135731 + 11.7350i 0.0103796 + 0.897394i
\(172\) −5.70447 + 1.52851i −0.434962 + 0.116548i
\(173\) −1.31470 2.81939i −0.0999551 0.214354i 0.849971 0.526830i \(-0.176620\pi\)
−0.949926 + 0.312476i \(0.898842\pi\)
\(174\) 12.1959 + 5.60139i 0.924565 + 0.424640i
\(175\) 0 0
\(176\) −1.51594 + 1.80663i −0.114268 + 0.136180i
\(177\) 3.10330 3.74211i 0.233258 0.281274i
\(178\) −5.26205 + 2.45373i −0.394407 + 0.183915i
\(179\) −2.53650 + 4.39334i −0.189587 + 0.328374i −0.945113 0.326745i \(-0.894048\pi\)
0.755526 + 0.655119i \(0.227381\pi\)
\(180\) 0 0
\(181\) −4.66805 8.08530i −0.346974 0.600976i 0.638737 0.769425i \(-0.279457\pi\)
−0.985710 + 0.168449i \(0.946124\pi\)
\(182\) 0.428416 + 0.299980i 0.0317563 + 0.0222360i
\(183\) −7.33291 8.63709i −0.542064 0.638472i
\(184\) −8.38822 23.0464i −0.618388 1.69901i
\(185\) 0 0
\(186\) 7.67728 2.10478i 0.562925 0.154330i
\(187\) 5.32731 + 0.466079i 0.389572 + 0.0340831i
\(188\) 2.61375 + 2.61375i 0.190628 + 0.190628i
\(189\) −2.98486 2.01377i −0.217117 0.146480i
\(190\) 0 0
\(191\) 0.729528 + 0.869417i 0.0527868 + 0.0629088i 0.791792 0.610791i \(-0.209148\pi\)
−0.739005 + 0.673700i \(0.764704\pi\)
\(192\) 13.1126 0.0758304i 0.946320 0.00547259i
\(193\) 7.90607 + 11.2910i 0.569091 + 0.812746i 0.995792 0.0916467i \(-0.0292130\pi\)
−0.426701 + 0.904393i \(0.640324\pi\)
\(194\) 4.54563 1.65447i 0.326357 0.118784i
\(195\) 0 0
\(196\) 1.03092 + 5.84663i 0.0736371 + 0.417617i
\(197\) −1.93314 0.517983i −0.137730 0.0369048i 0.189295 0.981920i \(-0.439380\pi\)
−0.327026 + 0.945015i \(0.606046\pi\)
\(198\) −4.44534 + 3.18991i −0.315916 + 0.226697i
\(199\) −16.0030 9.23931i −1.13442 0.654957i −0.189377 0.981905i \(-0.560647\pi\)
−0.945043 + 0.326947i \(0.893980\pi\)
\(200\) 0 0
\(201\) 11.2444 + 15.8626i 0.793118 + 1.11886i
\(202\) −1.02865 11.7575i −0.0723755 0.827256i
\(203\) 0.448343 + 5.12458i 0.0314675 + 0.359675i
\(204\) −2.79136 3.93782i −0.195435 0.275702i
\(205\) 0 0
\(206\) −4.46295 2.57668i −0.310948 0.179526i
\(207\) −2.38976 24.1011i −0.166100 1.67515i
\(208\) −0.942717 0.252600i −0.0653656 0.0175147i
\(209\) 1.18697 + 6.73167i 0.0821047 + 0.465639i
\(210\) 0 0
\(211\) 15.7638 5.73754i 1.08522 0.394989i 0.263374 0.964694i \(-0.415165\pi\)
0.821849 + 0.569705i \(0.192943\pi\)
\(212\) −4.36442 6.23304i −0.299750 0.428087i
\(213\) −11.1736 + 0.0646171i −0.765602 + 0.00442749i
\(214\) 10.5803 + 12.6091i 0.723251 + 0.861937i
\(215\) 0 0
\(216\) 15.3162 + 3.82046i 1.04214 + 0.259950i
\(217\) 2.15759 + 2.15759i 0.146467 + 0.146467i
\(218\) 21.1234 + 1.84806i 1.43066 + 0.125166i
\(219\) 13.9836 3.83371i 0.944926 0.259058i
\(220\) 0 0
\(221\) 0.756900 + 2.07957i 0.0509146 + 0.139887i
\(222\) 12.9536 + 15.2574i 0.869389 + 1.02401i
\(223\) 16.4615 + 11.5264i 1.10234 + 0.771868i 0.975488 0.220054i \(-0.0706233\pi\)
0.126854 + 0.991921i \(0.459512\pi\)
\(224\) 1.61703 + 2.80077i 0.108042 + 0.187134i
\(225\) 0 0
\(226\) 0.0637321 0.110387i 0.00423940 0.00734285i
\(227\) 4.22414 1.96975i 0.280366 0.130737i −0.277349 0.960769i \(-0.589456\pi\)
0.557715 + 0.830032i \(0.311678\pi\)
\(228\) 3.93844 4.74916i 0.260830 0.314521i
\(229\) 15.6103 18.6036i 1.03156 1.22936i 0.0586205 0.998280i \(-0.481330\pi\)
0.972935 0.231080i \(-0.0742258\pi\)
\(230\) 0 0
\(231\) −1.90581 0.875311i −0.125393 0.0575912i
\(232\) −9.53106 20.4394i −0.625745 1.34191i
\(233\) −6.84167 + 1.83322i −0.448213 + 0.120098i −0.475863 0.879519i \(-0.657864\pi\)
0.0276501 + 0.999618i \(0.491198\pi\)
\(234\) −1.97386 1.10937i −0.129035 0.0725218i
\(235\) 0 0
\(236\) −2.51696 + 0.443808i −0.163840 + 0.0288894i
\(237\) −2.65761 0.949922i −0.172630 0.0617041i
\(238\) −0.935462 + 2.00610i −0.0606370 + 0.130036i
\(239\) −2.01666 + 11.4370i −0.130447 + 0.739799i 0.847476 + 0.530833i \(0.178121\pi\)
−0.977923 + 0.208966i \(0.932990\pi\)
\(240\) 0 0
\(241\) 8.02324 6.73230i 0.516822 0.433665i −0.346700 0.937976i \(-0.612698\pi\)
0.863522 + 0.504311i \(0.168253\pi\)
\(242\) 5.86505 5.86505i 0.377020 0.377020i
\(243\) 13.7197 + 7.40068i 0.880119 + 0.474754i
\(244\) 5.95649i 0.381325i
\(245\) 0 0
\(246\) 7.38548 + 1.93323i 0.470881 + 0.123258i
\(247\) −2.31717 + 1.62250i −0.147438 + 0.103237i
\(248\) −12.1238 5.65342i −0.769862 0.358993i
\(249\) −2.80679 + 1.32864i −0.177873 + 0.0841992i
\(250\) 0 0
\(251\) −9.75413 + 5.63155i −0.615675 + 0.355460i −0.775183 0.631736i \(-0.782343\pi\)
0.159508 + 0.987197i \(0.449009\pi\)
\(252\) 0.511044 + 1.82265i 0.0321928 + 0.114816i
\(253\) −3.65106 13.6259i −0.229540 0.856656i
\(254\) 16.2832 + 5.92660i 1.02170 + 0.371868i
\(255\) 0 0
\(256\) −12.7442 10.6936i −0.796511 0.668352i
\(257\) 19.7620 1.72895i 1.23272 0.107849i 0.547890 0.836551i \(-0.315431\pi\)
0.684832 + 0.728701i \(0.259876\pi\)
\(258\) −9.02528 7.48459i −0.561889 0.465970i
\(259\) −2.62385 + 7.20897i −0.163038 + 0.447944i
\(260\) 0 0
\(261\) −4.12070 21.8863i −0.255065 1.35473i
\(262\) −6.08491 + 22.7092i −0.375927 + 1.40298i
\(263\) 9.68085 13.8257i 0.596947 0.852529i −0.401033 0.916064i \(-0.631349\pi\)
0.997980 + 0.0635351i \(0.0202375\pi\)
\(264\) 9.16382 + 0.748357i 0.563994 + 0.0460582i
\(265\) 0 0
\(266\) −2.78635 0.491310i −0.170842 0.0301241i
\(267\) 8.37169 + 4.76906i 0.512339 + 0.291862i
\(268\) 0.890909 10.1831i 0.0544209 0.622034i
\(269\) −30.5994 −1.86568 −0.932838 0.360296i \(-0.882676\pi\)
−0.932838 + 0.360296i \(0.882676\pi\)
\(270\) 0 0
\(271\) −5.21670 −0.316892 −0.158446 0.987368i \(-0.550648\pi\)
−0.158446 + 0.987368i \(0.550648\pi\)
\(272\) 0.360006 4.11489i 0.0218286 0.249502i
\(273\) −0.00501894 0.867874i −0.000303760 0.0525262i
\(274\) −5.35921 0.944973i −0.323761 0.0570879i
\(275\) 0 0
\(276\) −7.24272 + 10.4721i −0.435961 + 0.630344i
\(277\) −6.69422 + 9.56033i −0.402216 + 0.574425i −0.968258 0.249952i \(-0.919585\pi\)
0.566042 + 0.824377i \(0.308474\pi\)
\(278\) −3.51047 + 13.1012i −0.210544 + 0.785760i
\(279\) −10.2171 8.37370i −0.611681 0.501320i
\(280\) 0 0
\(281\) 4.68215 12.8641i 0.279313 0.767407i −0.718127 0.695912i \(-0.755001\pi\)
0.997441 0.0714958i \(-0.0227772\pi\)
\(282\) −1.23254 + 7.23447i −0.0733966 + 0.430807i
\(283\) −8.84093 + 0.773481i −0.525539 + 0.0459787i −0.346838 0.937925i \(-0.612745\pi\)
−0.178700 + 0.983904i \(0.557189\pi\)
\(284\) 4.49999 + 3.77594i 0.267025 + 0.224061i
\(285\) 0 0
\(286\) −1.23928 0.451062i −0.0732804 0.0266719i
\(287\) 0.757366 + 2.82653i 0.0447059 + 0.166845i
\(288\) −8.16295 11.3756i −0.481007 0.670313i
\(289\) 6.61106 3.81690i 0.388886 0.224524i
\(290\) 0 0
\(291\) −6.60212 4.56619i −0.387023 0.267675i
\(292\) −6.90860 3.22153i −0.404295 0.188526i
\(293\) −9.25201 + 6.47833i −0.540508 + 0.378468i −0.811716 0.584053i \(-0.801466\pi\)
0.271207 + 0.962521i \(0.412577\pi\)
\(294\) −8.28616 + 8.38256i −0.483259 + 0.488881i
\(295\) 0 0
\(296\) 33.6331i 1.95488i
\(297\) 8.58457 + 2.95691i 0.498127 + 0.171577i
\(298\) 8.38915 8.38915i 0.485971 0.485971i
\(299\) 4.47198 3.75244i 0.258621 0.217009i
\(300\) 0 0
\(301\) 0.780408 4.42591i 0.0449820 0.255105i
\(302\) −4.01189 + 8.60353i −0.230858 + 0.495078i
\(303\) −14.9303 + 12.6759i −0.857723 + 0.728209i
\(304\) 5.19963 0.916835i 0.298219 0.0525841i
\(305\) 0 0
\(306\) 3.17320 9.04236i 0.181400 0.516917i
\(307\) 8.24213 2.20847i 0.470403 0.126044i −0.0158274 0.999875i \(-0.505038\pi\)
0.486230 + 0.873831i \(0.338372\pi\)
\(308\) 0.465958 + 0.999250i 0.0265504 + 0.0569376i
\(309\) 0.794586 + 8.51474i 0.0452024 + 0.484386i
\(310\) 0 0
\(311\) −9.40563 + 11.2092i −0.533344 + 0.635615i −0.963682 0.267053i \(-0.913950\pi\)
0.430338 + 0.902668i \(0.358394\pi\)
\(312\) 1.32201 + 3.56785i 0.0748439 + 0.201990i
\(313\) 8.45186 3.94117i 0.477727 0.222768i −0.168812 0.985648i \(-0.553993\pi\)
0.646540 + 0.762880i \(0.276215\pi\)
\(314\) −1.74731 + 3.02644i −0.0986067 + 0.170792i
\(315\) 0 0
\(316\) 0.741868 + 1.28495i 0.0417333 + 0.0722843i
\(317\) −19.3542 13.5519i −1.08704 0.761152i −0.114390 0.993436i \(-0.536491\pi\)
−0.972648 + 0.232283i \(0.925380\pi\)
\(318\) 5.08469 14.2255i 0.285135 0.797726i
\(319\) −4.43659 12.1894i −0.248402 0.682478i
\(320\) 0 0
\(321\) 6.91679 26.4241i 0.386058 1.47485i
\(322\) 5.81676 + 0.508900i 0.324155 + 0.0283599i
\(323\) −8.46556 8.46556i −0.471036 0.471036i
\(324\) −2.98030 7.63410i −0.165572 0.424116i
\(325\) 0 0
\(326\) 9.46601 + 11.2812i 0.524274 + 0.624805i
\(327\) −17.7694 30.3706i −0.982651 1.67950i
\(328\) −7.35834 10.5088i −0.406297 0.580252i
\(329\) −2.64330 + 0.962081i −0.145730 + 0.0530413i
\(330\) 0 0
\(331\) 4.01625 + 22.7773i 0.220753 + 1.25195i 0.870639 + 0.491922i \(0.163705\pi\)
−0.649886 + 0.760032i \(0.725183\pi\)
\(332\) 1.57694 + 0.422540i 0.0865458 + 0.0231899i
\(333\) 8.22459 32.1788i 0.450705 1.76338i
\(334\) 12.5818 + 7.26408i 0.688443 + 0.397473i
\(335\) 0 0
\(336\) −0.676102 + 1.47207i −0.0368844 + 0.0803081i
\(337\) 1.08633 + 12.4168i 0.0591760 + 0.676384i 0.966621 + 0.256212i \(0.0824747\pi\)
−0.907445 + 0.420172i \(0.861970\pi\)
\(338\) 1.13503 + 12.9735i 0.0617375 + 0.705663i
\(339\) −0.210605 + 0.0196534i −0.0114385 + 0.00106743i
\(340\) 0 0
\(341\) −6.66344 3.84714i −0.360846 0.208334i
\(342\) 12.2141 + 0.926386i 0.660464 + 0.0500932i
\(343\) −9.04926 2.42474i −0.488614 0.130924i
\(344\) 3.42137 + 19.4036i 0.184468 + 1.04617i
\(345\) 0 0
\(346\) −3.05115 + 1.11053i −0.164031 + 0.0597023i
\(347\) −6.55983 9.36840i −0.352150 0.502922i 0.603526 0.797343i \(-0.293762\pi\)
−0.955676 + 0.294421i \(0.904873\pi\)
\(348\) −5.79543 + 10.1734i −0.310667 + 0.545351i
\(349\) 15.6113 + 18.6048i 0.835652 + 0.995891i 0.999955 + 0.00948135i \(0.00301805\pi\)
−0.164303 + 0.986410i \(0.552538\pi\)
\(350\) 0 0
\(351\) 0.392365 + 3.73686i 0.0209429 + 0.199459i
\(352\) −5.76654 5.76654i −0.307358 0.307358i
\(353\) −33.3825 2.92059i −1.77677 0.155447i −0.848951 0.528472i \(-0.822765\pi\)
−0.927822 + 0.373024i \(0.878321\pi\)
\(354\) −3.60867 3.56717i −0.191799 0.189593i
\(355\) 0 0
\(356\) −1.73241 4.75976i −0.0918177 0.252267i
\(357\) 3.61361 0.658747i 0.191253 0.0348646i
\(358\) 4.33737 + 3.03706i 0.229237 + 0.160514i
\(359\) −9.34241 16.1815i −0.493073 0.854028i 0.506895 0.862008i \(-0.330793\pi\)
−0.999968 + 0.00797981i \(0.997460\pi\)
\(360\) 0 0
\(361\) −1.84847 + 3.20165i −0.0972881 + 0.168508i
\(362\) −8.83159 + 4.11824i −0.464178 + 0.216450i
\(363\) −13.5686 2.31169i −0.712169 0.121332i
\(364\) −0.293285 + 0.349523i −0.0153723 + 0.0183200i
\(365\) 0 0
\(366\) −9.64775 + 6.83891i −0.504296 + 0.357476i
\(367\) 3.00914 + 6.45312i 0.157076 + 0.336850i 0.969058 0.246831i \(-0.0793894\pi\)
−0.811983 + 0.583682i \(0.801612\pi\)
\(368\) −10.5249 + 2.82013i −0.548647 + 0.147009i
\(369\) −4.47035 11.8538i −0.232717 0.617084i
\(370\) 0 0
\(371\) 5.70252 1.00551i 0.296060 0.0522034i
\(372\) 1.24550 + 6.83228i 0.0645760 + 0.354237i
\(373\) 4.36650 9.36399i 0.226089 0.484849i −0.760239 0.649643i \(-0.774918\pi\)
0.986328 + 0.164794i \(0.0526960\pi\)
\(374\) 0.969241 5.49684i 0.0501183 0.284235i
\(375\) 0 0
\(376\) 9.44698 7.92696i 0.487191 0.408802i
\(377\) 3.79582 3.79582i 0.195495 0.195495i
\(378\) −2.36541 + 2.92041i −0.121663 + 0.150210i
\(379\) 5.45309i 0.280106i −0.990144 0.140053i \(-0.955273\pi\)
0.990144 0.140053i \(-0.0447273\pi\)
\(380\) 0 0
\(381\) −7.60290 27.7319i −0.389508 1.42075i
\(382\) 0.970368 0.679459i 0.0496483 0.0347641i
\(383\) −4.05128 1.88914i −0.207011 0.0965307i 0.316348 0.948643i \(-0.397543\pi\)
−0.523359 + 0.852113i \(0.675321\pi\)
\(384\) −0.201923 + 2.47260i −0.0103044 + 0.126179i
\(385\) 0 0
\(386\) 12.4594 7.19344i 0.634167 0.366137i
\(387\) −1.47149 + 19.4012i −0.0748003 + 0.986219i
\(388\) 1.09226 + 4.07636i 0.0554510 + 0.206946i
\(389\) 9.10172 + 3.31276i 0.461476 + 0.167963i 0.562287 0.826942i \(-0.309922\pi\)
−0.100811 + 0.994906i \(0.532144\pi\)
\(390\) 0 0
\(391\) 18.9268 + 15.8814i 0.957168 + 0.803159i
\(392\) 19.7314 1.72627i 0.996586 0.0871899i
\(393\) 36.5834 13.5554i 1.84539 0.683778i
\(394\) −0.714445 + 1.96292i −0.0359932 + 0.0988906i
\(395\) 0 0
\(396\) −2.43432 4.10595i −0.122329 0.206332i
\(397\) −0.263053 + 0.981728i −0.0132023 + 0.0492715i −0.972213 0.234099i \(-0.924786\pi\)
0.959010 + 0.283371i \(0.0914527\pi\)
\(398\) −11.0626 + 15.7991i −0.554520 + 0.791936i
\(399\) 2.00882 + 4.24369i 0.100567 + 0.212450i
\(400\) 0 0
\(401\) 8.07342 + 1.42356i 0.403168 + 0.0710893i 0.371555 0.928411i \(-0.378825\pi\)
0.0316124 + 0.999500i \(0.489936\pi\)
\(402\) 17.5165 10.2487i 0.873646 0.511159i
\(403\) 0.277515 3.17202i 0.0138240 0.158009i
\(404\) 10.2965 0.512272
\(405\) 0 0
\(406\) 5.36923 0.266470
\(407\) 1.68604 19.2715i 0.0835738 0.955253i
\(408\) −13.8992 + 8.13225i −0.688114 + 0.402606i
\(409\) 28.0740 + 4.95021i 1.38817 + 0.244772i 0.817274 0.576249i \(-0.195484\pi\)
0.570897 + 0.821021i \(0.306595\pi\)
\(410\) 0 0
\(411\) 3.86372 + 8.16221i 0.190583 + 0.402612i
\(412\) 2.57871 3.68278i 0.127044 0.181438i
\(413\) 0.503386 1.87866i 0.0247700 0.0924429i
\(414\) −25.2773 + 0.292368i −1.24231 + 0.0143691i
\(415\) 0 0
\(416\) 1.15426 3.17132i 0.0565925 0.155487i
\(417\) 21.1055 7.82028i 1.03354 0.382961i
\(418\) 7.10744 0.621820i 0.347636 0.0304142i
\(419\) 19.6956 + 16.5265i 0.962192 + 0.807375i 0.981308 0.192443i \(-0.0616409\pi\)
−0.0191165 + 0.999817i \(0.506085\pi\)
\(420\) 0 0
\(421\) −12.0396 4.38206i −0.586775 0.213569i 0.0315356 0.999503i \(-0.489960\pi\)
−0.618310 + 0.785934i \(0.712182\pi\)
\(422\) −4.53177 16.9128i −0.220603 0.823303i
\(423\) 10.9769 5.27404i 0.533717 0.256432i
\(424\) −21.9849 + 12.6930i −1.06768 + 0.616427i
\(425\) 0 0
\(426\) −0.949263 + 11.6240i −0.0459920 + 0.563183i
\(427\) −4.10815 1.91566i −0.198807 0.0927054i
\(428\) −11.7629 + 8.23645i −0.568580 + 0.398124i
\(429\) 0.578643 + 2.11062i 0.0279371 + 0.101902i
\(430\) 0 0
\(431\) 5.16823i 0.248945i 0.992223 + 0.124473i \(0.0397239\pi\)
−0.992223 + 0.124473i \(0.960276\pi\)
\(432\) 2.28396 6.63084i 0.109887 0.319026i
\(433\) 2.74947 2.74947i 0.132131 0.132131i −0.637948 0.770079i \(-0.720217\pi\)
0.770079 + 0.637948i \(0.220217\pi\)
\(434\) 2.43970 2.04715i 0.117109 0.0982663i
\(435\) 0 0
\(436\) −3.21225 + 18.2176i −0.153839 + 0.872464i
\(437\) −13.3468 + 28.6224i −0.638465 + 1.36919i
\(438\) −2.71414 14.8887i −0.129687 0.711408i
\(439\) 31.6512 5.58095i 1.51063 0.266364i 0.643886 0.765122i \(-0.277321\pi\)
0.866742 + 0.498757i \(0.166210\pi\)
\(440\) 0 0
\(441\) 19.3003 + 3.17346i 0.919063 + 0.151117i
\(442\) 2.23115 0.597834i 0.106125 0.0284361i
\(443\) 6.48333 + 13.9035i 0.308032 + 0.660577i 0.997997 0.0632661i \(-0.0201517\pi\)
−0.689965 + 0.723843i \(0.742374\pi\)
\(444\) −14.2450 + 10.0977i −0.676039 + 0.479218i
\(445\) 0 0
\(446\) 13.4825 16.0678i 0.638413 0.760831i
\(447\) −19.4081 3.30656i −0.917972 0.156395i
\(448\) 4.75455 2.21708i 0.224631 0.104747i
\(449\) 1.37821 2.38713i 0.0650416 0.112655i −0.831671 0.555269i \(-0.812615\pi\)
0.896712 + 0.442614i \(0.145949\pi\)
\(450\) 0 0
\(451\) −3.68947 6.39034i −0.173730 0.300910i
\(452\) 0.0910905 + 0.0637823i 0.00428454 + 0.00300007i
\(453\) 15.4976 2.82515i 0.728142 0.132737i
\(454\) −1.66384 4.57137i −0.0780879 0.214545i
\(455\) 0 0
\(456\) −14.6389 14.4706i −0.685530 0.677647i
\(457\) 34.1536 + 2.98806i 1.59764 + 0.139775i 0.850895 0.525335i \(-0.176060\pi\)
0.746745 + 0.665111i \(0.231616\pi\)
\(458\) −17.9236 17.9236i −0.837515 0.837515i
\(459\) −15.2869 + 4.38171i −0.713529 + 0.204521i
\(460\) 0 0
\(461\) −1.95614 2.33124i −0.0911067 0.108577i 0.718565 0.695460i \(-0.244799\pi\)
−0.809672 + 0.586883i \(0.800355\pi\)
\(462\) −1.08350 + 1.90200i −0.0504090 + 0.0884889i
\(463\) 15.4489 + 22.0633i 0.717970 + 1.02537i 0.997863 + 0.0653361i \(0.0208119\pi\)
−0.279894 + 0.960031i \(0.590299\pi\)
\(464\) −9.41529 + 3.42689i −0.437094 + 0.159089i
\(465\) 0 0
\(466\) 1.28377 + 7.28061i 0.0594694 + 0.337268i
\(467\) −16.6209 4.45355i −0.769122 0.206086i −0.147138 0.989116i \(-0.547006\pi\)
−0.621983 + 0.783030i \(0.713673\pi\)
\(468\) 1.11423 1.63111i 0.0515051 0.0753981i
\(469\) 6.73671 + 3.88944i 0.311073 + 0.179598i
\(470\) 0 0
\(471\) 5.77406 0.538829i 0.266055 0.0248279i
\(472\) 0.743156 + 8.49431i 0.0342065 + 0.390982i
\(473\) 0.987714 + 11.2896i 0.0454152 + 0.519098i
\(474\) −1.22947 + 2.67692i −0.0564715 + 0.122955i
\(475\) 0 0
\(476\) −1.67236 0.965535i −0.0766523 0.0442552i
\(477\) −24.1382 + 6.76799i −1.10521 + 0.309885i
\(478\) 11.7085 + 3.13729i 0.535536 + 0.143497i
\(479\) −6.03903 34.2490i −0.275930 1.56488i −0.735991 0.676991i \(-0.763283\pi\)
0.460061 0.887888i \(-0.347828\pi\)
\(480\) 0 0
\(481\) 7.52282 2.73808i 0.343011 0.124846i
\(482\) −6.27025 8.95484i −0.285602 0.407882i
\(483\) −4.89318 8.36316i −0.222647 0.380537i
\(484\) 4.65130 + 5.54320i 0.211423 + 0.251964i
\(485\) 0 0
\(486\) 8.94315 13.5922i 0.405670 0.616557i
\(487\) 10.1713 + 10.1713i 0.460908 + 0.460908i 0.898953 0.438045i \(-0.144329\pi\)
−0.438045 + 0.898953i \(0.644329\pi\)
\(488\) 19.7968 + 1.73199i 0.896157 + 0.0784036i
\(489\) 6.18836 23.6413i 0.279847 1.06910i
\(490\) 0 0
\(491\) 10.0702 + 27.6677i 0.454462 + 1.24863i 0.929553 + 0.368688i \(0.120193\pi\)
−0.475091 + 0.879937i \(0.657585\pi\)
\(492\) −2.24171 + 6.27165i −0.101064 + 0.282748i
\(493\) 18.6107 + 13.0313i 0.838183 + 0.586902i
\(494\) 1.47626 + 2.55695i 0.0664199 + 0.115043i
\(495\) 0 0
\(496\) −2.97158 + 5.14694i −0.133428 + 0.231104i
\(497\) −4.05148 + 1.88923i −0.181734 + 0.0847438i
\(498\) 1.12617 + 3.03931i 0.0504647 + 0.136195i
\(499\) −11.3613 + 13.5399i −0.508604 + 0.606130i −0.957847 0.287279i \(-0.907249\pi\)
0.449243 + 0.893410i \(0.351694\pi\)
\(500\) 0 0
\(501\) −2.24006 24.0044i −0.100079 1.07244i
\(502\) 4.96826 + 10.6545i 0.221744 + 0.475532i
\(503\) 12.5537 3.36375i 0.559742 0.149982i 0.0321541 0.999483i \(-0.489763\pi\)
0.527588 + 0.849501i \(0.323097\pi\)
\(504\) 6.20630 1.16851i 0.276450 0.0520494i
\(505\) 0 0
\(506\) −14.5001 + 2.55677i −0.644610 + 0.113662i
\(507\) 16.4744 13.9868i 0.731652 0.621175i
\(508\) −6.38885 + 13.7009i −0.283459 + 0.607880i
\(509\) 0.0644329 0.365417i 0.00285594 0.0161968i −0.983346 0.181741i \(-0.941827\pi\)
0.986202 + 0.165544i \(0.0529380\pi\)
\(510\) 0 0
\(511\) 4.44374 3.72874i 0.196579 0.164950i
\(512\) −10.2528 + 10.2528i −0.453113 + 0.453113i
\(513\) −10.4673 17.4246i −0.462143 0.769317i
\(514\) 20.7055i 0.913279i
\(515\) 0 0
\(516\) 7.19103 7.27468i 0.316567 0.320250i
\(517\) 5.81043 4.06851i 0.255542 0.178933i
\(518\) 7.25707 + 3.38403i 0.318857 + 0.148686i
\(519\) 4.43152 + 3.06494i 0.194522 + 0.134536i
\(520\) 0 0
\(521\) −2.40696 + 1.38966i −0.105451 + 0.0608820i −0.551798 0.833978i \(-0.686058\pi\)
0.446347 + 0.894860i \(0.352725\pi\)
\(522\) −23.1318 + 2.29365i −1.01245 + 0.100390i
\(523\) 3.93462 + 14.6842i 0.172049 + 0.642096i 0.997035 + 0.0769434i \(0.0245161\pi\)
−0.824986 + 0.565153i \(0.808817\pi\)
\(524\) −19.2736 7.01503i −0.841973 0.306453i
\(525\) 0 0
\(526\) −13.4950 11.3237i −0.588411 0.493736i
\(527\) 13.4249 1.17453i 0.584799 0.0511633i
\(528\) 0.686049 4.02681i 0.0298565 0.175245i
\(529\) 14.4247 39.6316i 0.627162 1.72311i
\(530\) 0 0
\(531\) −1.36617 + 8.30874i −0.0592866 + 0.360569i
\(532\) 0.638854 2.38424i 0.0276978 0.103370i
\(533\) 1.75149 2.50139i 0.0758655 0.108347i
\(534\) 5.72034 8.27089i 0.247544 0.357916i
\(535\) 0 0
\(536\) −33.5852 5.92198i −1.45066 0.255790i
\(537\) −0.0508127 8.78654i −0.00219273 0.379167i
\(538\) −2.78359 + 31.8166i −0.120009 + 1.37171i
\(539\) 11.3925 0.490709
\(540\) 0 0
\(541\) −16.6575 −0.716163 −0.358081 0.933690i \(-0.616569\pi\)
−0.358081 + 0.933690i \(0.616569\pi\)
\(542\) −0.474558 + 5.42423i −0.0203840 + 0.232990i
\(543\) 14.0507 + 8.00418i 0.602972 + 0.343492i
\(544\) 14.0664 + 2.48028i 0.603090 + 0.106341i
\(545\) 0 0
\(546\) −0.902856 0.0737311i −0.0386387 0.00315540i
\(547\) 0.222344 0.317541i 0.00950676 0.0135771i −0.814371 0.580345i \(-0.802918\pi\)
0.823877 + 0.566768i \(0.191806\pi\)
\(548\) 1.22876 4.58578i 0.0524899 0.195895i
\(549\) 18.5172 + 6.49817i 0.790294 + 0.277335i
\(550\) 0 0
\(551\) −9.93246 + 27.2892i −0.423137 + 1.16256i
\(552\) 32.6985 + 27.1166i 1.39174 + 1.15416i
\(553\) −1.12482 + 0.0984086i −0.0478320 + 0.00418476i
\(554\) 9.33168 + 7.83021i 0.396465 + 0.332674i
\(555\) 0 0
\(556\) −11.1192 4.04707i −0.471561 0.171634i
\(557\) −3.29185 12.2853i −0.139480 0.520546i −0.999939 0.0110271i \(-0.996490\pi\)
0.860459 0.509519i \(-0.170177\pi\)
\(558\) −9.63626 + 9.86178i −0.407935 + 0.417482i
\(559\) −4.06152 + 2.34492i −0.171784 + 0.0991797i
\(560\) 0 0
\(561\) −8.37183 + 3.96295i −0.353459 + 0.167316i
\(562\) −12.9499 6.03864i −0.546259 0.254725i
\(563\) 23.9613 16.7779i 1.00985 0.707102i 0.0532691 0.998580i \(-0.483036\pi\)
0.956578 + 0.291478i \(0.0941470\pi\)
\(564\) −6.19369 1.62126i −0.260801 0.0682675i
\(565\) 0 0
\(566\) 9.26299i 0.389353i
\(567\) 6.22368 + 0.399701i 0.261370 + 0.0167859i
\(568\) 13.8580 13.8580i 0.581470 0.581470i
\(569\) 3.92124 3.29031i 0.164387 0.137937i −0.556884 0.830591i \(-0.688003\pi\)
0.721270 + 0.692654i \(0.243559\pi\)
\(570\) 0 0
\(571\) 1.16063 6.58228i 0.0485710 0.275460i −0.950844 0.309671i \(-0.899781\pi\)
0.999415 + 0.0342116i \(0.0108920\pi\)
\(572\) 0.486243 1.04275i 0.0203309 0.0435997i
\(573\) −1.85109 0.661643i −0.0773302 0.0276405i
\(574\) 3.00787 0.530368i 0.125546 0.0221372i
\(575\) 0 0
\(576\) −19.5366 + 11.5828i −0.814023 + 0.482615i
\(577\) −44.6435 + 11.9622i −1.85853 + 0.497992i −0.999894 0.0145873i \(-0.995357\pi\)
−0.858640 + 0.512580i \(0.828690\pi\)
\(578\) −3.36734 7.22128i −0.140063 0.300366i
\(579\) −21.6954 9.96440i −0.901630 0.414106i
\(580\) 0 0
\(581\) −0.798581 + 0.951712i −0.0331307 + 0.0394837i
\(582\) −5.34842 + 6.44938i −0.221699 + 0.267335i
\(583\) −13.2335 + 6.17089i −0.548076 + 0.255572i
\(584\) −12.7158 + 22.0244i −0.526183 + 0.911376i
\(585\) 0 0
\(586\) 5.89440 + 10.2094i 0.243495 + 0.421746i
\(587\) −1.45431 1.01832i −0.0600260 0.0420306i 0.543178 0.839617i \(-0.317221\pi\)
−0.603204 + 0.797587i \(0.706110\pi\)
\(588\) −6.65515 7.83879i −0.274454 0.323266i
\(589\) 5.89151 + 16.1868i 0.242755 + 0.666965i
\(590\) 0 0
\(591\) 3.34305 0.916521i 0.137515 0.0377006i
\(592\) −14.8856 1.30232i −0.611794 0.0535250i
\(593\) 27.8118 + 27.8118i 1.14209 + 1.14209i 0.988066 + 0.154028i \(0.0492246\pi\)
0.154028 + 0.988066i \(0.450775\pi\)
\(594\) 3.85547 8.65708i 0.158192 0.355204i
\(595\) 0 0
\(596\) 6.65306 + 7.92880i 0.272520 + 0.324776i
\(597\) 32.0054 0.185088i 1.30989 0.00757514i
\(598\) −3.49490 4.99124i −0.142917 0.204107i
\(599\) −37.7245 + 13.7306i −1.54138 + 0.561017i −0.966376 0.257133i \(-0.917222\pi\)
−0.575005 + 0.818150i \(0.695000\pi\)
\(600\) 0 0
\(601\) 3.13840 + 17.7988i 0.128018 + 0.726027i 0.979469 + 0.201593i \(0.0646119\pi\)
−0.851451 + 0.524434i \(0.824277\pi\)
\(602\) −4.53099 1.21407i −0.184669 0.0494820i
\(603\) −30.6848 13.8788i −1.24958 0.565188i
\(604\) −7.17219 4.14087i −0.291832 0.168490i
\(605\) 0 0
\(606\) 11.8219 + 16.6773i 0.480233 + 0.677471i
\(607\) 1.24916 + 14.2779i 0.0507016 + 0.579522i 0.978473 + 0.206374i \(0.0661663\pi\)
−0.927772 + 0.373149i \(0.878278\pi\)
\(608\) 1.59123 + 18.1879i 0.0645330 + 0.737616i
\(609\) −5.15265 7.26892i −0.208796 0.294552i
\(610\) 0 0
\(611\) 2.54213 + 1.46770i 0.102844 + 0.0593767i
\(612\) 7.61735 + 3.44534i 0.307913 + 0.139270i
\(613\) 27.3956 + 7.34062i 1.10650 + 0.296485i 0.765408 0.643546i \(-0.222537\pi\)
0.341090 + 0.940031i \(0.389204\pi\)
\(614\) −1.54655 8.77091i −0.0624136 0.353965i
\(615\) 0 0
\(616\) 3.45655 1.25808i 0.139269 0.0506896i
\(617\) −13.4838 19.2569i −0.542839 0.775255i 0.450214 0.892921i \(-0.351348\pi\)
−0.993053 + 0.117666i \(0.962459\pi\)
\(618\) 8.92574 0.0516178i 0.359046 0.00207637i
\(619\) −5.35313 6.37961i −0.215160 0.256418i 0.647659 0.761930i \(-0.275748\pi\)
−0.862820 + 0.505512i \(0.831304\pi\)
\(620\) 0 0
\(621\) 24.6535 + 33.9401i 0.989312 + 1.36197i
\(622\) 10.7995 + 10.7995i 0.433020 + 0.433020i
\(623\) 3.83994 + 0.335951i 0.153844 + 0.0134596i
\(624\) 1.63028 0.446952i 0.0652633 0.0178924i
\(625\) 0 0
\(626\) −3.32909 9.14661i −0.133057 0.365572i
\(627\) −7.66258 9.02539i −0.306014 0.360439i
\(628\) −2.49739 1.74869i −0.0996566 0.0697803i
\(629\) 16.9411 + 29.3428i 0.675485 + 1.16997i
\(630\) 0 0
\(631\) 10.7788 18.6694i 0.429097 0.743218i −0.567696 0.823238i \(-0.692165\pi\)
0.996793 + 0.0800204i \(0.0254985\pi\)
\(632\) 4.48633 2.09201i 0.178457 0.0832158i
\(633\) −18.5478 + 22.3658i −0.737208 + 0.888960i
\(634\) −15.8517 + 18.8913i −0.629550 + 0.750269i
\(635\) 0 0
\(636\) 11.9766 + 5.50069i 0.474904 + 0.218117i
\(637\) 1.99246 + 4.27285i 0.0789442 + 0.169296i
\(638\) −13.0779 + 3.50422i −0.517761 + 0.138734i
\(639\) 16.6476 9.86998i 0.658570 0.390450i
\(640\) 0 0
\(641\) −4.89330 + 0.862821i −0.193274 + 0.0340794i −0.269447 0.963015i \(-0.586841\pi\)
0.0761733 + 0.997095i \(0.475730\pi\)
\(642\) −26.8461 9.59572i −1.05953 0.378713i
\(643\) 9.66776 20.7326i 0.381259 0.817613i −0.618241 0.785989i \(-0.712154\pi\)
0.999500 0.0316243i \(-0.0100680\pi\)
\(644\) −0.884560 + 5.01659i −0.0348566 + 0.197681i
\(645\) 0 0
\(646\) −9.57243 + 8.03223i −0.376622 + 0.316024i
\(647\) −8.15287 + 8.15287i −0.320522 + 0.320522i −0.848967 0.528445i \(-0.822775\pi\)
0.528445 + 0.848967i \(0.322775\pi\)
\(648\) −26.2390 + 7.68542i −1.03076 + 0.301912i
\(649\) 4.90443i 0.192516i
\(650\) 0 0
\(651\) −5.11274 1.33831i −0.200384 0.0524527i
\(652\) −10.5241 + 7.36905i −0.412155 + 0.288594i
\(653\) −33.6553 15.6937i −1.31703 0.614142i −0.368148 0.929767i \(-0.620008\pi\)
−0.948884 + 0.315625i \(0.897786\pi\)
\(654\) −33.1952 + 15.7135i −1.29804 + 0.614447i
\(655\) 0 0
\(656\) −4.93599 + 2.84980i −0.192718 + 0.111266i
\(657\) −17.5518 + 17.9626i −0.684760 + 0.700786i
\(658\) 0.759896 + 2.83597i 0.0296238 + 0.110558i
\(659\) −17.4051 6.33493i −0.678005 0.246774i −0.0200144 0.999800i \(-0.506371\pi\)
−0.657991 + 0.753026i \(0.728593\pi\)
\(660\) 0 0
\(661\) 32.6452 + 27.3925i 1.26975 + 1.06545i 0.994572 + 0.104053i \(0.0331813\pi\)
0.275178 + 0.961393i \(0.411263\pi\)
\(662\) 24.0488 2.10399i 0.934682 0.0817740i
\(663\) −2.95051 2.44683i −0.114588 0.0950271i
\(664\) 1.86287 5.11819i 0.0722933 0.198624i
\(665\) 0 0
\(666\) −32.7107 11.4790i −1.26751 0.444804i
\(667\) 15.5115 57.8896i 0.600607 2.24149i
\(668\) −7.26980 + 10.3824i −0.281277 + 0.401705i
\(669\) −34.6914 2.83305i −1.34125 0.109532i
\(670\) 0 0
\(671\) 11.2566 + 1.98484i 0.434555 + 0.0766238i
\(672\) −4.86719 2.77267i −0.187756 0.106958i
\(673\) −0.827111 + 9.45392i −0.0318828 + 0.364422i 0.963448 + 0.267896i \(0.0863285\pi\)
−0.995331 + 0.0965254i \(0.969227\pi\)
\(674\) 13.0095 0.501109
\(675\) 0 0
\(676\) −11.3614 −0.436977
\(677\) −0.944208 + 10.7923i −0.0362888 + 0.414783i 0.956223 + 0.292638i \(0.0945330\pi\)
−0.992512 + 0.122146i \(0.961023\pi\)
\(678\) 0.00127672 + 0.220771i 4.90322e−5 + 0.00847865i
\(679\) −3.16272 0.557672i −0.121374 0.0214015i
\(680\) 0 0
\(681\) −4.59204 + 6.63950i −0.175967 + 0.254426i
\(682\) −4.60635 + 6.57855i −0.176386 + 0.251906i
\(683\) 0.586431 2.18859i 0.0224392 0.0837441i −0.953798 0.300448i \(-0.902864\pi\)
0.976237 + 0.216704i \(0.0695306\pi\)
\(684\) −1.73382 + 10.5447i −0.0662943 + 0.403188i
\(685\) 0 0
\(686\) −3.34440 + 9.18868i −0.127690 + 0.350825i
\(687\) −7.06454 + 41.4658i −0.269529 + 1.58202i
\(688\) 8.72026 0.762924i 0.332457 0.0290862i
\(689\) −4.62889 3.88410i −0.176347 0.147972i
\(690\) 0 0
\(691\) 7.28698 + 2.65224i 0.277210 + 0.100896i 0.476884 0.878966i \(-0.341766\pi\)
−0.199674 + 0.979862i \(0.563988\pi\)
\(692\) −0.733152 2.73616i −0.0278703 0.104013i
\(693\) 3.61474 0.358421i 0.137313 0.0136153i
\(694\) −10.3378 + 5.96855i −0.392419 + 0.226563i
\(695\) 0 0
\(696\) 32.1267 + 22.2196i 1.21776 + 0.842231i
\(697\) 11.7130 + 5.46187i 0.443662 + 0.206883i
\(698\) 20.7650 14.5398i 0.785969 0.550341i
\(699\) 8.62458 8.72492i 0.326212 0.330007i
\(700\) 0 0
\(701\) 3.06270i 0.115677i −0.998326 0.0578383i \(-0.981579\pi\)
0.998326 0.0578383i \(-0.0184208\pi\)
\(702\) 3.92120 0.0680353i 0.147996 0.00256783i
\(703\) −30.6241 + 30.6241i −1.15501 + 1.15501i
\(704\) −10.1338 + 8.50324i −0.381931 + 0.320478i
\(705\) 0 0
\(706\) −6.07355 + 34.4448i −0.228581 + 1.29635i
\(707\) −3.31146 + 7.10146i −0.124540 + 0.267078i
\(708\) 3.37458 2.86502i 0.126824 0.107674i
\(709\) −45.6222 + 8.04442i −1.71338 + 0.302114i −0.942335 0.334671i \(-0.891375\pi\)
−0.771041 + 0.636785i \(0.780264\pi\)
\(710\) 0 0
\(711\) 4.80392 0.904469i 0.180161 0.0339203i
\(712\) −16.3231 + 4.37376i −0.611734 + 0.163914i
\(713\) −15.0236 32.2183i −0.562640 1.20658i
\(714\) −0.356226 3.81729i −0.0133314 0.142859i
\(715\) 0 0
\(716\) −2.96927 + 3.53864i −0.110967 + 0.132245i
\(717\) −6.98896 18.8619i −0.261008 0.704411i
\(718\) −17.6751 + 8.24204i −0.659629 + 0.307590i
\(719\) 25.2485 43.7317i 0.941610 1.63092i 0.179211 0.983811i \(-0.442646\pi\)
0.762400 0.647106i \(-0.224021\pi\)
\(720\) 0 0
\(721\) 1.71065 + 2.96294i 0.0637080 + 0.110346i
\(722\) 3.16086 + 2.21326i 0.117635 + 0.0823690i
\(723\) −6.10583 + 17.0824i −0.227078 + 0.635300i
\(724\) −2.90761 7.98858i −0.108060 0.296893i
\(725\) 0 0
\(726\) −3.63798 + 13.8981i −0.135018 + 0.515808i
\(727\) 10.5499 + 0.922993i 0.391273 + 0.0342319i 0.281095 0.959680i \(-0.409302\pi\)
0.110178 + 0.993912i \(0.464858\pi\)
\(728\) 1.07638 + 1.07638i 0.0398933 + 0.0398933i
\(729\) −26.9837 + 0.936651i −0.999398 + 0.0346908i
\(730\) 0 0
\(731\) −12.7586 15.2051i −0.471893 0.562380i
\(732\) −5.21006 8.90476i −0.192569 0.329129i
\(733\) −16.7312 23.8946i −0.617981 0.882569i 0.381139 0.924518i \(-0.375532\pi\)
−0.999120 + 0.0419494i \(0.986643\pi\)
\(734\) 6.98357 2.54181i 0.257768 0.0938200i
\(735\) 0 0
\(736\) −6.54274 37.1057i −0.241169 1.36774i
\(737\) −18.9472 5.07689i −0.697929 0.187010i
\(738\) −12.7320 + 3.56986i −0.468672 + 0.131408i
\(739\) −5.54415 3.20092i −0.203945 0.117748i 0.394549 0.918875i \(-0.370901\pi\)
−0.598494 + 0.801127i \(0.704234\pi\)
\(740\) 0 0
\(741\) 2.04492 4.45239i 0.0751220 0.163563i
\(742\) −0.526756 6.02085i −0.0193378 0.221032i
\(743\) 2.60134 + 29.7334i 0.0954338 + 1.09081i 0.881345 + 0.472473i \(0.156639\pi\)
−0.785911 + 0.618339i \(0.787806\pi\)
\(744\) 23.0696 2.15283i 0.845774 0.0789267i
\(745\) 0 0
\(746\) −9.33928 5.39204i −0.341935 0.197416i
\(747\) 3.03391 4.44133i 0.111005 0.162500i
\(748\) 4.70355 + 1.26031i 0.171979 + 0.0460816i
\(749\) −1.89758 10.7617i −0.0693359 0.393224i
\(750\) 0 0
\(751\) −9.53000 + 3.46864i −0.347755 + 0.126572i −0.509991 0.860180i \(-0.670351\pi\)
0.162237 + 0.986752i \(0.448129\pi\)
\(752\) −3.14257 4.48806i −0.114598 0.163663i
\(753\) 9.65627 16.9508i 0.351894 0.617721i
\(754\) −3.60152 4.29213i −0.131160 0.156310i
\(755\) 0 0
\(756\) −2.35824 2.27780i −0.0857685 0.0828430i
\(757\) −6.39851 6.39851i −0.232558 0.232558i 0.581202 0.813760i \(-0.302583\pi\)
−0.813760 + 0.581202i \(0.802583\pi\)
\(758\) −5.67002 0.496062i −0.205944 0.0180178i
\(759\) 17.3766 + 17.1768i 0.630732 + 0.623479i
\(760\) 0 0
\(761\) 9.16585 + 25.1830i 0.332262 + 0.912882i 0.987522 + 0.157479i \(0.0503367\pi\)
−0.655260 + 0.755403i \(0.727441\pi\)
\(762\) −29.5267 + 5.38260i −1.06964 + 0.194991i
\(763\) −11.5315 8.07441i −0.417467 0.292313i
\(764\) 0.516728 + 0.895000i 0.0186946 + 0.0323800i
\(765\) 0 0
\(766\) −2.33284 + 4.04059i −0.0842888 + 0.145993i
\(767\) −1.83945 + 0.857749i −0.0664186 + 0.0309715i
\(768\) 28.4057 + 4.83948i 1.02500 + 0.174630i
\(769\) 8.41448 10.0280i 0.303434 0.361619i −0.592684 0.805435i \(-0.701932\pi\)
0.896117 + 0.443817i \(0.146376\pi\)
\(770\) 0 0
\(771\) −28.0313 + 19.8703i −1.00952 + 0.715611i
\(772\) 5.30439 + 11.3753i 0.190909 + 0.409406i
\(773\) 12.5218 3.35520i 0.450377 0.120678i −0.0264987 0.999649i \(-0.508436\pi\)
0.476876 + 0.878971i \(0.341769\pi\)
\(774\) 20.0392 + 3.29494i 0.720293 + 0.118434i
\(775\) 0 0
\(776\) 13.8656 2.44488i 0.497747 0.0877662i
\(777\) −2.38301 13.0722i −0.0854901 0.468963i
\(778\) 4.27252 9.16244i 0.153177 0.328489i
\(779\) −2.86861 + 16.2687i −0.102778 + 0.582886i
\(780\) 0 0
\(781\) 8.63526 7.24584i 0.308994 0.259277i
\(782\) 18.2350 18.2350i 0.652082 0.652082i
\(783\) 25.3040 + 29.1150i 0.904290 + 1.04049i
\(784\) 8.79971i 0.314275i
\(785\) 0 0
\(786\) −10.7667 39.2718i −0.384034 1.40078i
\(787\) −10.2457 + 7.17412i −0.365220 + 0.255730i −0.741753 0.670673i \(-0.766005\pi\)
0.376533 + 0.926403i \(0.377116\pi\)
\(788\) −1.65163 0.770169i −0.0588370 0.0274361i
\(789\) −2.37942 + 29.1367i −0.0847098 + 1.03729i
\(790\) 0 0
\(791\) −0.0732857 + 0.0423115i −0.00260574 + 0.00150443i
\(792\) −14.3542 + 6.89669i −0.510054 + 0.245063i
\(793\) 1.22426 + 4.56900i 0.0434748 + 0.162250i
\(794\) 0.996853 + 0.362825i 0.0353770 + 0.0128762i
\(795\) 0 0
\(796\) −12.8897 10.8157i −0.456862 0.383353i
\(797\) 6.53273 0.571540i 0.231401 0.0202450i 0.0291347 0.999575i \(-0.490725\pi\)
0.202267 + 0.979331i \(0.435169\pi\)
\(798\) 4.59525 1.70269i 0.162670 0.0602747i
\(799\) −4.24908 + 11.6743i −0.150322 + 0.413006i
\(800\) 0 0
\(801\) −16.6868 + 0.193007i −0.589600 + 0.00681957i
\(802\) 2.21462 8.26509i 0.0782011 0.291851i
\(803\) −8.39015 + 11.9824i −0.296082 + 0.422849i
\(804\) 7.57516 + 16.0027i 0.267155 + 0.564372i
\(805\) 0 0
\(806\) −3.27296 0.577111i −0.115285 0.0203279i
\(807\) 45.7450 26.7648i 1.61030 0.942166i
\(808\) 2.99397 34.2212i 0.105327 1.20390i
\(809\) 21.1375 0.743156 0.371578 0.928402i \(-0.378817\pi\)
0.371578 + 0.928402i \(0.378817\pi\)
\(810\) 0 0
\(811\) −48.6371 −1.70788 −0.853940 0.520371i \(-0.825794\pi\)
−0.853940 + 0.520371i \(0.825794\pi\)
\(812\) −0.408252 + 4.66634i −0.0143268 + 0.163756i
\(813\) 7.79879 4.56297i 0.273516 0.160030i
\(814\) −19.8848 3.50622i −0.696961 0.122893i
\(815\) 0 0
\(816\) 3.06104 + 6.46651i 0.107158 + 0.226373i
\(817\) 14.5524 20.7829i 0.509123 0.727103i
\(818\) 7.70100 28.7405i 0.269259 1.00489i
\(819\) 0.766620 + 1.29305i 0.0267879 + 0.0451829i
\(820\) 0 0
\(821\) 8.00089 21.9823i 0.279233 0.767186i −0.718217 0.695819i \(-0.755042\pi\)
0.997450 0.0713672i \(-0.0227362\pi\)
\(822\) 8.83839 3.27492i 0.308274 0.114226i
\(823\) 3.34570 0.292711i 0.116624 0.0102033i −0.0286943 0.999588i \(-0.509135\pi\)
0.145318 + 0.989385i \(0.453579\pi\)
\(824\) −11.4901 9.64136i −0.400277 0.335873i
\(825\) 0 0
\(826\) −1.90760 0.694311i −0.0663740 0.0241582i
\(827\) 5.60974 + 20.9358i 0.195070 + 0.728010i 0.992249 + 0.124267i \(0.0396580\pi\)
−0.797179 + 0.603743i \(0.793675\pi\)
\(828\) 1.66788 21.9905i 0.0579628 0.764222i
\(829\) 4.62453 2.66997i 0.160617 0.0927320i −0.417537 0.908660i \(-0.637107\pi\)
0.578154 + 0.815928i \(0.303773\pi\)
\(830\) 0 0
\(831\) 1.64535 20.1477i 0.0570765 0.698916i
\(832\) −4.96154 2.31360i −0.172010 0.0802097i
\(833\) −16.3449 + 11.4448i −0.566317 + 0.396540i
\(834\) −6.21143 22.6565i −0.215084 0.784529i
\(835\) 0 0
\(836\) 6.22428i 0.215271i
\(837\) 22.5986 + 3.58168i 0.781120 + 0.123801i
\(838\) 18.9757 18.9757i 0.655504 0.655504i
\(839\) −0.256169 + 0.214952i −0.00884395 + 0.00742095i −0.647199 0.762321i \(-0.724060\pi\)
0.638355 + 0.769742i \(0.279615\pi\)
\(840\) 0 0
\(841\) 4.53398 25.7135i 0.156344 0.886673i
\(842\) −5.65161 + 12.1199i −0.194767 + 0.417680i
\(843\) 4.25238 + 23.3268i 0.146460 + 0.803417i
\(844\) 15.0433 2.65254i 0.517813 0.0913043i
\(845\) 0 0
\(846\) −4.48528 11.8934i −0.154207 0.408903i
\(847\) −5.31901 + 1.42522i −0.182763 + 0.0489713i
\(848\) 4.76648 + 10.2217i 0.163682 + 0.351016i
\(849\) 12.5403 8.88936i 0.430383 0.305082i
\(850\) 0 0
\(851\) 57.4510 68.4675i 1.96940 2.34703i
\(852\) −10.0301 1.70883i −0.343625 0.0585435i
\(853\) −15.6720 + 7.30797i −0.536598 + 0.250220i −0.671974 0.740574i \(-0.734554\pi\)
0.135376 + 0.990794i \(0.456776\pi\)
\(854\) −2.36558 + 4.09731i −0.0809486 + 0.140207i
\(855\) 0 0
\(856\) 23.9540 + 41.4895i 0.818731 + 1.41808i
\(857\) 8.96957 + 6.28056i 0.306395 + 0.214540i 0.716654 0.697429i \(-0.245673\pi\)
−0.410259 + 0.911969i \(0.634562\pi\)
\(858\) 2.24723 0.409660i 0.0767190 0.0139856i
\(859\) 9.19021 + 25.2499i 0.313566 + 0.861515i 0.991930 + 0.126789i \(0.0404671\pi\)
−0.678364 + 0.734726i \(0.737311\pi\)
\(860\) 0 0
\(861\) −3.60456 3.56311i −0.122843 0.121430i
\(862\) 5.37383 + 0.470149i 0.183033 + 0.0160133i
\(863\) 14.0569 + 14.0569i 0.478502 + 0.478502i 0.904652 0.426150i \(-0.140131\pi\)
−0.426150 + 0.904652i \(0.640131\pi\)
\(864\) 22.1534 + 9.86610i 0.753674 + 0.335652i
\(865\) 0 0
\(866\) −2.60873 3.10897i −0.0886484 0.105647i
\(867\) −6.54473 + 11.4887i −0.222271 + 0.390178i
\(868\) 1.59365 + 2.27597i 0.0540921 + 0.0772515i
\(869\) 2.67551 0.973806i 0.0907605 0.0330341i
\(870\) 0 0
\(871\) −1.40960 7.99422i −0.0477623 0.270874i
\(872\) 59.6132 + 15.9733i 2.01876 + 0.540924i
\(873\) 13.8639 + 1.05152i 0.469223 + 0.0355884i
\(874\) 28.5469 + 16.4815i 0.965612 + 0.557496i
\(875\) 0 0
\(876\) 13.1460 1.22677i 0.444161 0.0414486i
\(877\) 2.71444 + 31.0262i 0.0916602 + 1.04768i 0.893176 + 0.449708i \(0.148472\pi\)
−0.801516 + 0.597974i \(0.795973\pi\)
\(878\) −2.92369 33.4180i −0.0986699 1.12780i
\(879\) 8.16495 17.7775i 0.275397 0.599620i
\(880\) 0 0
\(881\) −10.7039 6.17988i −0.360623 0.208206i 0.308731 0.951149i \(-0.400096\pi\)
−0.669354 + 0.742944i \(0.733429\pi\)
\(882\) 5.05544 19.7794i 0.170225 0.666008i
\(883\) −34.5714 9.26338i −1.16342 0.311738i −0.375089 0.926989i \(-0.622388\pi\)
−0.788331 + 0.615251i \(0.789055\pi\)
\(884\) 0.349925 + 1.98452i 0.0117693 + 0.0667468i
\(885\) 0 0
\(886\) 15.0464 5.47645i 0.505494 0.183985i
\(887\) −1.34433 1.91991i −0.0451383 0.0644642i 0.795949 0.605364i \(-0.206973\pi\)
−0.841087 + 0.540900i \(0.818084\pi\)
\(888\) 29.4184 + 50.2803i 0.987215 + 1.68730i
\(889\) −7.39472 8.81269i −0.248011 0.295568i
\(890\) 0 0
\(891\) −15.4200 + 3.08832i −0.516590 + 0.103463i
\(892\) 12.9392 + 12.9392i 0.433236 + 0.433236i
\(893\) −15.8196 1.38403i −0.529382 0.0463149i
\(894\) −5.20364 + 19.8794i −0.174036 + 0.664866i
\(895\) 0 0
\(896\) 0.339458 + 0.932655i 0.0113405 + 0.0311578i
\(897\) −3.40326 + 9.52135i −0.113632 + 0.317909i
\(898\) −2.35671 1.65019i −0.0786446 0.0550675i
\(899\) −16.3445 28.3095i −0.545120 0.944175i
\(900\) 0 0
\(901\) 12.7870 22.1478i 0.425997 0.737849i
\(902\) −6.98019 + 3.25491i −0.232415 + 0.108377i
\(903\) 2.70460 + 7.29921i 0.0900034 + 0.242902i
\(904\) 0.238471 0.284198i 0.00793142 0.00945230i
\(905\) 0 0
\(906\) −1.52774 16.3711i −0.0507556 0.543895i
\(907\) −23.6471 50.7113i −0.785188 1.68384i −0.728099 0.685472i \(-0.759596\pi\)
−0.0570890 0.998369i \(-0.518182\pi\)
\(908\) 4.09944 1.09844i 0.136045 0.0364530i
\(909\) 11.2329 32.0093i 0.372572 1.06168i
\(910\) 0 0
\(911\) −26.4465 + 4.66323i −0.876211 + 0.154500i −0.593625 0.804742i \(-0.702304\pi\)
−0.282587 + 0.959242i \(0.591192\pi\)
\(912\) −6.97133 + 5.91868i −0.230844 + 0.195987i
\(913\) 1.32399 2.83930i 0.0438176 0.0939671i
\(914\) 6.21385 35.2405i 0.205536 1.16565i
\(915\) 0 0
\(916\) 16.9401 14.2144i 0.559715 0.469657i
\(917\) 11.0368 11.0368i 0.364467 0.364467i
\(918\) 3.16539 + 16.2936i 0.104473 + 0.537768i
\(919\) 30.8687i 1.01826i −0.860688 0.509132i \(-0.829967\pi\)
0.860688 0.509132i \(-0.170033\pi\)
\(920\) 0 0
\(921\) −10.3900 + 10.5109i −0.342362 + 0.346345i
\(922\) −2.60193 + 1.82189i −0.0856900 + 0.0600008i
\(923\) 4.22786 + 1.97148i 0.139162 + 0.0648921i
\(924\) −1.57062 1.08628i −0.0516696 0.0357360i
\(925\) 0 0
\(926\) 24.3463 14.0564i 0.800070 0.461921i
\(927\) −8.63559 12.0342i −0.283630 0.395256i
\(928\) −8.96728 33.4663i −0.294365 1.09859i
\(929\) 14.1178 + 5.13847i 0.463191 + 0.168588i 0.563065 0.826412i \(-0.309622\pi\)
−0.0998747 + 0.995000i \(0.531844\pi\)
\(930\) 0 0
\(931\) −19.5380 16.3943i −0.640331 0.537301i
\(932\) −6.42512 + 0.562125i −0.210462 + 0.0184130i
\(933\) 4.25659 24.9843i 0.139354 0.817950i
\(934\) −6.14270 + 16.8769i −0.200995 + 0.552230i
\(935\) 0 0
\(936\) −5.09710 4.17748i −0.166604 0.136545i
\(937\) 12.0470 44.9601i 0.393559 1.46878i −0.430660 0.902514i \(-0.641719\pi\)
0.824220 0.566270i \(-0.191614\pi\)
\(938\) 4.65700 6.65089i 0.152057 0.217159i
\(939\) −9.18797 + 13.2846i −0.299838 + 0.433528i
\(940\) 0 0
\(941\) −13.0261 2.29686i −0.424640 0.0748755i −0.0427555 0.999086i \(-0.513614\pi\)
−0.381884 + 0.924210i \(0.624725\pi\)
\(942\) −0.0350033 6.05277i −0.00114047 0.197210i
\(943\) 2.97131 33.9623i 0.0967593 1.10596i
\(944\) 3.78825 0.123297
\(945\) 0 0
\(946\) 11.8286 0.384581
\(947\) −2.93767 + 33.5777i −0.0954614 + 1.09113i 0.785794 + 0.618488i \(0.212255\pi\)
−0.881255 + 0.472640i \(0.843301\pi\)
\(948\) −2.23300 1.27206i −0.0725244 0.0413146i
\(949\) −5.96147 1.05117i −0.193517 0.0341223i
\(950\) 0 0
\(951\) 40.7875 + 3.33089i 1.32263 + 0.108011i
\(952\) −3.69529 + 5.27742i −0.119765 + 0.171042i
\(953\) −10.1544 + 37.8969i −0.328935 + 1.22760i 0.581362 + 0.813645i \(0.302520\pi\)
−0.910297 + 0.413956i \(0.864147\pi\)
\(954\) 4.84139 + 25.7141i 0.156746 + 0.832526i
\(955\) 0 0
\(956\) −3.61686 + 9.93723i −0.116977 + 0.321393i
\(957\) 17.2945 + 14.3422i 0.559051 + 0.463617i
\(958\) −36.1609 + 3.16367i −1.16830 + 0.102213i
\(959\) 2.76760 + 2.32229i 0.0893705 + 0.0749908i
\(960\) 0 0
\(961\) 10.9101 + 3.97094i 0.351938 + 0.128095i
\(962\) −2.16266 8.07116i −0.0697270 0.260225i
\(963\) 12.7724 + 45.5532i 0.411585 + 1.46793i
\(964\) 8.25932 4.76852i 0.266015 0.153584i
\(965\) 0 0
\(966\) −9.14099 + 4.32704i −0.294106 + 0.139220i
\(967\) 23.1190 + 10.7806i 0.743457 + 0.346680i 0.757163 0.653226i \(-0.226585\pi\)
−0.0137056 + 0.999906i \(0.504363\pi\)
\(968\) 19.7756 13.8471i 0.635613 0.445061i
\(969\) 20.0604 + 5.25103i 0.644434 + 0.168687i
\(970\) 0 0
\(971\) 23.0327i 0.739156i 0.929200 + 0.369578i \(0.120498\pi\)
−0.929200 + 0.369578i \(0.879502\pi\)
\(972\) 11.1329 + 8.80589i 0.357087 + 0.282449i
\(973\) 6.36728 6.36728i 0.204126 0.204126i
\(974\) 11.5013 9.65070i 0.368524 0.309228i
\(975\) 0 0
\(976\) 1.53312 8.69473i 0.0490738 0.278312i
\(977\) −0.117212 + 0.251362i −0.00374994 + 0.00804177i −0.908174 0.418593i \(-0.862523\pi\)
0.904424 + 0.426635i \(0.140301\pi\)
\(978\) −24.0188 8.58517i −0.768038 0.274523i
\(979\) −9.57227 + 1.68785i −0.305931 + 0.0539439i
\(980\) 0 0
\(981\) 53.1294 + 29.8603i 1.69629 + 0.953367i
\(982\) 29.6844 7.95391i 0.947268 0.253820i
\(983\) 3.52521 + 7.55984i 0.112437 + 0.241122i 0.954472 0.298302i \(-0.0964201\pi\)
−0.842035 + 0.539423i \(0.818642\pi\)
\(984\) 20.1924 + 9.27408i 0.643709 + 0.295647i
\(985\) 0 0
\(986\) 15.2427 18.1656i 0.485427 0.578510i
\(987\) 3.11012 3.75033i 0.0989963 0.119374i
\(988\) −2.33447 + 1.08858i −0.0742694 + 0.0346324i
\(989\) −26.1797 + 45.3445i −0.832465 + 1.44187i
\(990\) 0 0
\(991\) −3.48806 6.04150i −0.110802 0.191914i 0.805292 0.592878i \(-0.202009\pi\)
−0.916094 + 0.400964i \(0.868675\pi\)
\(992\) −16.8345 11.7876i −0.534494 0.374257i
\(993\) −25.9271 30.5383i −0.822773 0.969105i
\(994\) 1.59583 + 4.38451i 0.0506167 + 0.139068i
\(995\) 0 0
\(996\) −2.72706 + 0.747643i −0.0864103 + 0.0236900i
\(997\) −54.9810 4.81022i −1.74127 0.152341i −0.828276 0.560321i \(-0.810678\pi\)
−0.912991 + 0.407980i \(0.866233\pi\)
\(998\) 13.0450 + 13.0450i 0.412933 + 0.412933i
\(999\) 15.8508 + 55.3001i 0.501497 + 1.74962i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 675.2.ba.b.32.11 192
5.2 odd 4 135.2.q.a.113.11 yes 192
5.3 odd 4 inner 675.2.ba.b.518.6 192
5.4 even 2 135.2.q.a.32.6 192
15.2 even 4 405.2.r.a.368.6 192
15.14 odd 2 405.2.r.a.287.11 192
27.11 odd 18 inner 675.2.ba.b.632.6 192
135.38 even 36 inner 675.2.ba.b.443.11 192
135.92 even 36 135.2.q.a.38.6 yes 192
135.97 odd 36 405.2.r.a.278.11 192
135.119 odd 18 135.2.q.a.92.11 yes 192
135.124 even 18 405.2.r.a.197.6 192
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
135.2.q.a.32.6 192 5.4 even 2
135.2.q.a.38.6 yes 192 135.92 even 36
135.2.q.a.92.11 yes 192 135.119 odd 18
135.2.q.a.113.11 yes 192 5.2 odd 4
405.2.r.a.197.6 192 135.124 even 18
405.2.r.a.278.11 192 135.97 odd 36
405.2.r.a.287.11 192 15.14 odd 2
405.2.r.a.368.6 192 15.2 even 4
675.2.ba.b.32.11 192 1.1 even 1 trivial
675.2.ba.b.443.11 192 135.38 even 36 inner
675.2.ba.b.518.6 192 5.3 odd 4 inner
675.2.ba.b.632.6 192 27.11 odd 18 inner