Properties

Label 675.2.ba.b.218.3
Level $675$
Weight $2$
Character 675.218
Analytic conductor $5.390$
Analytic rank $0$
Dimension $192$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [675,2,Mod(32,675)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("675.32"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(675, base_ring=CyclotomicField(36)) chi = DirichletCharacter(H, H._module([10, 9])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 675 = 3^{3} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 675.ba (of order \(36\), degree \(12\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [192] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.38990213644\)
Analytic rank: \(0\)
Dimension: \(192\)
Relative dimension: \(16\) over \(\Q(\zeta_{36})\)
Twist minimal: no (minimal twist has level 135)
Sato-Tate group: $\mathrm{SU}(2)[C_{36}]$

Embedding invariants

Embedding label 218.3
Character \(\chi\) \(=\) 675.218
Dual form 675.2.ba.b.257.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.65044 + 1.15565i) q^{2} +(1.69572 + 0.352907i) q^{3} +(0.704386 - 1.93528i) q^{4} +(-3.20652 + 1.37721i) q^{6} +(-0.618828 + 1.32708i) q^{7} +(0.0310202 + 0.115769i) q^{8} +(2.75091 + 1.19686i) q^{9} +(1.86051 - 2.21727i) q^{11} +(1.87741 - 3.03311i) q^{12} +(3.51558 - 5.02076i) q^{13} +(-0.512304 - 2.90542i) q^{14} +(2.97033 + 2.49240i) q^{16} +(0.833002 - 3.10881i) q^{17} +(-5.92337 + 1.20375i) q^{18} +(3.51741 + 2.03078i) q^{19} +(-1.51769 + 2.03197i) q^{21} +(-0.508272 + 5.80958i) q^{22} +(-4.58997 + 2.14034i) q^{23} +(0.0117458 + 0.207259i) q^{24} +12.3493i q^{26} +(4.24239 + 3.00035i) q^{27} +(2.13239 + 2.13239i) q^{28} +(0.368261 - 2.08851i) q^{29} +(-3.20394 - 1.16614i) q^{31} +(-8.02150 - 0.701790i) q^{32} +(3.93739 - 3.10328i) q^{33} +(2.21787 + 6.09356i) q^{34} +(4.25397 - 4.48075i) q^{36} +(11.3656 + 3.04540i) q^{37} +(-8.15214 + 0.713220i) q^{38} +(7.73328 - 7.27312i) q^{39} +(0.839107 - 0.147957i) q^{41} +(0.156621 - 5.10757i) q^{42} +(0.0641287 + 0.732994i) q^{43} +(-2.98053 - 5.16243i) q^{44} +(5.10199 - 8.83690i) q^{46} +(-2.61254 - 1.21825i) q^{47} +(4.15725 + 5.27466i) q^{48} +(3.12132 + 3.71984i) q^{49} +(2.50966 - 4.97768i) q^{51} +(-7.24028 - 10.3402i) q^{52} +(0.0757900 - 0.0757900i) q^{53} +(-10.4692 - 0.0491845i) q^{54} +(-0.172831 - 0.0304748i) q^{56} +(5.24785 + 4.68494i) q^{57} +(1.80580 + 3.87255i) q^{58} +(-2.89613 + 2.43014i) q^{59} +(-4.21993 + 1.53593i) q^{61} +(6.63556 - 1.77799i) q^{62} +(-3.29067 + 2.91003i) q^{63} +(7.33402 - 4.23430i) q^{64} +(-2.91213 + 9.67203i) q^{66} +(-3.65313 - 2.55795i) q^{67} +(-5.42967 - 3.80189i) q^{68} +(-8.53862 + 2.00957i) q^{69} +(-7.84988 + 4.53213i) q^{71} +(-0.0532255 + 0.355597i) q^{72} +(8.04880 - 2.15667i) q^{73} +(-22.2777 + 8.10840i) q^{74} +(6.40774 - 5.37673i) q^{76} +(1.79116 + 3.84116i) q^{77} +(-4.35814 + 20.9408i) q^{78} +(1.44073 + 0.254040i) q^{79} +(6.13505 + 6.58492i) q^{81} +(-1.21391 + 1.21391i) q^{82} +(9.69375 + 13.8441i) q^{83} +(2.86339 + 4.36846i) q^{84} +(-0.952926 - 1.13565i) q^{86} +(1.36152 - 3.41157i) q^{87} +(0.314404 + 0.146609i) q^{88} +(3.05075 - 5.28406i) q^{89} +(4.48742 + 7.77244i) q^{91} +(0.909052 + 10.3905i) q^{92} +(-5.02144 - 3.10813i) q^{93} +(5.71971 - 1.00854i) q^{94} +(-13.3545 - 4.02088i) q^{96} +(-16.1512 + 1.41304i) q^{97} +(-9.45039 - 2.53222i) q^{98} +(7.77187 - 3.87275i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 192 q + 12 q^{2} + 12 q^{3} - 36 q^{6} + 12 q^{7} + 18 q^{8} - 36 q^{11} + 12 q^{12} + 12 q^{13} - 24 q^{16} + 18 q^{17} + 54 q^{18} - 24 q^{21} + 12 q^{22} + 36 q^{23} + 36 q^{27} + 24 q^{28} - 24 q^{31}+ \cdots - 324 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/675\mathbb{Z}\right)^\times\).

\(n\) \(326\) \(352\)
\(\chi(n)\) \(e\left(\frac{1}{18}\right)\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.65044 + 1.15565i −1.16704 + 0.817169i −0.986072 0.166320i \(-0.946811\pi\)
−0.180966 + 0.983489i \(0.557923\pi\)
\(3\) 1.69572 + 0.352907i 0.979023 + 0.203751i
\(4\) 0.704386 1.93528i 0.352193 0.967642i
\(5\) 0 0
\(6\) −3.20652 + 1.37721i −1.30906 + 0.562242i
\(7\) −0.618828 + 1.32708i −0.233895 + 0.501590i −0.987864 0.155320i \(-0.950359\pi\)
0.753969 + 0.656910i \(0.228137\pi\)
\(8\) 0.0310202 + 0.115769i 0.0109673 + 0.0409305i
\(9\) 2.75091 + 1.19686i 0.916971 + 0.398954i
\(10\) 0 0
\(11\) 1.86051 2.21727i 0.560965 0.668532i −0.408785 0.912631i \(-0.634047\pi\)
0.969751 + 0.244098i \(0.0784919\pi\)
\(12\) 1.87741 3.03311i 0.541963 0.875584i
\(13\) 3.51558 5.02076i 0.975045 1.39251i 0.0559675 0.998433i \(-0.482176\pi\)
0.919078 0.394076i \(-0.128935\pi\)
\(14\) −0.512304 2.90542i −0.136919 0.776506i
\(15\) 0 0
\(16\) 2.97033 + 2.49240i 0.742582 + 0.623101i
\(17\) 0.833002 3.10881i 0.202033 0.753996i −0.788301 0.615290i \(-0.789039\pi\)
0.990334 0.138706i \(-0.0442944\pi\)
\(18\) −5.92337 + 1.20375i −1.39615 + 0.283726i
\(19\) 3.51741 + 2.03078i 0.806949 + 0.465892i 0.845895 0.533349i \(-0.179067\pi\)
−0.0389464 + 0.999241i \(0.512400\pi\)
\(20\) 0 0
\(21\) −1.51769 + 2.03197i −0.331188 + 0.443411i
\(22\) −0.508272 + 5.80958i −0.108364 + 1.23861i
\(23\) −4.58997 + 2.14034i −0.957074 + 0.446291i −0.837441 0.546527i \(-0.815949\pi\)
−0.119633 + 0.992818i \(0.538172\pi\)
\(24\) 0.0117458 + 0.207259i 0.00239760 + 0.0423065i
\(25\) 0 0
\(26\) 12.3493i 2.42189i
\(27\) 4.24239 + 3.00035i 0.816448 + 0.577418i
\(28\) 2.13239 + 2.13239i 0.402983 + 0.402983i
\(29\) 0.368261 2.08851i 0.0683844 0.387827i −0.931336 0.364162i \(-0.881355\pi\)
0.999720 0.0236650i \(-0.00753352\pi\)
\(30\) 0 0
\(31\) −3.20394 1.16614i −0.575445 0.209445i 0.0378710 0.999283i \(-0.487942\pi\)
−0.613316 + 0.789838i \(0.710165\pi\)
\(32\) −8.02150 0.701790i −1.41801 0.124060i
\(33\) 3.93739 3.10328i 0.685412 0.540211i
\(34\) 2.21787 + 6.09356i 0.380362 + 1.04504i
\(35\) 0 0
\(36\) 4.25397 4.48075i 0.708995 0.746791i
\(37\) 11.3656 + 3.04540i 1.86849 + 0.500661i 0.999988 + 0.00497757i \(0.00158442\pi\)
0.868503 + 0.495683i \(0.165082\pi\)
\(38\) −8.15214 + 0.713220i −1.32245 + 0.115700i
\(39\) 7.73328 7.27312i 1.23832 1.16463i
\(40\) 0 0
\(41\) 0.839107 0.147957i 0.131046 0.0231070i −0.107740 0.994179i \(-0.534361\pi\)
0.238787 + 0.971072i \(0.423250\pi\)
\(42\) 0.156621 5.10757i 0.0241671 0.788114i
\(43\) 0.0641287 + 0.732994i 0.00977953 + 0.111781i 0.999515 0.0311282i \(-0.00991001\pi\)
−0.989736 + 0.142909i \(0.954354\pi\)
\(44\) −2.98053 5.16243i −0.449332 0.778266i
\(45\) 0 0
\(46\) 5.10199 8.83690i 0.752247 1.30293i
\(47\) −2.61254 1.21825i −0.381078 0.177700i 0.222634 0.974902i \(-0.428535\pi\)
−0.603712 + 0.797203i \(0.706312\pi\)
\(48\) 4.15725 + 5.27466i 0.600048 + 0.761332i
\(49\) 3.12132 + 3.71984i 0.445902 + 0.531406i
\(50\) 0 0
\(51\) 2.50966 4.97768i 0.351422 0.697015i
\(52\) −7.24028 10.3402i −1.00405 1.43393i
\(53\) 0.0757900 0.0757900i 0.0104106 0.0104106i −0.701882 0.712293i \(-0.747657\pi\)
0.712293 + 0.701882i \(0.247657\pi\)
\(54\) −10.4692 0.0491845i −1.42467 0.00669316i
\(55\) 0 0
\(56\) −0.172831 0.0304748i −0.0230955 0.00407236i
\(57\) 5.24785 + 4.68494i 0.695095 + 0.620536i
\(58\) 1.80580 + 3.87255i 0.237113 + 0.508491i
\(59\) −2.89613 + 2.43014i −0.377044 + 0.316377i −0.811540 0.584296i \(-0.801371\pi\)
0.434497 + 0.900673i \(0.356926\pi\)
\(60\) 0 0
\(61\) −4.21993 + 1.53593i −0.540306 + 0.196655i −0.597734 0.801694i \(-0.703932\pi\)
0.0574282 + 0.998350i \(0.481710\pi\)
\(62\) 6.63556 1.77799i 0.842717 0.225805i
\(63\) −3.29067 + 2.91003i −0.414586 + 0.366630i
\(64\) 7.33402 4.23430i 0.916753 0.529287i
\(65\) 0 0
\(66\) −2.91213 + 9.67203i −0.358458 + 1.19054i
\(67\) −3.65313 2.55795i −0.446301 0.312504i 0.328733 0.944423i \(-0.393378\pi\)
−0.775034 + 0.631919i \(0.782267\pi\)
\(68\) −5.42967 3.80189i −0.658444 0.461047i
\(69\) −8.53862 + 2.00957i −1.02793 + 0.241924i
\(70\) 0 0
\(71\) −7.84988 + 4.53213i −0.931609 + 0.537865i −0.887320 0.461154i \(-0.847436\pi\)
−0.0442890 + 0.999019i \(0.514102\pi\)
\(72\) −0.0532255 + 0.355597i −0.00627268 + 0.0419075i
\(73\) 8.04880 2.15667i 0.942041 0.252419i 0.245059 0.969508i \(-0.421193\pi\)
0.696982 + 0.717089i \(0.254526\pi\)
\(74\) −22.2777 + 8.10840i −2.58972 + 0.942583i
\(75\) 0 0
\(76\) 6.40774 5.37673i 0.735018 0.616754i
\(77\) 1.79116 + 3.84116i 0.204122 + 0.437741i
\(78\) −4.35814 + 20.9408i −0.493462 + 2.37108i
\(79\) 1.44073 + 0.254040i 0.162095 + 0.0285818i 0.254107 0.967176i \(-0.418219\pi\)
−0.0920115 + 0.995758i \(0.529330\pi\)
\(80\) 0 0
\(81\) 6.13505 + 6.58492i 0.681672 + 0.731658i
\(82\) −1.21391 + 1.21391i −0.134054 + 0.134054i
\(83\) 9.69375 + 13.8441i 1.06403 + 1.51959i 0.838155 + 0.545431i \(0.183634\pi\)
0.225872 + 0.974157i \(0.427477\pi\)
\(84\) 2.86339 + 4.36846i 0.312421 + 0.476638i
\(85\) 0 0
\(86\) −0.952926 1.13565i −0.102757 0.122461i
\(87\) 1.36152 3.41157i 0.145970 0.365758i
\(88\) 0.314404 + 0.146609i 0.0335156 + 0.0156286i
\(89\) 3.05075 5.28406i 0.323379 0.560109i −0.657804 0.753189i \(-0.728514\pi\)
0.981183 + 0.193080i \(0.0618477\pi\)
\(90\) 0 0
\(91\) 4.48742 + 7.77244i 0.470410 + 0.814774i
\(92\) 0.909052 + 10.3905i 0.0947752 + 1.08329i
\(93\) −5.02144 3.10813i −0.520699 0.322299i
\(94\) 5.71971 1.00854i 0.589943 0.104023i
\(95\) 0 0
\(96\) −13.3545 4.02088i −1.36299 0.410379i
\(97\) −16.1512 + 1.41304i −1.63990 + 0.143473i −0.869449 0.494023i \(-0.835526\pi\)
−0.770453 + 0.637496i \(0.779970\pi\)
\(98\) −9.45039 2.53222i −0.954633 0.255793i
\(99\) 7.77187 3.87275i 0.781102 0.389226i
\(100\) 0 0
\(101\) −1.88053 5.16673i −0.187120 0.514108i 0.810290 0.586029i \(-0.199309\pi\)
−0.997410 + 0.0719204i \(0.977087\pi\)
\(102\) 1.61043 + 11.1157i 0.159456 + 1.10061i
\(103\) −3.90922 0.342012i −0.385186 0.0336994i −0.107082 0.994250i \(-0.534151\pi\)
−0.278105 + 0.960551i \(0.589706\pi\)
\(104\) 0.690302 + 0.251249i 0.0676897 + 0.0246370i
\(105\) 0 0
\(106\) −0.0375001 + 0.212674i −0.00364233 + 0.0206567i
\(107\) 10.5329 + 10.5329i 1.01825 + 1.01825i 0.999830 + 0.0184189i \(0.00586325\pi\)
0.0184189 + 0.999830i \(0.494137\pi\)
\(108\) 8.79481 6.09682i 0.846281 0.586667i
\(109\) 9.91447i 0.949634i 0.880085 + 0.474817i \(0.157486\pi\)
−0.880085 + 0.474817i \(0.842514\pi\)
\(110\) 0 0
\(111\) 18.1981 + 9.17513i 1.72729 + 0.870865i
\(112\) −5.14574 + 2.39950i −0.486227 + 0.226731i
\(113\) 1.32748 15.1732i 0.124879 1.42737i −0.632583 0.774492i \(-0.718005\pi\)
0.757462 0.652879i \(-0.226439\pi\)
\(114\) −14.0754 1.66753i −1.31829 0.156178i
\(115\) 0 0
\(116\) −3.78247 2.18381i −0.351193 0.202762i
\(117\) 15.6802 9.60403i 1.44963 0.887893i
\(118\) 1.97149 7.35771i 0.181491 0.677332i
\(119\) 3.61015 + 3.02928i 0.330942 + 0.277693i
\(120\) 0 0
\(121\) 0.455341 + 2.58237i 0.0413946 + 0.234761i
\(122\) 5.18974 7.41172i 0.469857 0.671026i
\(123\) 1.47510 + 0.0452332i 0.133006 + 0.00407854i
\(124\) −4.51362 + 5.37912i −0.405335 + 0.483059i
\(125\) 0 0
\(126\) 2.06808 8.60571i 0.184239 0.766658i
\(127\) −2.58018 9.62937i −0.228954 0.854468i −0.980782 0.195109i \(-0.937494\pi\)
0.751828 0.659360i \(-0.229173\pi\)
\(128\) −0.405037 + 0.868604i −0.0358005 + 0.0767745i
\(129\) −0.149935 + 1.26558i −0.0132010 + 0.111428i
\(130\) 0 0
\(131\) 3.84111 10.5534i 0.335599 0.922051i −0.651028 0.759054i \(-0.725662\pi\)
0.986627 0.162997i \(-0.0521159\pi\)
\(132\) −3.23228 9.80587i −0.281334 0.853492i
\(133\) −4.87168 + 3.41119i −0.422428 + 0.295787i
\(134\) 8.98538 0.776219
\(135\) 0 0
\(136\) 0.385743 0.0330772
\(137\) −16.1027 + 11.2752i −1.37574 + 0.963306i −0.376424 + 0.926448i \(0.622846\pi\)
−0.999320 + 0.0368588i \(0.988265\pi\)
\(138\) 11.7701 13.1844i 1.00194 1.12233i
\(139\) 0.508611 1.39740i 0.0431398 0.118526i −0.916252 0.400602i \(-0.868801\pi\)
0.959392 + 0.282076i \(0.0910232\pi\)
\(140\) 0 0
\(141\) −4.00020 2.98779i −0.336878 0.251617i
\(142\) 7.71820 16.5517i 0.647697 1.38899i
\(143\) −4.59162 17.1362i −0.383971 1.43300i
\(144\) 5.18806 + 10.4115i 0.432338 + 0.867621i
\(145\) 0 0
\(146\) −10.7917 + 12.8611i −0.893129 + 1.06439i
\(147\) 3.98011 + 7.40933i 0.328274 + 0.611111i
\(148\) 13.8995 19.8505i 1.14253 1.63170i
\(149\) 0.861743 + 4.88719i 0.0705968 + 0.400374i 0.999545 + 0.0301644i \(0.00960308\pi\)
−0.928948 + 0.370210i \(0.879286\pi\)
\(150\) 0 0
\(151\) −15.8833 13.3277i −1.29257 1.08459i −0.991379 0.131025i \(-0.958173\pi\)
−0.301186 0.953565i \(-0.597383\pi\)
\(152\) −0.125990 + 0.470202i −0.0102191 + 0.0381384i
\(153\) 6.01232 7.55507i 0.486068 0.610791i
\(154\) −7.39525 4.26965i −0.595926 0.344058i
\(155\) 0 0
\(156\) −8.62834 20.0892i −0.690820 1.60842i
\(157\) −0.591932 + 6.76582i −0.0472413 + 0.539971i 0.935291 + 0.353879i \(0.115138\pi\)
−0.982532 + 0.186092i \(0.940418\pi\)
\(158\) −2.67143 + 1.24571i −0.212528 + 0.0991032i
\(159\) 0.155265 0.101772i 0.0123133 0.00807101i
\(160\) 0 0
\(161\) 7.41576i 0.584444i
\(162\) −17.7354 3.77805i −1.39343 0.296832i
\(163\) −14.3864 14.3864i −1.12683 1.12683i −0.990689 0.136142i \(-0.956530\pi\)
−0.136142 0.990689i \(-0.543470\pi\)
\(164\) 0.304716 1.72813i 0.0237943 0.134944i
\(165\) 0 0
\(166\) −31.9979 11.6463i −2.48352 0.903928i
\(167\) 0.469806 + 0.0411027i 0.0363547 + 0.00318063i 0.105319 0.994439i \(-0.466414\pi\)
−0.0689639 + 0.997619i \(0.521969\pi\)
\(168\) −0.282318 0.112670i −0.0217813 0.00869266i
\(169\) −8.40252 23.0857i −0.646348 1.77583i
\(170\) 0 0
\(171\) 7.24553 + 9.79634i 0.554079 + 0.749145i
\(172\) 1.46372 + 0.392203i 0.111608 + 0.0299052i
\(173\) 18.3690 1.60708i 1.39657 0.122184i 0.636125 0.771586i \(-0.280536\pi\)
0.760446 + 0.649402i \(0.224981\pi\)
\(174\) 1.69548 + 7.20403i 0.128534 + 0.546136i
\(175\) 0 0
\(176\) 11.0527 1.94888i 0.833126 0.146903i
\(177\) −5.76862 + 3.09876i −0.433596 + 0.232917i
\(178\) 1.07144 + 12.2466i 0.0803080 + 0.917925i
\(179\) −3.95796 6.85540i −0.295832 0.512396i 0.679346 0.733818i \(-0.262264\pi\)
−0.975178 + 0.221422i \(0.928930\pi\)
\(180\) 0 0
\(181\) 9.86110 17.0799i 0.732970 1.26954i −0.222638 0.974901i \(-0.571467\pi\)
0.955608 0.294640i \(-0.0951998\pi\)
\(182\) −16.3885 7.64207i −1.21479 0.566468i
\(183\) −7.69784 + 1.11526i −0.569041 + 0.0824421i
\(184\) −0.390166 0.464982i −0.0287634 0.0342789i
\(185\) 0 0
\(186\) 11.8795 0.673238i 0.871048 0.0493642i
\(187\) −5.34326 7.63096i −0.390738 0.558031i
\(188\) −4.19789 + 4.19789i −0.306162 + 0.306162i
\(189\) −6.60703 + 3.77329i −0.480590 + 0.274467i
\(190\) 0 0
\(191\) −8.60644 1.51755i −0.622740 0.109806i −0.146630 0.989191i \(-0.546843\pi\)
−0.476110 + 0.879386i \(0.657954\pi\)
\(192\) 13.9307 4.59195i 1.00536 0.331395i
\(193\) 3.65180 + 7.83132i 0.262863 + 0.563711i 0.992797 0.119806i \(-0.0382273\pi\)
−0.729935 + 0.683517i \(0.760450\pi\)
\(194\) 25.0236 20.9973i 1.79659 1.50752i
\(195\) 0 0
\(196\) 9.39756 3.42043i 0.671254 0.244316i
\(197\) −1.93720 + 0.519071i −0.138020 + 0.0369822i −0.327167 0.944966i \(-0.606094\pi\)
0.189148 + 0.981949i \(0.439427\pi\)
\(198\) −8.35147 + 15.3733i −0.593513 + 1.09253i
\(199\) 15.5130 8.95641i 1.09968 0.634903i 0.163546 0.986536i \(-0.447707\pi\)
0.936138 + 0.351633i \(0.114373\pi\)
\(200\) 0 0
\(201\) −5.29196 5.62678i −0.373266 0.396883i
\(202\) 9.07464 + 6.35413i 0.638490 + 0.447075i
\(203\) 2.54374 + 1.78114i 0.178535 + 0.125012i
\(204\) −7.86546 8.36310i −0.550693 0.585534i
\(205\) 0 0
\(206\) 6.84718 3.95322i 0.477065 0.275434i
\(207\) −15.1883 + 0.394328i −1.05566 + 0.0274077i
\(208\) 22.9562 6.15109i 1.59172 0.426501i
\(209\) 11.0470 4.02077i 0.764134 0.278122i
\(210\) 0 0
\(211\) −8.17709 + 6.86139i −0.562934 + 0.472358i −0.879293 0.476282i \(-0.841984\pi\)
0.316359 + 0.948640i \(0.397540\pi\)
\(212\) −0.0932898 0.200061i −0.00640717 0.0137402i
\(213\) −14.9106 + 4.91493i −1.02166 + 0.336766i
\(214\) −29.5562 5.21155i −2.02042 0.356254i
\(215\) 0 0
\(216\) −0.215748 + 0.584208i −0.0146798 + 0.0397503i
\(217\) 3.53025 3.53025i 0.239649 0.239649i
\(218\) −11.4577 16.3632i −0.776011 1.10826i
\(219\) 14.4096 0.816623i 0.973710 0.0551823i
\(220\) 0 0
\(221\) −12.6801 15.1115i −0.852955 1.01651i
\(222\) −40.6381 + 5.88762i −2.72745 + 0.395151i
\(223\) −10.8301 5.05016i −0.725238 0.338184i 0.0246975 0.999695i \(-0.492138\pi\)
−0.749936 + 0.661511i \(0.769916\pi\)
\(224\) 5.89526 10.2109i 0.393894 0.682244i
\(225\) 0 0
\(226\) 15.3440 + 26.5765i 1.02067 + 1.76784i
\(227\) −0.100851 1.15273i −0.00669369 0.0765092i 0.992113 0.125346i \(-0.0400041\pi\)
−0.998807 + 0.0488368i \(0.984449\pi\)
\(228\) 12.7632 6.85608i 0.845264 0.454055i
\(229\) −8.62548 + 1.52090i −0.569988 + 0.100504i −0.451212 0.892417i \(-0.649008\pi\)
−0.118776 + 0.992921i \(0.537897\pi\)
\(230\) 0 0
\(231\) 1.68173 + 7.14564i 0.110650 + 0.470148i
\(232\) 0.253208 0.0221529i 0.0166240 0.00145441i
\(233\) 15.8052 + 4.23498i 1.03543 + 0.277443i 0.736219 0.676743i \(-0.236609\pi\)
0.299213 + 0.954186i \(0.403276\pi\)
\(234\) −14.7803 + 33.9717i −0.966221 + 2.22080i
\(235\) 0 0
\(236\) 2.66302 + 7.31658i 0.173348 + 0.476269i
\(237\) 2.35343 + 0.939226i 0.152871 + 0.0610093i
\(238\) −9.45913 0.827567i −0.613145 0.0536432i
\(239\) −8.07123 2.93769i −0.522085 0.190023i 0.0675160 0.997718i \(-0.478493\pi\)
−0.589601 + 0.807695i \(0.700715\pi\)
\(240\) 0 0
\(241\) 0.358872 2.03527i 0.0231170 0.131103i −0.971065 0.238815i \(-0.923241\pi\)
0.994182 + 0.107712i \(0.0343523\pi\)
\(242\) −3.73583 3.73583i −0.240148 0.240148i
\(243\) 8.07944 + 13.3313i 0.518296 + 0.855201i
\(244\) 9.24864i 0.592083i
\(245\) 0 0
\(246\) −2.48684 + 1.63005i −0.158555 + 0.103928i
\(247\) 22.5618 10.5207i 1.43557 0.669417i
\(248\) 0.0356158 0.407090i 0.00226161 0.0258503i
\(249\) 11.5522 + 26.8967i 0.732089 + 1.70451i
\(250\) 0 0
\(251\) 9.55376 + 5.51587i 0.603028 + 0.348158i 0.770232 0.637764i \(-0.220140\pi\)
−0.167204 + 0.985922i \(0.553474\pi\)
\(252\) 3.31384 + 8.41818i 0.208752 + 0.530295i
\(253\) −3.79398 + 14.1593i −0.238525 + 0.890189i
\(254\) 15.3866 + 12.9109i 0.965443 + 0.810103i
\(255\) 0 0
\(256\) 2.60580 + 14.7782i 0.162862 + 0.923639i
\(257\) 3.31253 4.73079i 0.206630 0.295098i −0.702439 0.711744i \(-0.747906\pi\)
0.909069 + 0.416646i \(0.136794\pi\)
\(258\) −1.21511 2.26204i −0.0756496 0.140829i
\(259\) −11.0748 + 13.1985i −0.688157 + 0.820114i
\(260\) 0 0
\(261\) 3.51272 5.30456i 0.217432 0.328344i
\(262\) 5.85647 + 21.8567i 0.361814 + 1.35031i
\(263\) −7.79728 + 16.7213i −0.480801 + 1.03108i 0.504993 + 0.863123i \(0.331495\pi\)
−0.985794 + 0.167958i \(0.946283\pi\)
\(264\) 0.481402 + 0.359563i 0.0296282 + 0.0221296i
\(265\) 0 0
\(266\) 4.09828 11.2599i 0.251281 0.690390i
\(267\) 7.03800 7.88364i 0.430719 0.482471i
\(268\) −7.52358 + 5.26807i −0.459576 + 0.321798i
\(269\) −15.7262 −0.958842 −0.479421 0.877585i \(-0.659153\pi\)
−0.479421 + 0.877585i \(0.659153\pi\)
\(270\) 0 0
\(271\) −17.4326 −1.05895 −0.529477 0.848324i \(-0.677612\pi\)
−0.529477 + 0.848324i \(0.677612\pi\)
\(272\) 10.2227 7.15800i 0.619841 0.434018i
\(273\) 4.86645 + 14.7635i 0.294531 + 0.893528i
\(274\) 13.5463 37.2181i 0.818362 2.24843i
\(275\) 0 0
\(276\) −2.12539 + 17.9402i −0.127933 + 1.07987i
\(277\) −6.49002 + 13.9179i −0.389947 + 0.836245i 0.609120 + 0.793078i \(0.291523\pi\)
−0.999068 + 0.0431672i \(0.986255\pi\)
\(278\) 0.775471 + 2.89410i 0.0465097 + 0.173576i
\(279\) −7.41806 7.04262i −0.444107 0.421630i
\(280\) 0 0
\(281\) 4.76302 5.67634i 0.284138 0.338622i −0.605031 0.796202i \(-0.706839\pi\)
0.889168 + 0.457580i \(0.151284\pi\)
\(282\) 10.0549 + 0.308329i 0.598763 + 0.0183607i
\(283\) −8.24647 + 11.7772i −0.490202 + 0.700081i −0.985696 0.168530i \(-0.946098\pi\)
0.495495 + 0.868611i \(0.334987\pi\)
\(284\) 3.24161 + 18.3841i 0.192354 + 1.09090i
\(285\) 0 0
\(286\) 27.3816 + 22.9759i 1.61911 + 1.35859i
\(287\) −0.322912 + 1.20512i −0.0190609 + 0.0711362i
\(288\) −21.2265 11.5312i −1.25078 0.679481i
\(289\) 5.75165 + 3.32072i 0.338332 + 0.195336i
\(290\) 0 0
\(291\) −27.8865 3.30374i −1.63473 0.193668i
\(292\) 1.49569 17.0958i 0.0875288 1.00046i
\(293\) −18.2561 + 8.51297i −1.06653 + 0.497333i −0.874985 0.484150i \(-0.839129\pi\)
−0.191549 + 0.981483i \(0.561351\pi\)
\(294\) −15.1315 7.62904i −0.882490 0.444935i
\(295\) 0 0
\(296\) 1.41025i 0.0819691i
\(297\) 14.5456 3.82434i 0.844022 0.221910i
\(298\) −7.07014 7.07014i −0.409562 0.409562i
\(299\) −5.39025 + 30.5696i −0.311726 + 1.76789i
\(300\) 0 0
\(301\) −1.01243 0.368493i −0.0583553 0.0212396i
\(302\) 41.6166 + 3.64098i 2.39477 + 0.209515i
\(303\) −1.36548 9.42496i −0.0784448 0.541450i
\(304\) 5.38635 + 14.7989i 0.308928 + 0.848774i
\(305\) 0 0
\(306\) −1.19196 + 19.4173i −0.0681401 + 1.11002i
\(307\) −11.5423 3.09276i −0.658756 0.176513i −0.0860714 0.996289i \(-0.527431\pi\)
−0.572684 + 0.819776i \(0.694098\pi\)
\(308\) 8.69540 0.760749i 0.495467 0.0433477i
\(309\) −6.50822 1.95955i −0.370240 0.111475i
\(310\) 0 0
\(311\) 2.38442 0.420438i 0.135208 0.0238408i −0.105634 0.994405i \(-0.533687\pi\)
0.240843 + 0.970564i \(0.422576\pi\)
\(312\) 1.08189 + 0.669660i 0.0612499 + 0.0379120i
\(313\) −1.06842 12.2121i −0.0603905 0.690267i −0.964693 0.263375i \(-0.915164\pi\)
0.904303 0.426891i \(-0.140391\pi\)
\(314\) −6.84198 11.8506i −0.386115 0.668771i
\(315\) 0 0
\(316\) 1.50647 2.60929i 0.0847457 0.146784i
\(317\) −20.5585 9.58656i −1.15468 0.538435i −0.251566 0.967840i \(-0.580945\pi\)
−0.903112 + 0.429405i \(0.858723\pi\)
\(318\) −0.138644 + 0.347401i −0.00777475 + 0.0194813i
\(319\) −3.94565 4.70224i −0.220914 0.263275i
\(320\) 0 0
\(321\) 14.1436 + 21.5779i 0.789420 + 1.20436i
\(322\) 8.57003 + 12.2393i 0.477589 + 0.682068i
\(323\) 9.24330 9.24330i 0.514311 0.514311i
\(324\) 17.0651 7.23473i 0.948063 0.401930i
\(325\) 0 0
\(326\) 40.3696 + 7.11825i 2.23587 + 0.394243i
\(327\) −3.49889 + 16.8121i −0.193489 + 0.929713i
\(328\) 0.0431581 + 0.0925528i 0.00238301 + 0.00511038i
\(329\) 3.23343 2.71317i 0.178265 0.149582i
\(330\) 0 0
\(331\) 15.3336 5.58098i 0.842812 0.306758i 0.115706 0.993284i \(-0.463087\pi\)
0.727106 + 0.686525i \(0.240865\pi\)
\(332\) 33.6204 9.00856i 1.84516 0.494409i
\(333\) 27.6208 + 21.9807i 1.51361 + 1.20453i
\(334\) −0.822888 + 0.475095i −0.0450264 + 0.0259960i
\(335\) 0 0
\(336\) −9.57253 + 2.25290i −0.522224 + 0.122906i
\(337\) 3.28511 + 2.30026i 0.178951 + 0.125303i 0.659620 0.751599i \(-0.270717\pi\)
−0.480669 + 0.876902i \(0.659606\pi\)
\(338\) 40.5469 + 28.3913i 2.20546 + 1.54428i
\(339\) 7.60575 25.2609i 0.413088 1.37198i
\(340\) 0 0
\(341\) −8.54661 + 4.93439i −0.462825 + 0.267212i
\(342\) −23.2795 7.79498i −1.25881 0.421504i
\(343\) −16.7687 + 4.49317i −0.905427 + 0.242608i
\(344\) −0.0828686 + 0.0301617i −0.00446798 + 0.00162621i
\(345\) 0 0
\(346\) −28.4598 + 23.8806i −1.53001 + 1.28383i
\(347\) 5.24496 + 11.2479i 0.281564 + 0.603816i 0.995326 0.0965722i \(-0.0307879\pi\)
−0.713762 + 0.700389i \(0.753010\pi\)
\(348\) −5.64331 5.03798i −0.302513 0.270064i
\(349\) −7.52479 1.32682i −0.402793 0.0710232i −0.0314181 0.999506i \(-0.510002\pi\)
−0.371375 + 0.928483i \(0.621113\pi\)
\(350\) 0 0
\(351\) 29.9785 10.7521i 1.60013 0.573902i
\(352\) −16.4801 + 16.4801i −0.878395 + 0.878395i
\(353\) −10.2693 14.6661i −0.546579 0.780595i 0.446904 0.894582i \(-0.352527\pi\)
−0.993482 + 0.113987i \(0.963638\pi\)
\(354\) 5.93968 11.7808i 0.315691 0.626145i
\(355\) 0 0
\(356\) −8.07725 9.62609i −0.428093 0.510182i
\(357\) 5.05275 + 6.41085i 0.267420 + 0.339298i
\(358\) 14.4548 + 6.74040i 0.763962 + 0.356241i
\(359\) 6.26521 10.8517i 0.330665 0.572729i −0.651977 0.758239i \(-0.726060\pi\)
0.982642 + 0.185510i \(0.0593936\pi\)
\(360\) 0 0
\(361\) −1.25189 2.16834i −0.0658891 0.114123i
\(362\) 3.46328 + 39.5854i 0.182026 + 2.08056i
\(363\) −0.139206 + 4.53966i −0.00730642 + 0.238270i
\(364\) 18.2028 3.20964i 0.954084 0.168231i
\(365\) 0 0
\(366\) 11.4160 10.7367i 0.596723 0.561215i
\(367\) 13.6352 1.19292i 0.711750 0.0622701i 0.274470 0.961596i \(-0.411497\pi\)
0.437280 + 0.899325i \(0.355942\pi\)
\(368\) −18.9683 5.08254i −0.988790 0.264946i
\(369\) 2.48539 + 0.597277i 0.129384 + 0.0310930i
\(370\) 0 0
\(371\) 0.0536785 + 0.147481i 0.00278685 + 0.00765681i
\(372\) −9.55215 + 7.52858i −0.495256 + 0.390339i
\(373\) 12.0608 + 1.05518i 0.624485 + 0.0546353i 0.395006 0.918678i \(-0.370742\pi\)
0.229478 + 0.973314i \(0.426298\pi\)
\(374\) 17.6375 + 6.41951i 0.912011 + 0.331945i
\(375\) 0 0
\(376\) 0.0599937 0.340241i 0.00309394 0.0175466i
\(377\) −9.19128 9.19128i −0.473375 0.473375i
\(378\) 6.54389 13.8630i 0.336582 0.713037i
\(379\) 22.5213i 1.15684i 0.815738 + 0.578421i \(0.196331\pi\)
−0.815738 + 0.578421i \(0.803669\pi\)
\(380\) 0 0
\(381\) −0.976986 17.2393i −0.0500525 0.883194i
\(382\) 15.9582 7.44142i 0.816491 0.380736i
\(383\) −1.26087 + 14.4118i −0.0644275 + 0.736410i 0.893437 + 0.449189i \(0.148287\pi\)
−0.957864 + 0.287221i \(0.907269\pi\)
\(384\) −0.993364 + 1.32997i −0.0506924 + 0.0678695i
\(385\) 0 0
\(386\) −15.0774 8.70492i −0.767417 0.443069i
\(387\) −0.700880 + 2.09316i −0.0356277 + 0.106401i
\(388\) −8.64201 + 32.2524i −0.438731 + 1.63737i
\(389\) −9.68308 8.12507i −0.490951 0.411957i 0.363416 0.931627i \(-0.381610\pi\)
−0.854367 + 0.519670i \(0.826055\pi\)
\(390\) 0 0
\(391\) 2.83044 + 16.0522i 0.143141 + 0.811795i
\(392\) −0.333818 + 0.476742i −0.0168604 + 0.0240791i
\(393\) 10.2378 16.5399i 0.516428 0.834330i
\(394\) 2.59737 3.09542i 0.130853 0.155945i
\(395\) 0 0
\(396\) −2.02047 17.7687i −0.101532 0.892910i
\(397\) −3.89075 14.5205i −0.195271 0.728761i −0.992197 0.124684i \(-0.960208\pi\)
0.796926 0.604077i \(-0.206458\pi\)
\(398\) −15.2527 + 32.7096i −0.764550 + 1.63958i
\(399\) −9.46482 + 4.06516i −0.473834 + 0.203512i
\(400\) 0 0
\(401\) −8.96818 + 24.6399i −0.447849 + 1.23046i 0.486369 + 0.873754i \(0.338321\pi\)
−0.934218 + 0.356703i \(0.883901\pi\)
\(402\) 15.2367 + 3.17101i 0.759936 + 0.158155i
\(403\) −17.1186 + 11.9866i −0.852738 + 0.597094i
\(404\) −11.3237 −0.563375
\(405\) 0 0
\(406\) −6.25667 −0.310513
\(407\) 27.8983 19.5346i 1.38287 0.968294i
\(408\) 0.654111 + 0.136131i 0.0323833 + 0.00673951i
\(409\) −2.57831 + 7.08384i −0.127489 + 0.350273i −0.986972 0.160891i \(-0.948563\pi\)
0.859483 + 0.511164i \(0.170786\pi\)
\(410\) 0 0
\(411\) −31.2847 + 13.4368i −1.54316 + 0.662790i
\(412\) −3.41549 + 7.32453i −0.168269 + 0.360854i
\(413\) −1.43279 5.34723i −0.0705028 0.263120i
\(414\) 24.6117 18.2032i 1.20960 0.894637i
\(415\) 0 0
\(416\) −31.7237 + 37.8068i −1.55538 + 1.85363i
\(417\) 1.35561 2.19010i 0.0663846 0.107250i
\(418\) −13.5858 + 19.4025i −0.664501 + 0.949006i
\(419\) 3.59622 + 20.3952i 0.175687 + 0.996370i 0.937348 + 0.348394i \(0.113273\pi\)
−0.761661 + 0.647975i \(0.775616\pi\)
\(420\) 0 0
\(421\) −5.26964 4.42176i −0.256827 0.215503i 0.505279 0.862956i \(-0.331390\pi\)
−0.762105 + 0.647453i \(0.775834\pi\)
\(422\) 5.56643 20.7742i 0.270969 1.01127i
\(423\) −5.72880 6.47814i −0.278544 0.314978i
\(424\) 0.0111251 + 0.00642311i 0.000540285 + 0.000311934i
\(425\) 0 0
\(426\) 18.9291 25.3433i 0.917118 1.22788i
\(427\) 0.573108 6.55066i 0.0277347 0.317009i
\(428\) 27.8032 12.9649i 1.34392 0.626680i
\(429\) −1.73862 30.6785i −0.0839413 1.48117i
\(430\) 0 0
\(431\) 2.91928i 0.140617i 0.997525 + 0.0703084i \(0.0223983\pi\)
−0.997525 + 0.0703084i \(0.977602\pi\)
\(432\) 5.12321 + 19.4858i 0.246490 + 0.937510i
\(433\) −3.01763 3.01763i −0.145018 0.145018i 0.630870 0.775888i \(-0.282698\pi\)
−0.775888 + 0.630870i \(0.782698\pi\)
\(434\) −1.74673 + 9.90621i −0.0838458 + 0.475513i
\(435\) 0 0
\(436\) 19.1873 + 6.98361i 0.918905 + 0.334454i
\(437\) −20.4913 1.79276i −0.980233 0.0857593i
\(438\) −22.8385 + 18.0003i −1.09126 + 0.860085i
\(439\) −1.28129 3.52030i −0.0611524 0.168015i 0.905354 0.424658i \(-0.139606\pi\)
−0.966506 + 0.256643i \(0.917383\pi\)
\(440\) 0 0
\(441\) 4.13434 + 13.9687i 0.196873 + 0.665178i
\(442\) 38.3914 + 10.2870i 1.82609 + 0.489300i
\(443\) 27.8809 2.43927i 1.32466 0.115893i 0.597229 0.802070i \(-0.296268\pi\)
0.727434 + 0.686177i \(0.240713\pi\)
\(444\) 30.5749 28.7556i 1.45102 1.36468i
\(445\) 0 0
\(446\) 23.7107 4.18083i 1.12273 0.197968i
\(447\) −0.263451 + 8.59141i −0.0124608 + 0.406360i
\(448\) 1.08076 + 12.3531i 0.0510611 + 0.583631i
\(449\) 4.77256 + 8.26631i 0.225231 + 0.390111i 0.956389 0.292097i \(-0.0943530\pi\)
−0.731158 + 0.682208i \(0.761020\pi\)
\(450\) 0 0
\(451\) 1.23311 2.13580i 0.0580647 0.100571i
\(452\) −28.4293 13.2568i −1.33720 0.623548i
\(453\) −22.2302 28.2053i −1.04446 1.32520i
\(454\) 1.49860 + 1.78596i 0.0703328 + 0.0838193i
\(455\) 0 0
\(456\) −0.379581 + 0.752866i −0.0177755 + 0.0352562i
\(457\) −20.3246 29.0265i −0.950745 1.35780i −0.933741 0.357949i \(-0.883476\pi\)
−0.0170039 0.999855i \(-0.505413\pi\)
\(458\) 12.4782 12.4782i 0.583068 0.583068i
\(459\) 12.8614 10.6895i 0.600321 0.498942i
\(460\) 0 0
\(461\) 24.4088 + 4.30393i 1.13683 + 0.200454i 0.710219 0.703981i \(-0.248596\pi\)
0.426612 + 0.904435i \(0.359707\pi\)
\(462\) −11.0335 9.84995i −0.513323 0.458261i
\(463\) 2.28775 + 4.90609i 0.106321 + 0.228005i 0.952269 0.305259i \(-0.0987430\pi\)
−0.845949 + 0.533264i \(0.820965\pi\)
\(464\) 6.29927 5.28572i 0.292436 0.245383i
\(465\) 0 0
\(466\) −30.9797 + 11.2757i −1.43511 + 0.522336i
\(467\) −39.5591 + 10.5998i −1.83058 + 0.490502i −0.997989 0.0633888i \(-0.979809\pi\)
−0.832589 + 0.553891i \(0.813143\pi\)
\(468\) −7.54161 37.1106i −0.348611 1.71544i
\(469\) 5.65527 3.26507i 0.261136 0.150767i
\(470\) 0 0
\(471\) −3.39145 + 11.2640i −0.156270 + 0.519018i
\(472\) −0.371173 0.259898i −0.0170846 0.0119628i
\(473\) 1.74456 + 1.22155i 0.0802149 + 0.0561671i
\(474\) −4.96961 + 1.16960i −0.228262 + 0.0537216i
\(475\) 0 0
\(476\) 8.40545 4.85289i 0.385263 0.222432i
\(477\) 0.299202 0.117782i 0.0136995 0.00539285i
\(478\) 16.7160 4.47905i 0.764574 0.204867i
\(479\) −25.9636 + 9.44996i −1.18631 + 0.431780i −0.858425 0.512940i \(-0.828556\pi\)
−0.327880 + 0.944719i \(0.606334\pi\)
\(480\) 0 0
\(481\) 55.2468 46.3576i 2.51904 2.11372i
\(482\) 1.75976 + 3.77382i 0.0801549 + 0.171893i
\(483\) 2.61707 12.5750i 0.119081 0.572184i
\(484\) 5.31835 + 0.937769i 0.241743 + 0.0426258i
\(485\) 0 0
\(486\) −28.7409 12.6655i −1.30372 0.574517i
\(487\) −28.3122 + 28.3122i −1.28295 + 1.28295i −0.343969 + 0.938981i \(0.611772\pi\)
−0.938981 + 0.343969i \(0.888228\pi\)
\(488\) −0.308715 0.440891i −0.0139749 0.0199582i
\(489\) −19.3182 29.4724i −0.873600 1.33279i
\(490\) 0 0
\(491\) 15.4259 + 18.3839i 0.696161 + 0.829652i 0.992086 0.125559i \(-0.0400724\pi\)
−0.295925 + 0.955211i \(0.595628\pi\)
\(492\) 1.12658 2.82288i 0.0507902 0.127265i
\(493\) −6.18602 2.88459i −0.278604 0.129915i
\(494\) −25.0786 + 43.4374i −1.12834 + 1.95434i
\(495\) 0 0
\(496\) −6.61027 11.4493i −0.296810 0.514090i
\(497\) −1.15678 13.2220i −0.0518886 0.593089i
\(498\) −50.1494 31.0411i −2.24725 1.39099i
\(499\) −31.1017 + 5.48406i −1.39230 + 0.245500i −0.818976 0.573828i \(-0.805458\pi\)
−0.573325 + 0.819328i \(0.694347\pi\)
\(500\) 0 0
\(501\) 0.782153 + 0.235497i 0.0349440 + 0.0105212i
\(502\) −22.1423 + 1.93720i −0.988261 + 0.0864616i
\(503\) 2.72503 + 0.730168i 0.121503 + 0.0325566i 0.319058 0.947735i \(-0.396634\pi\)
−0.197555 + 0.980292i \(0.563300\pi\)
\(504\) −0.438969 0.290688i −0.0195532 0.0129483i
\(505\) 0 0
\(506\) −10.1015 27.7536i −0.449066 1.23380i
\(507\) −6.10118 42.1122i −0.270963 1.87027i
\(508\) −20.4530 1.78941i −0.907455 0.0793920i
\(509\) 20.7599 + 7.55598i 0.920166 + 0.334913i 0.758304 0.651901i \(-0.226028\pi\)
0.161861 + 0.986814i \(0.448250\pi\)
\(510\) 0 0
\(511\) −2.11875 + 12.0160i −0.0937279 + 0.531557i
\(512\) −22.7346 22.7346i −1.00474 1.00474i
\(513\) 8.82917 + 19.1688i 0.389817 + 0.846324i
\(514\) 11.6360i 0.513243i
\(515\) 0 0
\(516\) 2.34365 + 1.18162i 0.103173 + 0.0520181i
\(517\) −7.56184 + 3.52615i −0.332569 + 0.155080i
\(518\) 3.02553 34.5820i 0.132934 1.51944i
\(519\) 31.7158 + 3.75740i 1.39217 + 0.164932i
\(520\) 0 0
\(521\) −7.62484 4.40220i −0.334050 0.192864i 0.323588 0.946198i \(-0.395111\pi\)
−0.657638 + 0.753334i \(0.728444\pi\)
\(522\) 0.332694 + 12.8143i 0.0145616 + 0.560868i
\(523\) 0.332937 1.24254i 0.0145583 0.0543324i −0.958265 0.285883i \(-0.907713\pi\)
0.972823 + 0.231550i \(0.0743798\pi\)
\(524\) −17.7181 14.8673i −0.774019 0.649479i
\(525\) 0 0
\(526\) −6.45507 36.6085i −0.281454 1.59621i
\(527\) −6.29419 + 8.98903i −0.274179 + 0.391568i
\(528\) 19.4300 + 0.595809i 0.845581 + 0.0259293i
\(529\) 1.70263 2.02911i 0.0740274 0.0882224i
\(530\) 0 0
\(531\) −10.8755 + 3.21884i −0.471958 + 0.139686i
\(532\) 3.17007 + 11.8309i 0.137440 + 0.512933i
\(533\) 2.20709 4.73311i 0.0955995 0.205014i
\(534\) −2.50506 + 21.1450i −0.108405 + 0.915032i
\(535\) 0 0
\(536\) 0.182810 0.502268i 0.00789621 0.0216947i
\(537\) −4.29227 13.0216i −0.185225 0.561924i
\(538\) 25.9551 18.1740i 1.11900 0.783535i
\(539\) 14.0551 0.605398
\(540\) 0 0
\(541\) −9.16794 −0.394160 −0.197080 0.980387i \(-0.563146\pi\)
−0.197080 + 0.980387i \(0.563146\pi\)
\(542\) 28.7714 20.1460i 1.23584 0.865344i
\(543\) 22.7493 25.4827i 0.976265 1.09357i
\(544\) −8.86365 + 24.3527i −0.380026 + 1.04411i
\(545\) 0 0
\(546\) −25.0933 18.7424i −1.07389 0.802100i
\(547\) −1.95267 + 4.18752i −0.0834904 + 0.179046i −0.943621 0.331029i \(-0.892604\pi\)
0.860130 + 0.510074i \(0.170382\pi\)
\(548\) 10.4782 + 39.1053i 0.447608 + 1.67050i
\(549\) −13.4469 0.825461i −0.573901 0.0352298i
\(550\) 0 0
\(551\) 5.53663 6.59830i 0.235868 0.281097i
\(552\) −0.497516 0.926170i −0.0211757 0.0394204i
\(553\) −1.22870 + 1.75476i −0.0522496 + 0.0746202i
\(554\) −5.37283 30.4709i −0.228270 1.29458i
\(555\) 0 0
\(556\) −2.34610 1.96861i −0.0994968 0.0834878i
\(557\) −2.60809 + 9.73354i −0.110509 + 0.412423i −0.998912 0.0466405i \(-0.985148\pi\)
0.888403 + 0.459064i \(0.151815\pi\)
\(558\) 20.3819 + 3.05074i 0.862833 + 0.129148i
\(559\) 3.90564 + 2.25492i 0.165191 + 0.0953730i
\(560\) 0 0
\(561\) −6.36763 14.8256i −0.268842 0.625938i
\(562\) −1.30121 + 14.8729i −0.0548881 + 0.627373i
\(563\) 15.0076 6.99817i 0.632496 0.294938i −0.0798064 0.996810i \(-0.525430\pi\)
0.712302 + 0.701873i \(0.247652\pi\)
\(564\) −8.59990 + 5.63697i −0.362121 + 0.237359i
\(565\) 0 0
\(566\) 28.9676i 1.21760i
\(567\) −12.5353 + 4.06677i −0.526432 + 0.170788i
\(568\) −0.768184 0.768184i −0.0322323 0.0322323i
\(569\) 1.89828 10.7657i 0.0795799 0.451320i −0.918815 0.394688i \(-0.870853\pi\)
0.998395 0.0566320i \(-0.0180362\pi\)
\(570\) 0 0
\(571\) 15.2515 + 5.55110i 0.638256 + 0.232306i 0.640821 0.767691i \(-0.278594\pi\)
−0.00256475 + 0.999997i \(0.500816\pi\)
\(572\) −36.3976 3.18438i −1.52186 0.133146i
\(573\) −14.0585 5.61060i −0.587304 0.234386i
\(574\) −0.859755 2.36216i −0.0358855 0.0985946i
\(575\) 0 0
\(576\) 25.2431 2.87039i 1.05180 0.119599i
\(577\) −17.0234 4.56140i −0.708693 0.189894i −0.113572 0.993530i \(-0.536229\pi\)
−0.595121 + 0.803636i \(0.702896\pi\)
\(578\) −13.3304 + 1.16625i −0.554469 + 0.0485098i
\(579\) 3.42870 + 14.5684i 0.142492 + 0.605444i
\(580\) 0 0
\(581\) −24.3710 + 4.29727i −1.01108 + 0.178281i
\(582\) 49.8430 26.7744i 2.06606 1.10984i
\(583\) −0.0270388 0.309055i −0.00111983 0.0127998i
\(584\) 0.499351 + 0.864901i 0.0206633 + 0.0357898i
\(585\) 0 0
\(586\) 20.2926 35.1479i 0.838280 1.45194i
\(587\) 7.40736 + 3.45411i 0.305734 + 0.142566i 0.569430 0.822040i \(-0.307164\pi\)
−0.263696 + 0.964606i \(0.584942\pi\)
\(588\) 17.1427 2.48362i 0.706953 0.102423i
\(589\) −8.90140 10.6083i −0.366776 0.437106i
\(590\) 0 0
\(591\) −3.46812 + 0.196546i −0.142660 + 0.00808483i
\(592\) 26.1692 + 37.3735i 1.07555 + 1.53604i
\(593\) −28.1239 + 28.1239i −1.15491 + 1.15491i −0.169357 + 0.985555i \(0.554169\pi\)
−0.985555 + 0.169357i \(0.945831\pi\)
\(594\) −19.5871 + 23.1215i −0.803668 + 0.948687i
\(595\) 0 0
\(596\) 10.0651 + 1.77475i 0.412282 + 0.0726965i
\(597\) 29.4664 9.71291i 1.20598 0.397523i
\(598\) −26.4315 56.6826i −1.08087 2.31793i
\(599\) −27.5968 + 23.1564i −1.12757 + 0.946147i −0.998962 0.0455483i \(-0.985496\pi\)
−0.128612 + 0.991695i \(0.541052\pi\)
\(600\) 0 0
\(601\) −21.4617 + 7.81141i −0.875440 + 0.318634i −0.740368 0.672202i \(-0.765349\pi\)
−0.135072 + 0.990836i \(0.543126\pi\)
\(602\) 2.09680 0.561836i 0.0854593 0.0228987i
\(603\) −6.98794 11.4090i −0.284571 0.464610i
\(604\) −36.9808 + 21.3509i −1.50473 + 0.868755i
\(605\) 0 0
\(606\) 13.1456 + 13.9773i 0.534004 + 0.567790i
\(607\) 7.00562 + 4.90539i 0.284349 + 0.199104i 0.707046 0.707168i \(-0.250027\pi\)
−0.422696 + 0.906271i \(0.638916\pi\)
\(608\) −26.7897 18.7583i −1.08647 0.760751i
\(609\) 3.68488 + 3.91802i 0.149319 + 0.158766i
\(610\) 0 0
\(611\) −15.3011 + 8.83410i −0.619017 + 0.357389i
\(612\) −10.3862 16.9572i −0.419837 0.685456i
\(613\) 35.7827 9.58796i 1.44525 0.387254i 0.550882 0.834583i \(-0.314291\pi\)
0.894369 + 0.447329i \(0.147625\pi\)
\(614\) 22.6241 8.23450i 0.913034 0.332317i
\(615\) 0 0
\(616\) −0.389125 + 0.326514i −0.0156783 + 0.0131556i
\(617\) 5.17963 + 11.1077i 0.208524 + 0.447181i 0.982556 0.185965i \(-0.0595411\pi\)
−0.774032 + 0.633146i \(0.781763\pi\)
\(618\) 13.0060 4.28712i 0.523178 0.172453i
\(619\) 8.63834 + 1.52317i 0.347204 + 0.0612215i 0.344531 0.938775i \(-0.388038\pi\)
0.00267331 + 0.999996i \(0.499149\pi\)
\(620\) 0 0
\(621\) −25.8942 4.69138i −1.03910 0.188259i
\(622\) −3.44947 + 3.44947i −0.138311 + 0.138311i
\(623\) 5.12449 + 7.31853i 0.205308 + 0.293211i
\(624\) 41.0979 2.32911i 1.64523 0.0932391i
\(625\) 0 0
\(626\) 15.8763 + 18.9206i 0.634543 + 0.756218i
\(627\) 20.1515 2.91953i 0.804773 0.116595i
\(628\) 12.6768 + 5.91130i 0.505860 + 0.235887i
\(629\) 18.9351 32.7966i 0.754992 1.30769i
\(630\) 0 0
\(631\) 16.1540 + 27.9796i 0.643083 + 1.11385i 0.984741 + 0.174027i \(0.0556781\pi\)
−0.341658 + 0.939824i \(0.610989\pi\)
\(632\) 0.0152819 + 0.174673i 0.000607880 + 0.00694810i
\(633\) −16.2875 + 8.74923i −0.647368 + 0.347751i
\(634\) 45.0092 7.93634i 1.78755 0.315192i
\(635\) 0 0
\(636\) −0.0875903 0.372169i −0.00347318 0.0147575i
\(637\) 29.6497 2.59401i 1.17476 0.102778i
\(638\) 11.9462 + 3.20098i 0.472955 + 0.126728i
\(639\) −27.0187 + 3.07228i −1.06884 + 0.121538i
\(640\) 0 0
\(641\) −3.35944 9.23000i −0.132690 0.364563i 0.855499 0.517805i \(-0.173251\pi\)
−0.988189 + 0.153242i \(0.951029\pi\)
\(642\) −48.2797 19.2679i −1.90545 0.760443i
\(643\) −18.5293 1.62110i −0.730723 0.0639299i −0.284279 0.958742i \(-0.591754\pi\)
−0.446444 + 0.894812i \(0.647310\pi\)
\(644\) −14.3516 5.22355i −0.565532 0.205837i
\(645\) 0 0
\(646\) −4.57349 + 25.9375i −0.179942 + 1.02050i
\(647\) 14.2018 + 14.2018i 0.558331 + 0.558331i 0.928832 0.370501i \(-0.120814\pi\)
−0.370501 + 0.928832i \(0.620814\pi\)
\(648\) −0.572019 + 0.914513i −0.0224710 + 0.0359255i
\(649\) 10.9428i 0.429542i
\(650\) 0 0
\(651\) 7.23215 4.74045i 0.283450 0.185793i
\(652\) −37.9754 + 17.7082i −1.48723 + 0.693507i
\(653\) −1.73834 + 19.8693i −0.0680265 + 0.777546i 0.883189 + 0.469018i \(0.155392\pi\)
−0.951215 + 0.308528i \(0.900164\pi\)
\(654\) −13.6543 31.7909i −0.533924 1.24312i
\(655\) 0 0
\(656\) 2.86119 + 1.65191i 0.111711 + 0.0644963i
\(657\) 24.7228 + 3.70048i 0.964528 + 0.144370i
\(658\) −2.20110 + 8.21463i −0.0858080 + 0.320240i
\(659\) 0.815140 + 0.683983i 0.0317533 + 0.0266442i 0.658526 0.752558i \(-0.271180\pi\)
−0.626773 + 0.779202i \(0.715625\pi\)
\(660\) 0 0
\(661\) −5.78183 32.7904i −0.224887 1.27540i −0.862901 0.505373i \(-0.831355\pi\)
0.638014 0.770025i \(-0.279756\pi\)
\(662\) −18.8576 + 26.9314i −0.732920 + 1.04672i
\(663\) −16.1689 30.0998i −0.627947 1.16898i
\(664\) −1.30202 + 1.55168i −0.0505280 + 0.0602169i
\(665\) 0 0
\(666\) −70.9885 4.35774i −2.75075 0.168859i
\(667\) 2.77981 + 10.3744i 0.107635 + 0.401699i
\(668\) 0.410470 0.880256i 0.0158816 0.0340581i
\(669\) −16.5826 12.3857i −0.641119 0.478858i
\(670\) 0 0
\(671\) −4.44565 + 12.2143i −0.171622 + 0.471529i
\(672\) 13.6002 15.2343i 0.524639 0.587676i
\(673\) 20.0466 14.0367i 0.772738 0.541077i −0.119397 0.992847i \(-0.538096\pi\)
0.892135 + 0.451770i \(0.149207\pi\)
\(674\) −8.08017 −0.311236
\(675\) 0 0
\(676\) −50.5961 −1.94600
\(677\) 16.7682 11.7412i 0.644455 0.451252i −0.205108 0.978739i \(-0.565755\pi\)
0.849563 + 0.527487i \(0.176866\pi\)
\(678\) 16.6400 + 50.4813i 0.639055 + 1.93872i
\(679\) 8.11957 22.3083i 0.311601 0.856115i
\(680\) 0 0
\(681\) 0.235792 1.99029i 0.00903556 0.0762681i
\(682\) 8.40325 18.0208i 0.321777 0.690053i
\(683\) 5.71751 + 21.3380i 0.218774 + 0.816477i 0.984804 + 0.173671i \(0.0555630\pi\)
−0.766029 + 0.642806i \(0.777770\pi\)
\(684\) 24.0623 7.12175i 0.920047 0.272307i
\(685\) 0 0
\(686\) 22.4833 26.7945i 0.858416 1.02302i
\(687\) −15.1631 0.464968i −0.578509 0.0177396i
\(688\) −1.63643 + 2.33707i −0.0623884 + 0.0890999i
\(689\) −0.114078 0.646969i −0.00434603 0.0246476i
\(690\) 0 0
\(691\) 13.7398 + 11.5291i 0.522688 + 0.438587i 0.865568 0.500792i \(-0.166958\pi\)
−0.342880 + 0.939379i \(0.611402\pi\)
\(692\) 9.82872 36.6813i 0.373632 1.39441i
\(693\) 0.329998 + 12.7105i 0.0125356 + 0.482831i
\(694\) −21.6551 12.5026i −0.822016 0.474591i
\(695\) 0 0
\(696\) 0.437188 + 0.0517940i 0.0165716 + 0.00196325i
\(697\) 0.239008 2.73187i 0.00905306 0.103477i
\(698\) 13.9526 6.50619i 0.528112 0.246263i
\(699\) 25.3066 + 12.7591i 0.957182 + 0.482593i
\(700\) 0 0
\(701\) 11.4005i 0.430590i 0.976549 + 0.215295i \(0.0690713\pi\)
−0.976549 + 0.215295i \(0.930929\pi\)
\(702\) −37.0521 + 52.3903i −1.39844 + 1.97735i
\(703\) 33.7929 + 33.7929i 1.27452 + 1.27452i
\(704\) 4.25644 24.1395i 0.160421 0.909791i
\(705\) 0 0
\(706\) 33.8977 + 12.3377i 1.27576 + 0.464337i
\(707\) 8.02039 + 0.701693i 0.301638 + 0.0263899i
\(708\) 1.93365 + 13.3466i 0.0726711 + 0.501598i
\(709\) 5.28444 + 14.5189i 0.198461 + 0.545268i 0.998504 0.0546749i \(-0.0174122\pi\)
−0.800043 + 0.599943i \(0.795190\pi\)
\(710\) 0 0
\(711\) 3.65928 + 2.42320i 0.137234 + 0.0908772i
\(712\) 0.706365 + 0.189270i 0.0264722 + 0.00709319i
\(713\) 17.2019 1.50497i 0.644216 0.0563616i
\(714\) −15.7480 4.74151i −0.589353 0.177447i
\(715\) 0 0
\(716\) −16.0551 + 2.83094i −0.600006 + 0.105797i
\(717\) −12.6498 7.82988i −0.472415 0.292412i
\(718\) 2.20038 + 25.1504i 0.0821174 + 0.938606i
\(719\) 4.71157 + 8.16068i 0.175712 + 0.304342i 0.940407 0.340050i \(-0.110444\pi\)
−0.764695 + 0.644392i \(0.777111\pi\)
\(720\) 0 0
\(721\) 2.87301 4.97620i 0.106997 0.185323i
\(722\) 4.57202 + 2.13197i 0.170153 + 0.0793437i
\(723\) 1.32681 3.32459i 0.0493444 0.123643i
\(724\) −26.1085 31.1149i −0.970315 1.15638i
\(725\) 0 0
\(726\) −5.01651 7.65331i −0.186180 0.284041i
\(727\) 24.6272 + 35.1712i 0.913371 + 1.30443i 0.952293 + 0.305186i \(0.0987187\pi\)
−0.0389219 + 0.999242i \(0.512392\pi\)
\(728\) −0.760607 + 0.760607i −0.0281900 + 0.0281900i
\(729\) 8.99575 + 25.4573i 0.333176 + 0.942865i
\(730\) 0 0
\(731\) 2.33216 + 0.411222i 0.0862579 + 0.0152096i
\(732\) −3.26391 + 15.6831i −0.120638 + 0.579663i
\(733\) −0.264636 0.567513i −0.00977454 0.0209616i 0.901360 0.433071i \(-0.142570\pi\)
−0.911134 + 0.412109i \(0.864792\pi\)
\(734\) −21.1255 + 17.7264i −0.779755 + 0.654292i
\(735\) 0 0
\(736\) 38.3205 13.9475i 1.41251 0.514112i
\(737\) −12.4684 + 3.34089i −0.459278 + 0.123063i
\(738\) −4.79224 + 1.88648i −0.176405 + 0.0694423i
\(739\) 23.6846 13.6743i 0.871251 0.503017i 0.00348723 0.999994i \(-0.498890\pi\)
0.867764 + 0.496977i \(0.165557\pi\)
\(740\) 0 0
\(741\) 41.9712 9.87796i 1.54185 0.362876i
\(742\) −0.259029 0.181374i −0.00950927 0.00665846i
\(743\) −29.3796 20.5718i −1.07783 0.754706i −0.106950 0.994264i \(-0.534109\pi\)
−0.970882 + 0.239558i \(0.922997\pi\)
\(744\) 0.204059 0.677741i 0.00748118 0.0248472i
\(745\) 0 0
\(746\) −21.1251 + 12.1966i −0.773444 + 0.446548i
\(747\) 10.0972 + 49.6860i 0.369437 + 1.81792i
\(748\) −18.5318 + 4.96558i −0.677589 + 0.181559i
\(749\) −20.4960 + 7.45993i −0.748907 + 0.272580i
\(750\) 0 0
\(751\) −27.0935 + 22.7342i −0.988657 + 0.829582i −0.985373 0.170413i \(-0.945490\pi\)
−0.00328459 + 0.999995i \(0.501046\pi\)
\(752\) −4.72374 10.1301i −0.172257 0.369407i
\(753\) 14.2539 + 12.7249i 0.519441 + 0.463723i
\(754\) 25.7916 + 4.54775i 0.939274 + 0.165619i
\(755\) 0 0
\(756\) 2.64850 + 15.4443i 0.0963250 + 0.561705i
\(757\) 26.1262 26.1262i 0.949573 0.949573i −0.0492153 0.998788i \(-0.515672\pi\)
0.998788 + 0.0492153i \(0.0156721\pi\)
\(758\) −26.0268 37.1701i −0.945336 1.35008i
\(759\) −11.4304 + 22.6713i −0.414899 + 0.822915i
\(760\) 0 0
\(761\) 5.19201 + 6.18759i 0.188210 + 0.224300i 0.851896 0.523712i \(-0.175453\pi\)
−0.663685 + 0.748012i \(0.731009\pi\)
\(762\) 21.5350 + 27.3233i 0.780132 + 0.989819i
\(763\) −13.1573 6.13535i −0.476326 0.222115i
\(764\) −8.99914 + 15.5870i −0.325577 + 0.563917i
\(765\) 0 0
\(766\) −14.5740 25.2430i −0.526582 0.912066i
\(767\) 2.01960 + 23.0841i 0.0729234 + 0.833519i
\(768\) −0.796640 + 25.9793i −0.0287463 + 0.937447i
\(769\) −16.0619 + 2.83215i −0.579208 + 0.102130i −0.455574 0.890198i \(-0.650566\pi\)
−0.123634 + 0.992328i \(0.539455\pi\)
\(770\) 0 0
\(771\) 7.28665 6.85306i 0.262422 0.246807i
\(772\) 17.7281 1.55101i 0.638048 0.0558220i
\(773\) −11.4302 3.06271i −0.411116 0.110158i 0.0473325 0.998879i \(-0.484928\pi\)
−0.458448 + 0.888721i \(0.651595\pi\)
\(774\) −1.26220 4.26460i −0.0453688 0.153288i
\(775\) 0 0
\(776\) −0.664599 1.82597i −0.0238577 0.0655485i
\(777\) −23.4376 + 18.4725i −0.840820 + 0.662697i
\(778\) 25.3711 + 2.21968i 0.909598 + 0.0795795i
\(779\) 3.25195 + 1.18361i 0.116513 + 0.0424073i
\(780\) 0 0
\(781\) −4.55583 + 25.8374i −0.163020 + 0.924534i
\(782\) −23.2222 23.2222i −0.830425 0.830425i
\(783\) 7.82859 7.75538i 0.279771 0.277154i
\(784\) 18.8287i 0.672455i
\(785\) 0 0
\(786\) 2.21756 + 39.1295i 0.0790976 + 1.39570i
\(787\) 43.1572 20.1245i 1.53839 0.717361i 0.545689 0.837988i \(-0.316268\pi\)
0.992698 + 0.120627i \(0.0384904\pi\)
\(788\) −0.359985 + 4.11465i −0.0128240 + 0.146578i
\(789\) −19.1231 + 25.6029i −0.680799 + 0.911488i
\(790\) 0 0
\(791\) 19.3145 + 11.1513i 0.686746 + 0.396493i
\(792\) 0.689429 + 0.779608i 0.0244978 + 0.0277022i
\(793\) −7.12394 + 26.5869i −0.252979 + 0.944129i
\(794\) 23.2020 + 19.4688i 0.823409 + 0.690922i
\(795\) 0 0
\(796\) −6.40609 36.3307i −0.227058 1.28771i
\(797\) −9.48608 + 13.5475i −0.336014 + 0.479878i −0.951231 0.308480i \(-0.900180\pi\)
0.615216 + 0.788358i \(0.289069\pi\)
\(798\) 10.9232 17.6473i 0.386678 0.624709i
\(799\) −5.96354 + 7.10708i −0.210975 + 0.251430i
\(800\) 0 0
\(801\) 14.7166 10.8847i 0.519987 0.384591i
\(802\) −13.6736 51.0307i −0.482833 1.80196i
\(803\) 10.1930 21.8589i 0.359702 0.771383i
\(804\) −14.6170 + 6.27803i −0.515502 + 0.221409i
\(805\) 0 0
\(806\) 14.4009 39.5663i 0.507252 1.39366i
\(807\) −26.6671 5.54988i −0.938728 0.195365i
\(808\) 0.539812 0.377980i 0.0189905 0.0132973i
\(809\) −21.1013 −0.741881 −0.370941 0.928657i \(-0.620965\pi\)
−0.370941 + 0.928657i \(0.620965\pi\)
\(810\) 0 0
\(811\) 3.03312 0.106507 0.0532537 0.998581i \(-0.483041\pi\)
0.0532537 + 0.998581i \(0.483041\pi\)
\(812\) 5.23879 3.66824i 0.183845 0.128730i
\(813\) −29.5607 6.15208i −1.03674 0.215763i
\(814\) −23.4693 + 64.4814i −0.822599 + 2.26007i
\(815\) 0 0
\(816\) 19.8609 8.53029i 0.695270 0.298620i
\(817\) −1.26298 + 2.70847i −0.0441861 + 0.0947574i
\(818\) −3.93110 14.6711i −0.137448 0.512962i
\(819\) 3.04198 + 26.7521i 0.106295 + 0.934795i
\(820\) 0 0
\(821\) 7.72326 9.20422i 0.269544 0.321230i −0.614246 0.789115i \(-0.710540\pi\)
0.883789 + 0.467885i \(0.154984\pi\)
\(822\) 36.1052 58.3309i 1.25931 2.03452i
\(823\) −13.6442 + 19.4859i −0.475607 + 0.679237i −0.983236 0.182339i \(-0.941633\pi\)
0.507629 + 0.861576i \(0.330522\pi\)
\(824\) −0.0816702 0.463175i −0.00284512 0.0161355i
\(825\) 0 0
\(826\) 8.54427 + 7.16949i 0.297293 + 0.249459i
\(827\) 12.0136 44.8353i 0.417753 1.55907i −0.361504 0.932370i \(-0.617737\pi\)
0.779257 0.626704i \(-0.215597\pi\)
\(828\) −9.93527 + 29.6714i −0.345275 + 1.03115i
\(829\) −27.8169 16.0601i −0.966123 0.557791i −0.0680706 0.997681i \(-0.521684\pi\)
−0.898052 + 0.439889i \(0.855018\pi\)
\(830\) 0 0
\(831\) −15.9170 + 21.3104i −0.552153 + 0.739251i
\(832\) 4.52390 51.7084i 0.156838 1.79267i
\(833\) 14.1643 6.60493i 0.490765 0.228847i
\(834\) 0.293632 + 5.18124i 0.0101677 + 0.179412i
\(835\) 0 0
\(836\) 24.2112i 0.837361i
\(837\) −10.0935 14.5602i −0.348884 0.503273i
\(838\) −29.5051 29.5051i −1.01924 1.01924i
\(839\) 8.77845 49.7851i 0.303066 1.71877i −0.329406 0.944188i \(-0.606849\pi\)
0.632472 0.774583i \(-0.282040\pi\)
\(840\) 0 0
\(841\) 23.0248 + 8.38035i 0.793959 + 0.288977i
\(842\) 13.8072 + 1.20798i 0.475829 + 0.0416296i
\(843\) 10.0799 7.94457i 0.347172 0.273625i
\(844\) 7.51891 + 20.6580i 0.258812 + 0.711079i
\(845\) 0 0
\(846\) 16.9415 + 4.07129i 0.582461 + 0.139974i
\(847\) −3.70879 0.993767i −0.127436 0.0341463i
\(848\) 0.414021 0.0362221i 0.0142175 0.00124387i
\(849\) −18.1399 + 17.0605i −0.622561 + 0.585516i
\(850\) 0 0
\(851\) −58.6858 + 10.3479i −2.01172 + 0.354721i
\(852\) −0.991020 + 32.3182i −0.0339518 + 1.10720i
\(853\) −4.44262 50.7794i −0.152112 1.73865i −0.562550 0.826763i \(-0.690180\pi\)
0.410438 0.911889i \(-0.365376\pi\)
\(854\) 6.62440 + 11.4738i 0.226682 + 0.392625i
\(855\) 0 0
\(856\) −0.892646 + 1.54611i −0.0305100 + 0.0528449i
\(857\) 9.12817 + 4.25654i 0.311812 + 0.145400i 0.572224 0.820097i \(-0.306081\pi\)
−0.260412 + 0.965498i \(0.583858\pi\)
\(858\) 38.3232 + 48.6238i 1.30833 + 1.65999i
\(859\) −8.01487 9.55175i −0.273464 0.325902i 0.611781 0.791027i \(-0.290453\pi\)
−0.885245 + 0.465126i \(0.846009\pi\)
\(860\) 0 0
\(861\) −0.972864 + 1.92959i −0.0331551 + 0.0657603i
\(862\) −3.37367 4.81810i −0.114908 0.164105i
\(863\) −23.9621 + 23.9621i −0.815678 + 0.815678i −0.985479 0.169800i \(-0.945688\pi\)
0.169800 + 0.985479i \(0.445688\pi\)
\(864\) −31.9247 27.0446i −1.08610 0.920076i
\(865\) 0 0
\(866\) 8.46774 + 1.49309i 0.287745 + 0.0507373i
\(867\) 8.58127 + 7.66079i 0.291435 + 0.260174i
\(868\) −4.34538 9.31869i −0.147492 0.316297i
\(869\) 3.24378 2.72185i 0.110038 0.0923326i
\(870\) 0 0
\(871\) −25.6857 + 9.34885i −0.870328 + 0.316774i
\(872\) −1.14779 + 0.307549i −0.0388690 + 0.0104149i
\(873\) −46.1217 15.4435i −1.56098 0.522685i
\(874\) 35.8915 20.7220i 1.21405 0.700932i
\(875\) 0 0
\(876\) 8.56951 28.4619i 0.289537 0.961637i
\(877\) −38.4629 26.9320i −1.29880 0.909430i −0.299794 0.954004i \(-0.596918\pi\)
−0.999006 + 0.0445739i \(0.985807\pi\)
\(878\) 6.18293 + 4.32933i 0.208664 + 0.146108i
\(879\) −33.9615 + 7.99287i −1.14549 + 0.269593i
\(880\) 0 0
\(881\) 20.2756 11.7061i 0.683103 0.394390i −0.117920 0.993023i \(-0.537623\pi\)
0.801023 + 0.598633i \(0.204289\pi\)
\(882\) −22.9665 18.2767i −0.773321 0.615409i
\(883\) −6.11319 + 1.63802i −0.205725 + 0.0551239i −0.360210 0.932871i \(-0.617295\pi\)
0.154485 + 0.987995i \(0.450628\pi\)
\(884\) −38.1768 + 13.8952i −1.28402 + 0.467347i
\(885\) 0 0
\(886\) −43.1969 + 36.2465i −1.45123 + 1.21773i
\(887\) 13.8426 + 29.6855i 0.464788 + 0.996741i 0.989375 + 0.145384i \(0.0464419\pi\)
−0.524587 + 0.851357i \(0.675780\pi\)
\(888\) −0.497687 + 2.39139i −0.0167013 + 0.0802497i
\(889\) 14.3756 + 2.53481i 0.482144 + 0.0850149i
\(890\) 0 0
\(891\) 26.0149 1.35174i 0.871531 0.0452851i
\(892\) −17.4021 + 17.4021i −0.582665 + 0.582665i
\(893\) −6.71538 9.59056i −0.224722 0.320936i
\(894\) −9.49386 14.4841i −0.317522 0.484420i
\(895\) 0 0
\(896\) −0.902060 1.07503i −0.0301357 0.0359143i
\(897\) −19.9286 + 49.9352i −0.665396 + 1.66729i
\(898\) −17.4298 8.12765i −0.581640 0.271223i
\(899\) −3.61538 + 6.26203i −0.120580 + 0.208850i
\(900\) 0 0
\(901\) −0.172483 0.298750i −0.00574625 0.00995280i
\(902\) 0.433074 + 4.95006i 0.0144198 + 0.164819i
\(903\) −1.58675 0.982153i −0.0528036 0.0326840i
\(904\) 1.79776 0.316994i 0.0597926 0.0105430i
\(905\) 0 0
\(906\) 69.2851 + 20.8609i 2.30184 + 0.693056i
\(907\) −28.5313 + 2.49616i −0.947365 + 0.0828837i −0.550355 0.834931i \(-0.685508\pi\)
−0.397010 + 0.917814i \(0.629952\pi\)
\(908\) −2.30189 0.616790i −0.0763910 0.0204689i
\(909\) 1.01067 16.4640i 0.0335217 0.546075i
\(910\) 0 0
\(911\) −6.61616 18.1777i −0.219203 0.602255i 0.780536 0.625111i \(-0.214946\pi\)
−0.999739 + 0.0228557i \(0.992724\pi\)
\(912\) 3.91110 + 26.9956i 0.129509 + 0.893913i
\(913\) 48.7315 + 4.26345i 1.61278 + 0.141100i
\(914\) 67.0891 + 24.4184i 2.21911 + 0.807690i
\(915\) 0 0
\(916\) −3.13228 + 17.7641i −0.103493 + 0.586941i
\(917\) 11.6282 + 11.6282i 0.383996 + 0.383996i
\(918\) −8.87375 + 32.5057i −0.292877 + 1.07285i
\(919\) 44.6775i 1.47377i −0.676016 0.736887i \(-0.736295\pi\)
0.676016 0.736887i \(-0.263705\pi\)
\(920\) 0 0
\(921\) −18.4811 9.31782i −0.608972 0.307032i
\(922\) −45.2591 + 21.1047i −1.49053 + 0.695046i
\(923\) −4.84210 + 55.3454i −0.159380 + 1.82172i
\(924\) 15.0134 + 1.77865i 0.493905 + 0.0585134i
\(925\) 0 0
\(926\) −9.44552 5.45337i −0.310399 0.179209i
\(927\) −10.3446 5.61963i −0.339760 0.184573i
\(928\) −4.41970 + 16.4946i −0.145084 + 0.541461i
\(929\) 40.3230 + 33.8350i 1.32296 + 1.11009i 0.985669 + 0.168689i \(0.0539535\pi\)
0.337286 + 0.941402i \(0.390491\pi\)
\(930\) 0 0
\(931\) 3.42478 + 19.4229i 0.112243 + 0.636560i
\(932\) 19.3288 27.6044i 0.633137 0.904213i
\(933\) 4.19168 + 0.128535i 0.137229 + 0.00420806i
\(934\) 53.0403 63.2110i 1.73553 2.06833i
\(935\) 0 0
\(936\) 1.59825 + 1.51736i 0.0522404 + 0.0495965i
\(937\) −3.71263 13.8557i −0.121286 0.452647i 0.878394 0.477938i \(-0.158616\pi\)
−0.999680 + 0.0252908i \(0.991949\pi\)
\(938\) −5.56041 + 11.9243i −0.181554 + 0.389343i
\(939\) 2.49799 21.0853i 0.0815188 0.688092i
\(940\) 0 0
\(941\) −0.0906224 + 0.248983i −0.00295420 + 0.00811661i −0.941161 0.337959i \(-0.890264\pi\)
0.938207 + 0.346075i \(0.112486\pi\)
\(942\) −7.41988 22.5099i −0.241753 0.733413i
\(943\) −3.53479 + 2.47509i −0.115109 + 0.0806000i
\(944\) −14.6593 −0.477121
\(945\) 0 0
\(946\) −4.29098 −0.139512
\(947\) 27.9252 19.5534i 0.907446 0.635401i −0.0238294 0.999716i \(-0.507586\pi\)
0.931276 + 0.364315i \(0.118697\pi\)
\(948\) 3.47539 3.89297i 0.112875 0.126438i
\(949\) 17.4680 47.9930i 0.567037 1.55792i
\(950\) 0 0
\(951\) −31.4782 23.5113i −1.02075 0.762407i
\(952\) −0.238709 + 0.511912i −0.00773659 + 0.0165912i
\(953\) −6.91874 25.8211i −0.224120 0.836427i −0.982755 0.184912i \(-0.940800\pi\)
0.758635 0.651516i \(-0.225867\pi\)
\(954\) −0.357701 + 0.540165i −0.0115810 + 0.0174885i
\(955\) 0 0
\(956\) −11.3705 + 13.5509i −0.367749 + 0.438266i
\(957\) −5.03125 9.36611i −0.162637 0.302763i
\(958\) 31.9305 45.6014i 1.03163 1.47331i
\(959\) −4.99834 28.3470i −0.161405 0.915372i
\(960\) 0 0
\(961\) −14.8420 12.4539i −0.478775 0.401740i
\(962\) −37.6084 + 140.356i −1.21254 + 4.52528i
\(963\) 16.3686 + 41.5813i 0.527471 + 1.33994i
\(964\) −3.68603 2.12813i −0.118719 0.0685425i
\(965\) 0 0
\(966\) 10.2130 + 23.7788i 0.328599 + 0.765069i
\(967\) 1.77416 20.2788i 0.0570532 0.652121i −0.912796 0.408416i \(-0.866081\pi\)
0.969849 0.243706i \(-0.0783631\pi\)
\(968\) −0.284833 + 0.132820i −0.00915488 + 0.00426899i
\(969\) 18.9360 12.4120i 0.608313 0.398731i
\(970\) 0 0
\(971\) 40.5268i 1.30057i 0.759692 + 0.650284i \(0.225350\pi\)
−0.759692 + 0.650284i \(0.774650\pi\)
\(972\) 31.4908 6.24566i 1.01007 0.200329i
\(973\) 1.53972 + 1.53972i 0.0493610 + 0.0493610i
\(974\) 14.0086 79.4468i 0.448865 2.54564i
\(975\) 0 0
\(976\) −16.3627 5.95554i −0.523758 0.190632i
\(977\) 35.4680 + 3.10305i 1.13472 + 0.0992752i 0.639000 0.769207i \(-0.279348\pi\)
0.495721 + 0.868482i \(0.334904\pi\)
\(978\) 65.9434 + 26.3173i 2.10864 + 0.841533i
\(979\) −6.04024 16.5954i −0.193047 0.530392i
\(980\) 0 0
\(981\) −11.8662 + 27.2738i −0.378860 + 0.870787i
\(982\) −46.7049 12.5145i −1.49041 0.399355i
\(983\) −36.5814 + 3.20046i −1.16677 + 0.102079i −0.654030 0.756468i \(-0.726923\pi\)
−0.512735 + 0.858547i \(0.671368\pi\)
\(984\) 0.0405214 + 0.172174i 0.00129177 + 0.00548871i
\(985\) 0 0
\(986\) 13.5432 2.38804i 0.431305 0.0760507i
\(987\) 6.44047 3.45966i 0.205002 0.110122i
\(988\) −4.46840 51.0740i −0.142159 1.62488i
\(989\) −1.86320 3.22716i −0.0592464 0.102618i
\(990\) 0 0
\(991\) 6.40763 11.0983i 0.203545 0.352550i −0.746123 0.665808i \(-0.768087\pi\)
0.949668 + 0.313258i \(0.101420\pi\)
\(992\) 24.8820 + 11.6027i 0.790005 + 0.368385i
\(993\) 27.9710 4.05242i 0.887634 0.128600i
\(994\) 17.1893 + 20.4854i 0.545210 + 0.649756i
\(995\) 0 0
\(996\) 60.1899 3.41109i 1.90719 0.108085i
\(997\) −31.6947 45.2647i −1.00378 1.43355i −0.898432 0.439113i \(-0.855293\pi\)
−0.105349 0.994435i \(-0.533596\pi\)
\(998\) 44.9938 44.9938i 1.42425 1.42425i
\(999\) 39.0800 + 47.0206i 1.23644 + 1.48766i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 675.2.ba.b.218.3 192
5.2 odd 4 inner 675.2.ba.b.407.3 192
5.3 odd 4 135.2.q.a.2.14 192
5.4 even 2 135.2.q.a.83.14 yes 192
15.8 even 4 405.2.r.a.332.3 192
15.14 odd 2 405.2.r.a.8.3 192
27.14 odd 18 inner 675.2.ba.b.68.3 192
135.13 odd 36 405.2.r.a.152.3 192
135.14 odd 18 135.2.q.a.68.14 yes 192
135.68 even 36 135.2.q.a.122.14 yes 192
135.94 even 18 405.2.r.a.233.3 192
135.122 even 36 inner 675.2.ba.b.257.3 192
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
135.2.q.a.2.14 192 5.3 odd 4
135.2.q.a.68.14 yes 192 135.14 odd 18
135.2.q.a.83.14 yes 192 5.4 even 2
135.2.q.a.122.14 yes 192 135.68 even 36
405.2.r.a.8.3 192 15.14 odd 2
405.2.r.a.152.3 192 135.13 odd 36
405.2.r.a.233.3 192 135.94 even 18
405.2.r.a.332.3 192 15.8 even 4
675.2.ba.b.68.3 192 27.14 odd 18 inner
675.2.ba.b.218.3 192 1.1 even 1 trivial
675.2.ba.b.257.3 192 135.122 even 36 inner
675.2.ba.b.407.3 192 5.2 odd 4 inner