Properties

Label 675.2.ba.b.257.5
Level $675$
Weight $2$
Character 675.257
Analytic conductor $5.390$
Analytic rank $0$
Dimension $192$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [675,2,Mod(32,675)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(675, base_ring=CyclotomicField(36))
 
chi = DirichletCharacter(H, H._module([10, 9]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("675.32");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 675 = 3^{3} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 675.ba (of order \(36\), degree \(12\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.38990213644\)
Analytic rank: \(0\)
Dimension: \(192\)
Relative dimension: \(16\) over \(\Q(\zeta_{36})\)
Twist minimal: no (minimal twist has level 135)
Sato-Tate group: $\mathrm{SU}(2)[C_{36}]$

Embedding invariants

Embedding label 257.5
Character \(\chi\) \(=\) 675.257
Dual form 675.2.ba.b.218.5

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.865920 - 0.606324i) q^{2} +(0.905161 + 1.47671i) q^{3} +(-0.301851 - 0.829330i) q^{4} +(0.111569 - 1.82754i) q^{6} +(1.22161 + 2.61975i) q^{7} +(-0.788655 + 2.94330i) q^{8} +(-1.36137 + 2.67333i) q^{9} +(1.51740 + 1.80836i) q^{11} +(0.951458 - 1.19642i) q^{12} +(-3.11956 - 4.45519i) q^{13} +(0.530600 - 3.00918i) q^{14} +(1.11535 - 0.935892i) q^{16} +(0.716894 + 2.67549i) q^{17} +(2.79974 - 1.48946i) q^{18} +(-5.35751 + 3.09316i) q^{19} +(-2.76286 + 4.17526i) q^{21} +(-0.217491 - 2.48593i) q^{22} +(-0.646627 - 0.301527i) q^{23} +(-5.06027 + 1.49954i) q^{24} +5.74930i q^{26} +(-5.18000 + 0.409444i) q^{27} +(1.80389 - 1.80389i) q^{28} +(0.623300 + 3.53491i) q^{29} +(-5.18043 + 1.88552i) q^{31} +(4.53781 - 0.397007i) q^{32} +(-1.29695 + 3.87762i) q^{33} +(1.00144 - 2.75143i) q^{34} +(2.62800 + 0.322074i) q^{36} +(4.26173 - 1.14193i) q^{37} +(6.51463 + 0.569956i) q^{38} +(3.75534 - 8.63936i) q^{39} +(5.70140 + 1.00531i) q^{41} +(4.92398 - 1.94025i) q^{42} +(-0.126221 + 1.44271i) q^{43} +(1.04170 - 1.80428i) q^{44} +(0.377104 + 0.653164i) q^{46} +(-9.40770 + 4.38688i) q^{47} +(2.39162 + 0.799924i) q^{48} +(-0.871236 + 1.03830i) q^{49} +(-3.30202 + 3.48039i) q^{51} +(-2.75318 + 3.93195i) q^{52} +(7.22940 + 7.22940i) q^{53} +(4.73372 + 2.78621i) q^{54} +(-8.67413 + 1.52948i) q^{56} +(-9.41712 - 5.11170i) q^{57} +(1.60357 - 3.43887i) q^{58} +(6.27320 + 5.26384i) q^{59} +(2.64019 + 0.960952i) q^{61} +(5.62907 + 1.50831i) q^{62} +(-8.66650 - 0.300676i) q^{63} +(-6.69194 - 3.86359i) q^{64} +(3.47414 - 2.57134i) q^{66} +(-6.11610 + 4.28254i) q^{67} +(2.00246 - 1.40214i) q^{68} +(-0.140033 - 1.22781i) q^{69} +(-4.24004 - 2.44799i) q^{71} +(-6.79476 - 6.11524i) q^{72} +(6.73088 + 1.80353i) q^{73} +(-4.38269 - 1.59517i) q^{74} +(4.18242 + 3.50947i) q^{76} +(-2.88379 + 6.18430i) q^{77} +(-8.49007 + 5.20404i) q^{78} +(-12.8661 + 2.26863i) q^{79} +(-5.29336 - 7.27876i) q^{81} +(-4.32741 - 4.32741i) q^{82} +(2.73492 - 3.90587i) q^{83} +(4.29664 + 1.03102i) q^{84} +(0.984048 - 1.17274i) q^{86} +(-4.65586 + 4.12010i) q^{87} +(-6.51925 + 3.03998i) q^{88} +(3.33276 + 5.77251i) q^{89} +(7.86060 - 13.6150i) q^{91} +(-0.0548802 + 0.627283i) q^{92} +(-7.47350 - 5.94331i) q^{93} +(10.8062 + 1.90542i) q^{94} +(4.69371 + 6.34168i) q^{96} +(18.2758 + 1.59893i) q^{97} +(1.38397 - 0.370833i) q^{98} +(-6.90008 + 1.59465i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 192 q + 12 q^{2} + 12 q^{3} - 36 q^{6} + 12 q^{7} + 18 q^{8} - 36 q^{11} + 12 q^{12} + 12 q^{13} - 24 q^{16} + 18 q^{17} + 54 q^{18} - 24 q^{21} + 12 q^{22} + 36 q^{23} + 36 q^{27} + 24 q^{28} - 24 q^{31}+ \cdots - 324 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/675\mathbb{Z}\right)^\times\).

\(n\) \(326\) \(352\)
\(\chi(n)\) \(e\left(\frac{17}{18}\right)\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.865920 0.606324i −0.612298 0.428736i 0.225863 0.974159i \(-0.427480\pi\)
−0.838161 + 0.545424i \(0.816369\pi\)
\(3\) 0.905161 + 1.47671i 0.522595 + 0.852581i
\(4\) −0.301851 0.829330i −0.150926 0.414665i
\(5\) 0 0
\(6\) 0.111569 1.82754i 0.0455480 0.746089i
\(7\) 1.22161 + 2.61975i 0.461725 + 0.990171i 0.989996 + 0.141096i \(0.0450626\pi\)
−0.528271 + 0.849076i \(0.677160\pi\)
\(8\) −0.788655 + 2.94330i −0.278832 + 1.04061i
\(9\) −1.36137 + 2.67333i −0.453789 + 0.891109i
\(10\) 0 0
\(11\) 1.51740 + 1.80836i 0.457512 + 0.545242i 0.944648 0.328084i \(-0.106403\pi\)
−0.487136 + 0.873326i \(0.661959\pi\)
\(12\) 0.951458 1.19642i 0.274662 0.345378i
\(13\) −3.11956 4.45519i −0.865210 1.23565i −0.970475 0.241203i \(-0.922458\pi\)
0.105265 0.994444i \(-0.466431\pi\)
\(14\) 0.530600 3.00918i 0.141809 0.804238i
\(15\) 0 0
\(16\) 1.11535 0.935892i 0.278838 0.233973i
\(17\) 0.716894 + 2.67549i 0.173872 + 0.648901i 0.996741 + 0.0806688i \(0.0257056\pi\)
−0.822869 + 0.568232i \(0.807628\pi\)
\(18\) 2.79974 1.48946i 0.659904 0.351069i
\(19\) −5.35751 + 3.09316i −1.22910 + 0.709619i −0.966841 0.255379i \(-0.917800\pi\)
−0.262256 + 0.964998i \(0.584466\pi\)
\(20\) 0 0
\(21\) −2.76286 + 4.17526i −0.602906 + 0.911116i
\(22\) −0.217491 2.48593i −0.0463692 0.530002i
\(23\) −0.646627 0.301527i −0.134831 0.0628728i 0.354032 0.935233i \(-0.384810\pi\)
−0.488863 + 0.872361i \(0.662588\pi\)
\(24\) −5.06027 + 1.49954i −1.03292 + 0.306093i
\(25\) 0 0
\(26\) 5.74930i 1.12753i
\(27\) −5.18000 + 0.409444i −0.996891 + 0.0787976i
\(28\) 1.80389 1.80389i 0.340903 0.340903i
\(29\) 0.623300 + 3.53491i 0.115744 + 0.656416i 0.986379 + 0.164487i \(0.0525969\pi\)
−0.870635 + 0.491929i \(0.836292\pi\)
\(30\) 0 0
\(31\) −5.18043 + 1.88552i −0.930432 + 0.338650i −0.762381 0.647129i \(-0.775970\pi\)
−0.168051 + 0.985778i \(0.553747\pi\)
\(32\) 4.53781 0.397007i 0.802178 0.0701815i
\(33\) −1.29695 + 3.87762i −0.225769 + 0.675007i
\(34\) 1.00144 2.75143i 0.171745 0.471866i
\(35\) 0 0
\(36\) 2.62800 + 0.322074i 0.438000 + 0.0536790i
\(37\) 4.26173 1.14193i 0.700624 0.187732i 0.109114 0.994029i \(-0.465199\pi\)
0.591510 + 0.806298i \(0.298532\pi\)
\(38\) 6.51463 + 0.569956i 1.05681 + 0.0924591i
\(39\) 3.75534 8.63936i 0.601335 1.38340i
\(40\) 0 0
\(41\) 5.70140 + 1.00531i 0.890409 + 0.157003i 0.600095 0.799928i \(-0.295129\pi\)
0.290314 + 0.956932i \(0.406240\pi\)
\(42\) 4.92398 1.94025i 0.759786 0.299387i
\(43\) −0.126221 + 1.44271i −0.0192485 + 0.220012i 0.980478 + 0.196629i \(0.0629993\pi\)
−0.999727 + 0.0233831i \(0.992556\pi\)
\(44\) 1.04170 1.80428i 0.157042 0.272005i
\(45\) 0 0
\(46\) 0.377104 + 0.653164i 0.0556010 + 0.0963037i
\(47\) −9.40770 + 4.38688i −1.37225 + 0.639893i −0.962244 0.272188i \(-0.912253\pi\)
−0.410010 + 0.912081i \(0.634475\pi\)
\(48\) 2.39162 + 0.799924i 0.345201 + 0.115459i
\(49\) −0.871236 + 1.03830i −0.124462 + 0.148328i
\(50\) 0 0
\(51\) −3.30202 + 3.48039i −0.462375 + 0.487353i
\(52\) −2.75318 + 3.93195i −0.381797 + 0.545263i
\(53\) 7.22940 + 7.22940i 0.993035 + 0.993035i 0.999976 0.00694140i \(-0.00220953\pi\)
−0.00694140 + 0.999976i \(0.502210\pi\)
\(54\) 4.73372 + 2.78621i 0.644177 + 0.379155i
\(55\) 0 0
\(56\) −8.67413 + 1.52948i −1.15913 + 0.204386i
\(57\) −9.41712 5.11170i −1.24733 0.677061i
\(58\) 1.60357 3.43887i 0.210559 0.451546i
\(59\) 6.27320 + 5.26384i 0.816701 + 0.685293i 0.952197 0.305484i \(-0.0988184\pi\)
−0.135496 + 0.990778i \(0.543263\pi\)
\(60\) 0 0
\(61\) 2.64019 + 0.960952i 0.338042 + 0.123037i 0.505463 0.862848i \(-0.331322\pi\)
−0.167421 + 0.985885i \(0.553544\pi\)
\(62\) 5.62907 + 1.50831i 0.714893 + 0.191555i
\(63\) −8.66650 0.300676i −1.09188 0.0378817i
\(64\) −6.69194 3.86359i −0.836493 0.482949i
\(65\) 0 0
\(66\) 3.47414 2.57134i 0.427637 0.316510i
\(67\) −6.11610 + 4.28254i −0.747201 + 0.523196i −0.884048 0.467396i \(-0.845192\pi\)
0.136847 + 0.990592i \(0.456303\pi\)
\(68\) 2.00246 1.40214i 0.242834 0.170034i
\(69\) −0.140033 1.22781i −0.0168579 0.147811i
\(70\) 0 0
\(71\) −4.24004 2.44799i −0.503200 0.290523i 0.226834 0.973933i \(-0.427162\pi\)
−0.730034 + 0.683411i \(0.760496\pi\)
\(72\) −6.79476 6.11524i −0.800770 0.720688i
\(73\) 6.73088 + 1.80353i 0.787790 + 0.211088i 0.630216 0.776420i \(-0.282966\pi\)
0.157574 + 0.987507i \(0.449633\pi\)
\(74\) −4.38269 1.59517i −0.509478 0.185435i
\(75\) 0 0
\(76\) 4.18242 + 3.50947i 0.479756 + 0.402563i
\(77\) −2.88379 + 6.18430i −0.328638 + 0.704767i
\(78\) −8.49007 + 5.20404i −0.961311 + 0.589242i
\(79\) −12.8661 + 2.26863i −1.44754 + 0.255241i −0.841529 0.540212i \(-0.818344\pi\)
−0.606015 + 0.795453i \(0.707233\pi\)
\(80\) 0 0
\(81\) −5.29336 7.27876i −0.588151 0.808751i
\(82\) −4.32741 4.32741i −0.477883 0.477883i
\(83\) 2.73492 3.90587i 0.300196 0.428724i −0.640509 0.767951i \(-0.721276\pi\)
0.940705 + 0.339227i \(0.110165\pi\)
\(84\) 4.29664 + 1.03102i 0.468802 + 0.112493i
\(85\) 0 0
\(86\) 0.984048 1.17274i 0.106113 0.126460i
\(87\) −4.65586 + 4.12010i −0.499161 + 0.441721i
\(88\) −6.51925 + 3.03998i −0.694955 + 0.324063i
\(89\) 3.33276 + 5.77251i 0.353272 + 0.611885i 0.986821 0.161818i \(-0.0517357\pi\)
−0.633549 + 0.773703i \(0.718402\pi\)
\(90\) 0 0
\(91\) 7.86060 13.6150i 0.824014 1.42723i
\(92\) −0.0548802 + 0.627283i −0.00572165 + 0.0653988i
\(93\) −7.47350 5.94331i −0.774966 0.616292i
\(94\) 10.8062 + 1.90542i 1.11457 + 0.196529i
\(95\) 0 0
\(96\) 4.69371 + 6.34168i 0.479050 + 0.647245i
\(97\) 18.2758 + 1.59893i 1.85563 + 0.162346i 0.959547 0.281548i \(-0.0908478\pi\)
0.896079 + 0.443894i \(0.146403\pi\)
\(98\) 1.38397 0.370833i 0.139802 0.0374597i
\(99\) −6.90008 + 1.59465i −0.693484 + 0.160269i
\(100\) 0 0
\(101\) −1.15191 + 3.16484i −0.114619 + 0.314913i −0.983716 0.179728i \(-0.942478\pi\)
0.869097 + 0.494641i \(0.164701\pi\)
\(102\) 4.96953 1.01165i 0.492057 0.100168i
\(103\) 3.61346 0.316137i 0.356045 0.0311499i 0.0922694 0.995734i \(-0.470588\pi\)
0.263775 + 0.964584i \(0.415032\pi\)
\(104\) 15.5732 5.66819i 1.52708 0.555812i
\(105\) 0 0
\(106\) −1.87673 10.6434i −0.182284 1.03378i
\(107\) 4.03460 4.03460i 0.390039 0.390039i −0.484662 0.874701i \(-0.661057\pi\)
0.874701 + 0.484662i \(0.161057\pi\)
\(108\) 1.90315 + 4.17233i 0.183131 + 0.401483i
\(109\) 15.8226i 1.51553i −0.652527 0.757765i \(-0.726291\pi\)
0.652527 0.757765i \(-0.273709\pi\)
\(110\) 0 0
\(111\) 5.54385 + 5.25972i 0.526199 + 0.499231i
\(112\) 3.81433 + 1.77865i 0.360420 + 0.168067i
\(113\) 0.232615 + 2.65880i 0.0218825 + 0.250119i 0.999255 + 0.0385931i \(0.0122876\pi\)
−0.977372 + 0.211526i \(0.932157\pi\)
\(114\) 5.05513 + 10.1361i 0.473456 + 0.949337i
\(115\) 0 0
\(116\) 2.74346 1.58394i 0.254724 0.147065i
\(117\) 16.1570 2.27446i 1.49372 0.210273i
\(118\) −2.24050 8.36165i −0.206255 0.769753i
\(119\) −6.13333 + 5.14648i −0.562242 + 0.471777i
\(120\) 0 0
\(121\) 0.942447 5.34488i 0.0856770 0.485898i
\(122\) −1.70355 2.43292i −0.154232 0.220266i
\(123\) 3.67613 + 9.32930i 0.331466 + 0.841195i
\(124\) 3.12744 + 3.72713i 0.280852 + 0.334707i
\(125\) 0 0
\(126\) 7.32219 + 5.51507i 0.652312 + 0.491321i
\(127\) 0.846401 3.15881i 0.0751059 0.280299i −0.918151 0.396230i \(-0.870318\pi\)
0.993257 + 0.115931i \(0.0369850\pi\)
\(128\) −0.398073 0.853671i −0.0351850 0.0754546i
\(129\) −2.24472 + 1.11950i −0.197637 + 0.0985661i
\(130\) 0 0
\(131\) 0.497235 + 1.36614i 0.0434436 + 0.119360i 0.959517 0.281649i \(-0.0908815\pi\)
−0.916074 + 0.401010i \(0.868659\pi\)
\(132\) 3.60731 0.0948693i 0.313976 0.00825731i
\(133\) −14.6481 10.2567i −1.27015 0.889368i
\(134\) 7.89266 0.681822
\(135\) 0 0
\(136\) −8.44014 −0.723736
\(137\) 13.0703 + 9.15193i 1.11667 + 0.781902i 0.978035 0.208442i \(-0.0668391\pi\)
0.138637 + 0.990343i \(0.455728\pi\)
\(138\) −0.623196 + 1.14809i −0.0530499 + 0.0977322i
\(139\) −3.12149 8.57623i −0.264762 0.727426i −0.998830 0.0483514i \(-0.984603\pi\)
0.734069 0.679075i \(-0.237619\pi\)
\(140\) 0 0
\(141\) −14.9937 9.92164i −1.26269 0.835553i
\(142\) 2.18726 + 4.69060i 0.183551 + 0.393626i
\(143\) 3.32299 12.4016i 0.277883 1.03707i
\(144\) 0.983543 + 4.25580i 0.0819619 + 0.354650i
\(145\) 0 0
\(146\) −4.73488 5.64281i −0.391861 0.467002i
\(147\) −2.32188 0.346738i −0.191505 0.0285985i
\(148\) −2.23344 3.18968i −0.183588 0.262190i
\(149\) 1.63395 9.26659i 0.133858 0.759149i −0.841789 0.539806i \(-0.818498\pi\)
0.975648 0.219343i \(-0.0703913\pi\)
\(150\) 0 0
\(151\) −0.808803 + 0.678666i −0.0658194 + 0.0552291i −0.675104 0.737723i \(-0.735901\pi\)
0.609284 + 0.792952i \(0.291457\pi\)
\(152\) −4.87887 18.2082i −0.395729 1.47688i
\(153\) −8.12841 1.72582i −0.657143 0.139525i
\(154\) 6.24682 3.60660i 0.503383 0.290628i
\(155\) 0 0
\(156\) −8.29843 0.506611i −0.664406 0.0405613i
\(157\) −1.94520 22.2338i −0.155244 1.77445i −0.530652 0.847590i \(-0.678053\pi\)
0.375408 0.926860i \(-0.377503\pi\)
\(158\) 12.5165 + 5.83654i 0.995759 + 0.464330i
\(159\) −4.13198 + 17.2195i −0.327687 + 1.36560i
\(160\) 0 0
\(161\) 2.06235i 0.162536i
\(162\) 0.170346 + 9.51231i 0.0133837 + 0.747358i
\(163\) 1.74889 1.74889i 0.136983 0.136983i −0.635290 0.772274i \(-0.719119\pi\)
0.772274 + 0.635290i \(0.219119\pi\)
\(164\) −0.887241 5.03179i −0.0692819 0.392917i
\(165\) 0 0
\(166\) −4.73644 + 1.72392i −0.367619 + 0.133802i
\(167\) −7.25686 + 0.634893i −0.561553 + 0.0491295i −0.364399 0.931243i \(-0.618725\pi\)
−0.197154 + 0.980373i \(0.563170\pi\)
\(168\) −10.1101 11.4248i −0.780011 0.881441i
\(169\) −5.67082 + 15.5805i −0.436217 + 1.19850i
\(170\) 0 0
\(171\) −0.975496 18.5333i −0.0745981 1.41728i
\(172\) 1.23458 0.330806i 0.0941362 0.0252237i
\(173\) −20.4232 1.78680i −1.55275 0.135848i −0.721760 0.692143i \(-0.756667\pi\)
−0.830985 + 0.556295i \(0.812222\pi\)
\(174\) 6.52972 0.744716i 0.495017 0.0564568i
\(175\) 0 0
\(176\) 3.38487 + 0.596843i 0.255144 + 0.0449887i
\(177\) −2.09493 + 14.0283i −0.157464 + 1.05443i
\(178\) 0.614106 7.01926i 0.0460292 0.526116i
\(179\) 7.17079 12.4202i 0.535970 0.928327i −0.463146 0.886282i \(-0.653279\pi\)
0.999116 0.0420450i \(-0.0133873\pi\)
\(180\) 0 0
\(181\) 1.03474 + 1.79221i 0.0769112 + 0.133214i 0.901916 0.431912i \(-0.142161\pi\)
−0.825005 + 0.565126i \(0.808828\pi\)
\(182\) −15.0617 + 7.02339i −1.11645 + 0.520609i
\(183\) 0.970750 + 4.76862i 0.0717599 + 0.352507i
\(184\) 1.39745 1.66542i 0.103021 0.122776i
\(185\) 0 0
\(186\) 2.86788 + 9.67779i 0.210283 + 0.709610i
\(187\) −3.75043 + 5.35618i −0.274259 + 0.391682i
\(188\) 6.47790 + 6.47790i 0.472449 + 0.472449i
\(189\) −7.40057 13.0701i −0.538312 0.950710i
\(190\) 0 0
\(191\) 22.9618 4.04878i 1.66145 0.292959i 0.737467 0.675383i \(-0.236022\pi\)
0.923987 + 0.382424i \(0.124911\pi\)
\(192\) −0.351864 13.3793i −0.0253936 0.965564i
\(193\) 0.131693 0.282417i 0.00947948 0.0203288i −0.901511 0.432756i \(-0.857541\pi\)
0.910991 + 0.412427i \(0.135319\pi\)
\(194\) −14.8559 12.4656i −1.06659 0.894977i
\(195\) 0 0
\(196\) 1.12408 + 0.409130i 0.0802911 + 0.0292236i
\(197\) 3.13774 + 0.840756i 0.223555 + 0.0599014i 0.368858 0.929486i \(-0.379749\pi\)
−0.145303 + 0.989387i \(0.546416\pi\)
\(198\) 6.94179 + 2.80284i 0.493332 + 0.199189i
\(199\) 5.52277 + 3.18857i 0.391499 + 0.226032i 0.682809 0.730596i \(-0.260758\pi\)
−0.291310 + 0.956629i \(0.594091\pi\)
\(200\) 0 0
\(201\) −11.8601 5.15534i −0.836550 0.363630i
\(202\) 2.91638 2.04207i 0.205196 0.143679i
\(203\) −8.49914 + 5.95116i −0.596523 + 0.417690i
\(204\) 3.88311 + 1.68790i 0.271872 + 0.118177i
\(205\) 0 0
\(206\) −3.32065 1.91718i −0.231360 0.133576i
\(207\) 1.68638 1.31816i 0.117211 0.0916183i
\(208\) −7.64899 2.04954i −0.530362 0.142110i
\(209\) −13.7230 4.99477i −0.949241 0.345495i
\(210\) 0 0
\(211\) 4.91430 + 4.12359i 0.338314 + 0.283879i 0.796077 0.605195i \(-0.206905\pi\)
−0.457763 + 0.889074i \(0.651349\pi\)
\(212\) 3.81335 8.17776i 0.261902 0.561651i
\(213\) −0.222942 8.47715i −0.0152757 0.580844i
\(214\) −5.93991 + 1.04737i −0.406044 + 0.0715965i
\(215\) 0 0
\(216\) 2.88011 15.5692i 0.195967 1.05935i
\(217\) −11.2680 11.2680i −0.764925 0.764925i
\(218\) −9.59362 + 13.7011i −0.649762 + 0.927956i
\(219\) 3.42923 + 11.5721i 0.231726 + 0.781968i
\(220\) 0 0
\(221\) 9.68341 11.5402i 0.651376 0.776280i
\(222\) −1.61143 7.91587i −0.108152 0.531278i
\(223\) 9.41489 4.39023i 0.630467 0.293992i −0.0809965 0.996714i \(-0.525810\pi\)
0.711464 + 0.702723i \(0.248032\pi\)
\(224\) 6.58348 + 11.4029i 0.439877 + 0.761889i
\(225\) 0 0
\(226\) 1.41067 2.44335i 0.0938361 0.162529i
\(227\) −0.272304 + 3.11245i −0.0180734 + 0.206580i 0.981789 + 0.189976i \(0.0608411\pi\)
−0.999862 + 0.0166042i \(0.994714\pi\)
\(228\) −1.39671 + 9.35287i −0.0924996 + 0.619409i
\(229\) 23.1368 + 4.07964i 1.52892 + 0.269590i 0.873933 0.486047i \(-0.161562\pi\)
0.654990 + 0.755638i \(0.272673\pi\)
\(230\) 0 0
\(231\) −11.7427 + 1.33926i −0.772616 + 0.0881170i
\(232\) −10.8959 0.953265i −0.715349 0.0625849i
\(233\) 3.20411 0.858538i 0.209908 0.0562447i −0.152333 0.988329i \(-0.548679\pi\)
0.362241 + 0.932085i \(0.382012\pi\)
\(234\) −15.3698 7.82690i −1.00475 0.511661i
\(235\) 0 0
\(236\) 2.47188 6.79145i 0.160906 0.442085i
\(237\) −14.9960 16.9460i −0.974093 1.10076i
\(238\) 8.43141 0.737653i 0.546527 0.0478149i
\(239\) −15.9837 + 5.81759i −1.03390 + 0.376309i −0.802564 0.596566i \(-0.796532\pi\)
−0.231335 + 0.972874i \(0.574309\pi\)
\(240\) 0 0
\(241\) 3.22231 + 18.2746i 0.207567 + 1.17717i 0.893349 + 0.449364i \(0.148349\pi\)
−0.685782 + 0.727807i \(0.740540\pi\)
\(242\) −4.05681 + 4.05681i −0.260782 + 0.260782i
\(243\) 5.95729 14.4052i 0.382160 0.924096i
\(244\) 2.47965i 0.158744i
\(245\) 0 0
\(246\) 2.47334 10.3074i 0.157695 0.657173i
\(247\) 30.4937 + 14.2194i 1.94027 + 0.904761i
\(248\) −1.46409 16.7346i −0.0929695 1.06265i
\(249\) 8.24339 + 0.503250i 0.522403 + 0.0318922i
\(250\) 0 0
\(251\) −13.1493 + 7.59178i −0.829979 + 0.479189i −0.853846 0.520527i \(-0.825736\pi\)
0.0238664 + 0.999715i \(0.492402\pi\)
\(252\) 2.36663 + 7.27814i 0.149084 + 0.458480i
\(253\) −0.435919 1.62687i −0.0274060 0.102281i
\(254\) −2.64818 + 2.22208i −0.166161 + 0.139426i
\(255\) 0 0
\(256\) −2.85653 + 16.2002i −0.178533 + 1.01251i
\(257\) −4.98418 7.11815i −0.310905 0.444018i 0.633041 0.774118i \(-0.281806\pi\)
−0.943946 + 0.330100i \(0.892917\pi\)
\(258\) 2.62253 + 0.391636i 0.163271 + 0.0243822i
\(259\) 8.19772 + 9.76966i 0.509382 + 0.607057i
\(260\) 0 0
\(261\) −10.2985 3.14602i −0.637462 0.194734i
\(262\) 0.397759 1.48446i 0.0245736 0.0917099i
\(263\) −9.97382 21.3889i −0.615012 1.31890i −0.929214 0.369541i \(-0.879515\pi\)
0.314203 0.949356i \(-0.398263\pi\)
\(264\) −10.3902 6.87540i −0.639470 0.423152i
\(265\) 0 0
\(266\) 6.46518 + 17.7629i 0.396406 + 1.08912i
\(267\) −5.50766 + 10.1466i −0.337063 + 0.620961i
\(268\) 5.39779 + 3.77957i 0.329723 + 0.230874i
\(269\) 10.2124 0.622659 0.311330 0.950302i \(-0.399226\pi\)
0.311330 + 0.950302i \(0.399226\pi\)
\(270\) 0 0
\(271\) 4.84409 0.294258 0.147129 0.989117i \(-0.452997\pi\)
0.147129 + 0.989117i \(0.452997\pi\)
\(272\) 3.30356 + 2.31318i 0.200308 + 0.140257i
\(273\) 27.2205 0.715877i 1.64746 0.0433268i
\(274\) −5.76881 15.8497i −0.348506 0.957514i
\(275\) 0 0
\(276\) −0.975993 + 0.486750i −0.0587479 + 0.0292989i
\(277\) 5.71185 + 12.2491i 0.343192 + 0.735978i 0.999834 0.0182248i \(-0.00580146\pi\)
−0.656642 + 0.754203i \(0.728024\pi\)
\(278\) −2.49701 + 9.31897i −0.149761 + 0.558914i
\(279\) 2.01184 16.4159i 0.120446 0.982792i
\(280\) 0 0
\(281\) −10.1156 12.0553i −0.603445 0.719158i 0.374685 0.927152i \(-0.377751\pi\)
−0.978130 + 0.207994i \(0.933306\pi\)
\(282\) 6.96758 + 17.6824i 0.414913 + 1.05297i
\(283\) 17.2952 + 24.7001i 1.02809 + 1.46827i 0.877443 + 0.479680i \(0.159247\pi\)
0.150648 + 0.988587i \(0.451864\pi\)
\(284\) −0.750327 + 4.25532i −0.0445237 + 0.252507i
\(285\) 0 0
\(286\) −10.3968 + 8.72397i −0.614777 + 0.515859i
\(287\) 4.33122 + 16.1643i 0.255664 + 0.954150i
\(288\) −5.11629 + 12.6715i −0.301480 + 0.746676i
\(289\) 8.07815 4.66392i 0.475185 0.274348i
\(290\) 0 0
\(291\) 14.1814 + 28.4354i 0.831328 + 1.66691i
\(292\) −0.536001 6.12652i −0.0313671 0.358527i
\(293\) 6.65512 + 3.10333i 0.388796 + 0.181299i 0.607180 0.794564i \(-0.292301\pi\)
−0.218384 + 0.975863i \(0.570078\pi\)
\(294\) 1.80033 + 1.70806i 0.104997 + 0.0996160i
\(295\) 0 0
\(296\) 13.4441i 0.781424i
\(297\) −8.60053 8.74602i −0.499053 0.507496i
\(298\) −7.03343 + 7.03343i −0.407435 + 0.407435i
\(299\) 0.673830 + 3.82148i 0.0389686 + 0.221002i
\(300\) 0 0
\(301\) −3.93374 + 1.43176i −0.226737 + 0.0825254i
\(302\) 1.11185 0.0972742i 0.0639798 0.00559750i
\(303\) −5.71622 + 1.16365i −0.328388 + 0.0668501i
\(304\) −3.08065 + 8.46402i −0.176687 + 0.485445i
\(305\) 0 0
\(306\) 5.99214 + 6.42287i 0.342548 + 0.367171i
\(307\) −13.2129 + 3.54038i −0.754099 + 0.202060i −0.615336 0.788265i \(-0.710980\pi\)
−0.138764 + 0.990326i \(0.544313\pi\)
\(308\) 5.99930 + 0.524871i 0.341842 + 0.0299073i
\(309\) 3.73760 + 5.04989i 0.212625 + 0.287278i
\(310\) 0 0
\(311\) 3.80231 + 0.670449i 0.215609 + 0.0380177i 0.280409 0.959881i \(-0.409530\pi\)
−0.0648001 + 0.997898i \(0.520641\pi\)
\(312\) 22.4666 + 17.8666i 1.27192 + 1.01149i
\(313\) −2.14418 + 24.5081i −0.121196 + 1.38528i 0.655401 + 0.755281i \(0.272500\pi\)
−0.776597 + 0.629997i \(0.783056\pi\)
\(314\) −11.7965 + 20.4321i −0.665714 + 1.15305i
\(315\) 0 0
\(316\) 5.76508 + 9.98541i 0.324311 + 0.561723i
\(317\) −14.9555 + 6.97386i −0.839984 + 0.391691i −0.794493 0.607274i \(-0.792263\pi\)
−0.0454916 + 0.998965i \(0.514485\pi\)
\(318\) 14.0186 12.4054i 0.786123 0.695661i
\(319\) −5.44660 + 6.49101i −0.304951 + 0.363427i
\(320\) 0 0
\(321\) 9.60991 + 2.30598i 0.536373 + 0.128707i
\(322\) −1.25045 + 1.78583i −0.0696849 + 0.0995203i
\(323\) −12.1165 12.1165i −0.674178 0.674178i
\(324\) −4.43868 + 6.58704i −0.246593 + 0.365947i
\(325\) 0 0
\(326\) −2.57479 + 0.454005i −0.142604 + 0.0251450i
\(327\) 23.3654 14.3220i 1.29211 0.792009i
\(328\) −7.45537 + 15.9881i −0.411654 + 0.882794i
\(329\) −22.9851 19.2867i −1.26721 1.06331i
\(330\) 0 0
\(331\) −19.3973 7.06005i −1.06617 0.388056i −0.251429 0.967876i \(-0.580901\pi\)
−0.814744 + 0.579820i \(0.803123\pi\)
\(332\) −4.06479 1.08916i −0.223084 0.0597752i
\(333\) −2.74903 + 12.9476i −0.150646 + 0.709523i
\(334\) 6.66881 + 3.85024i 0.364901 + 0.210676i
\(335\) 0 0
\(336\) 0.826024 + 7.24263i 0.0450633 + 0.395118i
\(337\) 8.57053 6.00115i 0.466867 0.326904i −0.316361 0.948639i \(-0.602461\pi\)
0.783227 + 0.621735i \(0.213572\pi\)
\(338\) 14.3573 10.0531i 0.780933 0.546815i
\(339\) −3.71573 + 2.75015i −0.201811 + 0.149367i
\(340\) 0 0
\(341\) −11.2705 6.50701i −0.610330 0.352374i
\(342\) −10.3925 + 16.6398i −0.561961 + 0.899778i
\(343\) 15.7602 + 4.22292i 0.850968 + 0.228016i
\(344\) −4.14679 1.50931i −0.223580 0.0813765i
\(345\) 0 0
\(346\) 16.6015 + 13.9303i 0.892500 + 0.748896i
\(347\) 4.85639 10.4146i 0.260705 0.559083i −0.731767 0.681554i \(-0.761304\pi\)
0.992472 + 0.122472i \(0.0390821\pi\)
\(348\) 4.82230 + 2.61759i 0.258502 + 0.140317i
\(349\) 15.6377 2.75735i 0.837067 0.147597i 0.261347 0.965245i \(-0.415833\pi\)
0.575719 + 0.817647i \(0.304722\pi\)
\(350\) 0 0
\(351\) 17.9835 + 21.8006i 0.959886 + 1.16363i
\(352\) 7.60358 + 7.60358i 0.405272 + 0.405272i
\(353\) −4.97772 + 7.10893i −0.264938 + 0.378370i −0.929475 0.368885i \(-0.879740\pi\)
0.664538 + 0.747255i \(0.268629\pi\)
\(354\) 10.3198 10.8772i 0.548489 0.578118i
\(355\) 0 0
\(356\) 3.78131 4.50640i 0.200409 0.238838i
\(357\) −13.1515 4.39878i −0.696053 0.232808i
\(358\) −13.7400 + 6.40706i −0.726180 + 0.338623i
\(359\) 10.2032 + 17.6725i 0.538505 + 0.932718i 0.998985 + 0.0450476i \(0.0143439\pi\)
−0.460480 + 0.887670i \(0.652323\pi\)
\(360\) 0 0
\(361\) 9.63526 16.6888i 0.507119 0.878356i
\(362\) 0.190664 2.17930i 0.0100211 0.114541i
\(363\) 8.74593 3.44626i 0.459042 0.180881i
\(364\) −13.6640 2.40933i −0.716189 0.126283i
\(365\) 0 0
\(366\) 2.05074 4.71784i 0.107194 0.246605i
\(367\) −25.8506 2.26163i −1.34939 0.118056i −0.610571 0.791962i \(-0.709060\pi\)
−0.738818 + 0.673906i \(0.764615\pi\)
\(368\) −1.00341 + 0.268864i −0.0523066 + 0.0140155i
\(369\) −10.4492 + 13.8731i −0.543965 + 0.722206i
\(370\) 0 0
\(371\) −10.1077 + 27.7707i −0.524766 + 1.44178i
\(372\) −2.67308 + 7.99199i −0.138593 + 0.414365i
\(373\) −4.75950 + 0.416402i −0.246438 + 0.0215605i −0.209705 0.977765i \(-0.567250\pi\)
−0.0367323 + 0.999325i \(0.511695\pi\)
\(374\) 6.49515 2.36404i 0.335856 0.122242i
\(375\) 0 0
\(376\) −5.49248 31.1494i −0.283253 1.60641i
\(377\) 13.8043 13.8043i 0.710956 0.710956i
\(378\) −1.51641 + 15.8048i −0.0779958 + 0.812911i
\(379\) 25.3002i 1.29958i −0.760112 0.649792i \(-0.774856\pi\)
0.760112 0.649792i \(-0.225144\pi\)
\(380\) 0 0
\(381\) 5.43079 1.60934i 0.278228 0.0824491i
\(382\) −22.3379 10.4163i −1.14291 0.532946i
\(383\) 1.07406 + 12.2766i 0.0548819 + 0.627303i 0.972971 + 0.230929i \(0.0741764\pi\)
−0.918089 + 0.396375i \(0.870268\pi\)
\(384\) 0.900307 1.36055i 0.0459436 0.0694303i
\(385\) 0 0
\(386\) −0.285272 + 0.164702i −0.0145200 + 0.00838310i
\(387\) −3.68501 2.30149i −0.187320 0.116991i
\(388\) −4.19054 15.6393i −0.212742 0.793965i
\(389\) 6.83430 5.73466i 0.346513 0.290759i −0.452875 0.891574i \(-0.649602\pi\)
0.799388 + 0.600815i \(0.205157\pi\)
\(390\) 0 0
\(391\) 0.343168 1.94620i 0.0173548 0.0984238i
\(392\) −2.36892 3.38317i −0.119649 0.170876i
\(393\) −1.56732 + 1.97085i −0.0790610 + 0.0994164i
\(394\) −2.20727 2.63052i −0.111200 0.132524i
\(395\) 0 0
\(396\) 3.40529 + 5.24109i 0.171122 + 0.263375i
\(397\) −3.52782 + 13.1660i −0.177056 + 0.660782i 0.819136 + 0.573599i \(0.194453\pi\)
−0.996192 + 0.0871833i \(0.972213\pi\)
\(398\) −2.84897 6.10964i −0.142806 0.306249i
\(399\) 1.88733 30.9150i 0.0944846 1.54768i
\(400\) 0 0
\(401\) −1.00354 2.75721i −0.0501146 0.137689i 0.912110 0.409945i \(-0.134452\pi\)
−0.962225 + 0.272257i \(0.912230\pi\)
\(402\) 7.14413 + 11.6552i 0.356317 + 0.581309i
\(403\) 24.5610 + 17.1978i 1.22347 + 0.856683i
\(404\) 2.97240 0.147882
\(405\) 0 0
\(406\) 10.9679 0.544328
\(407\) 8.53175 + 5.97399i 0.422903 + 0.296120i
\(408\) −7.63969 12.4637i −0.378221 0.617044i
\(409\) 9.80467 + 26.9381i 0.484810 + 1.33200i 0.905325 + 0.424719i \(0.139627\pi\)
−0.420515 + 0.907285i \(0.638151\pi\)
\(410\) 0 0
\(411\) −1.68404 + 27.5851i −0.0830676 + 1.36067i
\(412\) −1.35291 2.90132i −0.0666530 0.142938i
\(413\) −6.12654 + 22.8645i −0.301467 + 1.12509i
\(414\) −2.25950 + 0.118928i −0.111048 + 0.00584500i
\(415\) 0 0
\(416\) −15.9247 18.9783i −0.780772 0.930488i
\(417\) 9.83918 12.3724i 0.481827 0.605880i
\(418\) 8.85459 + 12.6457i 0.433092 + 0.618519i
\(419\) −2.30839 + 13.0915i −0.112772 + 0.639563i 0.875057 + 0.484020i \(0.160824\pi\)
−0.987829 + 0.155543i \(0.950287\pi\)
\(420\) 0 0
\(421\) 6.93437 5.81863i 0.337960 0.283582i −0.457974 0.888966i \(-0.651425\pi\)
0.795934 + 0.605383i \(0.206980\pi\)
\(422\) −1.75516 6.55035i −0.0854399 0.318866i
\(423\) 1.07975 31.1220i 0.0524993 1.51320i
\(424\) −26.9798 + 15.5768i −1.31025 + 0.756476i
\(425\) 0 0
\(426\) −4.94684 + 7.47571i −0.239675 + 0.362199i
\(427\) 0.707831 + 8.09054i 0.0342543 + 0.391529i
\(428\) −4.56386 2.12816i −0.220602 0.102869i
\(429\) 21.3214 6.31832i 1.02941 0.305051i
\(430\) 0 0
\(431\) 0.295969i 0.0142563i 0.999975 + 0.00712817i \(0.00226899\pi\)
−0.999975 + 0.00712817i \(0.997731\pi\)
\(432\) −5.39433 + 5.30459i −0.259535 + 0.255217i
\(433\) −12.8171 + 12.8171i −0.615949 + 0.615949i −0.944490 0.328541i \(-0.893443\pi\)
0.328541 + 0.944490i \(0.393443\pi\)
\(434\) 2.92514 + 16.5893i 0.140411 + 0.796312i
\(435\) 0 0
\(436\) −13.1221 + 4.77607i −0.628437 + 0.228732i
\(437\) 4.39698 0.384686i 0.210336 0.0184020i
\(438\) 4.04698 12.0997i 0.193372 0.578146i
\(439\) −9.75841 + 26.8110i −0.465743 + 1.27962i 0.455362 + 0.890306i \(0.349510\pi\)
−0.921105 + 0.389313i \(0.872712\pi\)
\(440\) 0 0
\(441\) −1.58964 3.74260i −0.0756972 0.178219i
\(442\) −15.3822 + 4.12164i −0.731655 + 0.196046i
\(443\) 40.1651 + 3.51399i 1.90830 + 0.166955i 0.979204 0.202878i \(-0.0650296\pi\)
0.929098 + 0.369833i \(0.120585\pi\)
\(444\) 2.68863 6.18533i 0.127597 0.293543i
\(445\) 0 0
\(446\) −10.8144 1.90688i −0.512079 0.0902933i
\(447\) 15.1631 5.97488i 0.717190 0.282602i
\(448\) 1.94671 22.2510i 0.0919734 1.05126i
\(449\) −3.91232 + 6.77634i −0.184634 + 0.319795i −0.943453 0.331506i \(-0.892443\pi\)
0.758819 + 0.651301i \(0.225777\pi\)
\(450\) 0 0
\(451\) 6.83332 + 11.8357i 0.321768 + 0.557319i
\(452\) 2.13480 0.995476i 0.100413 0.0468232i
\(453\) −1.73429 0.580068i −0.0814841 0.0272540i
\(454\) 2.12294 2.53003i 0.0996347 0.118740i
\(455\) 0 0
\(456\) 22.4721 23.6860i 1.05235 1.10920i
\(457\) 3.14363 4.48957i 0.147053 0.210013i −0.738867 0.673851i \(-0.764639\pi\)
0.885920 + 0.463838i \(0.153528\pi\)
\(458\) −17.5610 17.5610i −0.820573 0.820573i
\(459\) −4.80897 13.5655i −0.224464 0.633182i
\(460\) 0 0
\(461\) 29.6880 5.23480i 1.38271 0.243809i 0.567689 0.823243i \(-0.307837\pi\)
0.815019 + 0.579434i \(0.196726\pi\)
\(462\) 10.9803 + 5.96021i 0.510850 + 0.277294i
\(463\) −0.0761934 + 0.163397i −0.00354101 + 0.00759371i −0.908070 0.418818i \(-0.862445\pi\)
0.904529 + 0.426411i \(0.140222\pi\)
\(464\) 4.00350 + 3.35933i 0.185858 + 0.155953i
\(465\) 0 0
\(466\) −3.29505 1.19930i −0.152640 0.0555566i
\(467\) 12.1916 + 3.26672i 0.564158 + 0.151166i 0.529616 0.848238i \(-0.322336\pi\)
0.0345422 + 0.999403i \(0.489003\pi\)
\(468\) −6.76330 12.7130i −0.312634 0.587657i
\(469\) −18.6907 10.7911i −0.863055 0.498285i
\(470\) 0 0
\(471\) 31.0722 22.9977i 1.43173 1.05968i
\(472\) −20.4404 + 14.3126i −0.940848 + 0.658789i
\(473\) −2.80048 + 1.96091i −0.128766 + 0.0901629i
\(474\) 2.71055 + 23.7663i 0.124500 + 1.09162i
\(475\) 0 0
\(476\) 6.11948 + 3.53308i 0.280486 + 0.161939i
\(477\) −29.1684 + 9.48470i −1.33553 + 0.434274i
\(478\) 17.3679 + 4.65373i 0.794391 + 0.212857i
\(479\) −33.4923 12.1902i −1.53030 0.556985i −0.566607 0.823988i \(-0.691744\pi\)
−0.963696 + 0.267003i \(0.913966\pi\)
\(480\) 0 0
\(481\) −18.3822 15.4245i −0.838157 0.703297i
\(482\) 8.29007 17.7781i 0.377602 0.809771i
\(483\) 3.04550 1.86676i 0.138575 0.0849404i
\(484\) −4.71715 + 0.831760i −0.214416 + 0.0378073i
\(485\) 0 0
\(486\) −13.8928 + 8.86173i −0.630189 + 0.401976i
\(487\) −4.88907 4.88907i −0.221545 0.221545i 0.587604 0.809149i \(-0.300071\pi\)
−0.809149 + 0.587604i \(0.800071\pi\)
\(488\) −4.91057 + 7.01302i −0.222291 + 0.317464i
\(489\) 4.16563 + 0.999581i 0.188376 + 0.0452026i
\(490\) 0 0
\(491\) −16.6934 + 19.8944i −0.753361 + 0.897821i −0.997409 0.0719426i \(-0.977080\pi\)
0.244048 + 0.969763i \(0.421525\pi\)
\(492\) 6.62742 5.86479i 0.298787 0.264405i
\(493\) −9.01076 + 4.20179i −0.405824 + 0.189239i
\(494\) −17.7835 30.8019i −0.800117 1.38584i
\(495\) 0 0
\(496\) −4.01336 + 6.95135i −0.180205 + 0.312125i
\(497\) 1.23344 14.0983i 0.0553275 0.632396i
\(498\) −6.83298 5.43393i −0.306193 0.243500i
\(499\) 11.0477 + 1.94801i 0.494564 + 0.0872050i 0.415367 0.909654i \(-0.363653\pi\)
0.0791972 + 0.996859i \(0.474764\pi\)
\(500\) 0 0
\(501\) −7.50619 10.1416i −0.335352 0.453095i
\(502\) 15.9894 + 1.39889i 0.713640 + 0.0624354i
\(503\) −29.1890 + 7.82118i −1.30147 + 0.348729i −0.842008 0.539466i \(-0.818626\pi\)
−0.459467 + 0.888195i \(0.651960\pi\)
\(504\) 7.71986 25.2710i 0.343870 1.12566i
\(505\) 0 0
\(506\) −0.608940 + 1.67305i −0.0270707 + 0.0743761i
\(507\) −28.1409 + 5.72864i −1.24978 + 0.254418i
\(508\) −2.87518 + 0.251546i −0.127566 + 0.0111605i
\(509\) 22.0511 8.02596i 0.977399 0.355744i 0.196571 0.980490i \(-0.437019\pi\)
0.780829 + 0.624745i \(0.214797\pi\)
\(510\) 0 0
\(511\) 3.49769 + 19.8364i 0.154729 + 0.877511i
\(512\) 10.9640 10.9640i 0.484544 0.484544i
\(513\) 26.4854 18.2162i 1.16936 0.804263i
\(514\) 9.18578i 0.405167i
\(515\) 0 0
\(516\) 1.60600 + 1.52370i 0.0707004 + 0.0670769i
\(517\) −22.2083 10.3559i −0.976719 0.455452i
\(518\) −1.17499 13.4302i −0.0516262 0.590090i
\(519\) −15.8477 31.7765i −0.695636 1.39483i
\(520\) 0 0
\(521\) −14.2319 + 8.21681i −0.623512 + 0.359985i −0.778235 0.627973i \(-0.783885\pi\)
0.154723 + 0.987958i \(0.450551\pi\)
\(522\) 7.01018 + 8.96844i 0.306827 + 0.392538i
\(523\) −3.78176 14.1137i −0.165365 0.617150i −0.997993 0.0633182i \(-0.979832\pi\)
0.832629 0.553832i \(-0.186835\pi\)
\(524\) 0.982891 0.824743i 0.0429378 0.0360291i
\(525\) 0 0
\(526\) −4.33208 + 24.5685i −0.188888 + 1.07124i
\(527\) −8.75850 12.5084i −0.381526 0.544876i
\(528\) 2.18248 + 5.53872i 0.0949804 + 0.241042i
\(529\) −14.4569 17.2291i −0.628561 0.749090i
\(530\) 0 0
\(531\) −22.6121 + 9.60430i −0.981281 + 0.416791i
\(532\) −4.08464 + 15.2441i −0.177091 + 0.660914i
\(533\) −13.3070 28.5370i −0.576390 1.23607i
\(534\) 10.9213 5.44671i 0.472611 0.235702i
\(535\) 0 0
\(536\) −7.78131 21.3790i −0.336101 0.923431i
\(537\) 24.8318 0.653055i 1.07157 0.0281814i
\(538\) −8.84309 6.19200i −0.381253 0.266956i
\(539\) −3.19963 −0.137818
\(540\) 0 0
\(541\) −28.4337 −1.22246 −0.611230 0.791453i \(-0.709325\pi\)
−0.611230 + 0.791453i \(0.709325\pi\)
\(542\) −4.19460 2.93709i −0.180173 0.126159i
\(543\) −1.70998 + 3.15025i −0.0733824 + 0.135190i
\(544\) 4.31531 + 11.8562i 0.185017 + 0.508331i
\(545\) 0 0
\(546\) −24.0048 15.8845i −1.02731 0.679795i
\(547\) −4.44356 9.52924i −0.189993 0.407441i 0.788118 0.615524i \(-0.211055\pi\)
−0.978111 + 0.208083i \(0.933278\pi\)
\(548\) 3.64467 13.6021i 0.155693 0.581053i
\(549\) −6.16321 + 5.74989i −0.263039 + 0.245399i
\(550\) 0 0
\(551\) −14.2734 17.0103i −0.608066 0.724665i
\(552\) 3.72426 + 0.556164i 0.158515 + 0.0236719i
\(553\) −21.6605 30.9344i −0.921099 1.31547i
\(554\) 2.48092 14.0700i 0.105404 0.597776i
\(555\) 0 0
\(556\) −6.17030 + 5.17749i −0.261679 + 0.219575i
\(557\) 4.48926 + 16.7541i 0.190216 + 0.709896i 0.993454 + 0.114237i \(0.0364423\pi\)
−0.803238 + 0.595659i \(0.796891\pi\)
\(558\) −11.6954 + 12.9950i −0.495107 + 0.550122i
\(559\) 6.82132 3.93829i 0.288511 0.166572i
\(560\) 0 0
\(561\) −11.3043 0.690115i −0.477267 0.0291367i
\(562\) 1.44988 + 16.5722i 0.0611596 + 0.699057i
\(563\) −21.2542 9.91099i −0.895758 0.417699i −0.0804714 0.996757i \(-0.525643\pi\)
−0.815286 + 0.579058i \(0.803420\pi\)
\(564\) −3.70246 + 15.4295i −0.155902 + 0.649701i
\(565\) 0 0
\(566\) 31.8748i 1.33980i
\(567\) 12.6021 22.7591i 0.529238 0.955791i
\(568\) 10.5491 10.5491i 0.442630 0.442630i
\(569\) 6.84027 + 38.7931i 0.286759 + 1.62629i 0.698934 + 0.715186i \(0.253658\pi\)
−0.412175 + 0.911105i \(0.635231\pi\)
\(570\) 0 0
\(571\) 31.4980 11.4643i 1.31815 0.479767i 0.415285 0.909691i \(-0.363682\pi\)
0.902865 + 0.429924i \(0.141460\pi\)
\(572\) −11.2880 + 0.987576i −0.471977 + 0.0412926i
\(573\) 26.7630 + 30.2431i 1.11804 + 1.26343i
\(574\) 6.05032 16.6231i 0.252536 0.693836i
\(575\) 0 0
\(576\) 19.4388 12.6300i 0.809951 0.526249i
\(577\) 21.0819 5.64888i 0.877651 0.235166i 0.208257 0.978074i \(-0.433221\pi\)
0.669393 + 0.742908i \(0.266554\pi\)
\(578\) −9.82287 0.859390i −0.408578 0.0357459i
\(579\) 0.536252 0.0611597i 0.0222859 0.00254171i
\(580\) 0 0
\(581\) 13.5734 + 2.39335i 0.563119 + 0.0992930i
\(582\) 4.96111 33.2213i 0.205645 1.37707i
\(583\) −2.10351 + 24.0432i −0.0871185 + 0.995769i
\(584\) −10.6167 + 18.3886i −0.439321 + 0.760927i
\(585\) 0 0
\(586\) −3.88117 6.72239i −0.160330 0.277699i
\(587\) 22.1244 10.3168i 0.913173 0.425819i 0.0915170 0.995804i \(-0.470828\pi\)
0.821656 + 0.569984i \(0.193051\pi\)
\(588\) 0.413302 + 2.03027i 0.0170443 + 0.0837268i
\(589\) 21.9220 26.1256i 0.903279 1.07649i
\(590\) 0 0
\(591\) 1.59861 + 5.39457i 0.0657580 + 0.221903i
\(592\) 3.68461 5.26217i 0.151437 0.216274i
\(593\) 4.09490 + 4.09490i 0.168157 + 0.168157i 0.786169 0.618012i \(-0.212062\pi\)
−0.618012 + 0.786169i \(0.712062\pi\)
\(594\) 2.14445 + 12.7881i 0.0879879 + 0.524700i
\(595\) 0 0
\(596\) −8.17827 + 1.44205i −0.334995 + 0.0590687i
\(597\) 0.290389 + 11.0417i 0.0118848 + 0.451908i
\(598\) 1.73357 3.71765i 0.0708910 0.152026i
\(599\) 30.3866 + 25.4974i 1.24156 + 1.04180i 0.997400 + 0.0720615i \(0.0229578\pi\)
0.244163 + 0.969734i \(0.421487\pi\)
\(600\) 0 0
\(601\) −22.4811 8.18244i −0.917022 0.333769i −0.159969 0.987122i \(-0.551139\pi\)
−0.757053 + 0.653353i \(0.773362\pi\)
\(602\) 4.27441 + 1.14533i 0.174212 + 0.0466800i
\(603\) −3.12238 22.1805i −0.127153 0.903258i
\(604\) 0.806976 + 0.465908i 0.0328354 + 0.0189575i
\(605\) 0 0
\(606\) 5.65534 + 2.45825i 0.229733 + 0.0998596i
\(607\) 26.5308 18.5771i 1.07685 0.754020i 0.106160 0.994349i \(-0.466144\pi\)
0.970691 + 0.240329i \(0.0772554\pi\)
\(608\) −23.0833 + 16.1631i −0.936152 + 0.655501i
\(609\) −16.4813 7.16404i −0.667854 0.290301i
\(610\) 0 0
\(611\) 48.8923 + 28.2280i 1.97797 + 1.14198i
\(612\) 1.02229 + 7.26207i 0.0413238 + 0.293552i
\(613\) −14.7737 3.95860i −0.596704 0.159886i −0.0521885 0.998637i \(-0.516620\pi\)
−0.544515 + 0.838751i \(0.683286\pi\)
\(614\) 13.5879 + 4.94560i 0.548364 + 0.199588i
\(615\) 0 0
\(616\) −15.9279 13.3651i −0.641755 0.538497i
\(617\) −11.3221 + 24.2804i −0.455812 + 0.977492i 0.535325 + 0.844646i \(0.320189\pi\)
−0.991137 + 0.132845i \(0.957589\pi\)
\(618\) −0.174600 6.63900i −0.00702345 0.267060i
\(619\) 18.6300 3.28497i 0.748802 0.132034i 0.213792 0.976879i \(-0.431419\pi\)
0.535011 + 0.844845i \(0.320308\pi\)
\(620\) 0 0
\(621\) 3.47298 + 1.29715i 0.139366 + 0.0520529i
\(622\) −2.88598 2.88598i −0.115717 0.115717i
\(623\) −11.0512 + 15.7827i −0.442757 + 0.632322i
\(624\) −3.89698 13.1505i −0.156004 0.526443i
\(625\) 0 0
\(626\) 16.7165 19.9220i 0.668126 0.796242i
\(627\) −5.04570 24.7860i −0.201506 0.989859i
\(628\) −17.8520 + 8.32451i −0.712371 + 0.332184i
\(629\) 6.11042 + 10.5836i 0.243638 + 0.421994i
\(630\) 0 0
\(631\) 0.0126965 0.0219910i 0.000505440 0.000875448i −0.865773 0.500438i \(-0.833172\pi\)
0.866278 + 0.499562i \(0.166506\pi\)
\(632\) 3.46961 39.6578i 0.138014 1.57750i
\(633\) −1.64112 + 10.9895i −0.0652288 + 0.436794i
\(634\) 17.1787 + 3.02907i 0.682253 + 0.120300i
\(635\) 0 0
\(636\) 15.5279 1.77096i 0.615722 0.0702232i
\(637\) 7.34369 + 0.642490i 0.290968 + 0.0254564i
\(638\) 8.65198 2.31829i 0.342535 0.0917820i
\(639\) 12.3165 8.00241i 0.487234 0.316570i
\(640\) 0 0
\(641\) 9.97230 27.3987i 0.393882 1.08218i −0.571331 0.820720i \(-0.693573\pi\)
0.965214 0.261463i \(-0.0842049\pi\)
\(642\) −6.92324 7.82351i −0.273238 0.308769i
\(643\) 1.74781 0.152914i 0.0689270 0.00603033i −0.0526401 0.998614i \(-0.516764\pi\)
0.121567 + 0.992583i \(0.461208\pi\)
\(644\) −1.71037 + 0.622522i −0.0673979 + 0.0245308i
\(645\) 0 0
\(646\) 3.14539 + 17.8384i 0.123754 + 0.701842i
\(647\) −14.7341 + 14.7341i −0.579259 + 0.579259i −0.934699 0.355440i \(-0.884331\pi\)
0.355440 + 0.934699i \(0.384331\pi\)
\(648\) 25.5982 9.83953i 1.00559 0.386533i
\(649\) 19.3315i 0.758830i
\(650\) 0 0
\(651\) 6.44028 26.8391i 0.252414 1.05191i
\(652\) −1.97831 0.922501i −0.0774766 0.0361279i
\(653\) −0.812604 9.28810i −0.0317996 0.363471i −0.995377 0.0960426i \(-0.969382\pi\)
0.963578 0.267429i \(-0.0861741\pi\)
\(654\) −28.9164 1.76532i −1.13072 0.0690293i
\(655\) 0 0
\(656\) 7.29994 4.21462i 0.285015 0.164553i
\(657\) −13.9846 + 15.5386i −0.545592 + 0.606218i
\(658\) 8.20920 + 30.6372i 0.320028 + 1.19436i
\(659\) −14.0775 + 11.8125i −0.548383 + 0.460148i −0.874393 0.485218i \(-0.838740\pi\)
0.326010 + 0.945366i \(0.394296\pi\)
\(660\) 0 0
\(661\) 4.43306 25.1412i 0.172426 0.977878i −0.768647 0.639674i \(-0.779070\pi\)
0.941073 0.338204i \(-0.109819\pi\)
\(662\) 12.5159 + 17.8745i 0.486443 + 0.694712i
\(663\) 25.8067 + 3.85385i 1.00225 + 0.149671i
\(664\) 9.33923 + 11.1301i 0.362432 + 0.431930i
\(665\) 0 0
\(666\) 10.2309 9.54476i 0.396438 0.369852i
\(667\) 0.662829 2.47371i 0.0256648 0.0957825i
\(668\) 2.71703 + 5.82669i 0.105125 + 0.225441i
\(669\) 15.0051 + 9.92922i 0.580131 + 0.383886i
\(670\) 0 0
\(671\) 2.26847 + 6.23257i 0.0875733 + 0.240606i
\(672\) −10.8797 + 20.0434i −0.419695 + 0.773191i
\(673\) −3.83098 2.68248i −0.147673 0.103402i 0.497405 0.867518i \(-0.334286\pi\)
−0.645078 + 0.764117i \(0.723175\pi\)
\(674\) −11.0600 −0.426017
\(675\) 0 0
\(676\) 14.6331 0.562810
\(677\) 32.1483 + 22.5105i 1.23556 + 0.865147i 0.994436 0.105347i \(-0.0335953\pi\)
0.241123 + 0.970495i \(0.422484\pi\)
\(678\) 4.88500 0.128472i 0.187607 0.00493392i
\(679\) 18.1371 + 49.8312i 0.696038 + 1.91235i
\(680\) 0 0
\(681\) −4.84267 + 2.41515i −0.185572 + 0.0925488i
\(682\) 5.81397 + 12.4681i 0.222628 + 0.477428i
\(683\) −9.77386 + 36.4765i −0.373986 + 1.39574i 0.480834 + 0.876812i \(0.340334\pi\)
−0.854820 + 0.518924i \(0.826333\pi\)
\(684\) −15.0758 + 6.40331i −0.576436 + 0.244837i
\(685\) 0 0
\(686\) −11.0866 13.2125i −0.423287 0.504454i
\(687\) 14.9181 + 37.8592i 0.569160 + 1.44442i
\(688\) 1.20944 + 1.72726i 0.0461096 + 0.0658513i
\(689\) 9.65582 54.7609i 0.367858 2.08622i
\(690\) 0 0
\(691\) 10.1478 8.51501i 0.386040 0.323926i −0.429028 0.903291i \(-0.641144\pi\)
0.815068 + 0.579365i \(0.196699\pi\)
\(692\) 4.68292 + 17.4769i 0.178018 + 0.664372i
\(693\) −12.6068 16.1284i −0.478892 0.612668i
\(694\) −10.5198 + 6.07363i −0.399327 + 0.230552i
\(695\) 0 0
\(696\) −8.45482 16.9529i −0.320479 0.642599i
\(697\) 1.39761 + 15.9747i 0.0529381 + 0.605086i
\(698\) −15.2128 7.09386i −0.575814 0.268507i
\(699\) 4.16805 + 3.95443i 0.157650 + 0.149570i
\(700\) 0 0
\(701\) 1.42181i 0.0537011i 0.999639 + 0.0268505i \(0.00854782\pi\)
−0.999639 + 0.0268505i \(0.991452\pi\)
\(702\) −2.35402 29.7814i −0.0888467 1.12402i
\(703\) −19.3001 + 19.3001i −0.727916 + 0.727916i
\(704\) −3.16755 17.9641i −0.119381 0.677046i
\(705\) 0 0
\(706\) 8.62062 3.13765i 0.324441 0.118087i
\(707\) −9.69826 + 0.848488i −0.364741 + 0.0319107i
\(708\) 12.2665 2.49709i 0.461002 0.0938463i
\(709\) 12.4901 34.3163i 0.469077 1.28878i −0.449410 0.893325i \(-0.648366\pi\)
0.918487 0.395452i \(-0.129412\pi\)
\(710\) 0 0
\(711\) 11.4506 37.4836i 0.429432 1.40575i
\(712\) −19.6186 + 5.25679i −0.735239 + 0.197007i
\(713\) 3.91834 + 0.342810i 0.146743 + 0.0128384i
\(714\) 8.72108 + 11.7831i 0.326378 + 0.440971i
\(715\) 0 0
\(716\) −12.4649 2.19790i −0.465836 0.0821395i
\(717\) −23.0587 18.3375i −0.861144 0.684826i
\(718\) 1.88008 21.4894i 0.0701639 0.801977i
\(719\) 12.9014 22.3459i 0.481142 0.833363i −0.518624 0.855003i \(-0.673555\pi\)
0.999766 + 0.0216398i \(0.00688871\pi\)
\(720\) 0 0
\(721\) 5.24243 + 9.08015i 0.195238 + 0.338162i
\(722\) −18.4622 + 8.60904i −0.687090 + 0.320395i
\(723\) −24.0697 + 21.2999i −0.895160 + 0.792152i
\(724\) 1.17400 1.39912i 0.0436314 0.0519978i
\(725\) 0 0
\(726\) −9.66282 2.31868i −0.358621 0.0860543i
\(727\) 0.926059 1.32255i 0.0343456 0.0490507i −0.801612 0.597845i \(-0.796024\pi\)
0.835958 + 0.548794i \(0.184913\pi\)
\(728\) 33.8736 + 33.8736i 1.25544 + 1.25544i
\(729\) 26.6647 4.24184i 0.987582 0.157105i
\(730\) 0 0
\(731\) −3.95045 + 0.696570i −0.146112 + 0.0257636i
\(732\) 3.66174 2.24449i 0.135342 0.0829586i
\(733\) 5.62244 12.0574i 0.207669 0.445349i −0.774692 0.632338i \(-0.782095\pi\)
0.982362 + 0.186990i \(0.0598731\pi\)
\(734\) 21.0132 + 17.6322i 0.775613 + 0.650816i
\(735\) 0 0
\(736\) −3.05398 1.11156i −0.112571 0.0409725i
\(737\) −17.0249 4.56182i −0.627122 0.168037i
\(738\) 17.4598 5.67740i 0.642704 0.208988i
\(739\) 30.9063 + 17.8437i 1.13691 + 0.656393i 0.945663 0.325150i \(-0.105415\pi\)
0.191243 + 0.981543i \(0.438748\pi\)
\(740\) 0 0
\(741\) 6.60366 + 57.9013i 0.242591 + 2.12706i
\(742\) 25.5905 17.9187i 0.939457 0.657815i
\(743\) 28.8465 20.1985i 1.05828 0.741012i 0.0912848 0.995825i \(-0.470903\pi\)
0.966990 + 0.254813i \(0.0820138\pi\)
\(744\) 23.3869 17.3095i 0.857407 0.634598i
\(745\) 0 0
\(746\) 4.37382 + 2.52523i 0.160137 + 0.0924551i
\(747\) 6.71844 + 12.6286i 0.245815 + 0.462058i
\(748\) 5.57411 + 1.49358i 0.203810 + 0.0546106i
\(749\) 15.4983 + 5.64093i 0.566296 + 0.206115i
\(750\) 0 0
\(751\) 19.0262 + 15.9649i 0.694275 + 0.582566i 0.920138 0.391593i \(-0.128076\pi\)
−0.225864 + 0.974159i \(0.572520\pi\)
\(752\) −6.38726 + 13.6975i −0.232919 + 0.499497i
\(753\) −23.1132 12.5460i −0.842290 0.457203i
\(754\) −20.3233 + 3.58354i −0.740130 + 0.130505i
\(755\) 0 0
\(756\) −8.60555 + 10.0827i −0.312981 + 0.366706i
\(757\) −17.8009 17.8009i −0.646986 0.646986i 0.305278 0.952263i \(-0.401251\pi\)
−0.952263 + 0.305278i \(0.901251\pi\)
\(758\) −15.3401 + 21.9080i −0.557178 + 0.795733i
\(759\) 2.00785 2.11631i 0.0728802 0.0768172i
\(760\) 0 0
\(761\) −31.3105 + 37.3144i −1.13500 + 1.35265i −0.207765 + 0.978179i \(0.566619\pi\)
−0.927240 + 0.374467i \(0.877826\pi\)
\(762\) −5.67841 1.89925i −0.205707 0.0688027i
\(763\) 41.4512 19.3290i 1.50063 0.699757i
\(764\) −10.2888 17.8207i −0.372236 0.644731i
\(765\) 0 0
\(766\) 6.51352 11.2818i 0.235343 0.407626i
\(767\) 3.88180 44.3691i 0.140164 1.60208i
\(768\) −26.5086 + 10.4455i −0.956547 + 0.376919i
\(769\) −43.1365 7.60612i −1.55554 0.274284i −0.671254 0.741227i \(-0.734244\pi\)
−0.884287 + 0.466944i \(0.845355\pi\)
\(770\) 0 0
\(771\) 5.99998 13.8033i 0.216084 0.497113i
\(772\) −0.273968 0.0239691i −0.00986034 0.000862668i
\(773\) 22.0592 5.91076i 0.793416 0.212595i 0.160725 0.986999i \(-0.448617\pi\)
0.632691 + 0.774404i \(0.281950\pi\)
\(774\) 1.79548 + 4.22722i 0.0645371 + 0.151944i
\(775\) 0 0
\(776\) −19.1194 + 52.5302i −0.686347 + 1.88572i
\(777\) −7.00674 + 20.9488i −0.251365 + 0.751534i
\(778\) −9.39502 + 0.821958i −0.336828 + 0.0294686i
\(779\) −33.6549 + 12.2494i −1.20581 + 0.438879i
\(780\) 0 0
\(781\) −2.00697 11.3821i −0.0718150 0.407283i
\(782\) −1.47719 + 1.47719i −0.0528241 + 0.0528241i
\(783\) −4.67604 18.0556i −0.167108 0.645255i
\(784\) 1.97345i 0.0704805i
\(785\) 0 0
\(786\) 2.55215 0.756296i 0.0910322 0.0269762i
\(787\) 15.6093 + 7.27876i 0.556413 + 0.259460i 0.680421 0.732822i \(-0.261797\pi\)
−0.124008 + 0.992281i \(0.539575\pi\)
\(788\) −0.249868 2.85601i −0.00890119 0.101741i
\(789\) 22.5574 34.0889i 0.803064 1.21360i
\(790\) 0 0
\(791\) −6.68122 + 3.85740i −0.237557 + 0.137153i
\(792\) 0.748235 21.5666i 0.0265874 0.766337i
\(793\) −3.95501 14.7603i −0.140447 0.524154i
\(794\) 11.0377 9.26170i 0.391712 0.328685i
\(795\) 0 0
\(796\) 0.977323 5.54267i 0.0346403 0.196455i
\(797\) −18.8617 26.9373i −0.668115 0.954166i −0.999941 0.0108262i \(-0.996554\pi\)
0.331827 0.943340i \(-0.392335\pi\)
\(798\) −20.3787 + 25.6256i −0.721400 + 0.907135i
\(799\) −18.4814 22.0252i −0.653824 0.779197i
\(800\) 0 0
\(801\) −19.9689 + 1.05106i −0.705567 + 0.0371374i
\(802\) −0.802775 + 2.99600i −0.0283470 + 0.105792i
\(803\) 6.95197 + 14.9085i 0.245330 + 0.526111i
\(804\) −0.695477 + 11.3921i −0.0245276 + 0.401769i
\(805\) 0 0
\(806\) −10.8404 29.7838i −0.381838 1.04909i
\(807\) 9.24384 + 15.0807i 0.325399 + 0.530867i
\(808\) −8.40661 5.88637i −0.295744 0.207082i
\(809\) −0.589848 −0.0207379 −0.0103690 0.999946i \(-0.503301\pi\)
−0.0103690 + 0.999946i \(0.503301\pi\)
\(810\) 0 0
\(811\) −48.5224 −1.70385 −0.851925 0.523664i \(-0.824565\pi\)
−0.851925 + 0.523664i \(0.824565\pi\)
\(812\) 7.50095 + 5.25222i 0.263232 + 0.184317i
\(813\) 4.38469 + 7.15334i 0.153778 + 0.250879i
\(814\) −3.76564 10.3460i −0.131985 0.362627i
\(815\) 0 0
\(816\) −0.425646 + 6.97221i −0.0149006 + 0.244076i
\(817\) −3.78631 8.11977i −0.132466 0.284075i
\(818\) 7.84316 29.2711i 0.274230 1.02344i
\(819\) 25.6961 + 39.5489i 0.897894 + 1.38195i
\(820\) 0 0
\(821\) 12.3182 + 14.6802i 0.429907 + 0.512343i 0.936895 0.349610i \(-0.113686\pi\)
−0.506989 + 0.861953i \(0.669241\pi\)
\(822\) 18.1837 22.8654i 0.634230 0.797522i
\(823\) 0.358433 + 0.511895i 0.0124942 + 0.0178435i 0.825351 0.564621i \(-0.190978\pi\)
−0.812856 + 0.582464i \(0.802089\pi\)
\(824\) −1.91929 + 10.8848i −0.0668615 + 0.379190i
\(825\) 0 0
\(826\) 19.1684 16.0842i 0.666954 0.559641i
\(827\) −3.05127 11.3875i −0.106103 0.395981i 0.892365 0.451314i \(-0.149045\pi\)
−0.998468 + 0.0553328i \(0.982378\pi\)
\(828\) −1.60222 1.00068i −0.0556811 0.0347759i
\(829\) −38.0844 + 21.9880i −1.32272 + 0.763675i −0.984163 0.177269i \(-0.943274\pi\)
−0.338562 + 0.940944i \(0.609941\pi\)
\(830\) 0 0
\(831\) −12.9183 + 19.5222i −0.448130 + 0.677217i
\(832\) 3.66285 + 41.8666i 0.126986 + 1.45146i
\(833\) −3.40254 1.58663i −0.117891 0.0549735i
\(834\) −16.0216 + 4.74780i −0.554784 + 0.164403i
\(835\) 0 0
\(836\) 12.8886i 0.445761i
\(837\) 26.0626 11.8881i 0.900854 0.410913i
\(838\) 9.93659 9.93659i 0.343254 0.343254i
\(839\) 0.173429 + 0.983567i 0.00598745 + 0.0339565i 0.987655 0.156644i \(-0.0500676\pi\)
−0.981668 + 0.190601i \(0.938956\pi\)
\(840\) 0 0
\(841\) 15.1440 5.51197i 0.522207 0.190068i
\(842\) −9.53258 + 0.833993i −0.328514 + 0.0287413i
\(843\) 8.64597 25.8498i 0.297783 0.890314i
\(844\) 1.93642 5.32028i 0.0666545 0.183132i
\(845\) 0 0
\(846\) −19.8050 + 26.2945i −0.680910 + 0.904024i
\(847\) 15.1535 4.06038i 0.520682 0.139516i
\(848\) 14.8293 + 1.29739i 0.509239 + 0.0445527i
\(849\) −20.8200 + 47.8976i −0.714541 + 1.64384i
\(850\) 0 0
\(851\) −3.10007 0.546626i −0.106269 0.0187381i
\(852\) −6.96305 + 2.74373i −0.238550 + 0.0939986i
\(853\) −0.394403 + 4.50805i −0.0135041 + 0.154353i −0.999953 0.00971747i \(-0.996907\pi\)
0.986449 + 0.164070i \(0.0524623\pi\)
\(854\) 4.29256 7.43494i 0.146889 0.254418i
\(855\) 0 0
\(856\) 8.69313 + 15.0569i 0.297125 + 0.514635i
\(857\) −51.8892 + 24.1963i −1.77250 + 0.826531i −0.797831 + 0.602881i \(0.794019\pi\)
−0.974670 + 0.223650i \(0.928203\pi\)
\(858\) −22.2936 7.45653i −0.761091 0.254562i
\(859\) 20.9711 24.9924i 0.715526 0.852730i −0.278662 0.960389i \(-0.589891\pi\)
0.994188 + 0.107659i \(0.0343354\pi\)
\(860\) 0 0
\(861\) −19.9496 + 21.0273i −0.679881 + 0.716608i
\(862\) 0.179453 0.256286i 0.00611220 0.00872913i
\(863\) −28.5706 28.5706i −0.972554 0.972554i 0.0270792 0.999633i \(-0.491379\pi\)
−0.999633 + 0.0270792i \(0.991379\pi\)
\(864\) −23.3433 + 3.91447i −0.794154 + 0.133173i
\(865\) 0 0
\(866\) 18.8698 3.32726i 0.641223 0.113065i
\(867\) 14.1993 + 7.70751i 0.482233 + 0.261761i
\(868\) −5.94365 + 12.7462i −0.201741 + 0.432634i
\(869\) −23.6254 19.8241i −0.801437 0.672486i
\(870\) 0 0
\(871\) 38.1591 + 13.8888i 1.29297 + 0.470603i
\(872\) 46.5707 + 12.4786i 1.57708 + 0.422578i
\(873\) −29.1545 + 46.6805i −0.986731 + 1.57989i
\(874\) −4.04068 2.33289i −0.136678 0.0789111i
\(875\) 0 0
\(876\) 8.56194 6.33700i 0.289281 0.214108i
\(877\) 29.1215 20.3911i 0.983364 0.688559i 0.0329214 0.999458i \(-0.489519\pi\)
0.950443 + 0.310899i \(0.100630\pi\)
\(878\) 24.7062 17.2994i 0.833792 0.583828i
\(879\) 1.44122 + 12.6367i 0.0486112 + 0.426226i
\(880\) 0 0
\(881\) −30.9752 17.8836i −1.04358 0.602512i −0.122736 0.992439i \(-0.539167\pi\)
−0.920846 + 0.389927i \(0.872500\pi\)
\(882\) −0.892728 + 4.20463i −0.0300597 + 0.141577i
\(883\) 3.38029 + 0.905746i 0.113756 + 0.0304808i 0.315248 0.949009i \(-0.397912\pi\)
−0.201492 + 0.979490i \(0.564579\pi\)
\(884\) −12.4936 4.54730i −0.420205 0.152942i
\(885\) 0 0
\(886\) −32.6492 27.3959i −1.09687 0.920383i
\(887\) −12.0260 + 25.7899i −0.403794 + 0.865939i 0.594301 + 0.804243i \(0.297429\pi\)
−0.998095 + 0.0616962i \(0.980349\pi\)
\(888\) −19.8531 + 12.1691i −0.666227 + 0.408368i
\(889\) 9.30926 1.64147i 0.312222 0.0550532i
\(890\) 0 0
\(891\) 5.13050 20.6171i 0.171878 0.690698i
\(892\) −6.48285 6.48285i −0.217062 0.217062i
\(893\) 36.8325 52.6023i 1.23255 1.76027i
\(894\) −16.7527 4.01997i −0.560296 0.134448i
\(895\) 0 0
\(896\) 1.75011 2.08570i 0.0584672 0.0696785i
\(897\) −5.03331 + 4.45411i −0.168057 + 0.148718i
\(898\) 7.49641 3.49564i 0.250159 0.116651i
\(899\) −9.89411 17.1371i −0.329987 0.571554i
\(900\) 0 0
\(901\) −14.1594 + 24.5249i −0.471719 + 0.817042i
\(902\) 1.25913 14.3919i 0.0419245 0.479199i
\(903\) −5.67497 4.51303i −0.188851 0.150184i
\(904\) −8.00909 1.41222i −0.266378 0.0469697i
\(905\) 0 0
\(906\) 1.15005 + 1.55383i 0.0382078 + 0.0516227i
\(907\) −32.6761 2.85879i −1.08499 0.0949246i −0.469398 0.882987i \(-0.655529\pi\)
−0.615596 + 0.788062i \(0.711085\pi\)
\(908\) 2.66344 0.713667i 0.0883894 0.0236839i
\(909\) −6.89249 7.38793i −0.228609 0.245042i
\(910\) 0 0
\(911\) 9.92857 27.2785i 0.328948 0.903778i −0.659430 0.751766i \(-0.729202\pi\)
0.988379 0.152012i \(-0.0485753\pi\)
\(912\) −15.2874 + 3.11206i −0.506217 + 0.103051i
\(913\) 11.2132 0.981025i 0.371102 0.0324672i
\(914\) −5.44427 + 1.98155i −0.180080 + 0.0655439i
\(915\) 0 0
\(916\) −3.60050 20.4195i −0.118964 0.674678i
\(917\) −2.97152 + 2.97152i −0.0981282 + 0.0981282i
\(918\) −4.06088 + 14.6624i −0.134029 + 0.483932i
\(919\) 28.2931i 0.933302i −0.884442 0.466651i \(-0.845460\pi\)
0.884442 0.466651i \(-0.154540\pi\)
\(920\) 0 0
\(921\) −17.1879 16.3070i −0.566361 0.537335i
\(922\) −28.8814 13.4676i −0.951159 0.443533i
\(923\) 2.32080 + 26.5268i 0.0763899 + 0.873141i
\(924\) 4.65525 + 9.33434i 0.153147 + 0.307077i
\(925\) 0 0
\(926\) 0.165049 0.0952911i 0.00542385 0.00313146i
\(927\) −4.07410 + 10.0903i −0.133811 + 0.331410i
\(928\) 4.23180 + 15.7933i 0.138916 + 0.518440i
\(929\) 25.1788 21.1275i 0.826089 0.693171i −0.128300 0.991735i \(-0.540952\pi\)
0.954390 + 0.298564i \(0.0965076\pi\)
\(930\) 0 0
\(931\) 1.45603 8.25757i 0.0477195 0.270631i
\(932\) −1.67917 2.39811i −0.0550032 0.0785527i
\(933\) 2.45164 + 6.22178i 0.0802630 + 0.203692i
\(934\) −8.57623 10.2208i −0.280623 0.334433i
\(935\) 0 0
\(936\) −6.04793 + 49.3488i −0.197683 + 1.61302i
\(937\) 1.30584 4.87347i 0.0426600 0.159209i −0.941310 0.337543i \(-0.890404\pi\)
0.983970 + 0.178334i \(0.0570708\pi\)
\(938\) 9.64174 + 20.6768i 0.314814 + 0.675121i
\(939\) −38.1322 + 19.0174i −1.24440 + 0.620610i
\(940\) 0 0
\(941\) 19.6715 + 54.0471i 0.641274 + 1.76189i 0.647687 + 0.761906i \(0.275736\pi\)
−0.00641343 + 0.999979i \(0.502041\pi\)
\(942\) −40.8501 + 1.07432i −1.33097 + 0.0350034i
\(943\) −3.38355 2.36919i −0.110184 0.0771514i
\(944\) 11.9232 0.388068
\(945\) 0 0
\(946\) 3.61394 0.117499
\(947\) 26.3740 + 18.4673i 0.857041 + 0.600107i 0.917354 0.398073i \(-0.130321\pi\)
−0.0603125 + 0.998180i \(0.519210\pi\)
\(948\) −9.52727 + 17.5518i −0.309431 + 0.570055i
\(949\) −12.9623 35.6136i −0.420773 1.15607i
\(950\) 0 0
\(951\) −23.8355 15.7725i −0.772920 0.511459i
\(952\) −10.3105 22.1110i −0.334167 0.716623i
\(953\) 5.59819 20.8927i 0.181343 0.676782i −0.814041 0.580808i \(-0.802737\pi\)
0.995384 0.0959743i \(-0.0305967\pi\)
\(954\) 31.0083 + 9.47252i 1.00393 + 0.306684i
\(955\) 0 0
\(956\) 9.64940 + 11.4997i 0.312084 + 0.371927i
\(957\) −14.5154 2.16766i −0.469217 0.0700706i
\(958\) 21.6105 + 30.8629i 0.698202 + 0.997136i
\(959\) −8.00894 + 45.4210i −0.258622 + 1.46672i
\(960\) 0 0
\(961\) −0.465741 + 0.390803i −0.0150239 + 0.0126065i
\(962\) 6.56528 + 24.5020i 0.211673 + 0.789975i
\(963\) 5.29324 + 16.2784i 0.170572 + 0.524563i
\(964\) 14.1830 8.18857i 0.456804 0.263736i
\(965\) 0 0
\(966\) −3.76902 0.230095i −0.121266 0.00740317i
\(967\) −0.961701 10.9923i −0.0309262 0.353488i −0.995854 0.0909711i \(-0.971003\pi\)
0.964927 0.262517i \(-0.0845527\pi\)
\(968\) 14.9883 + 6.98917i 0.481743 + 0.224640i
\(969\) 6.92520 28.8599i 0.222469 0.927114i
\(970\) 0 0
\(971\) 21.9387i 0.704047i −0.935991 0.352023i \(-0.885494\pi\)
0.935991 0.352023i \(-0.114506\pi\)
\(972\) −13.7449 0.592321i −0.440868 0.0189987i
\(973\) 18.6543 18.6543i 0.598030 0.598030i
\(974\) 1.26918 + 7.19790i 0.0406673 + 0.230635i
\(975\) 0 0
\(976\) 3.84410 1.39914i 0.123046 0.0447853i
\(977\) 5.48124 0.479546i 0.175360 0.0153420i 0.000862648 1.00000i \(-0.499725\pi\)
0.174498 + 0.984658i \(0.444170\pi\)
\(978\) −3.00104 3.39128i −0.0959625 0.108441i
\(979\) −5.38167 + 14.7860i −0.171999 + 0.472563i
\(980\) 0 0
\(981\) 42.2990 + 21.5404i 1.35050 + 0.687731i
\(982\) 26.5176 7.10536i 0.846209 0.226741i
\(983\) 27.3904 + 2.39635i 0.873618 + 0.0764316i 0.515139 0.857106i \(-0.327740\pi\)
0.358478 + 0.933538i \(0.383296\pi\)
\(984\) −30.3581 + 3.46235i −0.967782 + 0.110376i
\(985\) 0 0
\(986\) 10.3502 + 1.82503i 0.329619 + 0.0581207i
\(987\) 7.67583 51.4000i 0.244324 1.63608i
\(988\) 2.58804 29.5815i 0.0823366 0.941111i
\(989\) 0.516635 0.894838i 0.0164280 0.0284542i
\(990\) 0 0
\(991\) 7.95205 + 13.7734i 0.252605 + 0.437525i 0.964242 0.265022i \(-0.0853793\pi\)
−0.711637 + 0.702547i \(0.752046\pi\)
\(992\) −22.7592 + 10.6128i −0.722606 + 0.336956i
\(993\) −7.13204 35.0348i −0.226328 1.11180i
\(994\) −9.61620 + 11.4601i −0.305007 + 0.363494i
\(995\) 0 0
\(996\) −2.07092 6.98839i −0.0656195 0.221436i
\(997\) 2.10376 3.00447i 0.0666266 0.0951527i −0.784456 0.620185i \(-0.787058\pi\)
0.851083 + 0.525032i \(0.175947\pi\)
\(998\) −8.38532 8.38532i −0.265433 0.265433i
\(999\) −21.6082 + 7.66011i −0.683652 + 0.242355i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 675.2.ba.b.257.5 192
5.2 odd 4 135.2.q.a.68.12 yes 192
5.3 odd 4 inner 675.2.ba.b.68.5 192
5.4 even 2 135.2.q.a.122.12 yes 192
15.2 even 4 405.2.r.a.233.5 192
15.14 odd 2 405.2.r.a.152.5 192
27.2 odd 18 inner 675.2.ba.b.407.5 192
135.2 even 36 135.2.q.a.83.12 yes 192
135.29 odd 18 135.2.q.a.2.12 192
135.52 odd 36 405.2.r.a.8.5 192
135.79 even 18 405.2.r.a.332.5 192
135.83 even 36 inner 675.2.ba.b.218.5 192
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
135.2.q.a.2.12 192 135.29 odd 18
135.2.q.a.68.12 yes 192 5.2 odd 4
135.2.q.a.83.12 yes 192 135.2 even 36
135.2.q.a.122.12 yes 192 5.4 even 2
405.2.r.a.8.5 192 135.52 odd 36
405.2.r.a.152.5 192 15.14 odd 2
405.2.r.a.233.5 192 15.2 even 4
405.2.r.a.332.5 192 135.79 even 18
675.2.ba.b.68.5 192 5.3 odd 4 inner
675.2.ba.b.218.5 192 135.83 even 36 inner
675.2.ba.b.257.5 192 1.1 even 1 trivial
675.2.ba.b.407.5 192 27.2 odd 18 inner