Properties

Label 675.2.ba.b.257.11
Level $675$
Weight $2$
Character 675.257
Analytic conductor $5.390$
Analytic rank $0$
Dimension $192$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [675,2,Mod(32,675)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("675.32"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(675, base_ring=CyclotomicField(36)) chi = DirichletCharacter(H, H._module([10, 9])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 675 = 3^{3} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 675.ba (of order \(36\), degree \(12\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [192] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.38990213644\)
Analytic rank: \(0\)
Dimension: \(192\)
Relative dimension: \(16\) over \(\Q(\zeta_{36})\)
Twist minimal: no (minimal twist has level 135)
Sato-Tate group: $\mathrm{SU}(2)[C_{36}]$

Embedding invariants

Embedding label 257.11
Character \(\chi\) \(=\) 675.257
Dual form 675.2.ba.b.218.11

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.08817 + 0.761943i) q^{2} +(-0.660916 + 1.60100i) q^{3} +(-0.0804885 - 0.221140i) q^{4} +(-1.93906 + 1.23857i) q^{6} +(-0.827388 - 1.77434i) q^{7} +(0.768546 - 2.86825i) q^{8} +(-2.12638 - 2.11625i) q^{9} +(-2.76562 - 3.29594i) q^{11} +(0.407241 + 0.0172933i) q^{12} +(-2.90740 - 4.15220i) q^{13} +(0.451609 - 2.56120i) q^{14} +(2.66120 - 2.23301i) q^{16} +(0.828434 + 3.09176i) q^{17} +(-0.701399 - 3.92301i) q^{18} +(-0.776109 + 0.448087i) q^{19} +(3.38755 - 0.151957i) q^{21} +(-0.498142 - 5.69379i) q^{22} +(-5.07230 - 2.36525i) q^{23} +(4.08412 + 3.12611i) q^{24} -6.73356i q^{26} +(4.79346 - 2.00567i) q^{27} +(-0.325783 + 0.325783i) q^{28} +(1.14702 + 6.50507i) q^{29} +(2.27652 - 0.828586i) q^{31} +(-1.31900 + 0.115398i) q^{32} +(7.10463 - 2.24941i) q^{33} +(-1.45427 + 3.99557i) q^{34} +(-0.296839 + 0.640563i) q^{36} +(-6.96604 + 1.86654i) q^{37} +(-1.18595 - 0.103757i) q^{38} +(8.56920 - 1.91049i) q^{39} +(8.33680 + 1.47000i) q^{41} +(3.80200 + 2.41576i) q^{42} +(-0.112459 + 1.28541i) q^{43} +(-0.506265 + 0.876877i) q^{44} +(-3.71732 - 6.43859i) q^{46} +(7.46943 - 3.48305i) q^{47} +(1.81622 + 5.73641i) q^{48} +(2.03580 - 2.42617i) q^{49} +(-5.49742 - 0.717071i) q^{51} +(-0.684206 + 0.977148i) q^{52} +(0.947342 + 0.947342i) q^{53} +(6.74430 + 1.46984i) q^{54} +(-5.72514 + 1.00950i) q^{56} +(-0.204443 - 1.53869i) q^{57} +(-3.70835 + 7.95258i) q^{58} +(-3.72879 - 3.12883i) q^{59} +(-7.90101 - 2.87573i) q^{61} +(3.10857 + 0.832940i) q^{62} +(-1.99560 + 5.52388i) q^{63} +(-7.54029 - 4.35339i) q^{64} +(9.44496 + 2.96559i) q^{66} +(7.90560 - 5.53556i) q^{67} +(0.617033 - 0.432051i) q^{68} +(7.13912 - 6.55750i) q^{69} +(4.92123 + 2.84127i) q^{71} +(-7.70415 + 4.47256i) q^{72} +(-4.93694 - 1.32285i) q^{73} +(-9.00242 - 3.27661i) q^{74} +(0.161558 + 0.135563i) q^{76} +(-3.55988 + 7.63418i) q^{77} +(10.7804 + 4.45032i) q^{78} +(-0.410612 + 0.0724019i) q^{79} +(0.0429919 + 8.99990i) q^{81} +(7.95178 + 7.95178i) q^{82} +(5.31732 - 7.59392i) q^{83} +(-0.306263 - 0.736893i) q^{84} +(-1.10179 + 1.31306i) q^{86} +(-11.1727 - 2.46293i) q^{87} +(-11.5791 + 5.39942i) q^{88} +(-0.974450 - 1.68780i) q^{89} +(-4.96186 + 8.59420i) q^{91} +(-0.114791 + 1.31207i) q^{92} +(-0.178025 + 4.19233i) q^{93} +(10.7819 + 1.90114i) q^{94} +(0.686998 - 2.18799i) q^{96} +(-13.4552 - 1.17718i) q^{97} +(4.06390 - 1.08892i) q^{98} +(-1.09426 + 12.8612i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 192 q + 12 q^{2} + 12 q^{3} - 36 q^{6} + 12 q^{7} + 18 q^{8} - 36 q^{11} + 12 q^{12} + 12 q^{13} - 24 q^{16} + 18 q^{17} + 54 q^{18} - 24 q^{21} + 12 q^{22} + 36 q^{23} + 36 q^{27} + 24 q^{28} - 24 q^{31}+ \cdots - 324 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/675\mathbb{Z}\right)^\times\).

\(n\) \(326\) \(352\)
\(\chi(n)\) \(e\left(\frac{17}{18}\right)\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.08817 + 0.761943i 0.769451 + 0.538775i 0.891105 0.453797i \(-0.149931\pi\)
−0.121654 + 0.992573i \(0.538820\pi\)
\(3\) −0.660916 + 1.60100i −0.381580 + 0.924336i
\(4\) −0.0804885 0.221140i −0.0402443 0.110570i
\(5\) 0 0
\(6\) −1.93906 + 1.23857i −0.791616 + 0.505645i
\(7\) −0.827388 1.77434i −0.312723 0.670638i 0.685633 0.727947i \(-0.259526\pi\)
−0.998356 + 0.0573098i \(0.981748\pi\)
\(8\) 0.768546 2.86825i 0.271722 1.01408i
\(9\) −2.12638 2.11625i −0.708794 0.705416i
\(10\) 0 0
\(11\) −2.76562 3.29594i −0.833867 0.993764i −0.999971 0.00765542i \(-0.997563\pi\)
0.166104 0.986108i \(-0.446881\pi\)
\(12\) 0.407241 + 0.0172933i 0.117560 + 0.00499215i
\(13\) −2.90740 4.15220i −0.806368 1.15161i −0.985814 0.167844i \(-0.946319\pi\)
0.179446 0.983768i \(-0.442569\pi\)
\(14\) 0.451609 2.56120i 0.120698 0.684510i
\(15\) 0 0
\(16\) 2.66120 2.23301i 0.665301 0.558253i
\(17\) 0.828434 + 3.09176i 0.200925 + 0.749861i 0.990653 + 0.136405i \(0.0435547\pi\)
−0.789729 + 0.613456i \(0.789779\pi\)
\(18\) −0.701399 3.92301i −0.165321 0.924663i
\(19\) −0.776109 + 0.448087i −0.178052 + 0.102798i −0.586377 0.810038i \(-0.699446\pi\)
0.408325 + 0.912836i \(0.366113\pi\)
\(20\) 0 0
\(21\) 3.38755 0.151957i 0.739223 0.0331597i
\(22\) −0.498142 5.69379i −0.106204 1.21392i
\(23\) −5.07230 2.36525i −1.05765 0.493189i −0.185607 0.982624i \(-0.559425\pi\)
−0.872040 + 0.489435i \(0.837203\pi\)
\(24\) 4.08412 + 3.12611i 0.833667 + 0.638115i
\(25\) 0 0
\(26\) 6.73356i 1.32056i
\(27\) 4.79346 2.00567i 0.922503 0.385991i
\(28\) −0.325783 + 0.325783i −0.0615672 + 0.0615672i
\(29\) 1.14702 + 6.50507i 0.212996 + 1.20796i 0.884350 + 0.466825i \(0.154602\pi\)
−0.671354 + 0.741137i \(0.734287\pi\)
\(30\) 0 0
\(31\) 2.27652 0.828586i 0.408875 0.148818i −0.129390 0.991594i \(-0.541302\pi\)
0.538266 + 0.842775i \(0.319080\pi\)
\(32\) −1.31900 + 0.115398i −0.233169 + 0.0203996i
\(33\) 7.10463 2.24941i 1.23676 0.391573i
\(34\) −1.45427 + 3.99557i −0.249405 + 0.685235i
\(35\) 0 0
\(36\) −0.296839 + 0.640563i −0.0494731 + 0.106760i
\(37\) −6.96604 + 1.86654i −1.14521 + 0.306858i −0.781044 0.624476i \(-0.785312\pi\)
−0.364166 + 0.931334i \(0.618646\pi\)
\(38\) −1.18595 0.103757i −0.192387 0.0168317i
\(39\) 8.56920 1.91049i 1.37217 0.305922i
\(40\) 0 0
\(41\) 8.33680 + 1.47000i 1.30199 + 0.229576i 0.781292 0.624166i \(-0.214561\pi\)
0.520697 + 0.853742i \(0.325672\pi\)
\(42\) 3.80200 + 2.41576i 0.586662 + 0.372761i
\(43\) −0.112459 + 1.28541i −0.0171499 + 0.196024i 0.982787 + 0.184745i \(0.0591459\pi\)
−0.999936 + 0.0112790i \(0.996410\pi\)
\(44\) −0.506265 + 0.876877i −0.0763223 + 0.132194i
\(45\) 0 0
\(46\) −3.71732 6.43859i −0.548090 0.949319i
\(47\) 7.46943 3.48305i 1.08953 0.508055i 0.207013 0.978338i \(-0.433626\pi\)
0.882516 + 0.470283i \(0.155848\pi\)
\(48\) 1.81622 + 5.73641i 0.262148 + 0.827979i
\(49\) 2.03580 2.42617i 0.290829 0.346596i
\(50\) 0 0
\(51\) −5.49742 0.717071i −0.769792 0.100410i
\(52\) −0.684206 + 0.977148i −0.0948823 + 0.135506i
\(53\) 0.947342 + 0.947342i 0.130127 + 0.130127i 0.769171 0.639043i \(-0.220670\pi\)
−0.639043 + 0.769171i \(0.720670\pi\)
\(54\) 6.74430 + 1.46984i 0.917783 + 0.200021i
\(55\) 0 0
\(56\) −5.72514 + 1.00950i −0.765054 + 0.134900i
\(57\) −0.204443 1.53869i −0.0270791 0.203805i
\(58\) −3.70835 + 7.95258i −0.486930 + 1.04422i
\(59\) −3.72879 3.12883i −0.485447 0.407339i 0.366944 0.930243i \(-0.380404\pi\)
−0.852391 + 0.522904i \(0.824849\pi\)
\(60\) 0 0
\(61\) −7.90101 2.87573i −1.01162 0.368200i −0.217566 0.976046i \(-0.569812\pi\)
−0.794055 + 0.607846i \(0.792034\pi\)
\(62\) 3.10857 + 0.832940i 0.394789 + 0.105783i
\(63\) −1.99560 + 5.52388i −0.251422 + 0.695944i
\(64\) −7.54029 4.35339i −0.942536 0.544173i
\(65\) 0 0
\(66\) 9.44496 + 2.96559i 1.16259 + 0.365039i
\(67\) 7.90560 5.53556i 0.965822 0.676276i 0.0196049 0.999808i \(-0.493759\pi\)
0.946217 + 0.323532i \(0.104870\pi\)
\(68\) 0.617033 0.432051i 0.0748262 0.0523939i
\(69\) 7.13912 6.55750i 0.859449 0.789430i
\(70\) 0 0
\(71\) 4.92123 + 2.84127i 0.584043 + 0.337197i 0.762738 0.646707i \(-0.223854\pi\)
−0.178696 + 0.983904i \(0.557188\pi\)
\(72\) −7.70415 + 4.47256i −0.907943 + 0.527097i
\(73\) −4.93694 1.32285i −0.577825 0.154828i −0.0419419 0.999120i \(-0.513354\pi\)
−0.535883 + 0.844292i \(0.680021\pi\)
\(74\) −9.00242 3.27661i −1.04651 0.380898i
\(75\) 0 0
\(76\) 0.161558 + 0.135563i 0.0185320 + 0.0155502i
\(77\) −3.55988 + 7.63418i −0.405686 + 0.869996i
\(78\) 10.7804 + 4.45032i 1.22064 + 0.503899i
\(79\) −0.410612 + 0.0724019i −0.0461974 + 0.00814585i −0.196699 0.980464i \(-0.563022\pi\)
0.150502 + 0.988610i \(0.451911\pi\)
\(80\) 0 0
\(81\) 0.0429919 + 8.99990i 0.00477688 + 0.999989i
\(82\) 7.95178 + 7.95178i 0.878127 + 0.878127i
\(83\) 5.31732 7.59392i 0.583652 0.833541i −0.413378 0.910560i \(-0.635651\pi\)
0.997030 + 0.0770185i \(0.0245401\pi\)
\(84\) −0.306263 0.736893i −0.0334160 0.0804016i
\(85\) 0 0
\(86\) −1.10179 + 1.31306i −0.118809 + 0.141591i
\(87\) −11.1727 2.46293i −1.19784 0.264054i
\(88\) −11.5791 + 5.39942i −1.23434 + 0.575580i
\(89\) −0.974450 1.68780i −0.103292 0.178906i 0.809747 0.586779i \(-0.199604\pi\)
−0.913039 + 0.407872i \(0.866271\pi\)
\(90\) 0 0
\(91\) −4.96186 + 8.59420i −0.520144 + 0.900917i
\(92\) −0.114791 + 1.31207i −0.0119678 + 0.136792i
\(93\) −0.178025 + 4.19233i −0.0184604 + 0.434724i
\(94\) 10.7819 + 1.90114i 1.11207 + 0.196087i
\(95\) 0 0
\(96\) 0.686998 2.18799i 0.0701164 0.223310i
\(97\) −13.4552 1.17718i −1.36617 0.119524i −0.619644 0.784883i \(-0.712723\pi\)
−0.746524 + 0.665359i \(0.768279\pi\)
\(98\) 4.06390 1.08892i 0.410516 0.109997i
\(99\) −1.09426 + 12.8612i −0.109977 + 1.29260i
\(100\) 0 0
\(101\) −1.45521 + 3.99814i −0.144798 + 0.397830i −0.990797 0.135354i \(-0.956783\pi\)
0.845999 + 0.533185i \(0.179005\pi\)
\(102\) −5.43575 4.96901i −0.538219 0.492006i
\(103\) 13.3028 1.16385i 1.31077 0.114677i 0.589745 0.807589i \(-0.299228\pi\)
0.721022 + 0.692912i \(0.243673\pi\)
\(104\) −14.1440 + 5.14800i −1.38694 + 0.504803i
\(105\) 0 0
\(106\) 0.309046 + 1.75269i 0.0300172 + 0.170236i
\(107\) 10.2616 10.2616i 0.992026 0.992026i −0.00794276 0.999968i \(-0.502528\pi\)
0.999968 + 0.00794276i \(0.00252829\pi\)
\(108\) −0.829353 0.898596i −0.0798045 0.0864674i
\(109\) 14.3459i 1.37409i 0.726615 + 0.687045i \(0.241092\pi\)
−0.726615 + 0.687045i \(0.758908\pi\)
\(110\) 0 0
\(111\) 1.61563 12.3862i 0.153349 1.17565i
\(112\) −6.16397 2.87431i −0.582441 0.271597i
\(113\) −1.18867 13.5865i −0.111821 1.27811i −0.820116 0.572198i \(-0.806091\pi\)
0.708295 0.705916i \(-0.249465\pi\)
\(114\) 0.949930 1.83013i 0.0889691 0.171408i
\(115\) 0 0
\(116\) 1.34621 0.777236i 0.124993 0.0721646i
\(117\) −2.60484 + 14.9819i −0.240817 + 1.38508i
\(118\) −1.67356 6.24582i −0.154064 0.574974i
\(119\) 4.80039 4.02801i 0.440051 0.369247i
\(120\) 0 0
\(121\) −1.30443 + 7.39778i −0.118584 + 0.672525i
\(122\) −6.40648 9.14940i −0.580016 0.828348i
\(123\) −7.86339 + 12.3756i −0.709018 + 1.11587i
\(124\) −0.366468 0.436739i −0.0329098 0.0392204i
\(125\) 0 0
\(126\) −6.38043 + 4.49038i −0.568414 + 0.400035i
\(127\) −0.931838 + 3.47767i −0.0826872 + 0.308593i −0.994866 0.101199i \(-0.967732\pi\)
0.912179 + 0.409792i \(0.134399\pi\)
\(128\) −3.76894 8.08251i −0.333130 0.714400i
\(129\) −1.98362 1.02960i −0.174648 0.0906510i
\(130\) 0 0
\(131\) 0.189922 + 0.521807i 0.0165936 + 0.0455905i 0.947713 0.319124i \(-0.103389\pi\)
−0.931119 + 0.364715i \(0.881167\pi\)
\(132\) −1.06928 1.39007i −0.0930687 0.120990i
\(133\) 1.43720 + 1.00634i 0.124621 + 0.0872607i
\(134\) 12.8204 1.10751
\(135\) 0 0
\(136\) 9.50463 0.815015
\(137\) 4.95031 + 3.46624i 0.422934 + 0.296141i 0.765601 0.643315i \(-0.222442\pi\)
−0.342668 + 0.939457i \(0.611330\pi\)
\(138\) 12.7650 1.69606i 1.08663 0.144378i
\(139\) −6.33390 17.4022i −0.537234 1.47604i −0.850295 0.526306i \(-0.823577\pi\)
0.313061 0.949733i \(-0.398646\pi\)
\(140\) 0 0
\(141\) 0.639692 + 14.2605i 0.0538718 + 1.20095i
\(142\) 3.19024 + 6.84148i 0.267719 + 0.574125i
\(143\) −5.64463 + 21.0660i −0.472027 + 1.76163i
\(144\) −10.3843 0.883525i −0.865362 0.0736271i
\(145\) 0 0
\(146\) −4.36428 5.20115i −0.361190 0.430450i
\(147\) 2.53880 + 4.86281i 0.209397 + 0.401078i
\(148\) 0.973455 + 1.39024i 0.0800175 + 0.114277i
\(149\) 1.50609 8.54145i 0.123384 0.699743i −0.858871 0.512192i \(-0.828834\pi\)
0.982255 0.187551i \(-0.0600551\pi\)
\(150\) 0 0
\(151\) −12.2052 + 10.2414i −0.993244 + 0.833431i −0.986034 0.166543i \(-0.946740\pi\)
−0.00721007 + 0.999974i \(0.502295\pi\)
\(152\) 0.688750 + 2.57045i 0.0558650 + 0.208491i
\(153\) 4.78136 8.32742i 0.386550 0.673232i
\(154\) −9.69056 + 5.59485i −0.780887 + 0.450846i
\(155\) 0 0
\(156\) −1.11221 1.74122i −0.0890479 0.139410i
\(157\) −1.15698 13.2243i −0.0923367 1.05541i −0.891112 0.453784i \(-0.850074\pi\)
0.798775 0.601630i \(-0.205482\pi\)
\(158\) −0.501981 0.234077i −0.0399354 0.0186222i
\(159\) −2.14280 + 0.890578i −0.169935 + 0.0706274i
\(160\) 0 0
\(161\) 10.9570i 0.863530i
\(162\) −6.81063 + 9.82616i −0.535094 + 0.772016i
\(163\) −5.24760 + 5.24760i −0.411024 + 0.411024i −0.882095 0.471071i \(-0.843867\pi\)
0.471071 + 0.882095i \(0.343867\pi\)
\(164\) −0.345940 1.96192i −0.0270133 0.153200i
\(165\) 0 0
\(166\) 11.5723 4.21196i 0.898183 0.326912i
\(167\) −8.20120 + 0.717512i −0.634628 + 0.0555227i −0.399930 0.916546i \(-0.630966\pi\)
−0.234698 + 0.972068i \(0.575410\pi\)
\(168\) 2.16763 9.83313i 0.167237 0.758642i
\(169\) −4.34150 + 11.9282i −0.333962 + 0.917553i
\(170\) 0 0
\(171\) 2.59856 + 0.689635i 0.198717 + 0.0527377i
\(172\) 0.293309 0.0785918i 0.0223646 0.00599257i
\(173\) 7.74393 + 0.677506i 0.588760 + 0.0515098i 0.377643 0.925951i \(-0.376735\pi\)
0.211116 + 0.977461i \(0.432290\pi\)
\(174\) −10.2811 11.1930i −0.779412 0.848542i
\(175\) 0 0
\(176\) −14.7198 2.59549i −1.10954 0.195643i
\(177\) 7.47366 3.90189i 0.561755 0.293284i
\(178\) 0.225641 2.57908i 0.0169125 0.193310i
\(179\) 2.19929 3.80928i 0.164382 0.284719i −0.772053 0.635558i \(-0.780770\pi\)
0.936436 + 0.350839i \(0.114104\pi\)
\(180\) 0 0
\(181\) −2.85830 4.95072i −0.212456 0.367984i 0.740027 0.672577i \(-0.234813\pi\)
−0.952483 + 0.304593i \(0.901479\pi\)
\(182\) −11.9476 + 5.57127i −0.885617 + 0.412970i
\(183\) 9.82594 10.7489i 0.726355 0.794580i
\(184\) −10.6824 + 12.7308i −0.787519 + 0.938529i
\(185\) 0 0
\(186\) −3.38804 + 4.42631i −0.248423 + 0.324553i
\(187\) 7.89911 11.2811i 0.577640 0.824956i
\(188\) −1.37145 1.37145i −0.100023 0.100023i
\(189\) −7.52479 6.84577i −0.547348 0.497957i
\(190\) 0 0
\(191\) 14.2067 2.50503i 1.02796 0.181258i 0.365860 0.930670i \(-0.380775\pi\)
0.662104 + 0.749412i \(0.269664\pi\)
\(192\) 11.9532 9.19475i 0.862651 0.663574i
\(193\) −7.33254 + 15.7247i −0.527808 + 1.13189i 0.443981 + 0.896036i \(0.353566\pi\)
−0.971789 + 0.235852i \(0.924212\pi\)
\(194\) −13.7446 11.5331i −0.986802 0.828025i
\(195\) 0 0
\(196\) −0.700384 0.254919i −0.0500274 0.0182085i
\(197\) 13.1476 + 3.52289i 0.936727 + 0.250995i 0.694721 0.719280i \(-0.255528\pi\)
0.242006 + 0.970275i \(0.422195\pi\)
\(198\) −10.9902 + 13.1613i −0.781041 + 0.935336i
\(199\) −7.78555 4.49499i −0.551903 0.318641i 0.197986 0.980205i \(-0.436560\pi\)
−0.749889 + 0.661564i \(0.769893\pi\)
\(200\) 0 0
\(201\) 3.63748 + 16.3154i 0.256568 + 1.15080i
\(202\) −4.62987 + 3.24187i −0.325756 + 0.228097i
\(203\) 10.5932 7.41743i 0.743496 0.520601i
\(204\) 0.283906 + 1.27342i 0.0198774 + 0.0891570i
\(205\) 0 0
\(206\) 15.3625 + 8.86955i 1.07036 + 0.617971i
\(207\) 5.78018 + 15.7637i 0.401750 + 1.09565i
\(208\) −17.0091 4.55757i −1.17937 0.316011i
\(209\) 3.62329 + 1.31877i 0.250628 + 0.0912212i
\(210\) 0 0
\(211\) −14.3607 12.0500i −0.988631 0.829559i −0.00326162 0.999995i \(-0.501038\pi\)
−0.985369 + 0.170435i \(0.945483\pi\)
\(212\) 0.133245 0.285746i 0.00915134 0.0196251i
\(213\) −7.80139 + 6.00103i −0.534542 + 0.411184i
\(214\) 18.9851 3.34758i 1.29779 0.228836i
\(215\) 0 0
\(216\) −2.06876 15.2903i −0.140762 1.04037i
\(217\) −3.35376 3.35376i −0.227668 0.227668i
\(218\) −10.9308 + 15.6108i −0.740326 + 1.05729i
\(219\) 5.38077 7.02973i 0.363599 0.475025i
\(220\) 0 0
\(221\) 10.4290 12.4288i 0.701530 0.836051i
\(222\) 11.1957 12.2473i 0.751405 0.821984i
\(223\) 15.0323 7.00968i 1.00664 0.469403i 0.151862 0.988402i \(-0.451473\pi\)
0.854775 + 0.518999i \(0.173695\pi\)
\(224\) 1.29608 + 2.24488i 0.0865981 + 0.149992i
\(225\) 0 0
\(226\) 9.05870 15.6901i 0.602576 1.04369i
\(227\) 1.57696 18.0248i 0.104667 1.19634i −0.744281 0.667867i \(-0.767207\pi\)
0.848947 0.528478i \(-0.177237\pi\)
\(228\) −0.323812 + 0.169058i −0.0214450 + 0.0111961i
\(229\) 18.7074 + 3.29862i 1.23622 + 0.217979i 0.753294 0.657684i \(-0.228464\pi\)
0.482924 + 0.875662i \(0.339575\pi\)
\(230\) 0 0
\(231\) −9.86952 10.7449i −0.649367 0.706963i
\(232\) 19.5397 + 1.70951i 1.28285 + 0.112235i
\(233\) 7.30551 1.95750i 0.478600 0.128240i −0.0114509 0.999934i \(-0.503645\pi\)
0.490050 + 0.871694i \(0.336978\pi\)
\(234\) −14.2499 + 14.3181i −0.931544 + 0.936005i
\(235\) 0 0
\(236\) −0.391785 + 1.07642i −0.0255031 + 0.0700691i
\(237\) 0.155464 0.705239i 0.0100985 0.0458102i
\(238\) 8.29275 0.725521i 0.537539 0.0470286i
\(239\) 11.7518 4.27731i 0.760162 0.276676i 0.0672867 0.997734i \(-0.478566\pi\)
0.692875 + 0.721057i \(0.256344\pi\)
\(240\) 0 0
\(241\) 2.97320 + 16.8619i 0.191521 + 1.08617i 0.917287 + 0.398227i \(0.130374\pi\)
−0.725766 + 0.687942i \(0.758514\pi\)
\(242\) −7.05612 + 7.05612i −0.453585 + 0.453585i
\(243\) −14.4372 5.87934i −0.926148 0.377160i
\(244\) 1.97870i 0.126673i
\(245\) 0 0
\(246\) −17.9862 + 7.47531i −1.14676 + 0.476609i
\(247\) 4.11700 + 1.91979i 0.261958 + 0.122153i
\(248\) −0.626983 7.16645i −0.0398134 0.455070i
\(249\) 8.64354 + 13.5320i 0.547762 + 0.857553i
\(250\) 0 0
\(251\) 4.66370 2.69259i 0.294370 0.169955i −0.345541 0.938404i \(-0.612304\pi\)
0.639911 + 0.768449i \(0.278971\pi\)
\(252\) 1.38218 0.00330126i 0.0870690 0.000207960i
\(253\) 6.23233 + 23.2594i 0.391823 + 1.46231i
\(254\) −3.66378 + 3.07428i −0.229886 + 0.192897i
\(255\) 0 0
\(256\) −0.966651 + 5.48215i −0.0604157 + 0.342634i
\(257\) 7.03325 + 10.0445i 0.438722 + 0.626560i 0.976240 0.216692i \(-0.0695268\pi\)
−0.537518 + 0.843252i \(0.680638\pi\)
\(258\) −1.37401 2.63178i −0.0855424 0.163847i
\(259\) 9.07550 + 10.8158i 0.563924 + 0.672059i
\(260\) 0 0
\(261\) 11.3273 16.2596i 0.701145 1.00645i
\(262\) −0.190920 + 0.712524i −0.0117951 + 0.0440199i
\(263\) 5.75913 + 12.3505i 0.355123 + 0.761563i 0.999996 0.00272594i \(-0.000867694\pi\)
−0.644873 + 0.764289i \(0.723090\pi\)
\(264\) −0.991650 22.1067i −0.0610318 1.36057i
\(265\) 0 0
\(266\) 0.797143 + 2.19013i 0.0488760 + 0.134286i
\(267\) 3.34619 0.444600i 0.204783 0.0272091i
\(268\) −1.86045 1.30270i −0.113645 0.0795749i
\(269\) 12.3342 0.752028 0.376014 0.926614i \(-0.377294\pi\)
0.376014 + 0.926614i \(0.377294\pi\)
\(270\) 0 0
\(271\) 19.7578 1.20020 0.600099 0.799926i \(-0.295128\pi\)
0.600099 + 0.799926i \(0.295128\pi\)
\(272\) 9.10856 + 6.37789i 0.552288 + 0.386716i
\(273\) −10.4799 13.6240i −0.634273 0.824560i
\(274\) 2.74569 + 7.54371i 0.165873 + 0.455732i
\(275\) 0 0
\(276\) −2.02475 1.05094i −0.121875 0.0632594i
\(277\) 0.856962 + 1.83776i 0.0514898 + 0.110420i 0.930370 0.366623i \(-0.119486\pi\)
−0.878880 + 0.477044i \(0.841708\pi\)
\(278\) 6.36718 23.7626i 0.381878 1.42519i
\(279\) −6.59425 3.05579i −0.394787 0.182946i
\(280\) 0 0
\(281\) −16.8041 20.0263i −1.00245 1.19467i −0.980822 0.194903i \(-0.937561\pi\)
−0.0216244 0.999766i \(-0.506884\pi\)
\(282\) −10.1696 + 16.0053i −0.605593 + 0.953100i
\(283\) −1.33019 1.89971i −0.0790717 0.112926i 0.777668 0.628675i \(-0.216403\pi\)
−0.856740 + 0.515749i \(0.827514\pi\)
\(284\) 0.232218 1.31697i 0.0137796 0.0781480i
\(285\) 0 0
\(286\) −22.1934 + 18.6225i −1.31232 + 1.10117i
\(287\) −4.28949 16.0086i −0.253200 0.944956i
\(288\) 3.04891 + 2.54596i 0.179659 + 0.150022i
\(289\) 5.84978 3.37737i 0.344105 0.198669i
\(290\) 0 0
\(291\) 10.7774 20.7637i 0.631783 1.21719i
\(292\) 0.104832 + 1.19823i 0.00613480 + 0.0701211i
\(293\) 10.9251 + 5.09445i 0.638250 + 0.297621i 0.714677 0.699454i \(-0.246574\pi\)
−0.0764274 + 0.997075i \(0.524351\pi\)
\(294\) −0.942540 + 7.22598i −0.0549701 + 0.421427i
\(295\) 0 0
\(296\) 21.4149i 1.24471i
\(297\) −19.8675 10.2521i −1.15283 0.594885i
\(298\) 8.14698 8.14698i 0.471942 0.471942i
\(299\) 4.92621 + 27.9379i 0.284890 + 1.61569i
\(300\) 0 0
\(301\) 2.37381 0.863996i 0.136824 0.0497999i
\(302\) −21.0846 + 1.84467i −1.21328 + 0.106149i
\(303\) −5.43925 4.97222i −0.312477 0.285646i
\(304\) −1.06480 + 2.92551i −0.0610704 + 0.167790i
\(305\) 0 0
\(306\) 11.5479 5.41851i 0.660152 0.309756i
\(307\) −22.6984 + 6.08202i −1.29547 + 0.347119i −0.839734 0.542998i \(-0.817289\pi\)
−0.455732 + 0.890117i \(0.650622\pi\)
\(308\) 1.97476 + 0.172769i 0.112522 + 0.00984441i
\(309\) −6.92874 + 22.0670i −0.394162 + 1.25535i
\(310\) 0 0
\(311\) 3.91683 + 0.690642i 0.222103 + 0.0391627i 0.283592 0.958945i \(-0.408474\pi\)
−0.0614891 + 0.998108i \(0.519585\pi\)
\(312\) 1.10607 26.0469i 0.0626189 1.47462i
\(313\) 0.0797089 0.911077i 0.00450541 0.0514971i −0.993609 0.112875i \(-0.963994\pi\)
0.998115 + 0.0613781i \(0.0195495\pi\)
\(314\) 8.81718 15.2718i 0.497582 0.861838i
\(315\) 0 0
\(316\) 0.0490605 + 0.0849753i 0.00275987 + 0.00478023i
\(317\) −23.8990 + 11.1443i −1.34230 + 0.625924i −0.955158 0.296096i \(-0.904315\pi\)
−0.387141 + 0.922021i \(0.626537\pi\)
\(318\) −3.01030 0.663597i −0.168809 0.0372127i
\(319\) 18.2681 21.7711i 1.02282 1.21895i
\(320\) 0 0
\(321\) 9.64673 + 23.2108i 0.538428 + 1.29550i
\(322\) −8.34859 + 11.9230i −0.465249 + 0.664444i
\(323\) −2.02833 2.02833i −0.112859 0.112859i
\(324\) 1.98678 0.733896i 0.110377 0.0407720i
\(325\) 0 0
\(326\) −9.70865 + 1.71190i −0.537712 + 0.0948132i
\(327\) −22.9678 9.48144i −1.27012 0.524325i
\(328\) 10.6235 22.7823i 0.586587 1.25794i
\(329\) −12.3602 10.3715i −0.681442 0.571798i
\(330\) 0 0
\(331\) −12.0746 4.39481i −0.663682 0.241561i −0.0118569 0.999930i \(-0.503774\pi\)
−0.651825 + 0.758369i \(0.725996\pi\)
\(332\) −2.10731 0.564651i −0.115653 0.0309893i
\(333\) 18.7625 + 10.7729i 1.02818 + 0.590350i
\(334\) −9.47099 5.46808i −0.518229 0.299200i
\(335\) 0 0
\(336\) 8.67563 7.96883i 0.473294 0.434735i
\(337\) 6.96283 4.87543i 0.379290 0.265581i −0.368349 0.929688i \(-0.620077\pi\)
0.747638 + 0.664106i \(0.231188\pi\)
\(338\) −13.8129 + 9.67189i −0.751322 + 0.526081i
\(339\) 22.5376 + 7.07650i 1.22408 + 0.384343i
\(340\) 0 0
\(341\) −9.02697 5.21173i −0.488838 0.282231i
\(342\) 2.30221 + 2.73040i 0.124489 + 0.147643i
\(343\) −19.2267 5.15177i −1.03814 0.278169i
\(344\) 3.60046 + 1.31046i 0.194124 + 0.0706553i
\(345\) 0 0
\(346\) 7.91047 + 6.63767i 0.425270 + 0.356844i
\(347\) 2.22359 4.76851i 0.119369 0.255987i −0.837540 0.546376i \(-0.816007\pi\)
0.956909 + 0.290389i \(0.0937847\pi\)
\(348\) 0.354620 + 2.66897i 0.0190096 + 0.143072i
\(349\) −20.3047 + 3.58026i −1.08688 + 0.191647i −0.688258 0.725466i \(-0.741624\pi\)
−0.398627 + 0.917113i \(0.630513\pi\)
\(350\) 0 0
\(351\) −22.2644 14.0721i −1.18839 0.751115i
\(352\) 4.02821 + 4.02821i 0.214704 + 0.214704i
\(353\) −16.5268 + 23.6027i −0.879631 + 1.25624i 0.0859911 + 0.996296i \(0.472594\pi\)
−0.965623 + 0.259948i \(0.916295\pi\)
\(354\) 11.1056 + 1.44859i 0.590257 + 0.0769918i
\(355\) 0 0
\(356\) −0.294808 + 0.351339i −0.0156248 + 0.0186209i
\(357\) 3.27617 + 10.3476i 0.173393 + 0.547652i
\(358\) 5.29565 2.46940i 0.279884 0.130512i
\(359\) 8.91393 + 15.4394i 0.470459 + 0.814860i 0.999429 0.0337810i \(-0.0107549\pi\)
−0.528970 + 0.848641i \(0.677422\pi\)
\(360\) 0 0
\(361\) −9.09844 + 15.7590i −0.478865 + 0.829419i
\(362\) 0.661859 7.56508i 0.0347865 0.397612i
\(363\) −10.9817 6.97769i −0.576390 0.366234i
\(364\) 2.29990 + 0.405534i 0.120547 + 0.0212558i
\(365\) 0 0
\(366\) 18.8823 4.20977i 0.986994 0.220048i
\(367\) 21.8448 + 1.91117i 1.14029 + 0.0997623i 0.641614 0.767028i \(-0.278265\pi\)
0.498674 + 0.866790i \(0.333821\pi\)
\(368\) −18.7800 + 5.03210i −0.978978 + 0.262316i
\(369\) −14.6163 20.7685i −0.760895 1.08117i
\(370\) 0 0
\(371\) 0.897087 2.46473i 0.0465744 0.127962i
\(372\) 0.941423 0.298066i 0.0488105 0.0154540i
\(373\) 17.1932 1.50421i 0.890228 0.0778848i 0.367142 0.930165i \(-0.380336\pi\)
0.523086 + 0.852280i \(0.324781\pi\)
\(374\) 17.1911 6.25706i 0.888932 0.323545i
\(375\) 0 0
\(376\) −4.24967 24.1011i −0.219160 1.24292i
\(377\) 23.6755 23.6755i 1.21935 1.21935i
\(378\) −2.97215 13.1828i −0.152871 0.678051i
\(379\) 27.1687i 1.39556i −0.716312 0.697780i \(-0.754171\pi\)
0.716312 0.697780i \(-0.245829\pi\)
\(380\) 0 0
\(381\) −4.95187 3.79031i −0.253692 0.194184i
\(382\) 17.3680 + 8.09883i 0.888624 + 0.414372i
\(383\) 0.640436 + 7.32022i 0.0327248 + 0.374046i 0.994844 + 0.101417i \(0.0323376\pi\)
−0.962119 + 0.272629i \(0.912107\pi\)
\(384\) 15.4310 0.692197i 0.787461 0.0353235i
\(385\) 0 0
\(386\) −19.9604 + 11.5241i −1.01596 + 0.586562i
\(387\) 2.95939 2.49529i 0.150434 0.126843i
\(388\) 0.822667 + 3.07024i 0.0417646 + 0.155868i
\(389\) −23.9421 + 20.0898i −1.21391 + 1.01859i −0.214792 + 0.976660i \(0.568907\pi\)
−0.999120 + 0.0419334i \(0.986648\pi\)
\(390\) 0 0
\(391\) 3.11072 17.6418i 0.157316 0.892182i
\(392\) −5.39427 7.70382i −0.272452 0.389102i
\(393\) −0.960934 0.0408056i −0.0484727 0.00205837i
\(394\) 11.6225 + 13.8512i 0.585535 + 0.697814i
\(395\) 0 0
\(396\) 2.93220 0.793192i 0.147349 0.0398594i
\(397\) −4.26857 + 15.9305i −0.214234 + 0.799531i 0.772201 + 0.635378i \(0.219156\pi\)
−0.986435 + 0.164153i \(0.947511\pi\)
\(398\) −5.04706 10.8234i −0.252986 0.542530i
\(399\) −2.56101 + 1.63585i −0.128211 + 0.0818949i
\(400\) 0 0
\(401\) −0.517022 1.42051i −0.0258188 0.0709367i 0.926114 0.377245i \(-0.123128\pi\)
−0.951932 + 0.306308i \(0.900906\pi\)
\(402\) −8.47320 + 20.5254i −0.422605 + 1.02371i
\(403\) −10.0592 7.04354i −0.501085 0.350864i
\(404\) 1.00128 0.0498155
\(405\) 0 0
\(406\) 17.1788 0.852571
\(407\) 25.4175 + 17.7975i 1.25990 + 0.882189i
\(408\) −6.28176 + 15.2169i −0.310993 + 0.753348i
\(409\) −8.02778 22.0561i −0.396948 1.09061i −0.963763 0.266760i \(-0.914047\pi\)
0.566815 0.823845i \(-0.308175\pi\)
\(410\) 0 0
\(411\) −8.82118 + 5.63453i −0.435117 + 0.277931i
\(412\) −1.32810 2.84812i −0.0654308 0.140317i
\(413\) −2.46645 + 9.20490i −0.121366 + 0.452944i
\(414\) −5.72121 + 21.5577i −0.281182 + 1.05950i
\(415\) 0 0
\(416\) 4.31402 + 5.14125i 0.211512 + 0.252070i
\(417\) 32.0471 + 1.36086i 1.56935 + 0.0666418i
\(418\) 2.93792 + 4.19579i 0.143698 + 0.205223i
\(419\) −2.76242 + 15.6665i −0.134953 + 0.765357i 0.839939 + 0.542680i \(0.182591\pi\)
−0.974892 + 0.222677i \(0.928521\pi\)
\(420\) 0 0
\(421\) 27.8051 23.3312i 1.35514 1.13709i 0.377685 0.925934i \(-0.376720\pi\)
0.977452 0.211160i \(-0.0677241\pi\)
\(422\) −6.44539 24.0545i −0.313756 1.17096i
\(423\) −23.2539 8.40087i −1.13064 0.408464i
\(424\) 3.44529 1.98914i 0.167318 0.0966012i
\(425\) 0 0
\(426\) −13.0617 + 0.585914i −0.632840 + 0.0283876i
\(427\) 1.43468 + 16.3984i 0.0694289 + 0.793576i
\(428\) −3.09519 1.44331i −0.149612 0.0697652i
\(429\) −29.9960 22.9599i −1.44822 1.10851i
\(430\) 0 0
\(431\) 10.7570i 0.518146i −0.965858 0.259073i \(-0.916583\pi\)
0.965858 0.259073i \(-0.0834169\pi\)
\(432\) 8.27769 16.0414i 0.398261 0.771790i
\(433\) 25.8369 25.8369i 1.24164 1.24164i 0.282321 0.959320i \(-0.408896\pi\)
0.959320 0.282321i \(-0.0911042\pi\)
\(434\) −1.09408 6.20483i −0.0525175 0.297842i
\(435\) 0 0
\(436\) 3.17246 1.15468i 0.151933 0.0552992i
\(437\) 4.99649 0.437136i 0.239015 0.0209111i
\(438\) 11.2114 3.54968i 0.535703 0.169610i
\(439\) 4.76440 13.0901i 0.227393 0.624756i −0.772556 0.634947i \(-0.781022\pi\)
0.999948 + 0.0101913i \(0.00324405\pi\)
\(440\) 0 0
\(441\) −9.46327 + 0.850709i −0.450632 + 0.0405100i
\(442\) 20.8185 5.57831i 0.990237 0.265333i
\(443\) 11.3601 + 0.993879i 0.539734 + 0.0472206i 0.353764 0.935335i \(-0.384902\pi\)
0.185970 + 0.982555i \(0.440457\pi\)
\(444\) −2.86914 + 0.639668i −0.136163 + 0.0303573i
\(445\) 0 0
\(446\) 21.6986 + 3.82606i 1.02746 + 0.181169i
\(447\) 12.6794 + 8.05642i 0.599717 + 0.381056i
\(448\) −1.48564 + 16.9810i −0.0701900 + 0.802276i
\(449\) 0.807925 1.39937i 0.0381283 0.0660402i −0.846332 0.532657i \(-0.821194\pi\)
0.884460 + 0.466616i \(0.154527\pi\)
\(450\) 0 0
\(451\) −18.2114 31.5431i −0.857541 1.48530i
\(452\) −2.90886 + 1.35642i −0.136821 + 0.0638008i
\(453\) −8.32980 26.3092i −0.391368 1.23611i
\(454\) 15.4498 18.4124i 0.725097 0.864137i
\(455\) 0 0
\(456\) −4.57049 0.596164i −0.214033 0.0279180i
\(457\) 3.17737 4.53775i 0.148631 0.212267i −0.737932 0.674875i \(-0.764197\pi\)
0.886563 + 0.462608i \(0.153086\pi\)
\(458\) 17.8434 + 17.8434i 0.833768 + 0.833768i
\(459\) 10.1721 + 13.1587i 0.474793 + 0.614194i
\(460\) 0 0
\(461\) 14.9666 2.63902i 0.697065 0.122911i 0.186123 0.982527i \(-0.440408\pi\)
0.510942 + 0.859615i \(0.329297\pi\)
\(462\) −2.55269 19.2123i −0.118762 0.893836i
\(463\) 13.9696 29.9580i 0.649224 1.39226i −0.255727 0.966749i \(-0.582315\pi\)
0.904951 0.425516i \(-0.139907\pi\)
\(464\) 17.5784 + 14.7500i 0.816056 + 0.684752i
\(465\) 0 0
\(466\) 9.44112 + 3.43629i 0.437352 + 0.159183i
\(467\) −21.9378 5.87822i −1.01516 0.272012i −0.287377 0.957818i \(-0.592783\pi\)
−0.727784 + 0.685806i \(0.759450\pi\)
\(468\) 3.52277 0.629839i 0.162840 0.0291143i
\(469\) −16.3630 9.44716i −0.755571 0.436229i
\(470\) 0 0
\(471\) 21.9367 + 6.88783i 1.01079 + 0.317374i
\(472\) −11.8400 + 8.29047i −0.544981 + 0.381600i
\(473\) 4.54767 3.18431i 0.209102 0.146415i
\(474\) 0.706524 0.648964i 0.0324517 0.0298079i
\(475\) 0 0
\(476\) −1.27713 0.737352i −0.0585372 0.0337965i
\(477\) −0.00959972 4.01922i −0.000439541 0.184027i
\(478\) 16.0470 + 4.29979i 0.733974 + 0.196668i
\(479\) 21.4594 + 7.81060i 0.980507 + 0.356875i 0.782037 0.623232i \(-0.214181\pi\)
0.198470 + 0.980107i \(0.436403\pi\)
\(480\) 0 0
\(481\) 28.0033 + 23.4976i 1.27684 + 1.07140i
\(482\) −9.61245 + 20.6140i −0.437835 + 0.938941i
\(483\) −17.5421 7.24163i −0.798191 0.329506i
\(484\) 1.74094 0.306975i 0.0791336 0.0139534i
\(485\) 0 0
\(486\) −11.2304 17.3981i −0.509421 0.789192i
\(487\) −13.1004 13.1004i −0.593634 0.593634i 0.344977 0.938611i \(-0.387887\pi\)
−0.938611 + 0.344977i \(0.887887\pi\)
\(488\) −14.3206 + 20.4520i −0.648264 + 0.925817i
\(489\) −4.93317 11.8696i −0.223086 0.536762i
\(490\) 0 0
\(491\) −5.95862 + 7.10121i −0.268909 + 0.320473i −0.883553 0.468332i \(-0.844855\pi\)
0.614644 + 0.788805i \(0.289300\pi\)
\(492\) 3.36967 + 0.742816i 0.151916 + 0.0334887i
\(493\) −19.1619 + 8.93533i −0.863007 + 0.402427i
\(494\) 3.01722 + 5.22597i 0.135751 + 0.235128i
\(495\) 0 0
\(496\) 4.20804 7.28854i 0.188947 0.327265i
\(497\) 0.969617 11.0828i 0.0434933 0.497131i
\(498\) −0.904958 + 21.3109i −0.0405521 + 0.954965i
\(499\) −20.3482 3.58794i −0.910911 0.160618i −0.301494 0.953468i \(-0.597485\pi\)
−0.609417 + 0.792850i \(0.708596\pi\)
\(500\) 0 0
\(501\) 4.27157 13.6043i 0.190840 0.607796i
\(502\) 7.12650 + 0.623488i 0.318071 + 0.0278276i
\(503\) −4.53760 + 1.21585i −0.202322 + 0.0542119i −0.358557 0.933508i \(-0.616731\pi\)
0.156235 + 0.987720i \(0.450064\pi\)
\(504\) 14.3102 + 9.96924i 0.637426 + 0.444065i
\(505\) 0 0
\(506\) −10.9405 + 30.0588i −0.486365 + 1.33628i
\(507\) −16.2276 14.8343i −0.720694 0.658813i
\(508\) 0.844055 0.0738452i 0.0374489 0.00327635i
\(509\) −30.3526 + 11.0475i −1.34536 + 0.489670i −0.911496 0.411309i \(-0.865072\pi\)
−0.433862 + 0.900979i \(0.642849\pi\)
\(510\) 0 0
\(511\) 1.73758 + 9.85432i 0.0768661 + 0.435929i
\(512\) −17.8410 + 17.8410i −0.788469 + 0.788469i
\(513\) −2.82154 + 3.70450i −0.124574 + 0.163558i
\(514\) 16.2891i 0.718480i
\(515\) 0 0
\(516\) −0.0680271 + 0.521529i −0.00299472 + 0.0229590i
\(517\) −32.1376 14.9860i −1.41341 0.659083i
\(518\) 1.63467 + 18.6844i 0.0718234 + 0.820945i
\(519\) −6.20277 + 11.9502i −0.272271 + 0.524557i
\(520\) 0 0
\(521\) −2.29310 + 1.32392i −0.100463 + 0.0580021i −0.549390 0.835566i \(-0.685140\pi\)
0.448927 + 0.893568i \(0.351806\pi\)
\(522\) 24.7150 9.06243i 1.08175 0.396652i
\(523\) −3.37351 12.5901i −0.147513 0.550527i −0.999631 0.0271764i \(-0.991348\pi\)
0.852117 0.523351i \(-0.175318\pi\)
\(524\) 0.100106 0.0839990i 0.00437316 0.00366951i
\(525\) 0 0
\(526\) −3.14347 + 17.8275i −0.137062 + 0.777317i
\(527\) 4.44773 + 6.35202i 0.193746 + 0.276698i
\(528\) 13.8839 21.8509i 0.604219 0.950938i
\(529\) 5.34967 + 6.37549i 0.232594 + 0.277195i
\(530\) 0 0
\(531\) 1.30746 + 14.5441i 0.0567388 + 0.631161i
\(532\) 0.106864 0.398822i 0.00463314 0.0172911i
\(533\) −18.1347 38.8899i −0.785499 1.68451i
\(534\) 3.97997 + 2.06581i 0.172230 + 0.0893962i
\(535\) 0 0
\(536\) −9.80156 26.9296i −0.423363 1.16318i
\(537\) 4.64510 + 6.03866i 0.200451 + 0.260587i
\(538\) 13.4217 + 9.39794i 0.578649 + 0.405174i
\(539\) −13.6268 −0.586947
\(540\) 0 0
\(541\) −42.0435 −1.80759 −0.903796 0.427963i \(-0.859231\pi\)
−0.903796 + 0.427963i \(0.859231\pi\)
\(542\) 21.4998 + 15.0543i 0.923494 + 0.646637i
\(543\) 9.81518 1.30412i 0.421210 0.0559651i
\(544\) −1.44949 3.98243i −0.0621463 0.170745i
\(545\) 0 0
\(546\) −1.02321 22.8103i −0.0437894 0.976189i
\(547\) 9.73975 + 20.8870i 0.416442 + 0.893062i 0.996893 + 0.0787671i \(0.0250984\pi\)
−0.580451 + 0.814295i \(0.697124\pi\)
\(548\) 0.368084 1.37371i 0.0157238 0.0586818i
\(549\) 10.7148 + 22.8354i 0.457296 + 0.974591i
\(550\) 0 0
\(551\) −3.80505 4.53468i −0.162101 0.193184i
\(552\) −13.3218 25.5165i −0.567014 1.08606i
\(553\) 0.468201 + 0.668660i 0.0199099 + 0.0284343i
\(554\) −0.467751 + 2.65275i −0.0198728 + 0.112704i
\(555\) 0 0
\(556\) −3.33853 + 2.80136i −0.141585 + 0.118804i
\(557\) 9.19419 + 34.3132i 0.389570 + 1.45390i 0.830835 + 0.556519i \(0.187863\pi\)
−0.441265 + 0.897377i \(0.645470\pi\)
\(558\) −4.84731 8.34966i −0.205203 0.353469i
\(559\) 5.66426 3.27026i 0.239572 0.138317i
\(560\) 0 0
\(561\) 12.8404 + 20.1023i 0.542120 + 0.848720i
\(562\) −3.02674 34.5957i −0.127675 1.45933i
\(563\) 4.24073 + 1.97748i 0.178725 + 0.0833410i 0.509922 0.860221i \(-0.329674\pi\)
−0.331196 + 0.943562i \(0.607452\pi\)
\(564\) 3.10209 1.28927i 0.130622 0.0542881i
\(565\) 0 0
\(566\) 3.08073i 0.129493i
\(567\) 15.9333 7.52269i 0.669136 0.315923i
\(568\) 11.9317 11.9317i 0.500642 0.500642i
\(569\) 1.37633 + 7.80556i 0.0576988 + 0.327226i 0.999971 0.00762185i \(-0.00242613\pi\)
−0.942272 + 0.334848i \(0.891315\pi\)
\(570\) 0 0
\(571\) 4.65824 1.69546i 0.194941 0.0709528i −0.242705 0.970100i \(-0.578035\pi\)
0.437646 + 0.899147i \(0.355812\pi\)
\(572\) 5.11288 0.447319i 0.213780 0.0187033i
\(573\) −5.37891 + 24.4006i −0.224707 + 1.01935i
\(574\) 7.52995 20.6884i 0.314294 0.863516i
\(575\) 0 0
\(576\) 6.82068 + 25.2141i 0.284195 + 1.05059i
\(577\) −22.0266 + 5.90200i −0.916977 + 0.245703i −0.686293 0.727325i \(-0.740763\pi\)
−0.230684 + 0.973029i \(0.574096\pi\)
\(578\) 8.93890 + 0.782053i 0.371809 + 0.0325291i
\(579\) −20.3290 22.1321i −0.844844 0.919777i
\(580\) 0 0
\(581\) −17.8737 3.15161i −0.741526 0.130751i
\(582\) 27.5484 14.3826i 1.14192 0.596179i
\(583\) 0.502393 5.74237i 0.0208070 0.237825i
\(584\) −7.58853 + 13.1437i −0.314015 + 0.543891i
\(585\) 0 0
\(586\) 8.00664 + 13.8679i 0.330751 + 0.572878i
\(587\) −33.9155 + 15.8151i −1.39984 + 0.652758i −0.968405 0.249384i \(-0.919772\pi\)
−0.431439 + 0.902142i \(0.641994\pi\)
\(588\) 0.871019 0.952832i 0.0359202 0.0392941i
\(589\) −1.39555 + 1.66315i −0.0575026 + 0.0685290i
\(590\) 0 0
\(591\) −14.3296 + 18.7209i −0.589440 + 0.770075i
\(592\) −14.3700 + 20.5225i −0.590604 + 0.843470i
\(593\) 5.46266 + 5.46266i 0.224324 + 0.224324i 0.810317 0.585992i \(-0.199295\pi\)
−0.585992 + 0.810317i \(0.699295\pi\)
\(594\) −13.8077 26.2939i −0.566535 1.07885i
\(595\) 0 0
\(596\) −2.01008 + 0.354432i −0.0823362 + 0.0145181i
\(597\) 12.3421 9.49383i 0.505126 0.388556i
\(598\) −15.9266 + 34.1546i −0.651286 + 1.39669i
\(599\) −1.79656 1.50749i −0.0734055 0.0615946i 0.605347 0.795962i \(-0.293035\pi\)
−0.678752 + 0.734367i \(0.737479\pi\)
\(600\) 0 0
\(601\) 38.1639 + 13.8905i 1.55674 + 0.566607i 0.969987 0.243159i \(-0.0781836\pi\)
0.586753 + 0.809766i \(0.300406\pi\)
\(602\) 3.24142 + 0.868536i 0.132110 + 0.0353989i
\(603\) −28.5249 4.95949i −1.16162 0.201966i
\(604\) 3.24716 + 1.87475i 0.132125 + 0.0762824i
\(605\) 0 0
\(606\) −2.13027 9.55500i −0.0865362 0.388146i
\(607\) 1.53527 1.07501i 0.0623147 0.0436332i −0.542004 0.840376i \(-0.682334\pi\)
0.604319 + 0.796743i \(0.293445\pi\)
\(608\) 0.971981 0.680588i 0.0394190 0.0276015i
\(609\) 4.87408 + 21.8619i 0.197508 + 0.885891i
\(610\) 0 0
\(611\) −36.1789 20.8879i −1.46364 0.845035i
\(612\) −2.22637 0.387089i −0.0899958 0.0156472i
\(613\) 17.5910 + 4.71349i 0.710494 + 0.190376i 0.595926 0.803039i \(-0.296785\pi\)
0.114568 + 0.993415i \(0.463452\pi\)
\(614\) −29.3338 10.6766i −1.18382 0.430874i
\(615\) 0 0
\(616\) 19.1608 + 16.0778i 0.772012 + 0.647795i
\(617\) 7.87526 16.8885i 0.317046 0.679907i −0.681611 0.731715i \(-0.738720\pi\)
0.998657 + 0.0518073i \(0.0164982\pi\)
\(618\) −24.3534 + 18.7333i −0.979639 + 0.753564i
\(619\) −28.0130 + 4.93945i −1.12594 + 0.198533i −0.705447 0.708763i \(-0.749254\pi\)
−0.420492 + 0.907296i \(0.638142\pi\)
\(620\) 0 0
\(621\) −29.0578 1.16440i −1.16605 0.0467259i
\(622\) 3.73594 + 3.73594i 0.149797 + 0.149797i
\(623\) −2.18848 + 3.12547i −0.0876795 + 0.125219i
\(624\) 18.5382 24.2193i 0.742123 0.969549i
\(625\) 0 0
\(626\) 0.780926 0.930671i 0.0312121 0.0371971i
\(627\) −4.50604 + 4.92928i −0.179954 + 0.196857i
\(628\) −2.83130 + 1.32026i −0.112981 + 0.0526840i
\(629\) −11.5418 19.9910i −0.460202 0.797093i
\(630\) 0 0
\(631\) −16.2016 + 28.0619i −0.644974 + 1.11713i 0.339333 + 0.940666i \(0.389799\pi\)
−0.984307 + 0.176462i \(0.943535\pi\)
\(632\) −0.107907 + 1.23338i −0.00429231 + 0.0490613i
\(633\) 28.7833 15.0273i 1.14403 0.597283i
\(634\) −34.4974 6.08282i −1.37007 0.241580i
\(635\) 0 0
\(636\) 0.369414 + 0.402179i 0.0146482 + 0.0159475i
\(637\) −15.9928 1.39919i −0.633659 0.0554380i
\(638\) 36.4671 9.77134i 1.44375 0.386851i
\(639\) −4.45157 16.4562i −0.176102 0.650996i
\(640\) 0 0
\(641\) −7.10695 + 19.5262i −0.280708 + 0.771238i 0.716571 + 0.697514i \(0.245711\pi\)
−0.997279 + 0.0737239i \(0.976512\pi\)
\(642\) −7.18807 + 32.6075i −0.283691 + 1.28692i
\(643\) −39.3334 + 3.44122i −1.55116 + 0.135709i −0.830277 0.557351i \(-0.811818\pi\)
−0.720880 + 0.693060i \(0.756262\pi\)
\(644\) 2.42303 0.881910i 0.0954807 0.0347521i
\(645\) 0 0
\(646\) −0.661691 3.75263i −0.0260339 0.147645i
\(647\) −27.7872 + 27.7872i −1.09243 + 1.09243i −0.0971593 + 0.995269i \(0.530976\pi\)
−0.995269 + 0.0971593i \(0.969024\pi\)
\(648\) 25.8470 + 6.79352i 1.01537 + 0.266875i
\(649\) 20.9430i 0.822086i
\(650\) 0 0
\(651\) 7.58592 3.15281i 0.297315 0.123568i
\(652\) 1.58283 + 0.738085i 0.0619884 + 0.0289056i
\(653\) 1.47726 + 16.8852i 0.0578098 + 0.660770i 0.968719 + 0.248162i \(0.0798264\pi\)
−0.910909 + 0.412608i \(0.864618\pi\)
\(654\) −17.7685 27.8175i −0.694802 1.08775i
\(655\) 0 0
\(656\) 25.4684 14.7042i 0.994375 0.574103i
\(657\) 7.69833 + 13.2607i 0.300341 + 0.517348i
\(658\) −5.54754 20.7037i −0.216266 0.807115i
\(659\) 36.7210 30.8125i 1.43045 1.20029i 0.484997 0.874516i \(-0.338821\pi\)
0.945449 0.325770i \(-0.105624\pi\)
\(660\) 0 0
\(661\) −0.726513 + 4.12026i −0.0282581 + 0.160259i −0.995671 0.0929427i \(-0.970373\pi\)
0.967413 + 0.253202i \(0.0814838\pi\)
\(662\) −9.79064 13.9825i −0.380524 0.543445i
\(663\) 13.0058 + 24.9112i 0.505102 + 0.967470i
\(664\) −17.6947 21.0877i −0.686687 0.818361i
\(665\) 0 0
\(666\) 12.2084 + 26.0187i 0.473068 + 1.00820i
\(667\) 9.56811 35.7087i 0.370479 1.38264i
\(668\) 0.818774 + 1.75587i 0.0316793 + 0.0679365i
\(669\) 1.28739 + 28.6995i 0.0497732 + 1.10959i
\(670\) 0 0
\(671\) 12.3730 + 33.9945i 0.477653 + 1.31234i
\(672\) −4.45065 + 0.591347i −0.171687 + 0.0228117i
\(673\) 19.5570 + 13.6940i 0.753867 + 0.527863i 0.886178 0.463345i \(-0.153351\pi\)
−0.132311 + 0.991208i \(0.542240\pi\)
\(674\) 11.2915 0.434933
\(675\) 0 0
\(676\) 2.98725 0.114894
\(677\) 18.1236 + 12.6903i 0.696547 + 0.487727i 0.867427 0.497565i \(-0.165772\pi\)
−0.170880 + 0.985292i \(0.554661\pi\)
\(678\) 19.1328 + 24.8728i 0.734791 + 0.955235i
\(679\) 9.04396 + 24.8481i 0.347075 + 0.953581i
\(680\) 0 0
\(681\) 27.8153 + 14.4376i 1.06589 + 0.553248i
\(682\) −5.85182 12.5493i −0.224078 0.480537i
\(683\) −6.53337 + 24.3829i −0.249993 + 0.932985i 0.720815 + 0.693127i \(0.243768\pi\)
−0.970808 + 0.239858i \(0.922899\pi\)
\(684\) −0.0566484 0.630155i −0.00216601 0.0240946i
\(685\) 0 0
\(686\) −16.9965 20.2556i −0.648929 0.773363i
\(687\) −17.6451 + 27.7703i −0.673201 + 1.05950i
\(688\) 2.57107 + 3.67187i 0.0980212 + 0.139989i
\(689\) 1.17925 6.68785i 0.0449258 0.254787i
\(690\) 0 0
\(691\) 25.5999 21.4808i 0.973865 0.817170i −0.00928734 0.999957i \(-0.502956\pi\)
0.983153 + 0.182787i \(0.0585118\pi\)
\(692\) −0.473473 1.76703i −0.0179988 0.0671723i
\(693\) 23.7255 8.69959i 0.901256 0.330470i
\(694\) 6.05298 3.49469i 0.229768 0.132657i
\(695\) 0 0
\(696\) −15.6510 + 30.1532i −0.593251 + 1.14295i
\(697\) 2.36159 + 26.9931i 0.0894517 + 1.02244i
\(698\) −24.8229 11.5751i −0.939559 0.438124i
\(699\) −1.69437 + 12.9898i −0.0640868 + 0.491321i
\(700\) 0 0
\(701\) 12.4042i 0.468499i 0.972177 + 0.234249i \(0.0752632\pi\)
−0.972177 + 0.234249i \(0.924737\pi\)
\(702\) −13.5053 32.2771i −0.509724 1.21822i
\(703\) 4.57003 4.57003i 0.172362 0.172362i
\(704\) 6.50508 + 36.8922i 0.245170 + 1.39043i
\(705\) 0 0
\(706\) −35.9678 + 13.0912i −1.35367 + 0.492694i
\(707\) 8.29809 0.725989i 0.312082 0.0273036i
\(708\) −1.46441 1.33867i −0.0550359 0.0503103i
\(709\) −4.29127 + 11.7902i −0.161162 + 0.442789i −0.993821 0.110998i \(-0.964595\pi\)
0.832659 + 0.553786i \(0.186818\pi\)
\(710\) 0 0
\(711\) 1.02634 + 0.715002i 0.0384906 + 0.0268147i
\(712\) −5.58994 + 1.49782i −0.209492 + 0.0561332i
\(713\) −13.5070 1.18171i −0.505842 0.0442554i
\(714\) −4.31925 + 13.7562i −0.161644 + 0.514812i
\(715\) 0 0
\(716\) −1.01940 0.179748i −0.0380969 0.00671750i
\(717\) −0.918999 + 21.6416i −0.0343206 + 0.808219i
\(718\) −2.06408 + 23.5926i −0.0770308 + 0.880466i
\(719\) 9.10268 15.7663i 0.339473 0.587984i −0.644861 0.764300i \(-0.723085\pi\)
0.984334 + 0.176316i \(0.0564181\pi\)
\(720\) 0 0
\(721\) −13.0717 22.6408i −0.486815 0.843188i
\(722\) −21.9081 + 10.2159i −0.815334 + 0.380196i
\(723\) −28.9608 6.38419i −1.07707 0.237431i
\(724\) −0.864744 + 1.03056i −0.0321380 + 0.0383005i
\(725\) 0 0
\(726\) −6.63333 15.9603i −0.246186 0.592344i
\(727\) 5.64377 8.06014i 0.209316 0.298934i −0.700742 0.713414i \(-0.747148\pi\)
0.910058 + 0.414480i \(0.136037\pi\)
\(728\) 20.8369 + 20.8369i 0.772267 + 0.772267i
\(729\) 18.9546 19.2282i 0.702022 0.712155i
\(730\) 0 0
\(731\) −4.06735 + 0.717184i −0.150436 + 0.0265260i
\(732\) −3.16789 1.30775i −0.117088 0.0483359i
\(733\) 15.6224 33.5024i 0.577027 1.23744i −0.373740 0.927533i \(-0.621925\pi\)
0.950767 0.309905i \(-0.100297\pi\)
\(734\) 22.3146 + 18.7242i 0.823646 + 0.691121i
\(735\) 0 0
\(736\) 6.96332 + 2.53444i 0.256671 + 0.0934207i
\(737\) −40.1088 10.7471i −1.47743 0.395875i
\(738\) −0.0805779 33.7364i −0.00296611 1.24186i
\(739\) −7.02338 4.05495i −0.258359 0.149164i 0.365227 0.930919i \(-0.380991\pi\)
−0.623586 + 0.781755i \(0.714325\pi\)
\(740\) 0 0
\(741\) −5.79457 + 5.32249i −0.212869 + 0.195526i
\(742\) 2.85416 1.99851i 0.104780 0.0733675i
\(743\) −25.5056 + 17.8592i −0.935709 + 0.655190i −0.938674 0.344805i \(-0.887945\pi\)
0.00296531 + 0.999996i \(0.499056\pi\)
\(744\) 11.8878 + 3.73262i 0.435829 + 0.136844i
\(745\) 0 0
\(746\) 19.8552 + 11.4634i 0.726949 + 0.419704i
\(747\) −27.3773 + 4.89480i −1.00168 + 0.179091i
\(748\) −3.13050 0.838814i −0.114462 0.0306701i
\(749\) −26.6979 9.71724i −0.975519 0.355060i
\(750\) 0 0
\(751\) −13.4156 11.2570i −0.489541 0.410774i 0.364321 0.931273i \(-0.381301\pi\)
−0.853862 + 0.520500i \(0.825746\pi\)
\(752\) 12.1000 25.9484i 0.441240 0.946243i
\(753\) 1.22851 + 9.24615i 0.0447695 + 0.336949i
\(754\) 43.8023 7.72353i 1.59519 0.281274i
\(755\) 0 0
\(756\) −0.908217 + 2.21504i −0.0330315 + 0.0805603i
\(757\) 20.1777 + 20.1777i 0.733371 + 0.733371i 0.971286 0.237915i \(-0.0764640\pi\)
−0.237915 + 0.971286i \(0.576464\pi\)
\(758\) 20.7010 29.5641i 0.751893 1.07381i
\(759\) −41.3572 5.39455i −1.50117 0.195810i
\(760\) 0 0
\(761\) 23.7584 28.3141i 0.861240 1.02639i −0.138113 0.990416i \(-0.544104\pi\)
0.999353 0.0359689i \(-0.0114517\pi\)
\(762\) −2.50046 7.89754i −0.0905820 0.286098i
\(763\) 25.4545 11.8696i 0.921516 0.429710i
\(764\) −1.69744 2.94006i −0.0614113 0.106368i
\(765\) 0 0
\(766\) −4.88069 + 8.45360i −0.176346 + 0.305441i
\(767\) −2.15042 + 24.5794i −0.0776472 + 0.887512i
\(768\) −8.13803 5.17084i −0.293656 0.186587i
\(769\) 8.53754 + 1.50540i 0.307872 + 0.0542861i 0.325450 0.945559i \(-0.394484\pi\)
−0.0175779 + 0.999845i \(0.505595\pi\)
\(770\) 0 0
\(771\) −20.7296 + 4.62163i −0.746559 + 0.166444i
\(772\) 4.06755 + 0.355865i 0.146394 + 0.0128078i
\(773\) −11.3983 + 3.05417i −0.409969 + 0.109851i −0.457908 0.889000i \(-0.651401\pi\)
0.0479396 + 0.998850i \(0.484734\pi\)
\(774\) 5.12158 0.460409i 0.184091 0.0165491i
\(775\) 0 0
\(776\) −13.7174 + 37.6882i −0.492425 + 1.35293i
\(777\) −23.3141 + 7.38154i −0.836390 + 0.264811i
\(778\) −41.3603 + 3.61856i −1.48284 + 0.129732i
\(779\) −7.12895 + 2.59472i −0.255421 + 0.0929657i
\(780\) 0 0
\(781\) −4.24560 24.0780i −0.151919 0.861578i
\(782\) 16.8270 16.8270i 0.601733 0.601733i
\(783\) 18.5452 + 28.8813i 0.662752 + 1.03213i
\(784\) 11.0025i 0.392947i
\(785\) 0 0
\(786\) −1.01457 0.776581i −0.0361884 0.0276997i
\(787\) −17.0214 7.93722i −0.606748 0.282931i 0.0948643 0.995490i \(-0.469758\pi\)
−0.701612 + 0.712559i \(0.747536\pi\)
\(788\) −0.279178 3.19101i −0.00994529 0.113675i
\(789\) −23.5794 + 1.05771i −0.839448 + 0.0376556i
\(790\) 0 0
\(791\) −23.1237 + 13.3505i −0.822183 + 0.474687i
\(792\) 36.0481 + 13.0230i 1.28091 + 0.462753i
\(793\) 11.0308 + 41.1675i 0.391715 + 1.46190i
\(794\) −16.7831 + 14.0827i −0.595610 + 0.499776i
\(795\) 0 0
\(796\) −0.367376 + 2.08349i −0.0130213 + 0.0738475i
\(797\) −12.3706 17.6670i −0.438188 0.625797i 0.537943 0.842981i \(-0.319202\pi\)
−0.976131 + 0.217184i \(0.930313\pi\)
\(798\) −4.03324 0.171269i −0.142775 0.00606287i
\(799\) 16.9567 + 20.2082i 0.599884 + 0.714914i
\(800\) 0 0
\(801\) −1.49974 + 5.65108i −0.0529909 + 0.199671i
\(802\) 0.519739 1.93969i 0.0183526 0.0684929i
\(803\) 9.29368 + 19.9304i 0.327967 + 0.703327i
\(804\) 3.31521 2.11759i 0.116919 0.0746818i
\(805\) 0 0
\(806\) −5.57934 15.3291i −0.196524 0.539945i
\(807\) −8.15185 + 19.7470i −0.286959 + 0.695126i
\(808\) 10.3493 + 7.24665i 0.364087 + 0.254936i
\(809\) −4.46938 −0.157135 −0.0785676 0.996909i \(-0.525035\pi\)
−0.0785676 + 0.996909i \(0.525035\pi\)
\(810\) 0 0
\(811\) 37.9099 1.33120 0.665598 0.746311i \(-0.268177\pi\)
0.665598 + 0.746311i \(0.268177\pi\)
\(812\) −2.49292 1.74556i −0.0874845 0.0612573i
\(813\) −13.0582 + 31.6321i −0.457971 + 1.10939i
\(814\) 14.0978 + 38.7333i 0.494127 + 1.35760i
\(815\) 0 0
\(816\) −16.2310 + 10.3675i −0.568197 + 0.362936i
\(817\) −0.488696 1.04801i −0.0170973 0.0366653i
\(818\) 8.06996 30.1175i 0.282159 1.05303i
\(819\) 28.7383 7.77401i 1.00420 0.271646i
\(820\) 0 0
\(821\) 23.1674 + 27.6099i 0.808549 + 0.963591i 0.999839 0.0179428i \(-0.00571166\pi\)
−0.191290 + 0.981533i \(0.561267\pi\)
\(822\) −13.8921 0.589922i −0.484544 0.0205759i
\(823\) −1.52711 2.18095i −0.0532319 0.0760230i 0.791654 0.610970i \(-0.209220\pi\)
−0.844886 + 0.534947i \(0.820332\pi\)
\(824\) 6.88563 39.0504i 0.239872 1.36038i
\(825\) 0 0
\(826\) −9.69752 + 8.13719i −0.337420 + 0.283129i
\(827\) −10.6874 39.8859i −0.371637 1.38697i −0.858197 0.513321i \(-0.828415\pi\)
0.486560 0.873647i \(-0.338252\pi\)
\(828\) 3.02075 2.54703i 0.104978 0.0885153i
\(829\) 19.6326 11.3349i 0.681869 0.393677i −0.118690 0.992931i \(-0.537869\pi\)
0.800559 + 0.599254i \(0.204536\pi\)
\(830\) 0 0
\(831\) −3.50863 + 0.157388i −0.121713 + 0.00545974i
\(832\) 3.84651 + 43.9658i 0.133354 + 1.52424i
\(833\) 9.18766 + 4.28428i 0.318334 + 0.148441i
\(834\) 33.8357 + 25.8989i 1.17164 + 0.896806i
\(835\) 0 0
\(836\) 0.907402i 0.0313832i
\(837\) 9.25056 8.53774i 0.319746 0.295108i
\(838\) −14.9429 + 14.9429i −0.516195 + 0.516195i
\(839\) −1.44230 8.17971i −0.0497938 0.282395i 0.949736 0.313052i \(-0.101351\pi\)
−0.999530 + 0.0306567i \(0.990240\pi\)
\(840\) 0 0
\(841\) −13.7493 + 5.00432i −0.474112 + 0.172563i
\(842\) 48.0337 4.20240i 1.65535 0.144824i
\(843\) 43.1681 13.6676i 1.48679 0.470736i
\(844\) −1.50888 + 4.14562i −0.0519379 + 0.142698i
\(845\) 0 0
\(846\) −18.9031 26.8597i −0.649902 0.923455i
\(847\) 14.2054 3.80634i 0.488105 0.130787i
\(848\) 4.63650 + 0.405641i 0.159218 + 0.0139298i
\(849\) 3.92057 0.874084i 0.134554 0.0299985i
\(850\) 0 0
\(851\) 39.7487 + 7.00876i 1.36257 + 0.240257i
\(852\) 1.95499 + 1.24219i 0.0669770 + 0.0425567i
\(853\) 0.534954 6.11455i 0.0183165 0.209358i −0.981521 0.191352i \(-0.938713\pi\)
0.999838 0.0180058i \(-0.00573174\pi\)
\(854\) −10.9335 + 18.9374i −0.374137 + 0.648024i
\(855\) 0 0
\(856\) −21.5463 37.3193i −0.736439 1.27555i
\(857\) 31.3187 14.6042i 1.06983 0.498869i 0.193756 0.981050i \(-0.437933\pi\)
0.876072 + 0.482181i \(0.160155\pi\)
\(858\) −15.1466 47.8395i −0.517095 1.63321i
\(859\) −14.4078 + 17.1705i −0.491587 + 0.585850i −0.953620 0.301012i \(-0.902676\pi\)
0.462034 + 0.886862i \(0.347120\pi\)
\(860\) 0 0
\(861\) 28.4647 + 3.71287i 0.970073 + 0.126534i
\(862\) 8.19621 11.7054i 0.279164 0.398688i
\(863\) −34.4337 34.4337i −1.17214 1.17214i −0.981700 0.190436i \(-0.939010\pi\)
−0.190436 0.981700i \(-0.560990\pi\)
\(864\) −6.09114 + 3.19864i −0.207225 + 0.108820i
\(865\) 0 0
\(866\) 47.8011 8.42862i 1.62435 0.286416i
\(867\) 1.54095 + 11.5976i 0.0523334 + 0.393876i
\(868\) −0.471713 + 1.01159i −0.0160110 + 0.0343357i
\(869\) 1.37423 + 1.15312i 0.0466175 + 0.0391168i
\(870\) 0 0
\(871\) −45.9694 16.7315i −1.55762 0.566926i
\(872\) 41.1477 + 11.0255i 1.39344 + 0.373370i
\(873\) 26.1197 + 30.9776i 0.884017 + 1.04843i
\(874\) 5.77009 + 3.33137i 0.195176 + 0.112685i
\(875\) 0 0
\(876\) −1.98765 0.624094i −0.0671564 0.0210862i
\(877\) −11.3525 + 7.94910i −0.383347 + 0.268422i −0.749327 0.662201i \(-0.769623\pi\)
0.365980 + 0.930623i \(0.380734\pi\)
\(878\) 15.1584 10.6140i 0.511571 0.358206i
\(879\) −15.3768 + 14.1240i −0.518645 + 0.476391i
\(880\) 0 0
\(881\) −20.3929 11.7738i −0.687054 0.396671i 0.115453 0.993313i \(-0.463168\pi\)
−0.802507 + 0.596642i \(0.796501\pi\)
\(882\) −10.9458 6.28476i −0.368565 0.211619i
\(883\) 15.8795 + 4.25489i 0.534386 + 0.143188i 0.515913 0.856641i \(-0.327453\pi\)
0.0184733 + 0.999829i \(0.494119\pi\)
\(884\) −3.58792 1.30590i −0.120675 0.0439221i
\(885\) 0 0
\(886\) 11.6044 + 9.73725i 0.389857 + 0.327129i
\(887\) 4.33234 9.29073i 0.145466 0.311952i −0.820052 0.572289i \(-0.806056\pi\)
0.965518 + 0.260336i \(0.0838335\pi\)
\(888\) −34.2851 14.1534i −1.15053 0.474958i
\(889\) 6.94156 1.22398i 0.232812 0.0410511i
\(890\) 0 0
\(891\) 29.5442 25.0320i 0.989769 0.838604i
\(892\) −2.76005 2.76005i −0.0924133 0.0924133i
\(893\) −4.23638 + 6.05018i −0.141765 + 0.202461i
\(894\) 7.65882 + 18.4278i 0.256149 + 0.616316i
\(895\) 0 0
\(896\) −11.2227 + 13.3748i −0.374926 + 0.446819i
\(897\) −47.9843 10.5778i −1.60215 0.353181i
\(898\) 1.94540 0.907153i 0.0649187 0.0302721i
\(899\) 8.00123 + 13.8585i 0.266856 + 0.462208i
\(900\) 0 0
\(901\) −2.14414 + 3.71376i −0.0714317 + 0.123723i
\(902\) 4.21697 48.2002i 0.140410 1.60489i
\(903\) −0.185633 + 4.37149i −0.00617748 + 0.145474i
\(904\) −39.8832 7.03248i −1.32649 0.233897i
\(905\) 0 0
\(906\) 10.9819 34.9756i 0.364848 1.16199i
\(907\) 13.4551 + 1.17717i 0.446769 + 0.0390872i 0.308321 0.951283i \(-0.400233\pi\)
0.138448 + 0.990370i \(0.455789\pi\)
\(908\) −4.11293 + 1.10206i −0.136492 + 0.0365730i
\(909\) 11.5554 5.42200i 0.383268 0.179836i
\(910\) 0 0
\(911\) 4.95701 13.6193i 0.164233 0.451227i −0.830090 0.557629i \(-0.811711\pi\)
0.994323 + 0.106403i \(0.0339332\pi\)
\(912\) −3.97999 3.63825i −0.131791 0.120475i
\(913\) −39.7348 + 3.47635i −1.31503 + 0.115050i
\(914\) 6.91502 2.51686i 0.228729 0.0832504i
\(915\) 0 0
\(916\) −0.776272 4.40246i −0.0256488 0.145461i
\(917\) 0.768724 0.768724i 0.0253855 0.0253855i
\(918\) 1.04280 + 22.0694i 0.0344176 + 0.728399i
\(919\) 11.7599i 0.387925i −0.981009 0.193962i \(-0.937866\pi\)
0.981009 0.193962i \(-0.0621340\pi\)
\(920\) 0 0
\(921\) 5.26444 40.3597i 0.173469 1.32990i
\(922\) 18.2970 + 8.53202i 0.602579 + 0.280987i
\(923\) −2.51046 28.6946i −0.0826327 0.944496i
\(924\) −1.58175 + 3.04739i −0.0520357 + 0.100252i
\(925\) 0 0
\(926\) 38.0276 21.9552i 1.24966 0.721494i
\(927\) −30.7499 25.6773i −1.00996 0.843353i
\(928\) −2.26359 8.44784i −0.0743061 0.277314i
\(929\) 36.0388 30.2401i 1.18239 0.992146i 0.182433 0.983218i \(-0.441603\pi\)
0.999960 0.00892776i \(-0.00284183\pi\)
\(930\) 0 0
\(931\) −0.492867 + 2.79519i −0.0161531 + 0.0916086i
\(932\) −1.02089 1.45799i −0.0334405 0.0477579i
\(933\) −3.69441 + 5.81437i −0.120950 + 0.190354i
\(934\) −19.3932 23.1119i −0.634563 0.756243i
\(935\) 0 0
\(936\) 40.9700 + 18.9856i 1.33915 + 0.620565i
\(937\) 9.80740 36.6017i 0.320394 1.19573i −0.598468 0.801147i \(-0.704224\pi\)
0.918862 0.394580i \(-0.129110\pi\)
\(938\) −10.6074 22.7477i −0.346346 0.742740i
\(939\) 1.40595 + 0.729759i 0.0458814 + 0.0238148i
\(940\) 0 0
\(941\) −3.79401 10.4240i −0.123681 0.339811i 0.862364 0.506289i \(-0.168983\pi\)
−0.986045 + 0.166477i \(0.946761\pi\)
\(942\) 18.6227 + 24.2096i 0.606760 + 0.788793i
\(943\) −38.8098 27.1749i −1.26382 0.884937i
\(944\) −16.9098 −0.550367
\(945\) 0 0
\(946\) 7.37489 0.239778
\(947\) 13.0294 + 9.12331i 0.423400 + 0.296468i 0.765791 0.643090i \(-0.222348\pi\)
−0.342391 + 0.939558i \(0.611237\pi\)
\(948\) −0.168470 + 0.0223842i −0.00547165 + 0.000727006i
\(949\) 8.86092 + 24.3452i 0.287638 + 0.790278i
\(950\) 0 0
\(951\) −2.04674 45.6276i −0.0663701 1.47958i
\(952\) −7.86402 16.8644i −0.254874 0.546580i
\(953\) 9.45180 35.2746i 0.306174 1.14266i −0.625756 0.780019i \(-0.715210\pi\)
0.931930 0.362638i \(-0.118124\pi\)
\(954\) 3.05197 4.38090i 0.0988113 0.141837i
\(955\) 0 0
\(956\) −1.89177 2.25453i −0.0611843 0.0729167i
\(957\) 22.7818 + 43.6361i 0.736430 + 1.41055i
\(958\) 17.4002 + 24.8501i 0.562176 + 0.802871i
\(959\) 2.05447 11.6515i 0.0663422 0.376245i
\(960\) 0 0
\(961\) −19.2514 + 16.1538i −0.621012 + 0.521091i
\(962\) 12.5685 + 46.9062i 0.405224 + 1.51232i
\(963\) −43.5361 + 0.103984i −1.40293 + 0.00335084i
\(964\) 3.48953 2.01468i 0.112390 0.0648886i
\(965\) 0 0
\(966\) −13.5710 21.2462i −0.436640 0.683584i
\(967\) 0.170714 + 1.95128i 0.00548981 + 0.0627488i 0.998445 0.0557381i \(-0.0177512\pi\)
−0.992956 + 0.118487i \(0.962196\pi\)
\(968\) 20.2162 + 9.42696i 0.649773 + 0.302994i
\(969\) 4.58790 1.90679i 0.147385 0.0612550i
\(970\) 0 0
\(971\) 27.5442i 0.883934i −0.897031 0.441967i \(-0.854281\pi\)
0.897031 0.441967i \(-0.145719\pi\)
\(972\) −0.138130 + 3.66587i −0.00443052 + 0.117583i
\(973\) −25.6369 + 25.6369i −0.821881 + 0.821881i
\(974\) −4.27366 24.2371i −0.136937 0.776607i
\(975\) 0 0
\(976\) −27.4477 + 9.99016i −0.878581 + 0.319777i
\(977\) 32.5167 2.84484i 1.04030 0.0910146i 0.445819 0.895123i \(-0.352912\pi\)
0.594483 + 0.804108i \(0.297357\pi\)
\(978\) 3.67586 16.6749i 0.117541 0.533205i
\(979\) −2.86792 + 7.87954i −0.0916591 + 0.251831i
\(980\) 0 0
\(981\) 30.3595 30.5049i 0.969305 0.973946i
\(982\) −11.8947 + 3.18718i −0.379575 + 0.101707i
\(983\) 31.9076 + 2.79155i 1.01769 + 0.0890367i 0.583775 0.811915i \(-0.301575\pi\)
0.433919 + 0.900952i \(0.357130\pi\)
\(984\) 29.4531 + 32.0654i 0.938930 + 1.02221i
\(985\) 0 0
\(986\) −27.6596 4.87713i −0.880860 0.155319i
\(987\) 24.7738 12.9340i 0.788558 0.411695i
\(988\) 0.0931716 1.06496i 0.00296418 0.0338808i
\(989\) 3.61075 6.25401i 0.114815 0.198866i
\(990\) 0 0
\(991\) 24.5859 + 42.5840i 0.780995 + 1.35272i 0.931362 + 0.364094i \(0.118621\pi\)
−0.150367 + 0.988630i \(0.548046\pi\)
\(992\) −2.90712 + 1.35561i −0.0923012 + 0.0430407i
\(993\) 15.0164 16.4269i 0.476531 0.521291i
\(994\) 9.49956 11.3211i 0.301308 0.359084i
\(995\) 0 0
\(996\) 2.29676 3.00060i 0.0727755 0.0950778i
\(997\) 18.0163 25.7299i 0.570581 0.814874i −0.425347 0.905031i \(-0.639848\pi\)
0.995928 + 0.0901563i \(0.0287367\pi\)
\(998\) −19.4085 19.4085i −0.614364 0.614364i
\(999\) −29.6478 + 22.9188i −0.938014 + 0.725118i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 675.2.ba.b.257.11 192
5.2 odd 4 135.2.q.a.68.6 yes 192
5.3 odd 4 inner 675.2.ba.b.68.11 192
5.4 even 2 135.2.q.a.122.6 yes 192
15.2 even 4 405.2.r.a.233.11 192
15.14 odd 2 405.2.r.a.152.11 192
27.2 odd 18 inner 675.2.ba.b.407.11 192
135.2 even 36 135.2.q.a.83.6 yes 192
135.29 odd 18 135.2.q.a.2.6 192
135.52 odd 36 405.2.r.a.8.11 192
135.79 even 18 405.2.r.a.332.11 192
135.83 even 36 inner 675.2.ba.b.218.11 192
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
135.2.q.a.2.6 192 135.29 odd 18
135.2.q.a.68.6 yes 192 5.2 odd 4
135.2.q.a.83.6 yes 192 135.2 even 36
135.2.q.a.122.6 yes 192 5.4 even 2
405.2.r.a.8.11 192 135.52 odd 36
405.2.r.a.152.11 192 15.14 odd 2
405.2.r.a.233.11 192 15.2 even 4
405.2.r.a.332.11 192 135.79 even 18
675.2.ba.b.68.11 192 5.3 odd 4 inner
675.2.ba.b.218.11 192 135.83 even 36 inner
675.2.ba.b.257.11 192 1.1 even 1 trivial
675.2.ba.b.407.11 192 27.2 odd 18 inner