Defining parameters
Level: | \( N \) | \(=\) | \( 675 = 3^{3} \cdot 5^{2} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 675.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 17 \) | ||
Sturm bound: | \(180\) | ||
Trace bound: | \(11\) | ||
Distinguishing \(T_p\): | \(2\), \(7\), \(11\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(675))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 108 | 25 | 83 |
Cusp forms | 73 | 25 | 48 |
Eisenstein series | 35 | 0 | 35 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(3\) | \(5\) | Fricke | Total | Cusp | Eisenstein | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
All | New | Old | All | New | Old | All | New | Old | ||||||
\(+\) | \(+\) | \(+\) | \(24\) | \(4\) | \(20\) | \(16\) | \(4\) | \(12\) | \(8\) | \(0\) | \(8\) | |||
\(+\) | \(-\) | \(-\) | \(30\) | \(8\) | \(22\) | \(21\) | \(8\) | \(13\) | \(9\) | \(0\) | \(9\) | |||
\(-\) | \(+\) | \(-\) | \(30\) | \(8\) | \(22\) | \(21\) | \(8\) | \(13\) | \(9\) | \(0\) | \(9\) | |||
\(-\) | \(-\) | \(+\) | \(24\) | \(5\) | \(19\) | \(15\) | \(5\) | \(10\) | \(9\) | \(0\) | \(9\) | |||
Plus space | \(+\) | \(48\) | \(9\) | \(39\) | \(31\) | \(9\) | \(22\) | \(17\) | \(0\) | \(17\) | ||||
Minus space | \(-\) | \(60\) | \(16\) | \(44\) | \(42\) | \(16\) | \(26\) | \(18\) | \(0\) | \(18\) |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(675))\) into newform subspaces
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(675))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_0(675)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(15))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(27))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(45))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(75))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(135))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(225))\)\(^{\oplus 2}\)