Properties

Label 675.2.ba.b.257.16
Level $675$
Weight $2$
Character 675.257
Analytic conductor $5.390$
Analytic rank $0$
Dimension $192$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [675,2,Mod(32,675)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(675, base_ring=CyclotomicField(36))
 
chi = DirichletCharacter(H, H._module([10, 9]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("675.32");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 675 = 3^{3} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 675.ba (of order \(36\), degree \(12\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.38990213644\)
Analytic rank: \(0\)
Dimension: \(192\)
Relative dimension: \(16\) over \(\Q(\zeta_{36})\)
Twist minimal: no (minimal twist has level 135)
Sato-Tate group: $\mathrm{SU}(2)[C_{36}]$

Embedding invariants

Embedding label 257.16
Character \(\chi\) \(=\) 675.257
Dual form 675.2.ba.b.218.16

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(2.18018 + 1.52658i) q^{2} +(1.19025 + 1.25829i) q^{3} +(1.73870 + 4.77703i) q^{4} +(0.674088 + 4.56031i) q^{6} +(-1.30062 - 2.78918i) q^{7} +(-2.12414 + 7.92739i) q^{8} +(-0.166591 + 2.99537i) q^{9} +(-0.426793 - 0.508631i) q^{11} +(-3.94140 + 7.87366i) q^{12} +(0.269123 + 0.384347i) q^{13} +(1.42232 - 8.06640i) q^{14} +(-8.94423 + 7.50510i) q^{16} +(-1.20591 - 4.50051i) q^{17} +(-4.93586 + 6.27613i) q^{18} +(4.80938 - 2.77670i) q^{19} +(1.96154 - 4.95639i) q^{21} +(-0.154018 - 1.76044i) q^{22} +(0.0602123 + 0.0280775i) q^{23} +(-12.5032 + 6.76283i) q^{24} +1.24878i q^{26} +(-3.96733 + 3.35563i) q^{27} +(11.0626 - 11.0626i) q^{28} +(0.434735 + 2.46551i) q^{29} +(1.76652 - 0.642961i) q^{31} +(-14.6055 + 1.27781i) q^{32} +(0.132015 - 1.14243i) q^{33} +(4.24128 - 11.6528i) q^{34} +(-14.5986 + 4.41223i) q^{36} +(2.44933 - 0.656295i) q^{37} +(14.7241 + 1.28820i) q^{38} +(-0.163296 + 0.796105i) q^{39} +(1.62695 + 0.286875i) q^{41} +(11.8428 - 7.81137i) q^{42} +(-0.732214 + 8.36925i) q^{43} +(1.68769 - 2.92316i) q^{44} +(0.0884111 + 0.153133i) q^{46} +(3.71355 - 1.73166i) q^{47} +(-20.0895 - 2.32146i) q^{48} +(-1.58841 + 1.89299i) q^{49} +(4.22761 - 6.87413i) q^{51} +(-1.36812 + 1.95387i) q^{52} +(-7.52870 - 7.52870i) q^{53} +(-13.7721 + 1.25944i) q^{54} +(24.8736 - 4.38589i) q^{56} +(9.21828 + 2.74662i) q^{57} +(-2.81598 + 6.03890i) q^{58} +(-3.49452 - 2.93225i) q^{59} +(-5.84534 - 2.12753i) q^{61} +(4.83286 + 1.29496i) q^{62} +(8.57130 - 3.43118i) q^{63} +(-13.5701 - 7.83468i) q^{64} +(2.03182 - 2.28917i) q^{66} +(4.48268 - 3.13881i) q^{67} +(19.4024 - 13.5857i) q^{68} +(0.0363384 + 0.109184i) q^{69} +(-5.33043 - 3.07752i) q^{71} +(-23.3916 - 7.68321i) q^{72} +(-13.6146 - 3.64803i) q^{73} +(6.34185 + 2.30824i) q^{74} +(21.6264 + 18.1467i) q^{76} +(-0.863572 + 1.85194i) q^{77} +(-1.57133 + 1.48637i) q^{78} +(-5.34198 + 0.941936i) q^{79} +(-8.94450 - 0.998001i) q^{81} +(3.10910 + 3.10910i) q^{82} +(-3.25316 + 4.64599i) q^{83} +(27.0873 + 0.752663i) q^{84} +(-14.3727 + 17.1287i) q^{86} +(-2.58488 + 3.48160i) q^{87} +(4.93869 - 2.30295i) q^{88} +(-3.08131 - 5.33699i) q^{89} +(0.721988 - 1.25052i) q^{91} +(-0.0294359 + 0.336454i) q^{92} +(2.91164 + 1.45751i) q^{93} +(10.7397 + 1.89370i) q^{94} +(-18.9921 - 16.8570i) q^{96} +(13.5821 + 1.18828i) q^{97} +(-6.35281 + 1.70223i) q^{98} +(1.59464 - 1.19367i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 192 q + 12 q^{2} + 12 q^{3} - 36 q^{6} + 12 q^{7} + 18 q^{8} - 36 q^{11} + 12 q^{12} + 12 q^{13} - 24 q^{16} + 18 q^{17} + 54 q^{18} - 24 q^{21} + 12 q^{22} + 36 q^{23} + 36 q^{27} + 24 q^{28} - 24 q^{31}+ \cdots - 324 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/675\mathbb{Z}\right)^\times\).

\(n\) \(326\) \(352\)
\(\chi(n)\) \(e\left(\frac{17}{18}\right)\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.18018 + 1.52658i 1.54162 + 1.07945i 0.964936 + 0.262484i \(0.0845416\pi\)
0.576682 + 0.816969i \(0.304347\pi\)
\(3\) 1.19025 + 1.25829i 0.687193 + 0.726474i
\(4\) 1.73870 + 4.77703i 0.869348 + 2.38851i
\(5\) 0 0
\(6\) 0.674088 + 4.56031i 0.275195 + 1.86174i
\(7\) −1.30062 2.78918i −0.491587 1.05421i −0.983054 0.183315i \(-0.941317\pi\)
0.491468 0.870896i \(-0.336461\pi\)
\(8\) −2.12414 + 7.92739i −0.750996 + 2.80276i
\(9\) −0.166591 + 2.99537i −0.0555302 + 0.998457i
\(10\) 0 0
\(11\) −0.426793 0.508631i −0.128683 0.153358i 0.697856 0.716238i \(-0.254138\pi\)
−0.826538 + 0.562880i \(0.809693\pi\)
\(12\) −3.94140 + 7.87366i −1.13778 + 2.27293i
\(13\) 0.269123 + 0.384347i 0.0746412 + 0.106599i 0.854737 0.519062i \(-0.173718\pi\)
−0.780096 + 0.625660i \(0.784830\pi\)
\(14\) 1.42232 8.06640i 0.380132 2.15584i
\(15\) 0 0
\(16\) −8.94423 + 7.50510i −2.23606 + 1.87627i
\(17\) −1.20591 4.50051i −0.292476 1.09153i −0.943201 0.332221i \(-0.892202\pi\)
0.650726 0.759313i \(-0.274465\pi\)
\(18\) −4.93586 + 6.27613i −1.16339 + 1.47930i
\(19\) 4.80938 2.77670i 1.10335 0.637018i 0.166249 0.986084i \(-0.446834\pi\)
0.937098 + 0.349066i \(0.113501\pi\)
\(20\) 0 0
\(21\) 1.96154 4.95639i 0.428042 1.08157i
\(22\) −0.154018 1.76044i −0.0328368 0.375327i
\(23\) 0.0602123 + 0.0280775i 0.0125551 + 0.00585456i 0.428886 0.903359i \(-0.358906\pi\)
−0.416331 + 0.909213i \(0.636684\pi\)
\(24\) −12.5032 + 6.76283i −2.55221 + 1.38046i
\(25\) 0 0
\(26\) 1.24878i 0.244906i
\(27\) −3.96733 + 3.35563i −0.763513 + 0.645792i
\(28\) 11.0626 11.0626i 2.09064 2.09064i
\(29\) 0.434735 + 2.46551i 0.0807283 + 0.457833i 0.998197 + 0.0600247i \(0.0191180\pi\)
−0.917469 + 0.397808i \(0.869771\pi\)
\(30\) 0 0
\(31\) 1.76652 0.642961i 0.317276 0.115479i −0.178473 0.983945i \(-0.557116\pi\)
0.495749 + 0.868466i \(0.334893\pi\)
\(32\) −14.6055 + 1.27781i −2.58191 + 0.225888i
\(33\) 0.132015 1.14243i 0.0229808 0.198871i
\(34\) 4.24128 11.6528i 0.727373 1.99844i
\(35\) 0 0
\(36\) −14.5986 + 4.41223i −2.43310 + 0.735372i
\(37\) 2.44933 0.656295i 0.402667 0.107894i −0.0518010 0.998657i \(-0.516496\pi\)
0.454468 + 0.890763i \(0.349830\pi\)
\(38\) 14.7241 + 1.28820i 2.38857 + 0.208973i
\(39\) −0.163296 + 0.796105i −0.0261483 + 0.127479i
\(40\) 0 0
\(41\) 1.62695 + 0.286875i 0.254087 + 0.0448023i 0.299241 0.954178i \(-0.403267\pi\)
−0.0451539 + 0.998980i \(0.514378\pi\)
\(42\) 11.8428 7.81137i 1.82738 1.20532i
\(43\) −0.732214 + 8.36925i −0.111662 + 1.27630i 0.709133 + 0.705075i \(0.249087\pi\)
−0.820794 + 0.571224i \(0.806469\pi\)
\(44\) 1.68769 2.92316i 0.254428 0.440682i
\(45\) 0 0
\(46\) 0.0884111 + 0.153133i 0.0130355 + 0.0225782i
\(47\) 3.71355 1.73166i 0.541677 0.252588i −0.132468 0.991187i \(-0.542290\pi\)
0.674145 + 0.738599i \(0.264512\pi\)
\(48\) −20.0895 2.32146i −2.89967 0.335075i
\(49\) −1.58841 + 1.89299i −0.226916 + 0.270428i
\(50\) 0 0
\(51\) 4.22761 6.87413i 0.591984 0.962571i
\(52\) −1.36812 + 1.95387i −0.189723 + 0.270953i
\(53\) −7.52870 7.52870i −1.03415 1.03415i −0.999396 0.0347509i \(-0.988936\pi\)
−0.0347509 0.999396i \(-0.511064\pi\)
\(54\) −13.7721 + 1.25944i −1.87415 + 0.171388i
\(55\) 0 0
\(56\) 24.8736 4.38589i 3.32388 0.586089i
\(57\) 9.21828 + 2.74662i 1.22099 + 0.363799i
\(58\) −2.81598 + 6.03890i −0.369757 + 0.792946i
\(59\) −3.49452 2.93225i −0.454948 0.381747i 0.386320 0.922365i \(-0.373746\pi\)
−0.841268 + 0.540618i \(0.818190\pi\)
\(60\) 0 0
\(61\) −5.84534 2.12753i −0.748419 0.272402i −0.0604785 0.998169i \(-0.519263\pi\)
−0.687940 + 0.725767i \(0.741485\pi\)
\(62\) 4.83286 + 1.29496i 0.613773 + 0.164460i
\(63\) 8.57130 3.43118i 1.07988 0.432288i
\(64\) −13.5701 7.83468i −1.69626 0.979335i
\(65\) 0 0
\(66\) 2.03182 2.28917i 0.250100 0.281777i
\(67\) 4.48268 3.13881i 0.547646 0.383466i −0.266758 0.963763i \(-0.585953\pi\)
0.814405 + 0.580297i \(0.197064\pi\)
\(68\) 19.4024 13.5857i 2.35288 1.64751i
\(69\) 0.0363384 + 0.109184i 0.00437462 + 0.0131442i
\(70\) 0 0
\(71\) −5.33043 3.07752i −0.632605 0.365235i 0.149155 0.988814i \(-0.452345\pi\)
−0.781760 + 0.623579i \(0.785678\pi\)
\(72\) −23.3916 7.68321i −2.75673 0.905475i
\(73\) −13.6146 3.64803i −1.59347 0.426970i −0.650410 0.759583i \(-0.725403\pi\)
−0.943063 + 0.332613i \(0.892070\pi\)
\(74\) 6.34185 + 2.30824i 0.737225 + 0.268328i
\(75\) 0 0
\(76\) 21.6264 + 18.1467i 2.48072 + 2.08157i
\(77\) −0.863572 + 1.85194i −0.0984131 + 0.211048i
\(78\) −1.57133 + 1.48637i −0.177918 + 0.168298i
\(79\) −5.34198 + 0.941936i −0.601020 + 0.105976i −0.465876 0.884850i \(-0.654261\pi\)
−0.135144 + 0.990826i \(0.543150\pi\)
\(80\) 0 0
\(81\) −8.94450 0.998001i −0.993833 0.110889i
\(82\) 3.10910 + 3.10910i 0.343343 + 0.343343i
\(83\) −3.25316 + 4.64599i −0.357081 + 0.509964i −0.956997 0.290099i \(-0.906312\pi\)
0.599916 + 0.800063i \(0.295201\pi\)
\(84\) 27.0873 + 0.752663i 2.95547 + 0.0821222i
\(85\) 0 0
\(86\) −14.3727 + 17.1287i −1.54984 + 1.84703i
\(87\) −2.58488 + 3.48160i −0.277128 + 0.373267i
\(88\) 4.93869 2.30295i 0.526466 0.245495i
\(89\) −3.08131 5.33699i −0.326619 0.565720i 0.655220 0.755438i \(-0.272576\pi\)
−0.981839 + 0.189718i \(0.939243\pi\)
\(90\) 0 0
\(91\) 0.721988 1.25052i 0.0756849 0.131090i
\(92\) −0.0294359 + 0.336454i −0.00306891 + 0.0350778i
\(93\) 2.91164 + 1.45751i 0.301923 + 0.151137i
\(94\) 10.7397 + 1.89370i 1.10772 + 0.195320i
\(95\) 0 0
\(96\) −18.9921 16.8570i −1.93837 1.72046i
\(97\) 13.5821 + 1.18828i 1.37906 + 0.120652i 0.752433 0.658669i \(-0.228880\pi\)
0.626625 + 0.779321i \(0.284436\pi\)
\(98\) −6.35281 + 1.70223i −0.641731 + 0.171951i
\(99\) 1.59464 1.19367i 0.160267 0.119968i
\(100\) 0 0
\(101\) −0.629841 + 1.73048i −0.0626716 + 0.172189i −0.967076 0.254487i \(-0.918093\pi\)
0.904405 + 0.426676i \(0.140316\pi\)
\(102\) 19.7108 8.53305i 1.95166 0.844898i
\(103\) 16.2704 1.42347i 1.60317 0.140259i 0.749833 0.661627i \(-0.230134\pi\)
0.853332 + 0.521368i \(0.174578\pi\)
\(104\) −3.61852 + 1.31704i −0.354826 + 0.129146i
\(105\) 0 0
\(106\) −4.92077 27.9071i −0.477947 2.71057i
\(107\) −10.4880 + 10.4880i −1.01391 + 1.01391i −0.0140087 + 0.999902i \(0.504459\pi\)
−0.999902 + 0.0140087i \(0.995541\pi\)
\(108\) −22.9279 13.1176i −2.20624 1.26225i
\(109\) 9.34913i 0.895484i 0.894163 + 0.447742i \(0.147772\pi\)
−0.894163 + 0.447742i \(0.852228\pi\)
\(110\) 0 0
\(111\) 3.74113 + 2.30081i 0.355092 + 0.218383i
\(112\) 32.5661 + 15.1858i 3.07721 + 1.43492i
\(113\) 1.81095 + 20.6993i 0.170360 + 1.94722i 0.296094 + 0.955159i \(0.404316\pi\)
−0.125734 + 0.992064i \(0.540129\pi\)
\(114\) 15.9045 + 20.0605i 1.48960 + 1.87884i
\(115\) 0 0
\(116\) −11.0219 + 6.36351i −1.02336 + 0.590837i
\(117\) −1.19610 + 0.742094i −0.110579 + 0.0686066i
\(118\) −3.14237 11.7275i −0.289278 1.07960i
\(119\) −10.9843 + 9.21693i −1.00693 + 0.844915i
\(120\) 0 0
\(121\) 1.83358 10.3987i 0.166689 0.945339i
\(122\) −9.49604 13.5617i −0.859731 1.22782i
\(123\) 1.57551 + 2.38863i 0.142059 + 0.215375i
\(124\) 6.14289 + 7.32081i 0.551648 + 0.657428i
\(125\) 0 0
\(126\) 23.9249 + 5.60417i 2.13140 + 0.499259i
\(127\) 1.97054 7.35416i 0.174857 0.652576i −0.821719 0.569893i \(-0.806984\pi\)
0.996576 0.0826829i \(-0.0263489\pi\)
\(128\) −5.23265 11.2214i −0.462505 0.991845i
\(129\) −11.4025 + 9.04019i −1.00393 + 0.795945i
\(130\) 0 0
\(131\) 4.01388 + 11.0280i 0.350694 + 0.963524i 0.982148 + 0.188111i \(0.0602363\pi\)
−0.631454 + 0.775414i \(0.717541\pi\)
\(132\) 5.68695 1.35570i 0.494986 0.117999i
\(133\) −13.9999 9.80281i −1.21394 0.850012i
\(134\) 14.5647 1.25820
\(135\) 0 0
\(136\) 38.2388 3.27895
\(137\) −5.50755 3.85643i −0.470542 0.329477i 0.314139 0.949377i \(-0.398284\pi\)
−0.784681 + 0.619900i \(0.787173\pi\)
\(138\) −0.0874536 + 0.293514i −0.00744454 + 0.0249855i
\(139\) −0.519349 1.42690i −0.0440506 0.121028i 0.915717 0.401824i \(-0.131624\pi\)
−0.959767 + 0.280796i \(0.909402\pi\)
\(140\) 0 0
\(141\) 6.59899 + 2.61161i 0.555735 + 0.219937i
\(142\) −6.92320 14.8468i −0.580982 1.24592i
\(143\) 0.0806315 0.300921i 0.00674274 0.0251643i
\(144\) −20.9905 28.0416i −1.74921 2.33680i
\(145\) 0 0
\(146\) −24.1133 28.7372i −1.99563 2.37830i
\(147\) −4.27255 + 0.254462i −0.352394 + 0.0209876i
\(148\) 7.39377 + 10.5594i 0.607764 + 0.867978i
\(149\) 3.69731 20.9685i 0.302895 1.71780i −0.330355 0.943857i \(-0.607168\pi\)
0.633250 0.773947i \(-0.281720\pi\)
\(150\) 0 0
\(151\) 6.08208 5.10347i 0.494952 0.415314i −0.360845 0.932626i \(-0.617512\pi\)
0.855797 + 0.517312i \(0.173067\pi\)
\(152\) 11.7962 + 44.0239i 0.956797 + 3.57081i
\(153\) 13.6816 2.86240i 1.10609 0.231411i
\(154\) −4.70986 + 2.71924i −0.379531 + 0.219123i
\(155\) 0 0
\(156\) −4.08694 + 0.604116i −0.327217 + 0.0483680i
\(157\) 1.19160 + 13.6200i 0.0950997 + 1.08699i 0.882424 + 0.470455i \(0.155910\pi\)
−0.787324 + 0.616539i \(0.788534\pi\)
\(158\) −13.0844 6.10136i −1.04094 0.485398i
\(159\) 0.512227 18.4344i 0.0406223 1.46194i
\(160\) 0 0
\(161\) 0.204461i 0.0161138i
\(162\) −17.9771 15.8303i −1.41241 1.24374i
\(163\) −13.8462 + 13.8462i −1.08452 + 1.08452i −0.0884330 + 0.996082i \(0.528186\pi\)
−0.996082 + 0.0884330i \(0.971814\pi\)
\(164\) 1.45836 + 8.27077i 0.113879 + 0.645839i
\(165\) 0 0
\(166\) −14.1849 + 5.16289i −1.10096 + 0.400718i
\(167\) −21.8892 + 1.91506i −1.69384 + 0.148192i −0.892809 0.450435i \(-0.851269\pi\)
−0.801028 + 0.598627i \(0.795713\pi\)
\(168\) 35.1246 + 26.0779i 2.70992 + 2.01195i
\(169\) 4.37097 12.0091i 0.336228 0.923779i
\(170\) 0 0
\(171\) 7.51604 + 14.8685i 0.574766 + 1.13702i
\(172\) −41.2533 + 11.0538i −3.14553 + 0.842842i
\(173\) −3.73833 0.327061i −0.284220 0.0248660i −0.0558456 0.998439i \(-0.517785\pi\)
−0.228374 + 0.973573i \(0.573341\pi\)
\(174\) −10.9504 + 3.64450i −0.830149 + 0.276288i
\(175\) 0 0
\(176\) 7.63466 + 1.34620i 0.575484 + 0.101473i
\(177\) −0.469743 7.88725i −0.0353081 0.592842i
\(178\) 1.42952 16.3394i 0.107147 1.22469i
\(179\) −7.21345 + 12.4941i −0.539158 + 0.933850i 0.459791 + 0.888027i \(0.347924\pi\)
−0.998950 + 0.0458226i \(0.985409\pi\)
\(180\) 0 0
\(181\) −7.06370 12.2347i −0.525041 0.909397i −0.999575 0.0291599i \(-0.990717\pi\)
0.474534 0.880237i \(-0.342617\pi\)
\(182\) 3.48308 1.62419i 0.258183 0.120393i
\(183\) −4.28039 9.88743i −0.316415 0.730900i
\(184\) −0.350480 + 0.417686i −0.0258378 + 0.0307922i
\(185\) 0 0
\(186\) 4.12289 + 7.62247i 0.302305 + 0.558907i
\(187\) −1.77443 + 2.53415i −0.129759 + 0.185315i
\(188\) 14.7289 + 14.7289i 1.07422 + 1.07422i
\(189\) 14.5194 + 6.70121i 1.05613 + 0.487442i
\(190\) 0 0
\(191\) −2.54718 + 0.449136i −0.184307 + 0.0324983i −0.265040 0.964237i \(-0.585385\pi\)
0.0807326 + 0.996736i \(0.474274\pi\)
\(192\) −6.29352 26.4003i −0.454195 1.90528i
\(193\) 6.02445 12.9195i 0.433649 0.929963i −0.561112 0.827740i \(-0.689626\pi\)
0.994761 0.102224i \(-0.0325958\pi\)
\(194\) 27.7975 + 23.3248i 1.99574 + 1.67463i
\(195\) 0 0
\(196\) −11.8046 4.29654i −0.843189 0.306896i
\(197\) 8.06170 + 2.16013i 0.574372 + 0.153903i 0.534301 0.845294i \(-0.320575\pi\)
0.0400711 + 0.999197i \(0.487242\pi\)
\(198\) 5.29882 0.168070i 0.376571 0.0119442i
\(199\) 3.27312 + 1.88973i 0.232025 + 0.133960i 0.611506 0.791240i \(-0.290564\pi\)
−0.379481 + 0.925200i \(0.623897\pi\)
\(200\) 0 0
\(201\) 9.28506 + 1.90454i 0.654917 + 0.134336i
\(202\) −4.01487 + 2.81124i −0.282485 + 0.197798i
\(203\) 6.31132 4.41923i 0.442968 0.310169i
\(204\) 40.1885 + 8.24340i 2.81376 + 0.577153i
\(205\) 0 0
\(206\) 37.6453 + 21.7345i 2.62287 + 1.51432i
\(207\) −0.0941332 + 0.175681i −0.00654271 + 0.0122107i
\(208\) −5.29166 1.41790i −0.366911 0.0983134i
\(209\) −3.46492 1.26113i −0.239674 0.0872341i
\(210\) 0 0
\(211\) −13.6392 11.4447i −0.938964 0.787885i 0.0384403 0.999261i \(-0.487761\pi\)
−0.977405 + 0.211376i \(0.932205\pi\)
\(212\) 22.8747 49.0550i 1.57104 3.36911i
\(213\) −2.47214 10.3703i −0.169388 0.710558i
\(214\) −38.8763 + 6.85495i −2.65753 + 0.468594i
\(215\) 0 0
\(216\) −18.1743 38.5784i −1.23660 2.62493i
\(217\) −4.09090 4.09090i −0.277708 0.277708i
\(218\) −14.2722 + 20.3828i −0.966633 + 1.38049i
\(219\) −11.6146 21.4733i −0.784842 1.45103i
\(220\) 0 0
\(221\) 1.40522 1.67468i 0.0945254 0.112651i
\(222\) 4.64397 + 10.7273i 0.311683 + 0.719968i
\(223\) 17.3515 8.09113i 1.16194 0.541822i 0.256605 0.966516i \(-0.417396\pi\)
0.905337 + 0.424694i \(0.139618\pi\)
\(224\) 22.5602 + 39.0754i 1.50737 + 2.61083i
\(225\) 0 0
\(226\) −27.6508 + 47.8926i −1.83930 + 3.18577i
\(227\) 0.0420779 0.480953i 0.00279281 0.0319220i −0.994670 0.103106i \(-0.967122\pi\)
0.997463 + 0.0711836i \(0.0226776\pi\)
\(228\) 2.90709 + 48.8115i 0.192526 + 3.23262i
\(229\) 14.7979 + 2.60927i 0.977875 + 0.172426i 0.639672 0.768648i \(-0.279070\pi\)
0.338203 + 0.941073i \(0.390181\pi\)
\(230\) 0 0
\(231\) −3.35814 + 1.11765i −0.220950 + 0.0735359i
\(232\) −20.4685 1.79076i −1.34382 0.117569i
\(233\) 0.534587 0.143242i 0.0350220 0.00938411i −0.241266 0.970459i \(-0.577562\pi\)
0.276287 + 0.961075i \(0.410896\pi\)
\(234\) −3.74056 0.208035i −0.244528 0.0135997i
\(235\) 0 0
\(236\) 7.93154 21.7917i 0.516299 1.41852i
\(237\) −7.54355 5.60062i −0.490006 0.363800i
\(238\) −38.0181 + 3.32615i −2.46435 + 0.215602i
\(239\) −5.32354 + 1.93761i −0.344351 + 0.125334i −0.508406 0.861118i \(-0.669765\pi\)
0.164054 + 0.986451i \(0.447543\pi\)
\(240\) 0 0
\(241\) 0.317967 + 1.80328i 0.0204821 + 0.116160i 0.993335 0.115266i \(-0.0367721\pi\)
−0.972853 + 0.231426i \(0.925661\pi\)
\(242\) 19.8720 19.8720i 1.27742 1.27742i
\(243\) −9.39045 12.4426i −0.602397 0.798196i
\(244\) 31.6225i 2.02442i
\(245\) 0 0
\(246\) −0.211532 + 7.61277i −0.0134868 + 0.485372i
\(247\) 2.36153 + 1.10120i 0.150261 + 0.0700677i
\(248\) 1.34467 + 15.3696i 0.0853866 + 0.975973i
\(249\) −9.71810 + 1.43649i −0.615859 + 0.0910340i
\(250\) 0 0
\(251\) −16.8470 + 9.72663i −1.06337 + 0.613939i −0.926364 0.376630i \(-0.877083\pi\)
−0.137011 + 0.990570i \(0.543749\pi\)
\(252\) 31.2937 + 34.9796i 1.97132 + 2.20351i
\(253\) −0.0114171 0.0426091i −0.000717786 0.00267881i
\(254\) 15.5228 13.0252i 0.973988 0.817273i
\(255\) 0 0
\(256\) 0.280392 1.59018i 0.0175245 0.0993864i
\(257\) 17.1627 + 24.5109i 1.07058 + 1.52895i 0.829553 + 0.558428i \(0.188595\pi\)
0.241027 + 0.970518i \(0.422516\pi\)
\(258\) −38.6600 + 2.30248i −2.40686 + 0.143346i
\(259\) −5.01616 5.97802i −0.311689 0.371456i
\(260\) 0 0
\(261\) −7.45753 + 0.891463i −0.461609 + 0.0551802i
\(262\) −8.08418 + 30.1706i −0.499442 + 1.86394i
\(263\) 3.54766 + 7.60797i 0.218758 + 0.469128i 0.984807 0.173655i \(-0.0555577\pi\)
−0.766049 + 0.642782i \(0.777780\pi\)
\(264\) 8.77607 + 3.47321i 0.540130 + 0.213761i
\(265\) 0 0
\(266\) −15.5574 42.7437i −0.953888 2.62079i
\(267\) 3.04794 10.2296i 0.186531 0.626039i
\(268\) 22.7882 + 15.9565i 1.39201 + 0.974696i
\(269\) −2.21545 −0.135079 −0.0675393 0.997717i \(-0.521515\pi\)
−0.0675393 + 0.997717i \(0.521515\pi\)
\(270\) 0 0
\(271\) −5.87725 −0.357017 −0.178509 0.983938i \(-0.557127\pi\)
−0.178509 + 0.983938i \(0.557127\pi\)
\(272\) 44.5627 + 31.2031i 2.70201 + 1.89197i
\(273\) 2.43287 0.579966i 0.147244 0.0351011i
\(274\) −6.12031 16.8154i −0.369741 1.01586i
\(275\) 0 0
\(276\) −0.458394 + 0.363427i −0.0275920 + 0.0218757i
\(277\) −4.78156 10.2541i −0.287296 0.616108i 0.708700 0.705510i \(-0.249282\pi\)
−0.995996 + 0.0894020i \(0.971504\pi\)
\(278\) 1.04600 3.90372i 0.0627348 0.234130i
\(279\) 1.63162 + 5.39850i 0.0976826 + 0.323199i
\(280\) 0 0
\(281\) 13.9719 + 16.6511i 0.833496 + 0.993322i 0.999974 + 0.00727642i \(0.00231618\pi\)
−0.166478 + 0.986045i \(0.553239\pi\)
\(282\) 10.4001 + 15.7676i 0.619320 + 0.938950i
\(283\) 7.52820 + 10.7514i 0.447505 + 0.639103i 0.978005 0.208582i \(-0.0668848\pi\)
−0.530500 + 0.847685i \(0.677996\pi\)
\(284\) 5.43342 30.8145i 0.322414 1.82850i
\(285\) 0 0
\(286\) 0.635170 0.532971i 0.0375584 0.0315152i
\(287\) −1.31589 4.91097i −0.0776745 0.289885i
\(288\) −1.39439 43.9617i −0.0821654 2.59047i
\(289\) −4.07794 + 2.35440i −0.239879 + 0.138494i
\(290\) 0 0
\(291\) 14.6710 + 18.5046i 0.860029 + 1.08476i
\(292\) −6.24497 71.3804i −0.365460 4.17722i
\(293\) 3.86399 + 1.80181i 0.225736 + 0.105263i 0.532196 0.846621i \(-0.321367\pi\)
−0.306460 + 0.951884i \(0.599145\pi\)
\(294\) −9.70336 5.96760i −0.565912 0.348037i
\(295\) 0 0
\(296\) 20.8108i 1.20960i
\(297\) 3.40001 + 0.585751i 0.197288 + 0.0339887i
\(298\) 40.0708 40.0708i 2.32124 2.32124i
\(299\) 0.00541301 + 0.0306987i 0.000313043 + 0.00177535i
\(300\) 0 0
\(301\) 24.2957 8.84290i 1.40038 0.509696i
\(302\) 21.0508 1.84171i 1.21134 0.105978i
\(303\) −2.92711 + 1.26718i −0.168158 + 0.0727977i
\(304\) −22.1768 + 60.9303i −1.27193 + 3.49459i
\(305\) 0 0
\(306\) 34.1980 + 14.6455i 1.95497 + 0.837225i
\(307\) −17.9955 + 4.82189i −1.02706 + 0.275200i −0.732741 0.680508i \(-0.761759\pi\)
−0.294318 + 0.955707i \(0.595093\pi\)
\(308\) −10.3482 0.905354i −0.589646 0.0515873i
\(309\) 21.1570 + 18.7785i 1.20358 + 1.06827i
\(310\) 0 0
\(311\) −8.07539 1.42391i −0.457913 0.0807425i −0.0600667 0.998194i \(-0.519131\pi\)
−0.397847 + 0.917452i \(0.630242\pi\)
\(312\) −5.96418 2.98555i −0.337655 0.169023i
\(313\) 1.66176 18.9940i 0.0939283 1.07360i −0.792230 0.610222i \(-0.791080\pi\)
0.886158 0.463382i \(-0.153364\pi\)
\(314\) −18.1941 + 31.5131i −1.02675 + 1.77839i
\(315\) 0 0
\(316\) −13.7877 23.8811i −0.775621 1.34342i
\(317\) −15.3899 + 7.17642i −0.864382 + 0.403068i −0.803661 0.595087i \(-0.797118\pi\)
−0.0607206 + 0.998155i \(0.519340\pi\)
\(318\) 29.2582 39.4082i 1.64072 2.20990i
\(319\) 1.06849 1.27338i 0.0598241 0.0712956i
\(320\) 0 0
\(321\) −25.6803 0.713566i −1.43333 0.0398274i
\(322\) 0.312125 0.445761i 0.0173941 0.0248413i
\(323\) −18.2962 18.2962i −1.01803 1.01803i
\(324\) −10.7843 44.4633i −0.599127 2.47019i
\(325\) 0 0
\(326\) −51.3243 + 9.04986i −2.84259 + 0.501225i
\(327\) −11.7639 + 11.1278i −0.650546 + 0.615371i
\(328\) −5.73003 + 12.2881i −0.316388 + 0.678497i
\(329\) −9.65980 8.10554i −0.532562 0.446873i
\(330\) 0 0
\(331\) 13.3657 + 4.86470i 0.734643 + 0.267388i 0.682129 0.731232i \(-0.261054\pi\)
0.0525142 + 0.998620i \(0.483277\pi\)
\(332\) −27.8503 7.46247i −1.52848 0.409556i
\(333\) 1.55781 + 7.44597i 0.0853676 + 0.408037i
\(334\) −50.6458 29.2404i −2.77122 1.59996i
\(335\) 0 0
\(336\) 19.6537 + 59.0526i 1.07220 + 3.22158i
\(337\) −5.58245 + 3.90887i −0.304095 + 0.212930i −0.715657 0.698452i \(-0.753872\pi\)
0.411561 + 0.911382i \(0.364984\pi\)
\(338\) 27.8623 19.5094i 1.51551 1.06117i
\(339\) −23.8902 + 26.9161i −1.29754 + 1.46188i
\(340\) 0 0
\(341\) −1.08097 0.624097i −0.0585377 0.0337968i
\(342\) −6.31153 + 43.8897i −0.341288 + 2.37328i
\(343\) −13.4628 3.60734i −0.726922 0.194778i
\(344\) −64.7910 23.5820i −3.49330 1.27146i
\(345\) 0 0
\(346\) −7.65094 6.41990i −0.411317 0.345136i
\(347\) −5.81216 + 12.4642i −0.312013 + 0.669114i −0.998304 0.0582130i \(-0.981460\pi\)
0.686291 + 0.727327i \(0.259238\pi\)
\(348\) −21.1260 6.29459i −1.13247 0.337425i
\(349\) 26.3484 4.64594i 1.41040 0.248691i 0.583990 0.811761i \(-0.301491\pi\)
0.826409 + 0.563070i \(0.190380\pi\)
\(350\) 0 0
\(351\) −2.35743 0.621756i −0.125830 0.0331869i
\(352\) 6.88345 + 6.88345i 0.366889 + 0.366889i
\(353\) 0.0271374 0.0387563i 0.00144438 0.00206279i −0.818429 0.574607i \(-0.805155\pi\)
0.819874 + 0.572545i \(0.194044\pi\)
\(354\) 11.0164 17.9127i 0.585513 0.952049i
\(355\) 0 0
\(356\) 20.1375 23.9989i 1.06729 1.27194i
\(357\) −24.6717 2.85097i −1.30576 0.150889i
\(358\) −34.7997 + 16.2274i −1.83922 + 0.857644i
\(359\) −9.42597 16.3263i −0.497484 0.861667i 0.502512 0.864570i \(-0.332409\pi\)
−0.999996 + 0.00290290i \(0.999076\pi\)
\(360\) 0 0
\(361\) 5.92010 10.2539i 0.311584 0.539680i
\(362\) 3.27707 37.4571i 0.172239 1.96870i
\(363\) 15.2670 10.0700i 0.801312 0.528535i
\(364\) 7.22909 + 1.27468i 0.378907 + 0.0668116i
\(365\) 0 0
\(366\) 5.76192 28.0907i 0.301180 1.46832i
\(367\) 19.7504 + 1.72794i 1.03096 + 0.0901977i 0.590063 0.807357i \(-0.299103\pi\)
0.440902 + 0.897555i \(0.354659\pi\)
\(368\) −0.749277 + 0.200768i −0.0390588 + 0.0104658i
\(369\) −1.13033 + 4.82552i −0.0588427 + 0.251207i
\(370\) 0 0
\(371\) −11.2070 + 30.7909i −0.581836 + 1.59858i
\(372\) −1.90011 + 16.4432i −0.0985160 + 0.852538i
\(373\) −21.1273 + 1.84840i −1.09393 + 0.0957063i −0.619808 0.784754i \(-0.712789\pi\)
−0.474120 + 0.880460i \(0.657234\pi\)
\(374\) −7.73714 + 2.81609i −0.400078 + 0.145616i
\(375\) 0 0
\(376\) 5.83943 + 33.1170i 0.301145 + 1.70788i
\(377\) −0.830613 + 0.830613i −0.0427788 + 0.0427788i
\(378\) 21.4250 + 36.7749i 1.10199 + 1.89150i
\(379\) 4.95221i 0.254378i 0.991878 + 0.127189i \(0.0405955\pi\)
−0.991878 + 0.127189i \(0.959405\pi\)
\(380\) 0 0
\(381\) 11.5991 6.27381i 0.594241 0.321417i
\(382\) −6.23894 2.90926i −0.319212 0.148851i
\(383\) −2.46502 28.1753i −0.125957 1.43969i −0.751620 0.659596i \(-0.770727\pi\)
0.625663 0.780093i \(-0.284828\pi\)
\(384\) 7.89166 19.9406i 0.402720 1.01759i
\(385\) 0 0
\(386\) 32.8569 18.9699i 1.67237 0.965545i
\(387\) −24.9470 3.58749i −1.26813 0.182362i
\(388\) 17.9388 + 66.9484i 0.910703 + 3.39879i
\(389\) 22.5434 18.9162i 1.14300 0.959088i 0.143463 0.989656i \(-0.454176\pi\)
0.999533 + 0.0305681i \(0.00973165\pi\)
\(390\) 0 0
\(391\) 0.0537524 0.304845i 0.00271838 0.0154167i
\(392\) −11.6325 16.6129i −0.587530 0.839080i
\(393\) −9.09894 + 18.1768i −0.458981 + 0.916898i
\(394\) 14.2783 + 17.0163i 0.719332 + 0.857267i
\(395\) 0 0
\(396\) 8.47479 + 5.54221i 0.425874 + 0.278507i
\(397\) 5.07320 18.9334i 0.254616 0.950242i −0.713687 0.700465i \(-0.752976\pi\)
0.968303 0.249777i \(-0.0803573\pi\)
\(398\) 4.25115 + 9.11662i 0.213091 + 0.456975i
\(399\) −4.32861 29.2837i −0.216702 1.46602i
\(400\) 0 0
\(401\) −0.0115561 0.0317502i −0.000577086 0.00158553i 0.939404 0.342813i \(-0.111380\pi\)
−0.939981 + 0.341227i \(0.889157\pi\)
\(402\) 17.3356 + 18.3266i 0.864624 + 0.914047i
\(403\) 0.722531 + 0.505922i 0.0359918 + 0.0252018i
\(404\) −9.36163 −0.465759
\(405\) 0 0
\(406\) 20.5061 1.01770
\(407\) −1.37917 0.965702i −0.0683627 0.0478681i
\(408\) 45.5139 + 48.1156i 2.25327 + 2.38207i
\(409\) 3.01485 + 8.28322i 0.149075 + 0.409579i 0.991643 0.129010i \(-0.0411799\pi\)
−0.842569 + 0.538589i \(0.818958\pi\)
\(410\) 0 0
\(411\) −1.70288 11.5202i −0.0839967 0.568251i
\(412\) 35.0892 + 75.2490i 1.72872 + 3.70725i
\(413\) −3.63355 + 13.5606i −0.178795 + 0.667272i
\(414\) −0.473417 + 0.239314i −0.0232672 + 0.0117616i
\(415\) 0 0
\(416\) −4.42180 5.26969i −0.216796 0.258368i
\(417\) 1.17730 2.35187i 0.0576525 0.115171i
\(418\) −5.62894 8.03896i −0.275320 0.393198i
\(419\) −5.75122 + 32.6168i −0.280966 + 1.59344i 0.438384 + 0.898788i \(0.355551\pi\)
−0.719350 + 0.694648i \(0.755560\pi\)
\(420\) 0 0
\(421\) 12.7180 10.6716i 0.619835 0.520104i −0.277916 0.960605i \(-0.589644\pi\)
0.897752 + 0.440502i \(0.145199\pi\)
\(422\) −12.2648 45.7728i −0.597040 2.22819i
\(423\) 4.56831 + 11.4119i 0.222119 + 0.554867i
\(424\) 75.6750 43.6910i 3.67510 2.12182i
\(425\) 0 0
\(426\) 10.4413 26.3829i 0.505882 1.27826i
\(427\) 1.66848 + 19.0708i 0.0807433 + 0.922901i
\(428\) −68.3368 31.8660i −3.30318 1.54030i
\(429\) 0.474618 0.256714i 0.0229148 0.0123943i
\(430\) 0 0
\(431\) 14.4385i 0.695480i −0.937591 0.347740i \(-0.886949\pi\)
0.937591 0.347740i \(-0.113051\pi\)
\(432\) 10.3004 59.7888i 0.495577 2.87659i
\(433\) −16.4822 + 16.4822i −0.792085 + 0.792085i −0.981833 0.189748i \(-0.939233\pi\)
0.189748 + 0.981833i \(0.439233\pi\)
\(434\) −2.67381 15.1640i −0.128347 0.727893i
\(435\) 0 0
\(436\) −44.6611 + 16.2553i −2.13888 + 0.778488i
\(437\) 0.367547 0.0321562i 0.0175821 0.00153824i
\(438\) 7.45870 64.5461i 0.356390 3.08413i
\(439\) −10.9388 + 30.0541i −0.522080 + 1.43440i 0.346121 + 0.938190i \(0.387499\pi\)
−0.868201 + 0.496213i \(0.834723\pi\)
\(440\) 0 0
\(441\) −5.40560 5.07323i −0.257410 0.241582i
\(442\) 5.62015 1.50592i 0.267323 0.0716291i
\(443\) −17.8910 1.56526i −0.850027 0.0743677i −0.346188 0.938165i \(-0.612524\pi\)
−0.503839 + 0.863798i \(0.668080\pi\)
\(444\) −4.48633 + 21.8719i −0.212912 + 1.03799i
\(445\) 0 0
\(446\) 50.1811 + 8.84827i 2.37614 + 0.418978i
\(447\) 30.7852 20.3055i 1.45609 0.960418i
\(448\) −4.20289 + 48.0392i −0.198568 + 2.26964i
\(449\) −6.63475 + 11.4917i −0.313113 + 0.542328i −0.979035 0.203694i \(-0.934705\pi\)
0.665921 + 0.746022i \(0.268039\pi\)
\(450\) 0 0
\(451\) −0.548456 0.949953i −0.0258258 0.0447316i
\(452\) −95.7323 + 44.6407i −4.50287 + 2.09972i
\(453\) 13.6609 + 1.57860i 0.641843 + 0.0741689i
\(454\) 0.825948 0.984327i 0.0387637 0.0461968i
\(455\) 0 0
\(456\) −41.3545 + 67.2427i −1.93660 + 3.14893i
\(457\) 4.61784 6.59496i 0.216013 0.308499i −0.696491 0.717565i \(-0.745257\pi\)
0.912505 + 0.409066i \(0.134145\pi\)
\(458\) 28.2789 + 28.2789i 1.32138 + 1.32138i
\(459\) 19.8863 + 13.8084i 0.928213 + 0.644522i
\(460\) 0 0
\(461\) −14.1578 + 2.49640i −0.659393 + 0.116269i −0.493324 0.869846i \(-0.664218\pi\)
−0.166068 + 0.986114i \(0.553107\pi\)
\(462\) −9.02752 2.68979i −0.419998 0.125140i
\(463\) −8.79261 + 18.8558i −0.408627 + 0.876304i 0.589044 + 0.808101i \(0.299504\pi\)
−0.997671 + 0.0682032i \(0.978273\pi\)
\(464\) −22.3922 18.7893i −1.03953 0.872272i
\(465\) 0 0
\(466\) 1.38417 + 0.503795i 0.0641202 + 0.0233378i
\(467\) 23.8222 + 6.38314i 1.10236 + 0.295376i 0.763725 0.645542i \(-0.223368\pi\)
0.338635 + 0.940918i \(0.390035\pi\)
\(468\) −5.62465 4.42351i −0.260000 0.204477i
\(469\) −14.5849 8.42062i −0.673470 0.388828i
\(470\) 0 0
\(471\) −15.7196 + 17.7106i −0.724322 + 0.816063i
\(472\) 30.6679 21.4739i 1.41161 0.988418i
\(473\) 4.56937 3.19951i 0.210100 0.147113i
\(474\) −7.89648 23.7262i −0.362698 1.08978i
\(475\) 0 0
\(476\) −63.1279 36.4469i −2.89346 1.67054i
\(477\) 23.8055 21.2970i 1.08998 0.975125i
\(478\) −14.5642 3.90246i −0.666150 0.178494i
\(479\) 25.2593 + 9.19362i 1.15412 + 0.420067i 0.846995 0.531601i \(-0.178409\pi\)
0.307130 + 0.951668i \(0.400632\pi\)
\(480\) 0 0
\(481\) 0.911414 + 0.764768i 0.0415569 + 0.0348704i
\(482\) −2.05962 + 4.41687i −0.0938132 + 0.201183i
\(483\) 0.257271 0.243361i 0.0117063 0.0110733i
\(484\) 52.8631 9.32118i 2.40287 0.423690i
\(485\) 0 0
\(486\) −1.47818 41.4624i −0.0670516 1.88077i
\(487\) −1.39406 1.39406i −0.0631711 0.0631711i 0.674815 0.737987i \(-0.264223\pi\)
−0.737987 + 0.674815i \(0.764223\pi\)
\(488\) 29.2821 41.8191i 1.32554 1.89306i
\(489\) −33.9029 0.942045i −1.53314 0.0426008i
\(490\) 0 0
\(491\) −15.2423 + 18.1651i −0.687875 + 0.819777i −0.991097 0.133143i \(-0.957493\pi\)
0.303222 + 0.952920i \(0.401938\pi\)
\(492\) −8.67121 + 11.6794i −0.390928 + 0.526546i
\(493\) 10.5718 4.92970i 0.476129 0.222023i
\(494\) 3.46749 + 6.00587i 0.156010 + 0.270217i
\(495\) 0 0
\(496\) −10.9747 + 19.0087i −0.492778 + 0.853516i
\(497\) −1.65093 + 18.8702i −0.0740542 + 0.846444i
\(498\) −23.3801 11.7036i −1.04769 0.524451i
\(499\) 30.8900 + 5.44673i 1.38282 + 0.243829i 0.815067 0.579366i \(-0.196700\pi\)
0.567758 + 0.823196i \(0.307811\pi\)
\(500\) 0 0
\(501\) −28.4634 25.2636i −1.27165 1.12869i
\(502\) −51.5779 4.51248i −2.30204 0.201402i
\(503\) 5.95437 1.59547i 0.265492 0.0711385i −0.123617 0.992330i \(-0.539449\pi\)
0.389109 + 0.921192i \(0.372783\pi\)
\(504\) 8.99365 + 75.2363i 0.400609 + 3.35129i
\(505\) 0 0
\(506\) 0.0401548 0.110325i 0.00178510 0.00490452i
\(507\) 20.3135 8.79397i 0.902156 0.390554i
\(508\) 38.5572 3.37332i 1.71070 0.149667i
\(509\) 18.3832 6.69092i 0.814819 0.296570i 0.0992061 0.995067i \(-0.468370\pi\)
0.715613 + 0.698497i \(0.246147\pi\)
\(510\) 0 0
\(511\) 7.53240 + 42.7184i 0.333214 + 1.88975i
\(512\) −14.4712 + 14.4712i −0.639545 + 0.639545i
\(513\) −9.76284 + 27.1546i −0.431040 + 1.19890i
\(514\) 79.6382i 3.51269i
\(515\) 0 0
\(516\) −63.0107 38.7518i −2.77389 1.70595i
\(517\) −2.46569 1.14977i −0.108441 0.0505668i
\(518\) −1.81020 20.6907i −0.0795357 0.909097i
\(519\) −4.03802 5.09319i −0.177250 0.223566i
\(520\) 0 0
\(521\) 1.02507 0.591824i 0.0449091 0.0259283i −0.477377 0.878698i \(-0.658413\pi\)
0.522286 + 0.852770i \(0.325079\pi\)
\(522\) −17.6196 9.44094i −0.771190 0.413219i
\(523\) 11.5734 + 43.1925i 0.506069 + 1.88868i 0.456106 + 0.889926i \(0.349244\pi\)
0.0499636 + 0.998751i \(0.484089\pi\)
\(524\) −45.7023 + 38.3488i −1.99652 + 1.67528i
\(525\) 0 0
\(526\) −3.87963 + 22.0025i −0.169160 + 0.959354i
\(527\) −5.02391 7.17489i −0.218845 0.312543i
\(528\) 7.39328 + 11.2089i 0.321751 + 0.487806i
\(529\) −14.7813 17.6156i −0.642664 0.765897i
\(530\) 0 0
\(531\) 9.36533 9.97890i 0.406421 0.433047i
\(532\) 22.4868 83.9219i 0.974927 3.63848i
\(533\) 0.327589 + 0.702518i 0.0141895 + 0.0304294i
\(534\) 22.2613 17.6493i 0.963339 0.763762i
\(535\) 0 0
\(536\) 15.3607 + 42.2032i 0.663482 + 1.82290i
\(537\) −24.3070 + 5.79449i −1.04892 + 0.250051i
\(538\) −4.83008 3.38206i −0.208240 0.145811i
\(539\) 1.64076 0.0706724
\(540\) 0 0
\(541\) −0.781277 −0.0335897 −0.0167949 0.999859i \(-0.505346\pi\)
−0.0167949 + 0.999859i \(0.505346\pi\)
\(542\) −12.8134 8.97207i −0.550384 0.385383i
\(543\) 6.98719 23.4506i 0.299849 1.00636i
\(544\) 23.3637 + 64.1912i 1.00171 + 2.75218i
\(545\) 0 0
\(546\) 6.18944 + 2.44953i 0.264884 + 0.104830i
\(547\) 4.68743 + 10.0522i 0.200420 + 0.429802i 0.980671 0.195665i \(-0.0626864\pi\)
−0.780251 + 0.625467i \(0.784909\pi\)
\(548\) 8.84632 33.0149i 0.377896 1.41033i
\(549\) 7.34652 17.1545i 0.313542 0.732137i
\(550\) 0 0
\(551\) 8.93677 + 10.6504i 0.380719 + 0.453724i
\(552\) −0.942732 + 0.0561466i −0.0401253 + 0.00238976i
\(553\) 9.57510 + 13.6747i 0.407175 + 0.581505i
\(554\) 5.22900 29.6551i 0.222159 1.25993i
\(555\) 0 0
\(556\) 5.91335 4.96189i 0.250782 0.210431i
\(557\) −3.48849 13.0192i −0.147812 0.551642i −0.999614 0.0277782i \(-0.991157\pi\)
0.851802 0.523864i \(-0.175510\pi\)
\(558\) −4.68399 + 14.2605i −0.198289 + 0.603694i
\(559\) −3.41375 + 1.97093i −0.144386 + 0.0833615i
\(560\) 0 0
\(561\) −5.30071 + 0.783531i −0.223796 + 0.0330807i
\(562\) 5.04211 + 57.6316i 0.212689 + 2.43104i
\(563\) 34.0720 + 15.8881i 1.43596 + 0.669601i 0.975887 0.218277i \(-0.0700436\pi\)
0.460078 + 0.887878i \(0.347821\pi\)
\(564\) −1.00210 + 36.0644i −0.0421962 + 1.51858i
\(565\) 0 0
\(566\) 34.9323i 1.46831i
\(567\) 8.84975 + 26.2458i 0.371654 + 1.10222i
\(568\) 35.7193 35.7193i 1.49875 1.49875i
\(569\) 2.09817 + 11.8993i 0.0879598 + 0.498845i 0.996679 + 0.0814360i \(0.0259506\pi\)
−0.908719 + 0.417409i \(0.862938\pi\)
\(570\) 0 0
\(571\) 0.672547 0.244787i 0.0281452 0.0102440i −0.327909 0.944709i \(-0.606344\pi\)
0.356054 + 0.934465i \(0.384122\pi\)
\(572\) 1.57770 0.138031i 0.0659670 0.00577137i
\(573\) −3.59693 2.67050i −0.150264 0.111562i
\(574\) 4.62809 12.7156i 0.193173 0.530738i
\(575\) 0 0
\(576\) 25.7284 39.3422i 1.07202 1.63926i
\(577\) 36.1045 9.67417i 1.50305 0.402741i 0.588930 0.808184i \(-0.299549\pi\)
0.914120 + 0.405443i \(0.132883\pi\)
\(578\) −12.4848 1.09228i −0.519300 0.0454328i
\(579\) 23.4271 7.79694i 0.973596 0.324030i
\(580\) 0 0
\(581\) 17.1896 + 3.03100i 0.713146 + 0.125747i
\(582\) 3.73662 + 62.7398i 0.154888 + 2.60065i
\(583\) −0.616142 + 7.04253i −0.0255180 + 0.291672i
\(584\) 57.8388 100.180i 2.39339 4.14547i
\(585\) 0 0
\(586\) 5.67358 + 9.82693i 0.234373 + 0.405947i
\(587\) 8.34577 3.89170i 0.344467 0.160628i −0.242683 0.970106i \(-0.578028\pi\)
0.587150 + 0.809478i \(0.300250\pi\)
\(588\) −8.64423 19.9677i −0.356482 0.823452i
\(589\) 6.71056 7.99734i 0.276504 0.329525i
\(590\) 0 0
\(591\) 6.87740 + 12.7151i 0.282899 + 0.523028i
\(592\) −16.9818 + 24.2525i −0.697946 + 0.996771i
\(593\) −9.96484 9.96484i −0.409207 0.409207i 0.472255 0.881462i \(-0.343440\pi\)
−0.881462 + 0.472255i \(0.843440\pi\)
\(594\) 6.51843 + 6.46741i 0.267454 + 0.265361i
\(595\) 0 0
\(596\) 106.595 18.7957i 4.36632 0.769900i
\(597\) 1.51800 + 6.36780i 0.0621278 + 0.260617i
\(598\) −0.0350626 + 0.0751920i −0.00143382 + 0.00307483i
\(599\) −5.73610 4.81316i −0.234371 0.196660i 0.518037 0.855358i \(-0.326663\pi\)
−0.752407 + 0.658698i \(0.771107\pi\)
\(600\) 0 0
\(601\) −20.4882 7.45708i −0.835730 0.304181i −0.111522 0.993762i \(-0.535572\pi\)
−0.724208 + 0.689581i \(0.757795\pi\)
\(602\) 66.4682 + 17.8101i 2.70904 + 0.725886i
\(603\) 8.65512 + 13.9502i 0.352464 + 0.568095i
\(604\) 34.9543 + 20.1809i 1.42227 + 0.821148i
\(605\) 0 0
\(606\) −8.31607 1.70578i −0.337817 0.0692926i
\(607\) 18.7469 13.1267i 0.760912 0.532796i −0.127503 0.991838i \(-0.540696\pi\)
0.888415 + 0.459042i \(0.151807\pi\)
\(608\) −66.6953 + 46.7005i −2.70485 + 1.89396i
\(609\) 13.0727 + 2.68146i 0.529734 + 0.108658i
\(610\) 0 0
\(611\) 1.66496 + 0.961264i 0.0673570 + 0.0388886i
\(612\) 37.4619 + 60.3805i 1.51431 + 2.44074i
\(613\) 14.4667 + 3.87633i 0.584303 + 0.156564i 0.538848 0.842403i \(-0.318860\pi\)
0.0454549 + 0.998966i \(0.485526\pi\)
\(614\) −46.5944 16.9590i −1.88040 0.684409i
\(615\) 0 0
\(616\) −12.8467 10.7796i −0.517607 0.434324i
\(617\) −0.200538 + 0.430054i −0.00807334 + 0.0173133i −0.910303 0.413942i \(-0.864152\pi\)
0.902230 + 0.431256i \(0.141929\pi\)
\(618\) 17.4591 + 73.2383i 0.702309 + 2.94608i
\(619\) −10.1152 + 1.78359i −0.406565 + 0.0716885i −0.373191 0.927754i \(-0.621736\pi\)
−0.0333743 + 0.999443i \(0.510625\pi\)
\(620\) 0 0
\(621\) −0.333100 + 0.0906578i −0.0133668 + 0.00363797i
\(622\) −15.4321 15.4321i −0.618770 0.618770i
\(623\) −10.8782 + 15.5357i −0.435827 + 0.622425i
\(624\) −4.51429 8.34610i −0.180716 0.334111i
\(625\) 0 0
\(626\) 32.6187 38.8735i 1.30371 1.55370i
\(627\) −2.53727 5.86095i −0.101329 0.234064i
\(628\) −62.9913 + 29.3733i −2.51363 + 1.17212i
\(629\) −5.90732 10.2318i −0.235540 0.407968i
\(630\) 0 0
\(631\) −6.48152 + 11.2263i −0.258025 + 0.446913i −0.965713 0.259613i \(-0.916405\pi\)
0.707688 + 0.706526i \(0.249738\pi\)
\(632\) 3.88002 44.3488i 0.154339 1.76410i
\(633\) −1.83343 30.7842i −0.0728722 1.22356i
\(634\) −44.5080 7.84797i −1.76764 0.311683i
\(635\) 0 0
\(636\) 88.9521 29.6048i 3.52718 1.17391i
\(637\) −1.15504 0.101053i −0.0457645 0.00400388i
\(638\) 4.27341 1.14506i 0.169186 0.0453333i
\(639\) 10.1063 15.4539i 0.399800 0.611347i
\(640\) 0 0
\(641\) 16.0051 43.9737i 0.632164 1.73686i −0.0428806 0.999080i \(-0.513653\pi\)
0.675045 0.737777i \(-0.264124\pi\)
\(642\) −54.8982 40.7586i −2.16666 1.60861i
\(643\) 22.0886 1.93250i 0.871088 0.0762103i 0.357160 0.934043i \(-0.383745\pi\)
0.513928 + 0.857833i \(0.328190\pi\)
\(644\) 0.976716 0.355496i 0.0384880 0.0140085i
\(645\) 0 0
\(646\) −11.9584 67.8196i −0.470498 2.66833i
\(647\) 23.9696 23.9696i 0.942341 0.942341i −0.0560849 0.998426i \(-0.517862\pi\)
0.998426 + 0.0560849i \(0.0178617\pi\)
\(648\) 26.9109 68.7866i 1.05716 2.70219i
\(649\) 3.02889i 0.118894i
\(650\) 0 0
\(651\) 0.278331 10.0167i 0.0109086 0.392587i
\(652\) −90.2178 42.0693i −3.53320 1.64756i
\(653\) 0.846075 + 9.67068i 0.0331095 + 0.378443i 0.994614 + 0.103652i \(0.0330530\pi\)
−0.961504 + 0.274791i \(0.911391\pi\)
\(654\) −42.6349 + 6.30213i −1.66716 + 0.246433i
\(655\) 0 0
\(656\) −16.7048 + 9.64453i −0.652214 + 0.376556i
\(657\) 13.1953 40.1732i 0.514797 1.56731i
\(658\) −8.68636 32.4179i −0.338629 1.26378i
\(659\) −15.9731 + 13.4030i −0.622224 + 0.522108i −0.898502 0.438970i \(-0.855343\pi\)
0.276278 + 0.961078i \(0.410899\pi\)
\(660\) 0 0
\(661\) −6.68365 + 37.9049i −0.259964 + 1.47433i 0.523038 + 0.852310i \(0.324799\pi\)
−0.783002 + 0.622020i \(0.786312\pi\)
\(662\) 21.7132 + 31.0096i 0.843906 + 1.20522i
\(663\) 3.77980 0.225115i 0.146795 0.00874274i
\(664\) −29.9205 35.6578i −1.16114 1.38379i
\(665\) 0 0
\(666\) −7.97054 + 18.6117i −0.308852 + 0.721187i
\(667\) −0.0430488 + 0.160660i −0.00166685 + 0.00622079i
\(668\) −47.2070 101.236i −1.82649 3.91693i
\(669\) 30.8337 + 12.2027i 1.19210 + 0.471784i
\(670\) 0 0
\(671\) 1.41262 + 3.88114i 0.0545335 + 0.149830i
\(672\) −22.3158 + 74.8969i −0.860853 + 2.88921i
\(673\) −16.8631 11.8077i −0.650026 0.455153i 0.201484 0.979492i \(-0.435424\pi\)
−0.851510 + 0.524339i \(0.824313\pi\)
\(674\) −18.1379 −0.698646
\(675\) 0 0
\(676\) 64.9678 2.49876
\(677\) −18.5670 13.0007i −0.713588 0.499659i 0.159515 0.987195i \(-0.449007\pi\)
−0.873103 + 0.487536i \(0.837896\pi\)
\(678\) −93.1743 + 22.2116i −3.57834 + 0.853032i
\(679\) −14.3508 39.4285i −0.550734 1.51313i
\(680\) 0 0
\(681\) 0.655262 0.519510i 0.0251097 0.0199077i
\(682\) −1.40397 3.01082i −0.0537608 0.115290i
\(683\) −2.12172 + 7.91835i −0.0811852 + 0.302987i −0.994564 0.104122i \(-0.966797\pi\)
0.913379 + 0.407110i \(0.133463\pi\)
\(684\) −57.9589 + 61.7561i −2.21611 + 2.36130i
\(685\) 0 0
\(686\) −23.8444 28.4166i −0.910382 1.08495i
\(687\) 14.3301 + 21.7258i 0.546726 + 0.828891i
\(688\) −56.2630 80.3518i −2.14500 3.06338i
\(689\) 0.867490 4.91978i 0.0330487 0.187429i
\(690\) 0 0
\(691\) 2.09562 1.75844i 0.0797212 0.0668941i −0.602056 0.798454i \(-0.705652\pi\)
0.681777 + 0.731560i \(0.261207\pi\)
\(692\) −4.93744 18.4268i −0.187693 0.700481i
\(693\) −5.40337 2.89523i −0.205257 0.109981i
\(694\) −31.6991 + 18.3015i −1.20328 + 0.694715i
\(695\) 0 0
\(696\) −22.1094 27.8867i −0.838054 1.05704i
\(697\) −0.670867 7.66804i −0.0254109 0.290448i
\(698\) 64.5366 + 30.0939i 2.44275 + 1.13907i
\(699\) 0.816535 + 0.502171i 0.0308842 + 0.0189939i
\(700\) 0 0
\(701\) 45.2015i 1.70724i −0.520899 0.853618i \(-0.674403\pi\)
0.520899 0.853618i \(-0.325597\pi\)
\(702\) −4.19045 4.95433i −0.158158 0.186989i
\(703\) 9.95741 9.95741i 0.375551 0.375551i
\(704\) 1.80664 + 10.2459i 0.0680901 + 0.386158i
\(705\) 0 0
\(706\) 0.118329 0.0430682i 0.00445337 0.00162089i
\(707\) 5.64579 0.493942i 0.212332 0.0185766i
\(708\) 36.8609 15.9575i 1.38532 0.599720i
\(709\) −6.90171 + 18.9623i −0.259199 + 0.712144i 0.740018 + 0.672587i \(0.234817\pi\)
−0.999217 + 0.0395569i \(0.987405\pi\)
\(710\) 0 0
\(711\) −1.93152 16.1581i −0.0724378 0.605978i
\(712\) 48.8536 13.0903i 1.83086 0.490579i
\(713\) 0.124419 + 0.0108853i 0.00465953 + 0.000407656i
\(714\) −49.4365 43.8788i −1.85011 1.64212i
\(715\) 0 0
\(716\) −72.2265 12.7355i −2.69923 0.475947i
\(717\) −8.77444 4.39231i −0.327688 0.164034i
\(718\) 4.37300 49.9836i 0.163199 1.86537i
\(719\) 18.2157 31.5505i 0.679331 1.17664i −0.295852 0.955234i \(-0.595604\pi\)
0.975183 0.221402i \(-0.0710631\pi\)
\(720\) 0 0
\(721\) −25.1318 43.5295i −0.935957 1.62113i
\(722\) 28.5603 13.3179i 1.06290 0.495640i
\(723\) −1.89059 + 2.54646i −0.0703118 + 0.0947037i
\(724\) 46.1638 55.0159i 1.71566 2.04465i
\(725\) 0 0
\(726\) 48.6574 + 1.35202i 1.80585 + 0.0501782i
\(727\) 7.67153 10.9561i 0.284521 0.406338i −0.651296 0.758824i \(-0.725774\pi\)
0.935817 + 0.352485i \(0.114663\pi\)
\(728\) 8.37976 + 8.37976i 0.310575 + 0.310575i
\(729\) 4.47945 26.6258i 0.165906 0.986142i
\(730\) 0 0
\(731\) 38.5489 6.79721i 1.42578 0.251404i
\(732\) 39.7903 37.6388i 1.47069 1.39117i
\(733\) 17.7462 38.0568i 0.655470 1.40566i −0.244474 0.969656i \(-0.578615\pi\)
0.899944 0.436005i \(-0.143607\pi\)
\(734\) 40.4216 + 33.9178i 1.49199 + 1.25193i
\(735\) 0 0
\(736\) −0.915308 0.333145i −0.0337387 0.0122799i
\(737\) −3.50967 0.940413i −0.129280 0.0346406i
\(738\) −9.83085 + 8.79496i −0.361879 + 0.323747i
\(739\) 34.0711 + 19.6709i 1.25332 + 0.723607i 0.971768 0.235938i \(-0.0758162\pi\)
0.281556 + 0.959545i \(0.409150\pi\)
\(740\) 0 0
\(741\) 1.42519 + 4.28220i 0.0523557 + 0.157310i
\(742\) −71.4378 + 50.0213i −2.62256 + 1.83634i
\(743\) −10.6136 + 7.43173i −0.389376 + 0.272644i −0.751829 0.659358i \(-0.770828\pi\)
0.362453 + 0.932002i \(0.381939\pi\)
\(744\) −17.7390 + 19.9858i −0.650342 + 0.732714i
\(745\) 0 0
\(746\) −48.8829 28.2225i −1.78973 1.03330i
\(747\) −13.3745 10.5184i −0.489349 0.384848i
\(748\) −15.1909 4.07039i −0.555434 0.148828i
\(749\) 42.8937 + 15.6120i 1.56730 + 0.570451i
\(750\) 0 0
\(751\) 30.6700 + 25.7352i 1.11916 + 0.939089i 0.998562 0.0536119i \(-0.0170734\pi\)
0.120601 + 0.992701i \(0.461518\pi\)
\(752\) −20.2186 + 43.3589i −0.737296 + 1.58114i
\(753\) −32.2912 9.62128i −1.17676 0.350619i
\(754\) −3.07888 + 0.542889i −0.112126 + 0.0197709i
\(755\) 0 0
\(756\) −6.76700 + 81.0112i −0.246113 + 2.94635i
\(757\) −0.846964 0.846964i −0.0307834 0.0307834i 0.691548 0.722331i \(-0.256929\pi\)
−0.722331 + 0.691548i \(0.756929\pi\)
\(758\) −7.55993 + 10.7967i −0.274589 + 0.392154i
\(759\) 0.0400255 0.0650817i 0.00145283 0.00236232i
\(760\) 0 0
\(761\) −3.25980 + 3.88488i −0.118168 + 0.140827i −0.821885 0.569653i \(-0.807078\pi\)
0.703718 + 0.710480i \(0.251522\pi\)
\(762\) 34.8656 + 4.02893i 1.26305 + 0.145953i
\(763\) 26.0764 12.1596i 0.944029 0.440208i
\(764\) −6.57430 11.3870i −0.237850 0.411968i
\(765\) 0 0
\(766\) 37.6375 65.1901i 1.35990 2.35542i
\(767\) 0.186547 2.13224i 0.00673583 0.0769909i
\(768\) 2.33465 1.53991i 0.0842444 0.0555666i
\(769\) 26.0795 + 4.59852i 0.940451 + 0.165827i 0.622800 0.782381i \(-0.285995\pi\)
0.317651 + 0.948208i \(0.397106\pi\)
\(770\) 0 0
\(771\) −10.4138 + 50.7698i −0.375045 + 1.82843i
\(772\) 72.1914 + 6.31593i 2.59822 + 0.227315i
\(773\) 10.4941 2.81189i 0.377447 0.101137i −0.0651074 0.997878i \(-0.520739\pi\)
0.442555 + 0.896742i \(0.354072\pi\)
\(774\) −48.9124 45.9049i −1.75812 1.65002i
\(775\) 0 0
\(776\) −38.2703 + 105.147i −1.37383 + 3.77455i
\(777\) 1.55159 13.4271i 0.0556629 0.481696i
\(778\) 78.0256 6.82635i 2.79735 0.244737i
\(779\) 8.62118 3.13785i 0.308886 0.112425i
\(780\) 0 0
\(781\) 0.709661 + 4.02469i 0.0253937 + 0.144015i
\(782\) 0.582559 0.582559i 0.0208323 0.0208323i
\(783\) −9.99807 8.32267i −0.357302 0.297428i
\(784\) 28.8525i 1.03045i
\(785\) 0 0
\(786\) −47.5856 + 25.7384i −1.69732 + 0.918058i
\(787\) −7.22332 3.36829i −0.257484 0.120067i 0.289591 0.957151i \(-0.406481\pi\)
−0.547074 + 0.837084i \(0.684259\pi\)
\(788\) 3.69786 + 42.2668i 0.131731 + 1.50569i
\(789\) −5.35043 + 13.5194i −0.190480 + 0.481303i
\(790\) 0 0
\(791\) 55.3786 31.9729i 1.96904 1.13682i
\(792\) 6.07544 + 15.1769i 0.215882 + 0.539286i
\(793\) −0.755404 2.81921i −0.0268252 0.100113i
\(794\) 39.9638 33.5336i 1.41826 1.19006i
\(795\) 0 0
\(796\) −3.33636 + 18.9215i −0.118254 + 0.670653i
\(797\) 0.435383 + 0.621792i 0.0154221 + 0.0220250i 0.826789 0.562512i \(-0.190165\pi\)
−0.811367 + 0.584537i \(0.801276\pi\)
\(798\) 35.2667 70.4517i 1.24843 2.49396i
\(799\) −12.2715 14.6246i −0.434136 0.517383i
\(800\) 0 0
\(801\) 16.4996 8.34059i 0.582984 0.294700i
\(802\) 0.0232747 0.0868625i 0.000821859 0.00306722i
\(803\) 3.95512 + 8.48179i 0.139573 + 0.299316i
\(804\) 7.04587 + 47.6664i 0.248489 + 1.68106i
\(805\) 0 0
\(806\) 0.802918 + 2.20600i 0.0282816 + 0.0777030i
\(807\) −2.63695 2.78768i −0.0928251 0.0981311i
\(808\) −12.3803 8.66877i −0.435537 0.304966i
\(809\) −3.88327 −0.136528 −0.0682642 0.997667i \(-0.521746\pi\)
−0.0682642 + 0.997667i \(0.521746\pi\)
\(810\) 0 0
\(811\) −22.9810 −0.806974 −0.403487 0.914985i \(-0.632202\pi\)
−0.403487 + 0.914985i \(0.632202\pi\)
\(812\) 32.0843 + 22.4656i 1.12594 + 0.788390i
\(813\) −6.99542 7.39528i −0.245340 0.259364i
\(814\) −1.53261 4.21081i −0.0537179 0.147589i
\(815\) 0 0
\(816\) 13.7783 + 93.2125i 0.482337 + 3.26309i
\(817\) 19.7174 + 42.2840i 0.689824 + 1.47933i
\(818\) −6.07207 + 22.6613i −0.212305 + 0.792333i
\(819\) 3.62550 + 2.37095i 0.126685 + 0.0828476i
\(820\) 0 0
\(821\) −1.59034 1.89529i −0.0555031 0.0661461i 0.737579 0.675261i \(-0.235969\pi\)
−0.793082 + 0.609115i \(0.791525\pi\)
\(822\) 13.8739 27.7157i 0.483909 0.966697i
\(823\) 18.8527 + 26.9245i 0.657164 + 0.938528i 1.00000 0.000867529i \(-0.000276143\pi\)
−0.342835 + 0.939396i \(0.611387\pi\)
\(824\) −23.2761 + 132.005i −0.810860 + 4.59862i
\(825\) 0 0
\(826\) −28.6230 + 24.0176i −0.995923 + 0.835678i
\(827\) −2.22968 8.32126i −0.0775334 0.289359i 0.916262 0.400579i \(-0.131191\pi\)
−0.993796 + 0.111220i \(0.964524\pi\)
\(828\) −1.00290 0.144222i −0.0348532 0.00501205i
\(829\) −7.38409 + 4.26321i −0.256460 + 0.148067i −0.622719 0.782446i \(-0.713972\pi\)
0.366259 + 0.930513i \(0.380639\pi\)
\(830\) 0 0
\(831\) 7.21135 18.2216i 0.250159 0.632099i
\(832\) −0.640776 7.32410i −0.0222149 0.253918i
\(833\) 10.4349 + 4.86588i 0.361548 + 0.168593i
\(834\) 6.15702 3.33025i 0.213200 0.115317i
\(835\) 0 0
\(836\) 18.7448i 0.648301i
\(837\) −4.85083 + 8.47863i −0.167669 + 0.293064i
\(838\) −62.3307 + 62.3307i −2.15318 + 2.15318i
\(839\) 8.06541 + 45.7412i 0.278449 + 1.57916i 0.727789 + 0.685802i \(0.240548\pi\)
−0.449340 + 0.893361i \(0.648341\pi\)
\(840\) 0 0
\(841\) 21.3614 7.77490i 0.736599 0.268100i
\(842\) 44.0185 3.85112i 1.51698 0.132718i
\(843\) −4.32178 + 37.3998i −0.148850 + 1.28812i
\(844\) 30.9571 85.0539i 1.06559 2.92768i
\(845\) 0 0
\(846\) −7.46146 + 31.8539i −0.256530 + 1.09516i
\(847\) −31.3887 + 8.41058i −1.07853 + 0.288991i
\(848\) 123.842 + 10.8348i 4.25276 + 0.372068i
\(849\) −4.56789 + 22.2695i −0.156770 + 0.764288i
\(850\) 0 0
\(851\) 0.165907 + 0.0292538i 0.00568721 + 0.00100281i
\(852\) 45.2407 29.8402i 1.54992 1.02231i
\(853\) −1.80662 + 20.6498i −0.0618575 + 0.707035i 0.900430 + 0.435001i \(0.143252\pi\)
−0.962288 + 0.272034i \(0.912304\pi\)
\(854\) −25.4755 + 44.1248i −0.871752 + 1.50992i
\(855\) 0 0
\(856\) −60.8644 105.420i −2.08030 3.60319i
\(857\) −3.98725 + 1.85929i −0.136202 + 0.0635120i −0.489524 0.871990i \(-0.662830\pi\)
0.353322 + 0.935502i \(0.385052\pi\)
\(858\) 1.42665 + 0.164858i 0.0487049 + 0.00562814i
\(859\) −27.5782 + 32.8664i −0.940956 + 1.12139i 0.0514862 + 0.998674i \(0.483604\pi\)
−0.992442 + 0.122714i \(0.960840\pi\)
\(860\) 0 0
\(861\) 4.61318 7.50107i 0.157217 0.255636i
\(862\) 22.0415 31.4786i 0.750738 1.07217i
\(863\) −29.7115 29.7115i −1.01139 1.01139i −0.999934 0.0114553i \(-0.996354\pi\)
−0.0114553 0.999934i \(-0.503646\pi\)
\(864\) 53.6570 54.0802i 1.82545 1.83985i
\(865\) 0 0
\(866\) −61.0955 + 10.7728i −2.07611 + 0.366074i
\(867\) −7.81631 2.32890i −0.265456 0.0790936i
\(868\) 12.4295 26.6552i 0.421885 0.904736i
\(869\) 2.75902 + 2.31509i 0.0935932 + 0.0785340i
\(870\) 0 0
\(871\) 2.41278 + 0.878181i 0.0817540 + 0.0297560i
\(872\) −74.1142 19.8588i −2.50982 0.672505i
\(873\) −5.82201 + 40.4856i −0.197045 + 1.37023i
\(874\) 0.850406 + 0.490982i 0.0287654 + 0.0166077i
\(875\) 0 0
\(876\) 82.3842 92.8188i 2.78350 3.13606i
\(877\) 9.47306 6.63310i 0.319882 0.223984i −0.402596 0.915378i \(-0.631892\pi\)
0.722478 + 0.691394i \(0.243003\pi\)
\(878\) −69.7284 + 48.8243i −2.35322 + 1.64774i
\(879\) 2.33193 + 7.00662i 0.0786540 + 0.236328i
\(880\) 0 0
\(881\) 12.7653 + 7.37007i 0.430075 + 0.248304i 0.699379 0.714751i \(-0.253460\pi\)
−0.269304 + 0.963055i \(0.586794\pi\)
\(882\) −4.04050 19.3126i −0.136051 0.650289i
\(883\) 15.3517 + 4.11349i 0.516627 + 0.138430i 0.507706 0.861530i \(-0.330494\pi\)
0.00892106 + 0.999960i \(0.497160\pi\)
\(884\) 10.4432 + 3.80103i 0.351244 + 0.127842i
\(885\) 0 0
\(886\) −36.6160 30.7245i −1.23014 1.03221i
\(887\) −3.15396 + 6.76369i −0.105900 + 0.227102i −0.952116 0.305737i \(-0.901097\pi\)
0.846216 + 0.532839i \(0.178875\pi\)
\(888\) −26.1861 + 24.7702i −0.878747 + 0.831232i
\(889\) −23.0750 + 4.06875i −0.773911 + 0.136461i
\(890\) 0 0
\(891\) 3.30983 + 4.97539i 0.110883 + 0.166682i
\(892\) 68.8206 + 68.8206i 2.30428 + 2.30428i
\(893\) 13.0516 18.6396i 0.436755 0.623750i
\(894\) 98.1150 + 2.72628i 3.28146 + 0.0911803i
\(895\) 0 0
\(896\) −24.4930 + 29.1896i −0.818253 + 0.975156i
\(897\) −0.0321851 + 0.0433504i −0.00107463 + 0.00144743i
\(898\) −32.0079 + 14.9255i −1.06812 + 0.498072i
\(899\) 2.35319 + 4.07585i 0.0784834 + 0.135937i
\(900\) 0 0
\(901\) −24.8041 + 42.9619i −0.826344 + 1.43127i
\(902\) 0.254446 2.90833i 0.00847211 0.0968367i
\(903\) 40.0450 + 20.0457i 1.33261 + 0.667080i
\(904\) −167.938 29.6120i −5.58553 0.984880i
\(905\) 0 0
\(906\) 27.3733 + 24.2960i 0.909415 + 0.807180i
\(907\) −16.3212 1.42792i −0.541937 0.0474134i −0.187099 0.982341i \(-0.559908\pi\)
−0.354838 + 0.934928i \(0.615464\pi\)
\(908\) 2.37069 0.635223i 0.0786740 0.0210806i
\(909\) −5.07849 2.17489i −0.168443 0.0721365i
\(910\) 0 0
\(911\) −0.825532 + 2.26813i −0.0273511 + 0.0751465i −0.952617 0.304173i \(-0.901620\pi\)
0.925266 + 0.379320i \(0.123842\pi\)
\(912\) −103.064 + 44.6177i −3.41279 + 1.47744i
\(913\) 3.75152 0.328216i 0.124157 0.0108624i
\(914\) 20.1354 7.32869i 0.666020 0.242412i
\(915\) 0 0
\(916\) 13.2645 + 75.2269i 0.438273 + 2.48557i
\(917\) 25.5387 25.5387i 0.843361 0.843361i
\(918\) 22.2760 + 60.4628i 0.735218 + 1.99557i
\(919\) 5.68243i 0.187446i −0.995598 0.0937230i \(-0.970123\pi\)
0.995598 0.0937230i \(-0.0298768\pi\)
\(920\) 0 0
\(921\) −27.4866 16.9043i −0.905714 0.557017i
\(922\) −34.6774 16.1703i −1.14204 0.532541i
\(923\) −0.251702 2.87697i −0.00828487 0.0946965i
\(924\) −11.1778 14.0987i −0.367724 0.463813i
\(925\) 0 0
\(926\) −47.9543 + 27.6864i −1.57588 + 0.909832i
\(927\) 1.55334 + 48.9729i 0.0510183 + 1.60848i
\(928\) −9.49998 35.4544i −0.311852 1.16385i
\(929\) −31.5686 + 26.4892i −1.03573 + 0.869082i −0.991522 0.129941i \(-0.958521\pi\)
−0.0442093 + 0.999022i \(0.514077\pi\)
\(930\) 0 0
\(931\) −2.38300 + 13.5147i −0.0780996 + 0.442925i
\(932\) 1.61376 + 2.30468i 0.0528604 + 0.0754924i
\(933\) −7.82008 11.8560i −0.256018 0.388148i
\(934\) 42.1923 + 50.2828i 1.38057 + 1.64530i
\(935\) 0 0
\(936\) −3.34220 11.0582i −0.109243 0.361450i
\(937\) 2.09031 7.80116i 0.0682876 0.254853i −0.923340 0.383983i \(-0.874552\pi\)
0.991628 + 0.129131i \(0.0412186\pi\)
\(938\) −18.9430 40.6235i −0.618512 1.32640i
\(939\) 25.8779 20.5167i 0.844493 0.669538i
\(940\) 0 0
\(941\) 17.0461 + 46.8337i 0.555686 + 1.52673i 0.825833 + 0.563915i \(0.190706\pi\)
−0.270147 + 0.962819i \(0.587072\pi\)
\(942\) −61.3082 + 14.6151i −1.99753 + 0.476186i
\(943\) 0.0899076 + 0.0629540i 0.00292780 + 0.00205006i
\(944\) 53.2626 1.73355
\(945\) 0 0
\(946\) 14.8463 0.482696
\(947\) 39.8496 + 27.9030i 1.29494 + 0.906726i 0.998827 0.0484276i \(-0.0154210\pi\)
0.296112 + 0.955153i \(0.404310\pi\)
\(948\) 13.6384 45.7735i 0.442955 1.48666i
\(949\) −2.26190 6.21452i −0.0734244 0.201732i
\(950\) 0 0
\(951\) −27.3479 10.8232i −0.886816 0.350966i
\(952\) −49.7340 106.655i −1.61189 3.45671i
\(953\) 13.0100 48.5541i 0.421436 1.57282i −0.350148 0.936694i \(-0.613869\pi\)
0.771584 0.636127i \(-0.219465\pi\)
\(954\) 84.4117 10.0905i 2.73293 0.326691i
\(955\) 0 0
\(956\) −18.5120 22.0618i −0.598722 0.713529i
\(957\) 2.87406 0.171171i 0.0929051 0.00553318i
\(958\) 41.0349 + 58.6039i 1.32578 + 1.89341i
\(959\) −3.59307 + 20.3773i −0.116026 + 0.658017i
\(960\) 0 0
\(961\) −21.0402 + 17.6548i −0.678716 + 0.569510i
\(962\) 0.819569 + 3.05867i 0.0264240 + 0.0986156i
\(963\) −29.6682 33.1626i −0.956043 1.06865i
\(964\) −8.06148 + 4.65430i −0.259643 + 0.149905i
\(965\) 0 0
\(966\) 0.932406 0.137825i 0.0299997 0.00443444i
\(967\) 4.33600 + 49.5607i 0.139436 + 1.59377i 0.667533 + 0.744581i \(0.267350\pi\)
−0.528096 + 0.849185i \(0.677094\pi\)
\(968\) 78.5400 + 36.6238i 2.52437 + 1.17713i
\(969\) 1.24481 44.7991i 0.0399891 1.43916i
\(970\) 0 0
\(971\) 40.2818i 1.29270i −0.763039 0.646352i \(-0.776294\pi\)
0.763039 0.646352i \(-0.223706\pi\)
\(972\) 43.1118 66.4924i 1.38281 2.13275i
\(973\) −3.30441 + 3.30441i −0.105934 + 0.105934i
\(974\) −0.911162 5.16745i −0.0291955 0.165576i
\(975\) 0 0
\(976\) 68.2493 24.8407i 2.18461 0.795132i
\(977\) 37.7958 3.30670i 1.20919 0.105791i 0.535328 0.844644i \(-0.320188\pi\)
0.673866 + 0.738854i \(0.264633\pi\)
\(978\) −72.4763 53.8093i −2.31754 1.72063i
\(979\) −1.39948 + 3.84504i −0.0447276 + 0.122888i
\(980\) 0 0
\(981\) −28.0041 1.55748i −0.894102 0.0497264i
\(982\) −60.9612 + 16.3345i −1.94535 + 0.521255i
\(983\) 35.6886 + 3.12235i 1.13829 + 0.0995874i 0.640676 0.767811i \(-0.278654\pi\)
0.497614 + 0.867399i \(0.334210\pi\)
\(984\) −22.2822 + 7.41591i −0.710330 + 0.236411i
\(985\) 0 0
\(986\) 30.5739 + 5.39101i 0.973672 + 0.171685i
\(987\) −1.29850 21.8025i −0.0413316 0.693981i
\(988\) −1.15448 + 13.1958i −0.0367289 + 0.419813i
\(989\) −0.279076 + 0.483373i −0.00887409 + 0.0153704i
\(990\) 0 0
\(991\) 21.8850 + 37.9060i 0.695201 + 1.20412i 0.970113 + 0.242654i \(0.0780179\pi\)
−0.274912 + 0.961469i \(0.588649\pi\)
\(992\) −24.9793 + 11.6480i −0.793094 + 0.369826i
\(993\) 9.78732 + 22.6081i 0.310591 + 0.717447i
\(994\) −32.4061 + 38.6201i −1.02786 + 1.22495i
\(995\) 0 0
\(996\) −23.7590 43.9260i −0.752833 1.39185i
\(997\) −13.9764 + 19.9603i −0.442636 + 0.632150i −0.977034 0.213083i \(-0.931649\pi\)
0.534398 + 0.845233i \(0.320538\pi\)
\(998\) 59.0307 + 59.0307i 1.86859 + 1.86859i
\(999\) −7.51500 + 10.8228i −0.237764 + 0.342418i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 675.2.ba.b.257.16 192
5.2 odd 4 135.2.q.a.68.1 yes 192
5.3 odd 4 inner 675.2.ba.b.68.16 192
5.4 even 2 135.2.q.a.122.1 yes 192
15.2 even 4 405.2.r.a.233.16 192
15.14 odd 2 405.2.r.a.152.16 192
27.2 odd 18 inner 675.2.ba.b.407.16 192
135.2 even 36 135.2.q.a.83.1 yes 192
135.29 odd 18 135.2.q.a.2.1 192
135.52 odd 36 405.2.r.a.8.16 192
135.79 even 18 405.2.r.a.332.16 192
135.83 even 36 inner 675.2.ba.b.218.16 192
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
135.2.q.a.2.1 192 135.29 odd 18
135.2.q.a.68.1 yes 192 5.2 odd 4
135.2.q.a.83.1 yes 192 135.2 even 36
135.2.q.a.122.1 yes 192 5.4 even 2
405.2.r.a.8.16 192 135.52 odd 36
405.2.r.a.152.16 192 15.14 odd 2
405.2.r.a.233.16 192 15.2 even 4
405.2.r.a.332.16 192 135.79 even 18
675.2.ba.b.68.16 192 5.3 odd 4 inner
675.2.ba.b.218.16 192 135.83 even 36 inner
675.2.ba.b.257.16 192 1.1 even 1 trivial
675.2.ba.b.407.16 192 27.2 odd 18 inner