Properties

Label 675.2.ba.b.218.5
Level $675$
Weight $2$
Character 675.218
Analytic conductor $5.390$
Analytic rank $0$
Dimension $192$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [675,2,Mod(32,675)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(675, base_ring=CyclotomicField(36))
 
chi = DirichletCharacter(H, H._module([10, 9]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("675.32");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 675 = 3^{3} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 675.ba (of order \(36\), degree \(12\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.38990213644\)
Analytic rank: \(0\)
Dimension: \(192\)
Relative dimension: \(16\) over \(\Q(\zeta_{36})\)
Twist minimal: no (minimal twist has level 135)
Sato-Tate group: $\mathrm{SU}(2)[C_{36}]$

Embedding invariants

Embedding label 218.5
Character \(\chi\) \(=\) 675.218
Dual form 675.2.ba.b.257.5

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.865920 + 0.606324i) q^{2} +(0.905161 - 1.47671i) q^{3} +(-0.301851 + 0.829330i) q^{4} +(0.111569 + 1.82754i) q^{6} +(1.22161 - 2.61975i) q^{7} +(-0.788655 - 2.94330i) q^{8} +(-1.36137 - 2.67333i) q^{9} +(1.51740 - 1.80836i) q^{11} +(0.951458 + 1.19642i) q^{12} +(-3.11956 + 4.45519i) q^{13} +(0.530600 + 3.00918i) q^{14} +(1.11535 + 0.935892i) q^{16} +(0.716894 - 2.67549i) q^{17} +(2.79974 + 1.48946i) q^{18} +(-5.35751 - 3.09316i) q^{19} +(-2.76286 - 4.17526i) q^{21} +(-0.217491 + 2.48593i) q^{22} +(-0.646627 + 0.301527i) q^{23} +(-5.06027 - 1.49954i) q^{24} -5.74930i q^{26} +(-5.18000 - 0.409444i) q^{27} +(1.80389 + 1.80389i) q^{28} +(0.623300 - 3.53491i) q^{29} +(-5.18043 - 1.88552i) q^{31} +(4.53781 + 0.397007i) q^{32} +(-1.29695 - 3.87762i) q^{33} +(1.00144 + 2.75143i) q^{34} +(2.62800 - 0.322074i) q^{36} +(4.26173 + 1.14193i) q^{37} +(6.51463 - 0.569956i) q^{38} +(3.75534 + 8.63936i) q^{39} +(5.70140 - 1.00531i) q^{41} +(4.92398 + 1.94025i) q^{42} +(-0.126221 - 1.44271i) q^{43} +(1.04170 + 1.80428i) q^{44} +(0.377104 - 0.653164i) q^{46} +(-9.40770 - 4.38688i) q^{47} +(2.39162 - 0.799924i) q^{48} +(-0.871236 - 1.03830i) q^{49} +(-3.30202 - 3.48039i) q^{51} +(-2.75318 - 3.93195i) q^{52} +(7.22940 - 7.22940i) q^{53} +(4.73372 - 2.78621i) q^{54} +(-8.67413 - 1.52948i) q^{56} +(-9.41712 + 5.11170i) q^{57} +(1.60357 + 3.43887i) q^{58} +(6.27320 - 5.26384i) q^{59} +(2.64019 - 0.960952i) q^{61} +(5.62907 - 1.50831i) q^{62} +(-8.66650 + 0.300676i) q^{63} +(-6.69194 + 3.86359i) q^{64} +(3.47414 + 2.57134i) q^{66} +(-6.11610 - 4.28254i) q^{67} +(2.00246 + 1.40214i) q^{68} +(-0.140033 + 1.22781i) q^{69} +(-4.24004 + 2.44799i) q^{71} +(-6.79476 + 6.11524i) q^{72} +(6.73088 - 1.80353i) q^{73} +(-4.38269 + 1.59517i) q^{74} +(4.18242 - 3.50947i) q^{76} +(-2.88379 - 6.18430i) q^{77} +(-8.49007 - 5.20404i) q^{78} +(-12.8661 - 2.26863i) q^{79} +(-5.29336 + 7.27876i) q^{81} +(-4.32741 + 4.32741i) q^{82} +(2.73492 + 3.90587i) q^{83} +(4.29664 - 1.03102i) q^{84} +(0.984048 + 1.17274i) q^{86} +(-4.65586 - 4.12010i) q^{87} +(-6.51925 - 3.03998i) q^{88} +(3.33276 - 5.77251i) q^{89} +(7.86060 + 13.6150i) q^{91} +(-0.0548802 - 0.627283i) q^{92} +(-7.47350 + 5.94331i) q^{93} +(10.8062 - 1.90542i) q^{94} +(4.69371 - 6.34168i) q^{96} +(18.2758 - 1.59893i) q^{97} +(1.38397 + 0.370833i) q^{98} +(-6.90008 - 1.59465i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 192 q + 12 q^{2} + 12 q^{3} - 36 q^{6} + 12 q^{7} + 18 q^{8} - 36 q^{11} + 12 q^{12} + 12 q^{13} - 24 q^{16} + 18 q^{17} + 54 q^{18} - 24 q^{21} + 12 q^{22} + 36 q^{23} + 36 q^{27} + 24 q^{28} - 24 q^{31}+ \cdots - 324 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/675\mathbb{Z}\right)^\times\).

\(n\) \(326\) \(352\)
\(\chi(n)\) \(e\left(\frac{1}{18}\right)\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.865920 + 0.606324i −0.612298 + 0.428736i −0.838161 0.545424i \(-0.816369\pi\)
0.225863 + 0.974159i \(0.427480\pi\)
\(3\) 0.905161 1.47671i 0.522595 0.852581i
\(4\) −0.301851 + 0.829330i −0.150926 + 0.414665i
\(5\) 0 0
\(6\) 0.111569 + 1.82754i 0.0455480 + 0.746089i
\(7\) 1.22161 2.61975i 0.461725 0.990171i −0.528271 0.849076i \(-0.677160\pi\)
0.989996 0.141096i \(-0.0450626\pi\)
\(8\) −0.788655 2.94330i −0.278832 1.04061i
\(9\) −1.36137 2.67333i −0.453789 0.891109i
\(10\) 0 0
\(11\) 1.51740 1.80836i 0.457512 0.545242i −0.487136 0.873326i \(-0.661959\pi\)
0.944648 + 0.328084i \(0.106403\pi\)
\(12\) 0.951458 + 1.19642i 0.274662 + 0.345378i
\(13\) −3.11956 + 4.45519i −0.865210 + 1.23565i 0.105265 + 0.994444i \(0.466431\pi\)
−0.970475 + 0.241203i \(0.922458\pi\)
\(14\) 0.530600 + 3.00918i 0.141809 + 0.804238i
\(15\) 0 0
\(16\) 1.11535 + 0.935892i 0.278838 + 0.233973i
\(17\) 0.716894 2.67549i 0.173872 0.648901i −0.822869 0.568232i \(-0.807628\pi\)
0.996741 0.0806688i \(-0.0257056\pi\)
\(18\) 2.79974 + 1.48946i 0.659904 + 0.351069i
\(19\) −5.35751 3.09316i −1.22910 0.709619i −0.262256 0.964998i \(-0.584466\pi\)
−0.966841 + 0.255379i \(0.917800\pi\)
\(20\) 0 0
\(21\) −2.76286 4.17526i −0.602906 0.911116i
\(22\) −0.217491 + 2.48593i −0.0463692 + 0.530002i
\(23\) −0.646627 + 0.301527i −0.134831 + 0.0628728i −0.488863 0.872361i \(-0.662588\pi\)
0.354032 + 0.935233i \(0.384810\pi\)
\(24\) −5.06027 1.49954i −1.03292 0.306093i
\(25\) 0 0
\(26\) 5.74930i 1.12753i
\(27\) −5.18000 0.409444i −0.996891 0.0787976i
\(28\) 1.80389 + 1.80389i 0.340903 + 0.340903i
\(29\) 0.623300 3.53491i 0.115744 0.656416i −0.870635 0.491929i \(-0.836292\pi\)
0.986379 0.164487i \(-0.0525969\pi\)
\(30\) 0 0
\(31\) −5.18043 1.88552i −0.930432 0.338650i −0.168051 0.985778i \(-0.553747\pi\)
−0.762381 + 0.647129i \(0.775970\pi\)
\(32\) 4.53781 + 0.397007i 0.802178 + 0.0701815i
\(33\) −1.29695 3.87762i −0.225769 0.675007i
\(34\) 1.00144 + 2.75143i 0.171745 + 0.471866i
\(35\) 0 0
\(36\) 2.62800 0.322074i 0.438000 0.0536790i
\(37\) 4.26173 + 1.14193i 0.700624 + 0.187732i 0.591510 0.806298i \(-0.298532\pi\)
0.109114 + 0.994029i \(0.465199\pi\)
\(38\) 6.51463 0.569956i 1.05681 0.0924591i
\(39\) 3.75534 + 8.63936i 0.601335 + 1.38340i
\(40\) 0 0
\(41\) 5.70140 1.00531i 0.890409 0.157003i 0.290314 0.956932i \(-0.406240\pi\)
0.600095 + 0.799928i \(0.295129\pi\)
\(42\) 4.92398 + 1.94025i 0.759786 + 0.299387i
\(43\) −0.126221 1.44271i −0.0192485 0.220012i −0.999727 0.0233831i \(-0.992556\pi\)
0.980478 0.196629i \(-0.0629993\pi\)
\(44\) 1.04170 + 1.80428i 0.157042 + 0.272005i
\(45\) 0 0
\(46\) 0.377104 0.653164i 0.0556010 0.0963037i
\(47\) −9.40770 4.38688i −1.37225 0.639893i −0.410010 0.912081i \(-0.634475\pi\)
−0.962244 + 0.272188i \(0.912253\pi\)
\(48\) 2.39162 0.799924i 0.345201 0.115459i
\(49\) −0.871236 1.03830i −0.124462 0.148328i
\(50\) 0 0
\(51\) −3.30202 3.48039i −0.462375 0.487353i
\(52\) −2.75318 3.93195i −0.381797 0.545263i
\(53\) 7.22940 7.22940i 0.993035 0.993035i −0.00694140 0.999976i \(-0.502210\pi\)
0.999976 + 0.00694140i \(0.00220953\pi\)
\(54\) 4.73372 2.78621i 0.644177 0.379155i
\(55\) 0 0
\(56\) −8.67413 1.52948i −1.15913 0.204386i
\(57\) −9.41712 + 5.11170i −1.24733 + 0.677061i
\(58\) 1.60357 + 3.43887i 0.210559 + 0.451546i
\(59\) 6.27320 5.26384i 0.816701 0.685293i −0.135496 0.990778i \(-0.543263\pi\)
0.952197 + 0.305484i \(0.0988184\pi\)
\(60\) 0 0
\(61\) 2.64019 0.960952i 0.338042 0.123037i −0.167421 0.985885i \(-0.553544\pi\)
0.505463 + 0.862848i \(0.331322\pi\)
\(62\) 5.62907 1.50831i 0.714893 0.191555i
\(63\) −8.66650 + 0.300676i −1.09188 + 0.0378817i
\(64\) −6.69194 + 3.86359i −0.836493 + 0.482949i
\(65\) 0 0
\(66\) 3.47414 + 2.57134i 0.427637 + 0.316510i
\(67\) −6.11610 4.28254i −0.747201 0.523196i 0.136847 0.990592i \(-0.456303\pi\)
−0.884048 + 0.467396i \(0.845192\pi\)
\(68\) 2.00246 + 1.40214i 0.242834 + 0.170034i
\(69\) −0.140033 + 1.22781i −0.0168579 + 0.147811i
\(70\) 0 0
\(71\) −4.24004 + 2.44799i −0.503200 + 0.290523i −0.730034 0.683411i \(-0.760496\pi\)
0.226834 + 0.973933i \(0.427162\pi\)
\(72\) −6.79476 + 6.11524i −0.800770 + 0.720688i
\(73\) 6.73088 1.80353i 0.787790 0.211088i 0.157574 0.987507i \(-0.449633\pi\)
0.630216 + 0.776420i \(0.282966\pi\)
\(74\) −4.38269 + 1.59517i −0.509478 + 0.185435i
\(75\) 0 0
\(76\) 4.18242 3.50947i 0.479756 0.402563i
\(77\) −2.88379 6.18430i −0.328638 0.704767i
\(78\) −8.49007 5.20404i −0.961311 0.589242i
\(79\) −12.8661 2.26863i −1.44754 0.255241i −0.606015 0.795453i \(-0.707233\pi\)
−0.841529 + 0.540212i \(0.818344\pi\)
\(80\) 0 0
\(81\) −5.29336 + 7.27876i −0.588151 + 0.808751i
\(82\) −4.32741 + 4.32741i −0.477883 + 0.477883i
\(83\) 2.73492 + 3.90587i 0.300196 + 0.428724i 0.940705 0.339227i \(-0.110165\pi\)
−0.640509 + 0.767951i \(0.721276\pi\)
\(84\) 4.29664 1.03102i 0.468802 0.112493i
\(85\) 0 0
\(86\) 0.984048 + 1.17274i 0.106113 + 0.126460i
\(87\) −4.65586 4.12010i −0.499161 0.441721i
\(88\) −6.51925 3.03998i −0.694955 0.324063i
\(89\) 3.33276 5.77251i 0.353272 0.611885i −0.633549 0.773703i \(-0.718402\pi\)
0.986821 + 0.161818i \(0.0517357\pi\)
\(90\) 0 0
\(91\) 7.86060 + 13.6150i 0.824014 + 1.42723i
\(92\) −0.0548802 0.627283i −0.00572165 0.0653988i
\(93\) −7.47350 + 5.94331i −0.774966 + 0.616292i
\(94\) 10.8062 1.90542i 1.11457 0.196529i
\(95\) 0 0
\(96\) 4.69371 6.34168i 0.479050 0.647245i
\(97\) 18.2758 1.59893i 1.85563 0.162346i 0.896079 0.443894i \(-0.146403\pi\)
0.959547 + 0.281548i \(0.0908478\pi\)
\(98\) 1.38397 + 0.370833i 0.139802 + 0.0374597i
\(99\) −6.90008 1.59465i −0.693484 0.160269i
\(100\) 0 0
\(101\) −1.15191 3.16484i −0.114619 0.314913i 0.869097 0.494641i \(-0.164701\pi\)
−0.983716 + 0.179728i \(0.942478\pi\)
\(102\) 4.96953 + 1.01165i 0.492057 + 0.100168i
\(103\) 3.61346 + 0.316137i 0.356045 + 0.0311499i 0.263775 0.964584i \(-0.415032\pi\)
0.0922694 + 0.995734i \(0.470588\pi\)
\(104\) 15.5732 + 5.66819i 1.52708 + 0.555812i
\(105\) 0 0
\(106\) −1.87673 + 10.6434i −0.182284 + 1.03378i
\(107\) 4.03460 + 4.03460i 0.390039 + 0.390039i 0.874701 0.484662i \(-0.161057\pi\)
−0.484662 + 0.874701i \(0.661057\pi\)
\(108\) 1.90315 4.17233i 0.183131 0.401483i
\(109\) 15.8226i 1.51553i 0.652527 + 0.757765i \(0.273709\pi\)
−0.652527 + 0.757765i \(0.726291\pi\)
\(110\) 0 0
\(111\) 5.54385 5.25972i 0.526199 0.499231i
\(112\) 3.81433 1.77865i 0.360420 0.168067i
\(113\) 0.232615 2.65880i 0.0218825 0.250119i −0.977372 0.211526i \(-0.932157\pi\)
0.999255 0.0385931i \(-0.0122876\pi\)
\(114\) 5.05513 10.1361i 0.473456 0.949337i
\(115\) 0 0
\(116\) 2.74346 + 1.58394i 0.254724 + 0.147065i
\(117\) 16.1570 + 2.27446i 1.49372 + 0.210273i
\(118\) −2.24050 + 8.36165i −0.206255 + 0.769753i
\(119\) −6.13333 5.14648i −0.562242 0.471777i
\(120\) 0 0
\(121\) 0.942447 + 5.34488i 0.0856770 + 0.485898i
\(122\) −1.70355 + 2.43292i −0.154232 + 0.220266i
\(123\) 3.67613 9.32930i 0.331466 0.841195i
\(124\) 3.12744 3.72713i 0.280852 0.334707i
\(125\) 0 0
\(126\) 7.32219 5.51507i 0.652312 0.491321i
\(127\) 0.846401 + 3.15881i 0.0751059 + 0.280299i 0.993257 0.115931i \(-0.0369850\pi\)
−0.918151 + 0.396230i \(0.870318\pi\)
\(128\) −0.398073 + 0.853671i −0.0351850 + 0.0754546i
\(129\) −2.24472 1.11950i −0.197637 0.0985661i
\(130\) 0 0
\(131\) 0.497235 1.36614i 0.0434436 0.119360i −0.916074 0.401010i \(-0.868659\pi\)
0.959517 + 0.281649i \(0.0908815\pi\)
\(132\) 3.60731 + 0.0948693i 0.313976 + 0.00825731i
\(133\) −14.6481 + 10.2567i −1.27015 + 0.889368i
\(134\) 7.89266 0.681822
\(135\) 0 0
\(136\) −8.44014 −0.723736
\(137\) 13.0703 9.15193i 1.11667 0.781902i 0.138637 0.990343i \(-0.455728\pi\)
0.978035 + 0.208442i \(0.0668391\pi\)
\(138\) −0.623196 1.14809i −0.0530499 0.0977322i
\(139\) −3.12149 + 8.57623i −0.264762 + 0.727426i 0.734069 + 0.679075i \(0.237619\pi\)
−0.998830 + 0.0483514i \(0.984603\pi\)
\(140\) 0 0
\(141\) −14.9937 + 9.92164i −1.26269 + 0.835553i
\(142\) 2.18726 4.69060i 0.183551 0.393626i
\(143\) 3.32299 + 12.4016i 0.277883 + 1.03707i
\(144\) 0.983543 4.25580i 0.0819619 0.354650i
\(145\) 0 0
\(146\) −4.73488 + 5.64281i −0.391861 + 0.467002i
\(147\) −2.32188 + 0.346738i −0.191505 + 0.0285985i
\(148\) −2.23344 + 3.18968i −0.183588 + 0.262190i
\(149\) 1.63395 + 9.26659i 0.133858 + 0.759149i 0.975648 + 0.219343i \(0.0703913\pi\)
−0.841789 + 0.539806i \(0.818498\pi\)
\(150\) 0 0
\(151\) −0.808803 0.678666i −0.0658194 0.0552291i 0.609284 0.792952i \(-0.291457\pi\)
−0.675104 + 0.737723i \(0.735901\pi\)
\(152\) −4.87887 + 18.2082i −0.395729 + 1.47688i
\(153\) −8.12841 + 1.72582i −0.657143 + 0.139525i
\(154\) 6.24682 + 3.60660i 0.503383 + 0.290628i
\(155\) 0 0
\(156\) −8.29843 + 0.506611i −0.664406 + 0.0405613i
\(157\) −1.94520 + 22.2338i −0.155244 + 1.77445i 0.375408 + 0.926860i \(0.377503\pi\)
−0.530652 + 0.847590i \(0.678053\pi\)
\(158\) 12.5165 5.83654i 0.995759 0.464330i
\(159\) −4.13198 17.2195i −0.327687 1.36560i
\(160\) 0 0
\(161\) 2.06235i 0.162536i
\(162\) 0.170346 9.51231i 0.0133837 0.747358i
\(163\) 1.74889 + 1.74889i 0.136983 + 0.136983i 0.772274 0.635290i \(-0.219119\pi\)
−0.635290 + 0.772274i \(0.719119\pi\)
\(164\) −0.887241 + 5.03179i −0.0692819 + 0.392917i
\(165\) 0 0
\(166\) −4.73644 1.72392i −0.367619 0.133802i
\(167\) −7.25686 0.634893i −0.561553 0.0491295i −0.197154 0.980373i \(-0.563170\pi\)
−0.364399 + 0.931243i \(0.618725\pi\)
\(168\) −10.1101 + 11.4248i −0.780011 + 0.881441i
\(169\) −5.67082 15.5805i −0.436217 1.19850i
\(170\) 0 0
\(171\) −0.975496 + 18.5333i −0.0745981 + 1.41728i
\(172\) 1.23458 + 0.330806i 0.0941362 + 0.0252237i
\(173\) −20.4232 + 1.78680i −1.55275 + 0.135848i −0.830985 0.556295i \(-0.812222\pi\)
−0.721760 + 0.692143i \(0.756667\pi\)
\(174\) 6.52972 + 0.744716i 0.495017 + 0.0564568i
\(175\) 0 0
\(176\) 3.38487 0.596843i 0.255144 0.0449887i
\(177\) −2.09493 14.0283i −0.157464 1.05443i
\(178\) 0.614106 + 7.01926i 0.0460292 + 0.526116i
\(179\) 7.17079 + 12.4202i 0.535970 + 0.928327i 0.999116 + 0.0420450i \(0.0133873\pi\)
−0.463146 + 0.886282i \(0.653279\pi\)
\(180\) 0 0
\(181\) 1.03474 1.79221i 0.0769112 0.133214i −0.825005 0.565126i \(-0.808828\pi\)
0.901916 + 0.431912i \(0.142161\pi\)
\(182\) −15.0617 7.02339i −1.11645 0.520609i
\(183\) 0.970750 4.76862i 0.0717599 0.352507i
\(184\) 1.39745 + 1.66542i 0.103021 + 0.122776i
\(185\) 0 0
\(186\) 2.86788 9.67779i 0.210283 0.709610i
\(187\) −3.75043 5.35618i −0.274259 0.391682i
\(188\) 6.47790 6.47790i 0.472449 0.472449i
\(189\) −7.40057 + 13.0701i −0.538312 + 0.950710i
\(190\) 0 0
\(191\) 22.9618 + 4.04878i 1.66145 + 0.292959i 0.923987 0.382424i \(-0.124911\pi\)
0.737467 + 0.675383i \(0.236022\pi\)
\(192\) −0.351864 + 13.3793i −0.0253936 + 0.965564i
\(193\) 0.131693 + 0.282417i 0.00947948 + 0.0203288i 0.910991 0.412427i \(-0.135319\pi\)
−0.901511 + 0.432756i \(0.857541\pi\)
\(194\) −14.8559 + 12.4656i −1.06659 + 0.894977i
\(195\) 0 0
\(196\) 1.12408 0.409130i 0.0802911 0.0292236i
\(197\) 3.13774 0.840756i 0.223555 0.0599014i −0.145303 0.989387i \(-0.546416\pi\)
0.368858 + 0.929486i \(0.379749\pi\)
\(198\) 6.94179 2.80284i 0.493332 0.199189i
\(199\) 5.52277 3.18857i 0.391499 0.226032i −0.291310 0.956629i \(-0.594091\pi\)
0.682809 + 0.730596i \(0.260758\pi\)
\(200\) 0 0
\(201\) −11.8601 + 5.15534i −0.836550 + 0.363630i
\(202\) 2.91638 + 2.04207i 0.205196 + 0.143679i
\(203\) −8.49914 5.95116i −0.596523 0.417690i
\(204\) 3.88311 1.68790i 0.271872 0.118177i
\(205\) 0 0
\(206\) −3.32065 + 1.91718i −0.231360 + 0.133576i
\(207\) 1.68638 + 1.31816i 0.117211 + 0.0916183i
\(208\) −7.64899 + 2.04954i −0.530362 + 0.142110i
\(209\) −13.7230 + 4.99477i −0.949241 + 0.345495i
\(210\) 0 0
\(211\) 4.91430 4.12359i 0.338314 0.283879i −0.457763 0.889074i \(-0.651349\pi\)
0.796077 + 0.605195i \(0.206905\pi\)
\(212\) 3.81335 + 8.17776i 0.261902 + 0.561651i
\(213\) −0.222942 + 8.47715i −0.0152757 + 0.580844i
\(214\) −5.93991 1.04737i −0.406044 0.0715965i
\(215\) 0 0
\(216\) 2.88011 + 15.5692i 0.195967 + 1.05935i
\(217\) −11.2680 + 11.2680i −0.764925 + 0.764925i
\(218\) −9.59362 13.7011i −0.649762 0.927956i
\(219\) 3.42923 11.5721i 0.231726 0.781968i
\(220\) 0 0
\(221\) 9.68341 + 11.5402i 0.651376 + 0.776280i
\(222\) −1.61143 + 7.91587i −0.108152 + 0.531278i
\(223\) 9.41489 + 4.39023i 0.630467 + 0.293992i 0.711464 0.702723i \(-0.248032\pi\)
−0.0809965 + 0.996714i \(0.525810\pi\)
\(224\) 6.58348 11.4029i 0.439877 0.761889i
\(225\) 0 0
\(226\) 1.41067 + 2.44335i 0.0938361 + 0.162529i
\(227\) −0.272304 3.11245i −0.0180734 0.206580i −0.999862 0.0166042i \(-0.994714\pi\)
0.981789 0.189976i \(-0.0608411\pi\)
\(228\) −1.39671 9.35287i −0.0924996 0.619409i
\(229\) 23.1368 4.07964i 1.52892 0.269590i 0.654990 0.755638i \(-0.272673\pi\)
0.873933 + 0.486047i \(0.161562\pi\)
\(230\) 0 0
\(231\) −11.7427 1.33926i −0.772616 0.0881170i
\(232\) −10.8959 + 0.953265i −0.715349 + 0.0625849i
\(233\) 3.20411 + 0.858538i 0.209908 + 0.0562447i 0.362241 0.932085i \(-0.382012\pi\)
−0.152333 + 0.988329i \(0.548679\pi\)
\(234\) −15.3698 + 7.82690i −1.00475 + 0.511661i
\(235\) 0 0
\(236\) 2.47188 + 6.79145i 0.160906 + 0.442085i
\(237\) −14.9960 + 16.9460i −0.974093 + 1.10076i
\(238\) 8.43141 + 0.737653i 0.546527 + 0.0478149i
\(239\) −15.9837 5.81759i −1.03390 0.376309i −0.231335 0.972874i \(-0.574309\pi\)
−0.802564 + 0.596566i \(0.796532\pi\)
\(240\) 0 0
\(241\) 3.22231 18.2746i 0.207567 1.17717i −0.685782 0.727807i \(-0.740540\pi\)
0.893349 0.449364i \(-0.148349\pi\)
\(242\) −4.05681 4.05681i −0.260782 0.260782i
\(243\) 5.95729 + 14.4052i 0.382160 + 0.924096i
\(244\) 2.47965i 0.158744i
\(245\) 0 0
\(246\) 2.47334 + 10.3074i 0.157695 + 0.657173i
\(247\) 30.4937 14.2194i 1.94027 0.904761i
\(248\) −1.46409 + 16.7346i −0.0929695 + 1.06265i
\(249\) 8.24339 0.503250i 0.522403 0.0318922i
\(250\) 0 0
\(251\) −13.1493 7.59178i −0.829979 0.479189i 0.0238664 0.999715i \(-0.492402\pi\)
−0.853846 + 0.520527i \(0.825736\pi\)
\(252\) 2.36663 7.27814i 0.149084 0.458480i
\(253\) −0.435919 + 1.62687i −0.0274060 + 0.102281i
\(254\) −2.64818 2.22208i −0.166161 0.139426i
\(255\) 0 0
\(256\) −2.85653 16.2002i −0.178533 1.01251i
\(257\) −4.98418 + 7.11815i −0.310905 + 0.444018i −0.943946 0.330100i \(-0.892917\pi\)
0.633041 + 0.774118i \(0.281806\pi\)
\(258\) 2.62253 0.391636i 0.163271 0.0243822i
\(259\) 8.19772 9.76966i 0.509382 0.607057i
\(260\) 0 0
\(261\) −10.2985 + 3.14602i −0.637462 + 0.194734i
\(262\) 0.397759 + 1.48446i 0.0245736 + 0.0917099i
\(263\) −9.97382 + 21.3889i −0.615012 + 1.31890i 0.314203 + 0.949356i \(0.398263\pi\)
−0.929214 + 0.369541i \(0.879515\pi\)
\(264\) −10.3902 + 6.87540i −0.639470 + 0.423152i
\(265\) 0 0
\(266\) 6.46518 17.7629i 0.396406 1.08912i
\(267\) −5.50766 10.1466i −0.337063 0.620961i
\(268\) 5.39779 3.77957i 0.329723 0.230874i
\(269\) 10.2124 0.622659 0.311330 0.950302i \(-0.399226\pi\)
0.311330 + 0.950302i \(0.399226\pi\)
\(270\) 0 0
\(271\) 4.84409 0.294258 0.147129 0.989117i \(-0.452997\pi\)
0.147129 + 0.989117i \(0.452997\pi\)
\(272\) 3.30356 2.31318i 0.200308 0.140257i
\(273\) 27.2205 + 0.715877i 1.64746 + 0.0433268i
\(274\) −5.76881 + 15.8497i −0.348506 + 0.957514i
\(275\) 0 0
\(276\) −0.975993 0.486750i −0.0587479 0.0292989i
\(277\) 5.71185 12.2491i 0.343192 0.735978i −0.656642 0.754203i \(-0.728024\pi\)
0.999834 + 0.0182248i \(0.00580146\pi\)
\(278\) −2.49701 9.31897i −0.149761 0.558914i
\(279\) 2.01184 + 16.4159i 0.120446 + 0.982792i
\(280\) 0 0
\(281\) −10.1156 + 12.0553i −0.603445 + 0.719158i −0.978130 0.207994i \(-0.933306\pi\)
0.374685 + 0.927152i \(0.377751\pi\)
\(282\) 6.96758 17.6824i 0.414913 1.05297i
\(283\) 17.2952 24.7001i 1.02809 1.46827i 0.150648 0.988587i \(-0.451864\pi\)
0.877443 0.479680i \(-0.159247\pi\)
\(284\) −0.750327 4.25532i −0.0445237 0.252507i
\(285\) 0 0
\(286\) −10.3968 8.72397i −0.614777 0.515859i
\(287\) 4.33122 16.1643i 0.255664 0.954150i
\(288\) −5.11629 12.6715i −0.301480 0.746676i
\(289\) 8.07815 + 4.66392i 0.475185 + 0.274348i
\(290\) 0 0
\(291\) 14.1814 28.4354i 0.831328 1.66691i
\(292\) −0.536001 + 6.12652i −0.0313671 + 0.358527i
\(293\) 6.65512 3.10333i 0.388796 0.181299i −0.218384 0.975863i \(-0.570078\pi\)
0.607180 + 0.794564i \(0.292301\pi\)
\(294\) 1.80033 1.70806i 0.104997 0.0996160i
\(295\) 0 0
\(296\) 13.4441i 0.781424i
\(297\) −8.60053 + 8.74602i −0.499053 + 0.507496i
\(298\) −7.03343 7.03343i −0.407435 0.407435i
\(299\) 0.673830 3.82148i 0.0389686 0.221002i
\(300\) 0 0
\(301\) −3.93374 1.43176i −0.226737 0.0825254i
\(302\) 1.11185 + 0.0972742i 0.0639798 + 0.00559750i
\(303\) −5.71622 1.16365i −0.328388 0.0668501i
\(304\) −3.08065 8.46402i −0.176687 0.485445i
\(305\) 0 0
\(306\) 5.99214 6.42287i 0.342548 0.367171i
\(307\) −13.2129 3.54038i −0.754099 0.202060i −0.138764 0.990326i \(-0.544313\pi\)
−0.615336 + 0.788265i \(0.710980\pi\)
\(308\) 5.99930 0.524871i 0.341842 0.0299073i
\(309\) 3.73760 5.04989i 0.212625 0.287278i
\(310\) 0 0
\(311\) 3.80231 0.670449i 0.215609 0.0380177i −0.0648001 0.997898i \(-0.520641\pi\)
0.280409 + 0.959881i \(0.409530\pi\)
\(312\) 22.4666 17.8666i 1.27192 1.01149i
\(313\) −2.14418 24.5081i −0.121196 1.38528i −0.776597 0.629997i \(-0.783056\pi\)
0.655401 0.755281i \(-0.272500\pi\)
\(314\) −11.7965 20.4321i −0.665714 1.15305i
\(315\) 0 0
\(316\) 5.76508 9.98541i 0.324311 0.561723i
\(317\) −14.9555 6.97386i −0.839984 0.391691i −0.0454916 0.998965i \(-0.514485\pi\)
−0.794493 + 0.607274i \(0.792263\pi\)
\(318\) 14.0186 + 12.4054i 0.786123 + 0.695661i
\(319\) −5.44660 6.49101i −0.304951 0.363427i
\(320\) 0 0
\(321\) 9.60991 2.30598i 0.536373 0.128707i
\(322\) −1.25045 1.78583i −0.0696849 0.0995203i
\(323\) −12.1165 + 12.1165i −0.674178 + 0.674178i
\(324\) −4.43868 6.58704i −0.246593 0.365947i
\(325\) 0 0
\(326\) −2.57479 0.454005i −0.142604 0.0251450i
\(327\) 23.3654 + 14.3220i 1.29211 + 0.792009i
\(328\) −7.45537 15.9881i −0.411654 0.882794i
\(329\) −22.9851 + 19.2867i −1.26721 + 1.06331i
\(330\) 0 0
\(331\) −19.3973 + 7.06005i −1.06617 + 0.388056i −0.814744 0.579820i \(-0.803123\pi\)
−0.251429 + 0.967876i \(0.580901\pi\)
\(332\) −4.06479 + 1.08916i −0.223084 + 0.0597752i
\(333\) −2.74903 12.9476i −0.150646 0.709523i
\(334\) 6.66881 3.85024i 0.364901 0.210676i
\(335\) 0 0
\(336\) 0.826024 7.24263i 0.0450633 0.395118i
\(337\) 8.57053 + 6.00115i 0.466867 + 0.326904i 0.783227 0.621735i \(-0.213572\pi\)
−0.316361 + 0.948639i \(0.602461\pi\)
\(338\) 14.3573 + 10.0531i 0.780933 + 0.546815i
\(339\) −3.71573 2.75015i −0.201811 0.149367i
\(340\) 0 0
\(341\) −11.2705 + 6.50701i −0.610330 + 0.352374i
\(342\) −10.3925 16.6398i −0.561961 0.899778i
\(343\) 15.7602 4.22292i 0.850968 0.228016i
\(344\) −4.14679 + 1.50931i −0.223580 + 0.0813765i
\(345\) 0 0
\(346\) 16.6015 13.9303i 0.892500 0.748896i
\(347\) 4.85639 + 10.4146i 0.260705 + 0.559083i 0.992472 0.122472i \(-0.0390821\pi\)
−0.731767 + 0.681554i \(0.761304\pi\)
\(348\) 4.82230 2.61759i 0.258502 0.140317i
\(349\) 15.6377 + 2.75735i 0.837067 + 0.147597i 0.575719 0.817647i \(-0.304722\pi\)
0.261347 + 0.965245i \(0.415833\pi\)
\(350\) 0 0
\(351\) 17.9835 21.8006i 0.959886 1.16363i
\(352\) 7.60358 7.60358i 0.405272 0.405272i
\(353\) −4.97772 7.10893i −0.264938 0.378370i 0.664538 0.747255i \(-0.268629\pi\)
−0.929475 + 0.368885i \(0.879740\pi\)
\(354\) 10.3198 + 10.8772i 0.548489 + 0.578118i
\(355\) 0 0
\(356\) 3.78131 + 4.50640i 0.200409 + 0.238838i
\(357\) −13.1515 + 4.39878i −0.696053 + 0.232808i
\(358\) −13.7400 6.40706i −0.726180 0.338623i
\(359\) 10.2032 17.6725i 0.538505 0.932718i −0.460480 0.887670i \(-0.652323\pi\)
0.998985 0.0450476i \(-0.0143439\pi\)
\(360\) 0 0
\(361\) 9.63526 + 16.6888i 0.507119 + 0.878356i
\(362\) 0.190664 + 2.17930i 0.0100211 + 0.114541i
\(363\) 8.74593 + 3.44626i 0.459042 + 0.180881i
\(364\) −13.6640 + 2.40933i −0.716189 + 0.126283i
\(365\) 0 0
\(366\) 2.05074 + 4.71784i 0.107194 + 0.246605i
\(367\) −25.8506 + 2.26163i −1.34939 + 0.118056i −0.738818 0.673906i \(-0.764615\pi\)
−0.610571 + 0.791962i \(0.709060\pi\)
\(368\) −1.00341 0.268864i −0.0523066 0.0140155i
\(369\) −10.4492 13.8731i −0.543965 0.722206i
\(370\) 0 0
\(371\) −10.1077 27.7707i −0.524766 1.44178i
\(372\) −2.67308 7.99199i −0.138593 0.414365i
\(373\) −4.75950 0.416402i −0.246438 0.0215605i −0.0367323 0.999325i \(-0.511695\pi\)
−0.209705 + 0.977765i \(0.567250\pi\)
\(374\) 6.49515 + 2.36404i 0.335856 + 0.122242i
\(375\) 0 0
\(376\) −5.49248 + 31.1494i −0.283253 + 1.60641i
\(377\) 13.8043 + 13.8043i 0.710956 + 0.710956i
\(378\) −1.51641 15.8048i −0.0779958 0.812911i
\(379\) 25.3002i 1.29958i 0.760112 + 0.649792i \(0.225144\pi\)
−0.760112 + 0.649792i \(0.774856\pi\)
\(380\) 0 0
\(381\) 5.43079 + 1.60934i 0.278228 + 0.0824491i
\(382\) −22.3379 + 10.4163i −1.14291 + 0.532946i
\(383\) 1.07406 12.2766i 0.0548819 0.627303i −0.918089 0.396375i \(-0.870268\pi\)
0.972971 0.230929i \(-0.0741764\pi\)
\(384\) 0.900307 + 1.36055i 0.0459436 + 0.0694303i
\(385\) 0 0
\(386\) −0.285272 0.164702i −0.0145200 0.00838310i
\(387\) −3.68501 + 2.30149i −0.187320 + 0.116991i
\(388\) −4.19054 + 15.6393i −0.212742 + 0.793965i
\(389\) 6.83430 + 5.73466i 0.346513 + 0.290759i 0.799388 0.600815i \(-0.205157\pi\)
−0.452875 + 0.891574i \(0.649602\pi\)
\(390\) 0 0
\(391\) 0.343168 + 1.94620i 0.0173548 + 0.0984238i
\(392\) −2.36892 + 3.38317i −0.119649 + 0.170876i
\(393\) −1.56732 1.97085i −0.0790610 0.0994164i
\(394\) −2.20727 + 2.63052i −0.111200 + 0.132524i
\(395\) 0 0
\(396\) 3.40529 5.24109i 0.171122 0.263375i
\(397\) −3.52782 13.1660i −0.177056 0.660782i −0.996192 0.0871833i \(-0.972213\pi\)
0.819136 0.573599i \(-0.194453\pi\)
\(398\) −2.84897 + 6.10964i −0.142806 + 0.306249i
\(399\) 1.88733 + 30.9150i 0.0944846 + 1.54768i
\(400\) 0 0
\(401\) −1.00354 + 2.75721i −0.0501146 + 0.137689i −0.962225 0.272257i \(-0.912230\pi\)
0.912110 + 0.409945i \(0.134452\pi\)
\(402\) 7.14413 11.6552i 0.356317 0.581309i
\(403\) 24.5610 17.1978i 1.22347 0.856683i
\(404\) 2.97240 0.147882
\(405\) 0 0
\(406\) 10.9679 0.544328
\(407\) 8.53175 5.97399i 0.422903 0.296120i
\(408\) −7.63969 + 12.4637i −0.378221 + 0.617044i
\(409\) 9.80467 26.9381i 0.484810 1.33200i −0.420515 0.907285i \(-0.638151\pi\)
0.905325 0.424719i \(-0.139627\pi\)
\(410\) 0 0
\(411\) −1.68404 27.5851i −0.0830676 1.36067i
\(412\) −1.35291 + 2.90132i −0.0666530 + 0.142938i
\(413\) −6.12654 22.8645i −0.301467 1.12509i
\(414\) −2.25950 0.118928i −0.111048 0.00584500i
\(415\) 0 0
\(416\) −15.9247 + 18.9783i −0.780772 + 0.930488i
\(417\) 9.83918 + 12.3724i 0.481827 + 0.605880i
\(418\) 8.85459 12.6457i 0.433092 0.618519i
\(419\) −2.30839 13.0915i −0.112772 0.639563i −0.987829 0.155543i \(-0.950287\pi\)
0.875057 0.484020i \(-0.160824\pi\)
\(420\) 0 0
\(421\) 6.93437 + 5.81863i 0.337960 + 0.283582i 0.795934 0.605383i \(-0.206980\pi\)
−0.457974 + 0.888966i \(0.651425\pi\)
\(422\) −1.75516 + 6.55035i −0.0854399 + 0.318866i
\(423\) 1.07975 + 31.1220i 0.0524993 + 1.51320i
\(424\) −26.9798 15.5768i −1.31025 0.756476i
\(425\) 0 0
\(426\) −4.94684 7.47571i −0.239675 0.362199i
\(427\) 0.707831 8.09054i 0.0342543 0.391529i
\(428\) −4.56386 + 2.12816i −0.220602 + 0.102869i
\(429\) 21.3214 + 6.31832i 1.02941 + 0.305051i
\(430\) 0 0
\(431\) 0.295969i 0.0142563i −0.999975 0.00712817i \(-0.997731\pi\)
0.999975 0.00712817i \(-0.00226899\pi\)
\(432\) −5.39433 5.30459i −0.259535 0.255217i
\(433\) −12.8171 12.8171i −0.615949 0.615949i 0.328541 0.944490i \(-0.393443\pi\)
−0.944490 + 0.328541i \(0.893443\pi\)
\(434\) 2.92514 16.5893i 0.140411 0.796312i
\(435\) 0 0
\(436\) −13.1221 4.77607i −0.628437 0.228732i
\(437\) 4.39698 + 0.384686i 0.210336 + 0.0184020i
\(438\) 4.04698 + 12.0997i 0.193372 + 0.578146i
\(439\) −9.75841 26.8110i −0.465743 1.27962i −0.921105 0.389313i \(-0.872712\pi\)
0.455362 0.890306i \(-0.349510\pi\)
\(440\) 0 0
\(441\) −1.58964 + 3.74260i −0.0756972 + 0.178219i
\(442\) −15.3822 4.12164i −0.731655 0.196046i
\(443\) 40.1651 3.51399i 1.90830 0.166955i 0.929098 0.369833i \(-0.120585\pi\)
0.979204 + 0.202878i \(0.0650296\pi\)
\(444\) 2.68863 + 6.18533i 0.127597 + 0.293543i
\(445\) 0 0
\(446\) −10.8144 + 1.90688i −0.512079 + 0.0902933i
\(447\) 15.1631 + 5.97488i 0.717190 + 0.282602i
\(448\) 1.94671 + 22.2510i 0.0919734 + 1.05126i
\(449\) −3.91232 6.77634i −0.184634 0.319795i 0.758819 0.651301i \(-0.225777\pi\)
−0.943453 + 0.331506i \(0.892443\pi\)
\(450\) 0 0
\(451\) 6.83332 11.8357i 0.321768 0.557319i
\(452\) 2.13480 + 0.995476i 0.100413 + 0.0468232i
\(453\) −1.73429 + 0.580068i −0.0814841 + 0.0272540i
\(454\) 2.12294 + 2.53003i 0.0996347 + 0.118740i
\(455\) 0 0
\(456\) 22.4721 + 23.6860i 1.05235 + 1.10920i
\(457\) 3.14363 + 4.48957i 0.147053 + 0.210013i 0.885920 0.463838i \(-0.153528\pi\)
−0.738867 + 0.673851i \(0.764639\pi\)
\(458\) −17.5610 + 17.5610i −0.820573 + 0.820573i
\(459\) −4.80897 + 13.5655i −0.224464 + 0.633182i
\(460\) 0 0
\(461\) 29.6880 + 5.23480i 1.38271 + 0.243809i 0.815019 0.579434i \(-0.196726\pi\)
0.567689 + 0.823243i \(0.307837\pi\)
\(462\) 10.9803 5.96021i 0.510850 0.277294i
\(463\) −0.0761934 0.163397i −0.00354101 0.00759371i 0.904529 0.426411i \(-0.140222\pi\)
−0.908070 + 0.418818i \(0.862445\pi\)
\(464\) 4.00350 3.35933i 0.185858 0.155953i
\(465\) 0 0
\(466\) −3.29505 + 1.19930i −0.152640 + 0.0555566i
\(467\) 12.1916 3.26672i 0.564158 0.151166i 0.0345422 0.999403i \(-0.489003\pi\)
0.529616 + 0.848238i \(0.322336\pi\)
\(468\) −6.76330 + 12.7130i −0.312634 + 0.587657i
\(469\) −18.6907 + 10.7911i −0.863055 + 0.498285i
\(470\) 0 0
\(471\) 31.0722 + 22.9977i 1.43173 + 1.05968i
\(472\) −20.4404 14.3126i −0.940848 0.658789i
\(473\) −2.80048 1.96091i −0.128766 0.0901629i
\(474\) 2.71055 23.7663i 0.124500 1.09162i
\(475\) 0 0
\(476\) 6.11948 3.53308i 0.280486 0.161939i
\(477\) −29.1684 9.48470i −1.33553 0.434274i
\(478\) 17.3679 4.65373i 0.794391 0.212857i
\(479\) −33.4923 + 12.1902i −1.53030 + 0.556985i −0.963696 0.267003i \(-0.913966\pi\)
−0.566607 + 0.823988i \(0.691744\pi\)
\(480\) 0 0
\(481\) −18.3822 + 15.4245i −0.838157 + 0.703297i
\(482\) 8.29007 + 17.7781i 0.377602 + 0.809771i
\(483\) 3.04550 + 1.86676i 0.138575 + 0.0849404i
\(484\) −4.71715 0.831760i −0.214416 0.0378073i
\(485\) 0 0
\(486\) −13.8928 8.86173i −0.630189 0.401976i
\(487\) −4.88907 + 4.88907i −0.221545 + 0.221545i −0.809149 0.587604i \(-0.800071\pi\)
0.587604 + 0.809149i \(0.300071\pi\)
\(488\) −4.91057 7.01302i −0.222291 0.317464i
\(489\) 4.16563 0.999581i 0.188376 0.0452026i
\(490\) 0 0
\(491\) −16.6934 19.8944i −0.753361 0.897821i 0.244048 0.969763i \(-0.421525\pi\)
−0.997409 + 0.0719426i \(0.977080\pi\)
\(492\) 6.62742 + 5.86479i 0.298787 + 0.264405i
\(493\) −9.01076 4.20179i −0.405824 0.189239i
\(494\) −17.7835 + 30.8019i −0.800117 + 1.38584i
\(495\) 0 0
\(496\) −4.01336 6.95135i −0.180205 0.312125i
\(497\) 1.23344 + 14.0983i 0.0553275 + 0.632396i
\(498\) −6.83298 + 5.43393i −0.306193 + 0.243500i
\(499\) 11.0477 1.94801i 0.494564 0.0872050i 0.0791972 0.996859i \(-0.474764\pi\)
0.415367 + 0.909654i \(0.363653\pi\)
\(500\) 0 0
\(501\) −7.50619 + 10.1416i −0.335352 + 0.453095i
\(502\) 15.9894 1.39889i 0.713640 0.0624354i
\(503\) −29.1890 7.82118i −1.30147 0.348729i −0.459467 0.888195i \(-0.651960\pi\)
−0.842008 + 0.539466i \(0.818626\pi\)
\(504\) 7.71986 + 25.2710i 0.343870 + 1.12566i
\(505\) 0 0
\(506\) −0.608940 1.67305i −0.0270707 0.0743761i
\(507\) −28.1409 5.72864i −1.24978 0.254418i
\(508\) −2.87518 0.251546i −0.127566 0.0111605i
\(509\) 22.0511 + 8.02596i 0.977399 + 0.355744i 0.780829 0.624745i \(-0.214797\pi\)
0.196571 + 0.980490i \(0.437019\pi\)
\(510\) 0 0
\(511\) 3.49769 19.8364i 0.154729 0.877511i
\(512\) 10.9640 + 10.9640i 0.484544 + 0.484544i
\(513\) 26.4854 + 18.2162i 1.16936 + 0.804263i
\(514\) 9.18578i 0.405167i
\(515\) 0 0
\(516\) 1.60600 1.52370i 0.0707004 0.0670769i
\(517\) −22.2083 + 10.3559i −0.976719 + 0.455452i
\(518\) −1.17499 + 13.4302i −0.0516262 + 0.590090i
\(519\) −15.8477 + 31.7765i −0.695636 + 1.39483i
\(520\) 0 0
\(521\) −14.2319 8.21681i −0.623512 0.359985i 0.154723 0.987958i \(-0.450551\pi\)
−0.778235 + 0.627973i \(0.783885\pi\)
\(522\) 7.01018 8.96844i 0.306827 0.392538i
\(523\) −3.78176 + 14.1137i −0.165365 + 0.617150i 0.832629 + 0.553832i \(0.186835\pi\)
−0.997993 + 0.0633182i \(0.979832\pi\)
\(524\) 0.982891 + 0.824743i 0.0429378 + 0.0360291i
\(525\) 0 0
\(526\) −4.33208 24.5685i −0.188888 1.07124i
\(527\) −8.75850 + 12.5084i −0.381526 + 0.544876i
\(528\) 2.18248 5.53872i 0.0949804 0.241042i
\(529\) −14.4569 + 17.2291i −0.628561 + 0.749090i
\(530\) 0 0
\(531\) −22.6121 9.60430i −0.981281 0.416791i
\(532\) −4.08464 15.2441i −0.177091 0.660914i
\(533\) −13.3070 + 28.5370i −0.576390 + 1.23607i
\(534\) 10.9213 + 5.44671i 0.472611 + 0.235702i
\(535\) 0 0
\(536\) −7.78131 + 21.3790i −0.336101 + 0.923431i
\(537\) 24.8318 + 0.653055i 1.07157 + 0.0281814i
\(538\) −8.84309 + 6.19200i −0.381253 + 0.266956i
\(539\) −3.19963 −0.137818
\(540\) 0 0
\(541\) −28.4337 −1.22246 −0.611230 0.791453i \(-0.709325\pi\)
−0.611230 + 0.791453i \(0.709325\pi\)
\(542\) −4.19460 + 2.93709i −0.180173 + 0.126159i
\(543\) −1.70998 3.15025i −0.0733824 0.135190i
\(544\) 4.31531 11.8562i 0.185017 0.508331i
\(545\) 0 0
\(546\) −24.0048 + 15.8845i −1.02731 + 0.679795i
\(547\) −4.44356 + 9.52924i −0.189993 + 0.407441i −0.978111 0.208083i \(-0.933278\pi\)
0.788118 + 0.615524i \(0.211055\pi\)
\(548\) 3.64467 + 13.6021i 0.155693 + 0.581053i
\(549\) −6.16321 5.74989i −0.263039 0.245399i
\(550\) 0 0
\(551\) −14.2734 + 17.0103i −0.608066 + 0.724665i
\(552\) 3.72426 0.556164i 0.158515 0.0236719i
\(553\) −21.6605 + 30.9344i −0.921099 + 1.31547i
\(554\) 2.48092 + 14.0700i 0.105404 + 0.597776i
\(555\) 0 0
\(556\) −6.17030 5.17749i −0.261679 0.219575i
\(557\) 4.48926 16.7541i 0.190216 0.709896i −0.803238 0.595659i \(-0.796891\pi\)
0.993454 0.114237i \(-0.0364423\pi\)
\(558\) −11.6954 12.9950i −0.495107 0.550122i
\(559\) 6.82132 + 3.93829i 0.288511 + 0.166572i
\(560\) 0 0
\(561\) −11.3043 + 0.690115i −0.477267 + 0.0291367i
\(562\) 1.44988 16.5722i 0.0611596 0.699057i
\(563\) −21.2542 + 9.91099i −0.895758 + 0.417699i −0.815286 0.579058i \(-0.803420\pi\)
−0.0804714 + 0.996757i \(0.525643\pi\)
\(564\) −3.70246 15.4295i −0.155902 0.649701i
\(565\) 0 0
\(566\) 31.8748i 1.33980i
\(567\) 12.6021 + 22.7591i 0.529238 + 0.955791i
\(568\) 10.5491 + 10.5491i 0.442630 + 0.442630i
\(569\) 6.84027 38.7931i 0.286759 1.62629i −0.412175 0.911105i \(-0.635231\pi\)
0.698934 0.715186i \(-0.253658\pi\)
\(570\) 0 0
\(571\) 31.4980 + 11.4643i 1.31815 + 0.479767i 0.902865 0.429924i \(-0.141460\pi\)
0.415285 + 0.909691i \(0.363682\pi\)
\(572\) −11.2880 0.987576i −0.471977 0.0412926i
\(573\) 26.7630 30.2431i 1.11804 1.26343i
\(574\) 6.05032 + 16.6231i 0.252536 + 0.693836i
\(575\) 0 0
\(576\) 19.4388 + 12.6300i 0.809951 + 0.526249i
\(577\) 21.0819 + 5.64888i 0.877651 + 0.235166i 0.669393 0.742908i \(-0.266554\pi\)
0.208257 + 0.978074i \(0.433221\pi\)
\(578\) −9.82287 + 0.859390i −0.408578 + 0.0357459i
\(579\) 0.536252 + 0.0611597i 0.0222859 + 0.00254171i
\(580\) 0 0
\(581\) 13.5734 2.39335i 0.563119 0.0992930i
\(582\) 4.96111 + 33.2213i 0.205645 + 1.37707i
\(583\) −2.10351 24.0432i −0.0871185 0.995769i
\(584\) −10.6167 18.3886i −0.439321 0.760927i
\(585\) 0 0
\(586\) −3.88117 + 6.72239i −0.160330 + 0.277699i
\(587\) 22.1244 + 10.3168i 0.913173 + 0.425819i 0.821656 0.569984i \(-0.193051\pi\)
0.0915170 + 0.995804i \(0.470828\pi\)
\(588\) 0.413302 2.03027i 0.0170443 0.0837268i
\(589\) 21.9220 + 26.1256i 0.903279 + 1.07649i
\(590\) 0 0
\(591\) 1.59861 5.39457i 0.0657580 0.221903i
\(592\) 3.68461 + 5.26217i 0.151437 + 0.216274i
\(593\) 4.09490 4.09490i 0.168157 0.168157i −0.618012 0.786169i \(-0.712062\pi\)
0.786169 + 0.618012i \(0.212062\pi\)
\(594\) 2.14445 12.7881i 0.0879879 0.524700i
\(595\) 0 0
\(596\) −8.17827 1.44205i −0.334995 0.0590687i
\(597\) 0.290389 11.0417i 0.0118848 0.451908i
\(598\) 1.73357 + 3.71765i 0.0708910 + 0.152026i
\(599\) 30.3866 25.4974i 1.24156 1.04180i 0.244163 0.969734i \(-0.421487\pi\)
0.997400 0.0720615i \(-0.0229578\pi\)
\(600\) 0 0
\(601\) −22.4811 + 8.18244i −0.917022 + 0.333769i −0.757053 0.653353i \(-0.773362\pi\)
−0.159969 + 0.987122i \(0.551139\pi\)
\(602\) 4.27441 1.14533i 0.174212 0.0466800i
\(603\) −3.12238 + 22.1805i −0.127153 + 0.903258i
\(604\) 0.806976 0.465908i 0.0328354 0.0189575i
\(605\) 0 0
\(606\) 5.65534 2.45825i 0.229733 0.0998596i
\(607\) 26.5308 + 18.5771i 1.07685 + 0.754020i 0.970691 0.240329i \(-0.0772554\pi\)
0.106160 + 0.994349i \(0.466144\pi\)
\(608\) −23.0833 16.1631i −0.936152 0.655501i
\(609\) −16.4813 + 7.16404i −0.667854 + 0.290301i
\(610\) 0 0
\(611\) 48.8923 28.2280i 1.97797 1.14198i
\(612\) 1.02229 7.26207i 0.0413238 0.293552i
\(613\) −14.7737 + 3.95860i −0.596704 + 0.159886i −0.544515 0.838751i \(-0.683286\pi\)
−0.0521885 + 0.998637i \(0.516620\pi\)
\(614\) 13.5879 4.94560i 0.548364 0.199588i
\(615\) 0 0
\(616\) −15.9279 + 13.3651i −0.641755 + 0.538497i
\(617\) −11.3221 24.2804i −0.455812 0.977492i −0.991137 0.132845i \(-0.957589\pi\)
0.535325 0.844646i \(-0.320189\pi\)
\(618\) −0.174600 + 6.63900i −0.00702345 + 0.267060i
\(619\) 18.6300 + 3.28497i 0.748802 + 0.132034i 0.535011 0.844845i \(-0.320308\pi\)
0.213792 + 0.976879i \(0.431419\pi\)
\(620\) 0 0
\(621\) 3.47298 1.29715i 0.139366 0.0520529i
\(622\) −2.88598 + 2.88598i −0.115717 + 0.115717i
\(623\) −11.0512 15.7827i −0.442757 0.632322i
\(624\) −3.89698 + 13.1505i −0.156004 + 0.526443i
\(625\) 0 0
\(626\) 16.7165 + 19.9220i 0.668126 + 0.796242i
\(627\) −5.04570 + 24.7860i −0.201506 + 0.989859i
\(628\) −17.8520 8.32451i −0.712371 0.332184i
\(629\) 6.11042 10.5836i 0.243638 0.421994i
\(630\) 0 0
\(631\) 0.0126965 + 0.0219910i 0.000505440 + 0.000875448i 0.866278 0.499562i \(-0.166506\pi\)
−0.865773 + 0.500438i \(0.833172\pi\)
\(632\) 3.46961 + 39.6578i 0.138014 + 1.57750i
\(633\) −1.64112 10.9895i −0.0652288 0.436794i
\(634\) 17.1787 3.02907i 0.682253 0.120300i
\(635\) 0 0
\(636\) 15.5279 + 1.77096i 0.615722 + 0.0702232i
\(637\) 7.34369 0.642490i 0.290968 0.0254564i
\(638\) 8.65198 + 2.31829i 0.342535 + 0.0917820i
\(639\) 12.3165 + 8.00241i 0.487234 + 0.316570i
\(640\) 0 0
\(641\) 9.97230 + 27.3987i 0.393882 + 1.08218i 0.965214 + 0.261463i \(0.0842049\pi\)
−0.571331 + 0.820720i \(0.693573\pi\)
\(642\) −6.92324 + 7.82351i −0.273238 + 0.308769i
\(643\) 1.74781 + 0.152914i 0.0689270 + 0.00603033i 0.121567 0.992583i \(-0.461208\pi\)
−0.0526401 + 0.998614i \(0.516764\pi\)
\(644\) −1.71037 0.622522i −0.0673979 0.0245308i
\(645\) 0 0
\(646\) 3.14539 17.8384i 0.123754 0.701842i
\(647\) −14.7341 14.7341i −0.579259 0.579259i 0.355440 0.934699i \(-0.384331\pi\)
−0.934699 + 0.355440i \(0.884331\pi\)
\(648\) 25.5982 + 9.83953i 1.00559 + 0.386533i
\(649\) 19.3315i 0.758830i
\(650\) 0 0
\(651\) 6.44028 + 26.8391i 0.252414 + 1.05191i
\(652\) −1.97831 + 0.922501i −0.0774766 + 0.0361279i
\(653\) −0.812604 + 9.28810i −0.0317996 + 0.363471i 0.963578 + 0.267429i \(0.0861741\pi\)
−0.995377 + 0.0960426i \(0.969382\pi\)
\(654\) −28.9164 + 1.76532i −1.13072 + 0.0690293i
\(655\) 0 0
\(656\) 7.29994 + 4.21462i 0.285015 + 0.164553i
\(657\) −13.9846 15.5386i −0.545592 0.606218i
\(658\) 8.20920 30.6372i 0.320028 1.19436i
\(659\) −14.0775 11.8125i −0.548383 0.460148i 0.326010 0.945366i \(-0.394296\pi\)
−0.874393 + 0.485218i \(0.838740\pi\)
\(660\) 0 0
\(661\) 4.43306 + 25.1412i 0.172426 + 0.977878i 0.941073 + 0.338204i \(0.109819\pi\)
−0.768647 + 0.639674i \(0.779070\pi\)
\(662\) 12.5159 17.8745i 0.486443 0.694712i
\(663\) 25.8067 3.85385i 1.00225 0.149671i
\(664\) 9.33923 11.1301i 0.362432 0.431930i
\(665\) 0 0
\(666\) 10.2309 + 9.54476i 0.396438 + 0.369852i
\(667\) 0.662829 + 2.47371i 0.0256648 + 0.0957825i
\(668\) 2.71703 5.82669i 0.105125 0.225441i
\(669\) 15.0051 9.92922i 0.580131 0.383886i
\(670\) 0 0
\(671\) 2.26847 6.23257i 0.0875733 0.240606i
\(672\) −10.8797 20.0434i −0.419695 0.773191i
\(673\) −3.83098 + 2.68248i −0.147673 + 0.103402i −0.645078 0.764117i \(-0.723175\pi\)
0.497405 + 0.867518i \(0.334286\pi\)
\(674\) −11.0600 −0.426017
\(675\) 0 0
\(676\) 14.6331 0.562810
\(677\) 32.1483 22.5105i 1.23556 0.865147i 0.241123 0.970495i \(-0.422484\pi\)
0.994436 + 0.105347i \(0.0335953\pi\)
\(678\) 4.88500 + 0.128472i 0.187607 + 0.00493392i
\(679\) 18.1371 49.8312i 0.696038 1.91235i
\(680\) 0 0
\(681\) −4.84267 2.41515i −0.185572 0.0925488i
\(682\) 5.81397 12.4681i 0.222628 0.477428i
\(683\) −9.77386 36.4765i −0.373986 1.39574i −0.854820 0.518924i \(-0.826333\pi\)
0.480834 0.876812i \(-0.340334\pi\)
\(684\) −15.0758 6.40331i −0.576436 0.244837i
\(685\) 0 0
\(686\) −11.0866 + 13.2125i −0.423287 + 0.504454i
\(687\) 14.9181 37.8592i 0.569160 1.44442i
\(688\) 1.20944 1.72726i 0.0461096 0.0658513i
\(689\) 9.65582 + 54.7609i 0.367858 + 2.08622i
\(690\) 0 0
\(691\) 10.1478 + 8.51501i 0.386040 + 0.323926i 0.815068 0.579365i \(-0.196699\pi\)
−0.429028 + 0.903291i \(0.641144\pi\)
\(692\) 4.68292 17.4769i 0.178018 0.664372i
\(693\) −12.6068 + 16.1284i −0.478892 + 0.612668i
\(694\) −10.5198 6.07363i −0.399327 0.230552i
\(695\) 0 0
\(696\) −8.45482 + 16.9529i −0.320479 + 0.642599i
\(697\) 1.39761 15.9747i 0.0529381 0.605086i
\(698\) −15.2128 + 7.09386i −0.575814 + 0.268507i
\(699\) 4.16805 3.95443i 0.157650 0.149570i
\(700\) 0 0
\(701\) 1.42181i 0.0537011i −0.999639 0.0268505i \(-0.991452\pi\)
0.999639 0.0268505i \(-0.00854782\pi\)
\(702\) −2.35402 + 29.7814i −0.0888467 + 1.12402i
\(703\) −19.3001 19.3001i −0.727916 0.727916i
\(704\) −3.16755 + 17.9641i −0.119381 + 0.677046i
\(705\) 0 0
\(706\) 8.62062 + 3.13765i 0.324441 + 0.118087i
\(707\) −9.69826 0.848488i −0.364741 0.0319107i
\(708\) 12.2665 + 2.49709i 0.461002 + 0.0938463i
\(709\) 12.4901 + 34.3163i 0.469077 + 1.28878i 0.918487 + 0.395452i \(0.129412\pi\)
−0.449410 + 0.893325i \(0.648366\pi\)
\(710\) 0 0
\(711\) 11.4506 + 37.4836i 0.429432 + 1.40575i
\(712\) −19.6186 5.25679i −0.735239 0.197007i
\(713\) 3.91834 0.342810i 0.146743 0.0128384i
\(714\) 8.72108 11.7831i 0.326378 0.440971i
\(715\) 0 0
\(716\) −12.4649 + 2.19790i −0.465836 + 0.0821395i
\(717\) −23.0587 + 18.3375i −0.861144 + 0.684826i
\(718\) 1.88008 + 21.4894i 0.0701639 + 0.801977i
\(719\) 12.9014 + 22.3459i 0.481142 + 0.833363i 0.999766 0.0216398i \(-0.00688871\pi\)
−0.518624 + 0.855003i \(0.673555\pi\)
\(720\) 0 0
\(721\) 5.24243 9.08015i 0.195238 0.338162i
\(722\) −18.4622 8.60904i −0.687090 0.320395i
\(723\) −24.0697 21.2999i −0.895160 0.792152i
\(724\) 1.17400 + 1.39912i 0.0436314 + 0.0519978i
\(725\) 0 0
\(726\) −9.66282 + 2.31868i −0.358621 + 0.0860543i
\(727\) 0.926059 + 1.32255i 0.0343456 + 0.0490507i 0.835958 0.548794i \(-0.184913\pi\)
−0.801612 + 0.597845i \(0.796024\pi\)
\(728\) 33.8736 33.8736i 1.25544 1.25544i
\(729\) 26.6647 + 4.24184i 0.987582 + 0.157105i
\(730\) 0 0
\(731\) −3.95045 0.696570i −0.146112 0.0257636i
\(732\) 3.66174 + 2.24449i 0.135342 + 0.0829586i
\(733\) 5.62244 + 12.0574i 0.207669 + 0.445349i 0.982362 0.186990i \(-0.0598731\pi\)
−0.774692 + 0.632338i \(0.782095\pi\)
\(734\) 21.0132 17.6322i 0.775613 0.650816i
\(735\) 0 0
\(736\) −3.05398 + 1.11156i −0.112571 + 0.0409725i
\(737\) −17.0249 + 4.56182i −0.627122 + 0.168037i
\(738\) 17.4598 + 5.67740i 0.642704 + 0.208988i
\(739\) 30.9063 17.8437i 1.13691 0.656393i 0.191243 0.981543i \(-0.438748\pi\)
0.945663 + 0.325150i \(0.105415\pi\)
\(740\) 0 0
\(741\) 6.60366 57.9013i 0.242591 2.12706i
\(742\) 25.5905 + 17.9187i 0.939457 + 0.657815i
\(743\) 28.8465 + 20.1985i 1.05828 + 0.741012i 0.966990 0.254813i \(-0.0820138\pi\)
0.0912848 + 0.995825i \(0.470903\pi\)
\(744\) 23.3869 + 17.3095i 0.857407 + 0.634598i
\(745\) 0 0
\(746\) 4.37382 2.52523i 0.160137 0.0924551i
\(747\) 6.71844 12.6286i 0.245815 0.462058i
\(748\) 5.57411 1.49358i 0.203810 0.0546106i
\(749\) 15.4983 5.64093i 0.566296 0.206115i
\(750\) 0 0
\(751\) 19.0262 15.9649i 0.694275 0.582566i −0.225864 0.974159i \(-0.572520\pi\)
0.920138 + 0.391593i \(0.128076\pi\)
\(752\) −6.38726 13.6975i −0.232919 0.499497i
\(753\) −23.1132 + 12.5460i −0.842290 + 0.457203i
\(754\) −20.3233 3.58354i −0.740130 0.130505i
\(755\) 0 0
\(756\) −8.60555 10.0827i −0.312981 0.366706i
\(757\) −17.8009 + 17.8009i −0.646986 + 0.646986i −0.952263 0.305278i \(-0.901251\pi\)
0.305278 + 0.952263i \(0.401251\pi\)
\(758\) −15.3401 21.9080i −0.557178 0.795733i
\(759\) 2.00785 + 2.11631i 0.0728802 + 0.0768172i
\(760\) 0 0
\(761\) −31.3105 37.3144i −1.13500 1.35265i −0.927240 0.374467i \(-0.877826\pi\)
−0.207765 0.978179i \(-0.566619\pi\)
\(762\) −5.67841 + 1.89925i −0.205707 + 0.0688027i
\(763\) 41.4512 + 19.3290i 1.50063 + 0.699757i
\(764\) −10.2888 + 17.8207i −0.372236 + 0.644731i
\(765\) 0 0
\(766\) 6.51352 + 11.2818i 0.235343 + 0.407626i
\(767\) 3.88180 + 44.3691i 0.140164 + 1.60208i
\(768\) −26.5086 10.4455i −0.956547 0.376919i
\(769\) −43.1365 + 7.60612i −1.55554 + 0.274284i −0.884287 0.466944i \(-0.845355\pi\)
−0.671254 + 0.741227i \(0.734244\pi\)
\(770\) 0 0
\(771\) 5.99998 + 13.8033i 0.216084 + 0.497113i
\(772\) −0.273968 + 0.0239691i −0.00986034 + 0.000862668i
\(773\) 22.0592 + 5.91076i 0.793416 + 0.212595i 0.632691 0.774404i \(-0.281950\pi\)
0.160725 + 0.986999i \(0.448617\pi\)
\(774\) 1.79548 4.22722i 0.0645371 0.151944i
\(775\) 0 0
\(776\) −19.1194 52.5302i −0.686347 1.88572i
\(777\) −7.00674 20.9488i −0.251365 0.751534i
\(778\) −9.39502 0.821958i −0.336828 0.0294686i
\(779\) −33.6549 12.2494i −1.20581 0.438879i
\(780\) 0 0
\(781\) −2.00697 + 11.3821i −0.0718150 + 0.407283i
\(782\) −1.47719 1.47719i −0.0528241 0.0528241i
\(783\) −4.67604 + 18.0556i −0.167108 + 0.645255i
\(784\) 1.97345i 0.0704805i
\(785\) 0 0
\(786\) 2.55215 + 0.756296i 0.0910322 + 0.0269762i
\(787\) 15.6093 7.27876i 0.556413 0.259460i −0.124008 0.992281i \(-0.539575\pi\)
0.680421 + 0.732822i \(0.261797\pi\)
\(788\) −0.249868 + 2.85601i −0.00890119 + 0.101741i
\(789\) 22.5574 + 34.0889i 0.803064 + 1.21360i
\(790\) 0 0
\(791\) −6.68122 3.85740i −0.237557 0.137153i
\(792\) 0.748235 + 21.5666i 0.0265874 + 0.766337i
\(793\) −3.95501 + 14.7603i −0.140447 + 0.524154i
\(794\) 11.0377 + 9.26170i 0.391712 + 0.328685i
\(795\) 0 0
\(796\) 0.977323 + 5.54267i 0.0346403 + 0.196455i
\(797\) −18.8617 + 26.9373i −0.668115 + 0.954166i 0.331827 + 0.943340i \(0.392335\pi\)
−0.999941 + 0.0108262i \(0.996554\pi\)
\(798\) −20.3787 25.6256i −0.721400 0.907135i
\(799\) −18.4814 + 22.0252i −0.653824 + 0.779197i
\(800\) 0 0
\(801\) −19.9689 1.05106i −0.705567 0.0371374i
\(802\) −0.802775 2.99600i −0.0283470 0.105792i
\(803\) 6.95197 14.9085i 0.245330 0.526111i
\(804\) −0.695477 11.3921i −0.0245276 0.401769i
\(805\) 0 0
\(806\) −10.8404 + 29.7838i −0.381838 + 1.04909i
\(807\) 9.24384 15.0807i 0.325399 0.530867i
\(808\) −8.40661 + 5.88637i −0.295744 + 0.207082i
\(809\) −0.589848 −0.0207379 −0.0103690 0.999946i \(-0.503301\pi\)
−0.0103690 + 0.999946i \(0.503301\pi\)
\(810\) 0 0
\(811\) −48.5224 −1.70385 −0.851925 0.523664i \(-0.824565\pi\)
−0.851925 + 0.523664i \(0.824565\pi\)
\(812\) 7.50095 5.25222i 0.263232 0.184317i
\(813\) 4.38469 7.15334i 0.153778 0.250879i
\(814\) −3.76564 + 10.3460i −0.131985 + 0.362627i
\(815\) 0 0
\(816\) −0.425646 6.97221i −0.0149006 0.244076i
\(817\) −3.78631 + 8.11977i −0.132466 + 0.284075i
\(818\) 7.84316 + 29.2711i 0.274230 + 1.02344i
\(819\) 25.6961 39.5489i 0.897894 1.38195i
\(820\) 0 0
\(821\) 12.3182 14.6802i 0.429907 0.512343i −0.506989 0.861953i \(-0.669241\pi\)
0.936895 + 0.349610i \(0.113686\pi\)
\(822\) 18.1837 + 22.8654i 0.634230 + 0.797522i
\(823\) 0.358433 0.511895i 0.0124942 0.0178435i −0.812856 0.582464i \(-0.802089\pi\)
0.825351 + 0.564621i \(0.190978\pi\)
\(824\) −1.91929 10.8848i −0.0668615 0.379190i
\(825\) 0 0
\(826\) 19.1684 + 16.0842i 0.666954 + 0.559641i
\(827\) −3.05127 + 11.3875i −0.106103 + 0.395981i −0.998468 0.0553328i \(-0.982378\pi\)
0.892365 + 0.451314i \(0.149045\pi\)
\(828\) −1.60222 + 1.00068i −0.0556811 + 0.0347759i
\(829\) −38.0844 21.9880i −1.32272 0.763675i −0.338562 0.940944i \(-0.609941\pi\)
−0.984163 + 0.177269i \(0.943274\pi\)
\(830\) 0 0
\(831\) −12.9183 19.5222i −0.448130 0.677217i
\(832\) 3.66285 41.8666i 0.126986 1.45146i
\(833\) −3.40254 + 1.58663i −0.117891 + 0.0549735i
\(834\) −16.0216 4.74780i −0.554784 0.164403i
\(835\) 0 0
\(836\) 12.8886i 0.445761i
\(837\) 26.0626 + 11.8881i 0.900854 + 0.410913i
\(838\) 9.93659 + 9.93659i 0.343254 + 0.343254i
\(839\) 0.173429 0.983567i 0.00598745 0.0339565i −0.981668 0.190601i \(-0.938956\pi\)
0.987655 + 0.156644i \(0.0500676\pi\)
\(840\) 0 0
\(841\) 15.1440 + 5.51197i 0.522207 + 0.190068i
\(842\) −9.53258 0.833993i −0.328514 0.0287413i
\(843\) 8.64597 + 25.8498i 0.297783 + 0.890314i
\(844\) 1.93642 + 5.32028i 0.0666545 + 0.183132i
\(845\) 0 0
\(846\) −19.8050 26.2945i −0.680910 0.904024i
\(847\) 15.1535 + 4.06038i 0.520682 + 0.139516i
\(848\) 14.8293 1.29739i 0.509239 0.0445527i
\(849\) −20.8200 47.8976i −0.714541 1.64384i
\(850\) 0 0
\(851\) −3.10007 + 0.546626i −0.106269 + 0.0187381i
\(852\) −6.96305 2.74373i −0.238550 0.0939986i
\(853\) −0.394403 4.50805i −0.0135041 0.154353i 0.986449 0.164070i \(-0.0524623\pi\)
−0.999953 + 0.00971747i \(0.996907\pi\)
\(854\) 4.29256 + 7.43494i 0.146889 + 0.254418i
\(855\) 0 0
\(856\) 8.69313 15.0569i 0.297125 0.514635i
\(857\) −51.8892 24.1963i −1.77250 0.826531i −0.974670 0.223650i \(-0.928203\pi\)
−0.797831 0.602881i \(-0.794019\pi\)
\(858\) −22.2936 + 7.45653i −0.761091 + 0.254562i
\(859\) 20.9711 + 24.9924i 0.715526 + 0.852730i 0.994188 0.107659i \(-0.0343354\pi\)
−0.278662 + 0.960389i \(0.589891\pi\)
\(860\) 0 0
\(861\) −19.9496 21.0273i −0.679881 0.716608i
\(862\) 0.179453 + 0.256286i 0.00611220 + 0.00872913i
\(863\) −28.5706 + 28.5706i −0.972554 + 0.972554i −0.999633 0.0270792i \(-0.991379\pi\)
0.0270792 + 0.999633i \(0.491379\pi\)
\(864\) −23.3433 3.91447i −0.794154 0.133173i
\(865\) 0 0
\(866\) 18.8698 + 3.32726i 0.641223 + 0.113065i
\(867\) 14.1993 7.70751i 0.482233 0.261761i
\(868\) −5.94365 12.7462i −0.201741 0.432634i
\(869\) −23.6254 + 19.8241i −0.801437 + 0.672486i
\(870\) 0 0
\(871\) 38.1591 13.8888i 1.29297 0.470603i
\(872\) 46.5707 12.4786i 1.57708 0.422578i
\(873\) −29.1545 46.6805i −0.986731 1.57989i
\(874\) −4.04068 + 2.33289i −0.136678 + 0.0789111i
\(875\) 0 0
\(876\) 8.56194 + 6.33700i 0.289281 + 0.214108i
\(877\) 29.1215 + 20.3911i 0.983364 + 0.688559i 0.950443 0.310899i \(-0.100630\pi\)
0.0329214 + 0.999458i \(0.489519\pi\)
\(878\) 24.7062 + 17.2994i 0.833792 + 0.583828i
\(879\) 1.44122 12.6367i 0.0486112 0.426226i
\(880\) 0 0
\(881\) −30.9752 + 17.8836i −1.04358 + 0.602512i −0.920846 0.389927i \(-0.872500\pi\)
−0.122736 + 0.992439i \(0.539167\pi\)
\(882\) −0.892728 4.20463i −0.0300597 0.141577i
\(883\) 3.38029 0.905746i 0.113756 0.0304808i −0.201492 0.979490i \(-0.564579\pi\)
0.315248 + 0.949009i \(0.397912\pi\)
\(884\) −12.4936 + 4.54730i −0.420205 + 0.152942i
\(885\) 0 0
\(886\) −32.6492 + 27.3959i −1.09687 + 0.920383i
\(887\) −12.0260 25.7899i −0.403794 0.865939i −0.998095 0.0616962i \(-0.980349\pi\)
0.594301 0.804243i \(-0.297429\pi\)
\(888\) −19.8531 12.1691i −0.666227 0.408368i
\(889\) 9.30926 + 1.64147i 0.312222 + 0.0550532i
\(890\) 0 0
\(891\) 5.13050 + 20.6171i 0.171878 + 0.690698i
\(892\) −6.48285 + 6.48285i −0.217062 + 0.217062i
\(893\) 36.8325 + 52.6023i 1.23255 + 1.76027i
\(894\) −16.7527 + 4.01997i −0.560296 + 0.134448i
\(895\) 0 0
\(896\) 1.75011 + 2.08570i 0.0584672 + 0.0696785i
\(897\) −5.03331 4.45411i −0.168057 0.148718i
\(898\) 7.49641 + 3.49564i 0.250159 + 0.116651i
\(899\) −9.89411 + 17.1371i −0.329987 + 0.571554i
\(900\) 0 0
\(901\) −14.1594 24.5249i −0.471719 0.817042i
\(902\) 1.25913 + 14.3919i 0.0419245 + 0.479199i
\(903\) −5.67497 + 4.51303i −0.188851 + 0.150184i
\(904\) −8.00909 + 1.41222i −0.266378 + 0.0469697i
\(905\) 0 0
\(906\) 1.15005 1.55383i 0.0382078 0.0516227i
\(907\) −32.6761 + 2.85879i −1.08499 + 0.0949246i −0.615596 0.788062i \(-0.711085\pi\)
−0.469398 + 0.882987i \(0.655529\pi\)
\(908\) 2.66344 + 0.713667i 0.0883894 + 0.0236839i
\(909\) −6.89249 + 7.38793i −0.228609 + 0.245042i
\(910\) 0 0
\(911\) 9.92857 + 27.2785i 0.328948 + 0.903778i 0.988379 + 0.152012i \(0.0485753\pi\)
−0.659430 + 0.751766i \(0.729202\pi\)
\(912\) −15.2874 3.11206i −0.506217 0.103051i
\(913\) 11.2132 + 0.981025i 0.371102 + 0.0324672i
\(914\) −5.44427 1.98155i −0.180080 0.0655439i
\(915\) 0 0
\(916\) −3.60050 + 20.4195i −0.118964 + 0.674678i
\(917\) −2.97152 2.97152i −0.0981282 0.0981282i
\(918\) −4.06088 14.6624i −0.134029 0.483932i
\(919\) 28.2931i 0.933302i 0.884442 + 0.466651i \(0.154540\pi\)
−0.884442 + 0.466651i \(0.845460\pi\)
\(920\) 0 0
\(921\) −17.1879 + 16.3070i −0.566361 + 0.537335i
\(922\) −28.8814 + 13.4676i −0.951159 + 0.443533i
\(923\) 2.32080 26.5268i 0.0763899 0.873141i
\(924\) 4.65525 9.33434i 0.153147 0.307077i
\(925\) 0 0
\(926\) 0.165049 + 0.0952911i 0.00542385 + 0.00313146i
\(927\) −4.07410 10.0903i −0.133811 0.331410i
\(928\) 4.23180 15.7933i 0.138916 0.518440i
\(929\) 25.1788 + 21.1275i 0.826089 + 0.693171i 0.954390 0.298564i \(-0.0965076\pi\)
−0.128300 + 0.991735i \(0.540952\pi\)
\(930\) 0 0
\(931\) 1.45603 + 8.25757i 0.0477195 + 0.270631i
\(932\) −1.67917 + 2.39811i −0.0550032 + 0.0785527i
\(933\) 2.45164 6.22178i 0.0802630 0.203692i
\(934\) −8.57623 + 10.2208i −0.280623 + 0.334433i
\(935\) 0 0
\(936\) −6.04793 49.3488i −0.197683 1.61302i
\(937\) 1.30584 + 4.87347i 0.0426600 + 0.159209i 0.983970 0.178334i \(-0.0570708\pi\)
−0.941310 + 0.337543i \(0.890404\pi\)
\(938\) 9.64174 20.6768i 0.314814 0.675121i
\(939\) −38.1322 19.0174i −1.24440 0.620610i
\(940\) 0 0
\(941\) 19.6715 54.0471i 0.641274 1.76189i −0.00641343 0.999979i \(-0.502041\pi\)
0.647687 0.761906i \(-0.275736\pi\)
\(942\) −40.8501 1.07432i −1.33097 0.0350034i
\(943\) −3.38355 + 2.36919i −0.110184 + 0.0771514i
\(944\) 11.9232 0.388068
\(945\) 0 0
\(946\) 3.61394 0.117499
\(947\) 26.3740 18.4673i 0.857041 0.600107i −0.0603125 0.998180i \(-0.519210\pi\)
0.917354 + 0.398073i \(0.130321\pi\)
\(948\) −9.52727 17.5518i −0.309431 0.570055i
\(949\) −12.9623 + 35.6136i −0.420773 + 1.15607i
\(950\) 0 0
\(951\) −23.8355 + 15.7725i −0.772920 + 0.511459i
\(952\) −10.3105 + 22.1110i −0.334167 + 0.716623i
\(953\) 5.59819 + 20.8927i 0.181343 + 0.676782i 0.995384 + 0.0959743i \(0.0305967\pi\)
−0.814041 + 0.580808i \(0.802737\pi\)
\(954\) 31.0083 9.47252i 1.00393 0.306684i
\(955\) 0 0
\(956\) 9.64940 11.4997i 0.312084 0.371927i
\(957\) −14.5154 + 2.16766i −0.469217 + 0.0700706i
\(958\) 21.6105 30.8629i 0.698202 0.997136i
\(959\) −8.00894 45.4210i −0.258622 1.46672i
\(960\) 0 0
\(961\) −0.465741 0.390803i −0.0150239 0.0126065i
\(962\) 6.56528 24.5020i 0.211673 0.789975i
\(963\) 5.29324 16.2784i 0.170572 0.524563i
\(964\) 14.1830 + 8.18857i 0.456804 + 0.263736i
\(965\) 0 0
\(966\) −3.76902 + 0.230095i −0.121266 + 0.00740317i
\(967\) −0.961701 + 10.9923i −0.0309262 + 0.353488i 0.964927 + 0.262517i \(0.0845527\pi\)
−0.995854 + 0.0909711i \(0.971003\pi\)
\(968\) 14.9883 6.98917i 0.481743 0.224640i
\(969\) 6.92520 + 28.8599i 0.222469 + 0.927114i
\(970\) 0 0
\(971\) 21.9387i 0.704047i 0.935991 + 0.352023i \(0.114506\pi\)
−0.935991 + 0.352023i \(0.885494\pi\)
\(972\) −13.7449 + 0.592321i −0.440868 + 0.0189987i
\(973\) 18.6543 + 18.6543i 0.598030 + 0.598030i
\(974\) 1.26918 7.19790i 0.0406673 0.230635i
\(975\) 0 0
\(976\) 3.84410 + 1.39914i 0.123046 + 0.0447853i
\(977\) 5.48124 + 0.479546i 0.175360 + 0.0153420i 0.174498 0.984658i \(-0.444170\pi\)
0.000862648 1.00000i \(0.499725\pi\)
\(978\) −3.00104 + 3.39128i −0.0959625 + 0.108441i
\(979\) −5.38167 14.7860i −0.171999 0.472563i
\(980\) 0 0
\(981\) 42.2990 21.5404i 1.35050 0.687731i
\(982\) 26.5176 + 7.10536i 0.846209 + 0.226741i
\(983\) 27.3904 2.39635i 0.873618 0.0764316i 0.358478 0.933538i \(-0.383296\pi\)
0.515139 + 0.857106i \(0.327740\pi\)
\(984\) −30.3581 3.46235i −0.967782 0.110376i
\(985\) 0 0
\(986\) 10.3502 1.82503i 0.329619 0.0581207i
\(987\) 7.67583 + 51.4000i 0.244324 + 1.63608i
\(988\) 2.58804 + 29.5815i 0.0823366 + 0.941111i
\(989\) 0.516635 + 0.894838i 0.0164280 + 0.0284542i
\(990\) 0 0
\(991\) 7.95205 13.7734i 0.252605 0.437525i −0.711637 0.702547i \(-0.752046\pi\)
0.964242 + 0.265022i \(0.0853793\pi\)
\(992\) −22.7592 10.6128i −0.722606 0.336956i
\(993\) −7.13204 + 35.0348i −0.226328 + 1.11180i
\(994\) −9.61620 11.4601i −0.305007 0.363494i
\(995\) 0 0
\(996\) −2.07092 + 6.98839i −0.0656195 + 0.221436i
\(997\) 2.10376 + 3.00447i 0.0666266 + 0.0951527i 0.851083 0.525032i \(-0.175947\pi\)
−0.784456 + 0.620185i \(0.787058\pi\)
\(998\) −8.38532 + 8.38532i −0.265433 + 0.265433i
\(999\) −21.6082 7.66011i −0.683652 0.242355i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 675.2.ba.b.218.5 192
5.2 odd 4 inner 675.2.ba.b.407.5 192
5.3 odd 4 135.2.q.a.2.12 192
5.4 even 2 135.2.q.a.83.12 yes 192
15.8 even 4 405.2.r.a.332.5 192
15.14 odd 2 405.2.r.a.8.5 192
27.14 odd 18 inner 675.2.ba.b.68.5 192
135.13 odd 36 405.2.r.a.152.5 192
135.14 odd 18 135.2.q.a.68.12 yes 192
135.68 even 36 135.2.q.a.122.12 yes 192
135.94 even 18 405.2.r.a.233.5 192
135.122 even 36 inner 675.2.ba.b.257.5 192
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
135.2.q.a.2.12 192 5.3 odd 4
135.2.q.a.68.12 yes 192 135.14 odd 18
135.2.q.a.83.12 yes 192 5.4 even 2
135.2.q.a.122.12 yes 192 135.68 even 36
405.2.r.a.8.5 192 15.14 odd 2
405.2.r.a.152.5 192 135.13 odd 36
405.2.r.a.233.5 192 135.94 even 18
405.2.r.a.332.5 192 15.8 even 4
675.2.ba.b.68.5 192 27.14 odd 18 inner
675.2.ba.b.218.5 192 1.1 even 1 trivial
675.2.ba.b.257.5 192 135.122 even 36 inner
675.2.ba.b.407.5 192 5.2 odd 4 inner