gp: [N,k,chi] = [675,2,Mod(32,675)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("675.32");
S:= CuspForms(chi, 2);
N := Newforms(S);
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(675, base_ring=CyclotomicField(36))
chi = DirichletCharacter(H, H._module([10, 9]))
N = Newforms(chi, 2, names="a")
Newform invariants
sage: traces = [192]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion .
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
This newform subspace can be constructed as the kernel of the linear operator
\( T_{2}^{192} - 12 T_{2}^{191} + 72 T_{2}^{190} - 294 T_{2}^{189} + 942 T_{2}^{188} - 2544 T_{2}^{187} + \cdots + 130321 \)
T2^192 - 12*T2^191 + 72*T2^190 - 294*T2^189 + 942*T2^188 - 2544*T2^187 + 5922*T2^186 - 12336*T2^185 + 26091*T2^184 - 64440*T2^183 + 178956*T2^182 - 517566*T2^181 + 1388050*T2^180 - 2667960*T2^179 + 1176678*T2^178 + 14606874*T2^177 - 73581255*T2^176 + 243153810*T2^175 - 663778872*T2^174 + 1585080378*T2^173 - 3542056290*T2^172 + 8025449442*T2^171 - 18276729246*T2^170 + 41023086462*T2^169 - 83026495086*T2^168 + 84262361148*T2^167 + 311739405192*T2^166 - 2151477060240*T2^165 + 7735432950225*T2^164 - 21328509170862*T2^163 + 48207483774414*T2^162 - 88859492084610*T2^161 + 130817013614010*T2^160 - 142434932205690*T2^159 + 55795115443824*T2^158 + 128929633585758*T2^157 - 248468356087081*T2^156 + 1749543887766774*T2^155 - 12797677846979802*T2^154 + 53852225688305238*T2^153 - 159488780519461983*T2^152 + 359133311178648330*T2^151 - 602510380097282082*T2^150 + 587283910734986898*T2^149 + 587518847266015791*T2^148 - 4369858772602182630*T2^147 + 10998570238400276280*T2^146 - 12789866312374558956*T2^145 - 14594899279771401874*T2^144 + 91180259417131132536*T2^143 - 142545519624497723388*T2^142 - 135740036476686191850*T2^141 + 1369145147499685940949*T2^140 - 4257810165108936446334*T2^139 + 8529392789292274250148*T2^138 - 10384386363287230671108*T2^137 - 2675776659198254227287*T2^136 + 52676509417045715188230*T2^135 - 148338455598549580380408*T2^134 + 199588954776796296775710*T2^133 + 69471239966800775750703*T2^132 - 894830758742932973474400*T2^131 + 1610528589448522022941794*T2^130 + 214410051397462120411398*T2^129 - 7914058620350390931376053*T2^128 + 21992276088996001701915438*T2^127 - 35467953225568217818566624*T2^126 + 32326843436870025312159750*T2^125 + 26078755434620516197999416*T2^124 - 217204288917230617537681638*T2^123 + 611433023508830439720177840*T2^122 - 928999244862748663694496756*T2^121 + 35853266909495430875410144*T2^120 + 3560281760650662718600511994*T2^119 - 8478851116623212873574867798*T2^118 + 5861037870264858837455712978*T2^117 + 20573517616647232848859489353*T2^116 - 81151015609544166721164169878*T2^115 + 152205150701738646013582845000*T2^114 - 146796588706361756634326054292*T2^113 - 97294020875196108613476967953*T2^112 + 749055983473202293403635544184*T2^111 - 1742876159649439988534711276682*T2^110 + 2231196514218401739517641889626*T2^109 - 261953221685261175987440080922*T2^108 - 5804601314344406343307368404586*T2^107 + 12916996453115195849451901212246*T2^106 - 9585960397336883348772516681210*T2^105 - 19019373030403165761392738718648*T2^104 + 72613990814468741168710234502520*T2^103 - 116551083370751106484337819805006*T2^102 + 93980029693021453359158034214908*T2^101 + 27940007486187324406146913379910*T2^100 - 227728840859503089002924919885252*T2^99 + 510861484490626883656490146523406*T2^98 - 961860574986909738349552171998192*T2^97 + 1568035851095821535900489153933577*T2^96 - 1991850359304526140564750092354442*T2^95 + 2013024765702019863666828306725136*T2^94 - 2415248089744987667204095369179744*T2^93 + 4972106623339635179680720591678737*T2^92 - 10472464353024072061994337123625920*T2^91 + 15334059750331342789805434601502438*T2^90 - 10197747113440040752977582829982190*T2^89 - 15143430745590306591557747311029180*T2^88 + 60011466619331014710107553843421266*T2^87 - 107338441398791189023020313791407124*T2^86 + 130684174538605641431056359778000410*T2^85 - 106341944818181464692108755275055102*T2^84 + 26389246308099590142748379526154350*T2^83 + 84316240241585975671145206859984868*T2^82 - 165251969232878994868282753152027168*T2^81 + 148582246250170032819706114074862773*T2^80 - 5912619508240714989415742929799856*T2^79 - 195411680612440331221361074206993840*T2^78 + 277215081215266756864322760386847954*T2^77 - 43667442135444893522229068347356111*T2^76 - 540118827722688978987495061093688526*T2^75 + 1342885081388358575399236036848402444*T2^74 - 2198431454051698744844501661974699766*T2^73 + 2889967263952736026349911792515063805*T2^72 - 3088379139915284102595072661988806458*T2^71 + 2630440822267477439099010248205869370*T2^70 - 1715222862477867915073630187445764070*T2^69 + 653276902884635322976745921202830547*T2^68 + 449790434323254786583448749340711442*T2^67 - 1526143188025388793096925212499539570*T2^66 + 2502708144217081945308499655022254892*T2^65 - 3560397856555236975418462718358802653*T2^64 + 4679086415706691016385873010690266684*T2^63 - 5378423203358988987113797617154791936*T2^62 + 5476823356767300694974136635583954416*T2^61 - 4890624008599224098147296388308134228*T2^60 + 3137984793330094958324322913858413558*T2^59 - 397234385935874113855011580633726008*T2^58 - 2384009265017822921135488810562494998*T2^57 + 4564634215776829975538299065552632856*T2^56 - 5764002442910903349893755320315203322*T2^55 + 5637088728301248139248087705082550592*T2^54 - 4539090968574638355891080189004907728*T2^53 + 3274774272021702397035746511398758905*T2^52 - 2118774331404520852299862048544642976*T2^51 + 1146604634262304514782313861710240560*T2^50 - 740682953324306626462160707841865696*T2^49 + 806514099132794816518456012537561688*T2^48 - 726053260428426096198463719061055598*T2^47 + 447084078318808038429519894172021854*T2^46 - 241429796690936899957973878790349996*T2^45 + 131248291607397406531003374072129792*T2^44 - 73434193252458865201761121537322952*T2^43 + 59719262636935611540646033594005810*T2^42 - 38754654601554562118883083985670392*T2^41 + 22882977220267076680341211804763751*T2^40 - 11774103436494274457994508519851174*T2^39 + 3897429977347029491180050746136890*T2^38 - 4628574817979311326455116043989056*T2^37 + 2557798779851781730935757958977904*T2^36 - 861033758560692534760639308607818*T2^35 + 402552001202421244387941049920840*T2^34 - 53524269038356609062209234138460*T2^33 + 173350402834891913007065745529095*T2^32 - 87962463962288588041663137007374*T2^31 + 45497803607061647123662286906070*T2^30 - 18243244279869695971162092769176*T2^29 - 6923886312008783015710873827327*T2^28 + 2188158868373726613175020785364*T2^27 + 670582652966383986080401837950*T2^26 - 1365012765778910952268535966208*T2^25 - 32184765189130232189959176264*T2^24 + 140038546488860334412468150848*T2^23 + 3876123601706883217913770092*T2^22 - 18960791789377880224386447432*T2^21 + 5498852623292675367951813729*T2^20 + 5680585340777813228483222592*T2^19 + 2079944649124889642352119934*T2^18 + 848056004762180242055995422*T2^17 + 449071259357527420433611158*T2^16 + 166602111677697998570738940*T2^15 + 42195786243628986485235036*T2^14 + 8142605244770586128432820*T2^13 + 1230236458558218105653284*T2^12 + 140284597183828677860604*T2^11 + 11270568610920304250010*T2^10 + 561078173351464477056*T2^9 + 12419197838793170241*T2^8 - 109516276056137028*T2^7 + 1729911001168872*T2^6 - 868243476534*T2^5 - 1621017851166*T2^4 - 15542168568*T2^3 + 62406792*T2^2 - 4033092*T2 + 130321
acting on \(S_{2}^{\mathrm{new}}(675, [\chi])\).