Properties

Label 675.2.a.j
Level $675$
Weight $2$
Character orbit 675.a
Self dual yes
Analytic conductor $5.390$
Analytic rank $1$
Dimension $2$
CM discriminant -15
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [675,2,Mod(1,675)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(675, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("675.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 675 = 3^{3} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 675.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,-3,0,3,0,0,0,-6,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(5.38990213644\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{5}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 135)
Fricke sign: \(+1\)
Sato-Tate group: $N(\mathrm{U}(1))$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \frac{1}{2}(1 + \sqrt{5})\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - \beta - 1) q^{2} + 3 \beta q^{4} + ( - 4 \beta - 1) q^{8} + (3 \beta + 5) q^{16} + (2 \beta - 7) q^{17} + ( - 6 \beta + 1) q^{19} + (4 \beta - 5) q^{23} + (6 \beta - 7) q^{31} + ( - 3 \beta - 6) q^{32}+ \cdots + (7 \beta + 7) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 3 q^{2} + 3 q^{4} - 6 q^{8} + 13 q^{16} - 12 q^{17} - 4 q^{19} - 6 q^{23} - 8 q^{31} - 15 q^{32} + 13 q^{34} + 21 q^{38} - q^{46} - 14 q^{49} - 24 q^{53} - 2 q^{61} - 3 q^{62} + 4 q^{64} - 3 q^{68}+ \cdots + 21 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
1.61803
−0.618034
−2.61803 0 4.85410 0 0 0 −7.47214 0 0
1.2 −0.381966 0 −1.85410 0 0 0 1.47214 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \( -1 \)
\(5\) \( -1 \)

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
15.d odd 2 1 CM by \(\Q(\sqrt{-15}) \)

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 675.2.a.j 2
3.b odd 2 1 675.2.a.q 2
5.b even 2 1 675.2.a.q 2
5.c odd 4 2 135.2.b.a 4
15.d odd 2 1 CM 675.2.a.j 2
15.e even 4 2 135.2.b.a 4
20.e even 4 2 2160.2.f.j 4
45.k odd 12 4 405.2.j.h 8
45.l even 12 4 405.2.j.h 8
60.l odd 4 2 2160.2.f.j 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
135.2.b.a 4 5.c odd 4 2
135.2.b.a 4 15.e even 4 2
405.2.j.h 8 45.k odd 12 4
405.2.j.h 8 45.l even 12 4
675.2.a.j 2 1.a even 1 1 trivial
675.2.a.j 2 15.d odd 2 1 CM
675.2.a.q 2 3.b odd 2 1
675.2.a.q 2 5.b even 2 1
2160.2.f.j 4 20.e even 4 2
2160.2.f.j 4 60.l odd 4 2

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(675))\):

\( T_{2}^{2} + 3T_{2} + 1 \) Copy content Toggle raw display
\( T_{7} \) Copy content Toggle raw display
\( T_{11} \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} + 3T + 1 \) Copy content Toggle raw display
$3$ \( T^{2} \) Copy content Toggle raw display
$5$ \( T^{2} \) Copy content Toggle raw display
$7$ \( T^{2} \) Copy content Toggle raw display
$11$ \( T^{2} \) Copy content Toggle raw display
$13$ \( T^{2} \) Copy content Toggle raw display
$17$ \( T^{2} + 12T + 31 \) Copy content Toggle raw display
$19$ \( T^{2} + 4T - 41 \) Copy content Toggle raw display
$23$ \( T^{2} + 6T - 11 \) Copy content Toggle raw display
$29$ \( T^{2} \) Copy content Toggle raw display
$31$ \( T^{2} + 8T - 29 \) Copy content Toggle raw display
$37$ \( T^{2} \) Copy content Toggle raw display
$41$ \( T^{2} \) Copy content Toggle raw display
$43$ \( T^{2} \) Copy content Toggle raw display
$47$ \( T^{2} - 80 \) Copy content Toggle raw display
$53$ \( T^{2} + 24T + 139 \) Copy content Toggle raw display
$59$ \( T^{2} \) Copy content Toggle raw display
$61$ \( T^{2} + 2T - 179 \) Copy content Toggle raw display
$67$ \( T^{2} \) Copy content Toggle raw display
$71$ \( T^{2} \) Copy content Toggle raw display
$73$ \( T^{2} \) Copy content Toggle raw display
$79$ \( T^{2} + 16T + 19 \) Copy content Toggle raw display
$83$ \( T^{2} + 6T - 71 \) Copy content Toggle raw display
$89$ \( T^{2} \) Copy content Toggle raw display
$97$ \( T^{2} \) Copy content Toggle raw display
show more
show less