Properties

Label 675.2.a
Level $675$
Weight $2$
Character orbit 675.a
Rep. character $\chi_{675}(1,\cdot)$
Character field $\Q$
Dimension $25$
Newform subspaces $17$
Sturm bound $180$
Trace bound $11$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 675 = 3^{3} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 675.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 17 \)
Sturm bound: \(180\)
Trace bound: \(11\)
Distinguishing \(T_p\): \(2\), \(7\), \(11\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(675))\).

Total New Old
Modular forms 108 25 83
Cusp forms 73 25 48
Eisenstein series 35 0 35

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(3\)\(5\)FrickeTotalCuspEisenstein
AllNewOldAllNewOldAllNewOld
\(+\)\(+\)\(+\)\(24\)\(4\)\(20\)\(16\)\(4\)\(12\)\(8\)\(0\)\(8\)
\(+\)\(-\)\(-\)\(30\)\(8\)\(22\)\(21\)\(8\)\(13\)\(9\)\(0\)\(9\)
\(-\)\(+\)\(-\)\(30\)\(8\)\(22\)\(21\)\(8\)\(13\)\(9\)\(0\)\(9\)
\(-\)\(-\)\(+\)\(24\)\(5\)\(19\)\(15\)\(5\)\(10\)\(9\)\(0\)\(9\)
Plus space\(+\)\(48\)\(9\)\(39\)\(31\)\(9\)\(22\)\(17\)\(0\)\(17\)
Minus space\(-\)\(60\)\(16\)\(44\)\(42\)\(16\)\(26\)\(18\)\(0\)\(18\)

Trace form

\( 25 q + 26 q^{4} + 3 q^{7} - 7 q^{13} + 48 q^{16} + 3 q^{19} + 20 q^{22} + 30 q^{28} + 14 q^{31} - 20 q^{34} - 29 q^{37} - 4 q^{43} + 8 q^{46} + 4 q^{49} - 14 q^{52} - 8 q^{58} - 19 q^{61} + 72 q^{64} + 45 q^{67}+ \cdots + 13 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(675))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 3 5
675.2.a.a 675.a 1.a $1$ $5.390$ \(\Q\) None 135.2.a.a \(-2\) \(0\) \(0\) \(3\) $-$ $+$ $\mathrm{SU}(2)$ \(q-2q^{2}+2q^{4}+3q^{7}+2q^{11}+5q^{13}+\cdots\)
675.2.a.b 675.a 1.a $1$ $5.390$ \(\Q\) None 675.2.a.b \(-1\) \(0\) \(0\) \(0\) $+$ $+$ $\mathrm{SU}(2)$ \(q-q^{2}-q^{4}+3q^{8}-5q^{11}+5q^{13}+\cdots\)
675.2.a.c 675.a 1.a $1$ $5.390$ \(\Q\) None 675.2.a.b \(-1\) \(0\) \(0\) \(0\) $+$ $-$ $\mathrm{SU}(2)$ \(q-q^{2}-q^{4}+3q^{8}+5q^{11}-5q^{13}+\cdots\)
675.2.a.d 675.a 1.a $1$ $5.390$ \(\Q\) \(\Q(\sqrt{-3}) \) 675.2.a.d \(0\) \(0\) \(0\) \(-4\) $+$ $-$ $N(\mathrm{U}(1))$ \(q-2q^{4}-4q^{7}+5q^{13}+4q^{16}+8q^{19}+\cdots\)
675.2.a.e 675.a 1.a $1$ $5.390$ \(\Q\) \(\Q(\sqrt{-3}) \) 27.2.a.a \(0\) \(0\) \(0\) \(1\) $+$ $+$ $N(\mathrm{U}(1))$ \(q-2q^{4}+q^{7}-5q^{13}+4q^{16}-7q^{19}+\cdots\)
675.2.a.f 675.a 1.a $1$ $5.390$ \(\Q\) \(\Q(\sqrt{-3}) \) 675.2.a.d \(0\) \(0\) \(0\) \(4\) $-$ $+$ $N(\mathrm{U}(1))$ \(q-2q^{4}+4q^{7}-5q^{13}+4q^{16}+8q^{19}+\cdots\)
675.2.a.g 675.a 1.a $1$ $5.390$ \(\Q\) None 675.2.a.b \(1\) \(0\) \(0\) \(0\) $-$ $-$ $\mathrm{SU}(2)$ \(q+q^{2}-q^{4}-3q^{8}-5q^{11}-5q^{13}+\cdots\)
675.2.a.h 675.a 1.a $1$ $5.390$ \(\Q\) None 675.2.a.b \(1\) \(0\) \(0\) \(0\) $-$ $+$ $\mathrm{SU}(2)$ \(q+q^{2}-q^{4}-3q^{8}+5q^{11}+5q^{13}+\cdots\)
675.2.a.i 675.a 1.a $1$ $5.390$ \(\Q\) None 135.2.a.a \(2\) \(0\) \(0\) \(3\) $-$ $+$ $\mathrm{SU}(2)$ \(q+2q^{2}+2q^{4}+3q^{7}-2q^{11}+5q^{13}+\cdots\)
675.2.a.j 675.a 1.a $2$ $5.390$ \(\Q(\sqrt{5}) \) \(\Q(\sqrt{-15}) \) 135.2.b.a \(-3\) \(0\) \(0\) \(0\) $-$ $-$ $N(\mathrm{U}(1))$ \(q+(-1-\beta )q^{2}+3\beta q^{4}+(-1-4\beta )q^{8}+\cdots\)
675.2.a.k 675.a 1.a $2$ $5.390$ \(\Q(\sqrt{13}) \) None 135.2.a.c \(-1\) \(0\) \(0\) \(-2\) $+$ $+$ $\mathrm{SU}(2)$ \(q-\beta q^{2}+(1+\beta )q^{4}+(-2+2\beta )q^{7}+\cdots\)
675.2.a.l 675.a 1.a $2$ $5.390$ \(\Q(\sqrt{2}) \) None 135.2.b.b \(0\) \(0\) \(0\) \(-6\) $-$ $-$ $\mathrm{SU}(2)$ \(q+\beta q^{2}-3q^{7}-2\beta q^{8}-3\beta q^{11}-3q^{13}+\cdots\)
675.2.a.m 675.a 1.a $2$ $5.390$ \(\Q(\sqrt{2}) \) None 135.2.b.b \(0\) \(0\) \(0\) \(6\) $+$ $-$ $\mathrm{SU}(2)$ \(q+\beta q^{2}+3q^{7}-2\beta q^{8}+3\beta q^{11}+3q^{13}+\cdots\)
675.2.a.n 675.a 1.a $2$ $5.390$ \(\Q(\sqrt{7}) \) None 675.2.a.n \(0\) \(0\) \(0\) \(-6\) $-$ $+$ $\mathrm{SU}(2)$ \(q+\beta q^{2}+5q^{4}-3q^{7}+3\beta q^{8}+2\beta q^{11}+\cdots\)
675.2.a.o 675.a 1.a $2$ $5.390$ \(\Q(\sqrt{7}) \) None 675.2.a.n \(0\) \(0\) \(0\) \(6\) $+$ $-$ $\mathrm{SU}(2)$ \(q+\beta q^{2}+5q^{4}+3q^{7}+3\beta q^{8}-2\beta q^{11}+\cdots\)
675.2.a.p 675.a 1.a $2$ $5.390$ \(\Q(\sqrt{13}) \) None 135.2.a.c \(1\) \(0\) \(0\) \(-2\) $-$ $+$ $\mathrm{SU}(2)$ \(q+\beta q^{2}+(1+\beta )q^{4}+(-2+2\beta )q^{7}+\cdots\)
675.2.a.q 675.a 1.a $2$ $5.390$ \(\Q(\sqrt{5}) \) \(\Q(\sqrt{-15}) \) 135.2.b.a \(3\) \(0\) \(0\) \(0\) $+$ $-$ $N(\mathrm{U}(1))$ \(q+(1+\beta )q^{2}+3\beta q^{4}+(1+4\beta )q^{8}+(5+\cdots)q^{16}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(675))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_0(675)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(15))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(27))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(45))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(75))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(135))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(225))\)\(^{\oplus 2}\)