Properties

Label 6720.2.a.ct
Level $6720$
Weight $2$
Character orbit 6720.a
Self dual yes
Analytic conductor $53.659$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 6720 = 2^{6} \cdot 3 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 6720.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(53.6594701583\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{17}) \)
Defining polynomial: \( x^{2} - x - 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 3360)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \sqrt{17}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - q^{3} + q^{5} + q^{7} + q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q - q^{3} + q^{5} + q^{7} + q^{9} + ( - \beta - 1) q^{11} + (\beta - 1) q^{13} - q^{15} + 2 q^{17} + (\beta - 3) q^{19} - q^{21} + q^{25} - q^{27} + 2 q^{29} + (\beta + 1) q^{31} + (\beta + 1) q^{33} + q^{35} + 2 q^{37} + ( - \beta + 1) q^{39} + 2 q^{41} + ( - 2 \beta - 2) q^{43} + q^{45} + q^{49} - 2 q^{51} + ( - 3 \beta - 1) q^{53} + ( - \beta - 1) q^{55} + ( - \beta + 3) q^{57} + 4 q^{59} + 2 \beta q^{61} + q^{63} + (\beta - 1) q^{65} + (2 \beta - 6) q^{67} + ( - \beta - 1) q^{71} + (\beta + 11) q^{73} - q^{75} + ( - \beta - 1) q^{77} + ( - 2 \beta + 6) q^{79} + q^{81} + 4 q^{83} + 2 q^{85} - 2 q^{87} + ( - 2 \beta + 8) q^{89} + (\beta - 1) q^{91} + ( - \beta - 1) q^{93} + (\beta - 3) q^{95} + ( - \beta + 9) q^{97} + ( - \beta - 1) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{3} + 2 q^{5} + 2 q^{7} + 2 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2 q - 2 q^{3} + 2 q^{5} + 2 q^{7} + 2 q^{9} - 2 q^{11} - 2 q^{13} - 2 q^{15} + 4 q^{17} - 6 q^{19} - 2 q^{21} + 2 q^{25} - 2 q^{27} + 4 q^{29} + 2 q^{31} + 2 q^{33} + 2 q^{35} + 4 q^{37} + 2 q^{39} + 4 q^{41} - 4 q^{43} + 2 q^{45} + 2 q^{49} - 4 q^{51} - 2 q^{53} - 2 q^{55} + 6 q^{57} + 8 q^{59} + 2 q^{63} - 2 q^{65} - 12 q^{67} - 2 q^{71} + 22 q^{73} - 2 q^{75} - 2 q^{77} + 12 q^{79} + 2 q^{81} + 8 q^{83} + 4 q^{85} - 4 q^{87} + 16 q^{89} - 2 q^{91} - 2 q^{93} - 6 q^{95} + 18 q^{97} - 2 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
2.56155
−1.56155
0 −1.00000 0 1.00000 0 1.00000 0 1.00000 0
1.2 0 −1.00000 0 1.00000 0 1.00000 0 1.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \(-1\)
\(3\) \(1\)
\(5\) \(-1\)
\(7\) \(-1\)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 6720.2.a.ct 2
4.b odd 2 1 6720.2.a.cw 2
8.b even 2 1 3360.2.a.bg yes 2
8.d odd 2 1 3360.2.a.ba 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
3360.2.a.ba 2 8.d odd 2 1
3360.2.a.bg yes 2 8.b even 2 1
6720.2.a.ct 2 1.a even 1 1 trivial
6720.2.a.cw 2 4.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(6720))\):

\( T_{11}^{2} + 2T_{11} - 16 \) Copy content Toggle raw display
\( T_{13}^{2} + 2T_{13} - 16 \) Copy content Toggle raw display
\( T_{17} - 2 \) Copy content Toggle raw display
\( T_{19}^{2} + 6T_{19} - 8 \) Copy content Toggle raw display
\( T_{23} \) Copy content Toggle raw display
\( T_{29} - 2 \) Copy content Toggle raw display
\( T_{31}^{2} - 2T_{31} - 16 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \) Copy content Toggle raw display
$3$ \( (T + 1)^{2} \) Copy content Toggle raw display
$5$ \( (T - 1)^{2} \) Copy content Toggle raw display
$7$ \( (T - 1)^{2} \) Copy content Toggle raw display
$11$ \( T^{2} + 2T - 16 \) Copy content Toggle raw display
$13$ \( T^{2} + 2T - 16 \) Copy content Toggle raw display
$17$ \( (T - 2)^{2} \) Copy content Toggle raw display
$19$ \( T^{2} + 6T - 8 \) Copy content Toggle raw display
$23$ \( T^{2} \) Copy content Toggle raw display
$29$ \( (T - 2)^{2} \) Copy content Toggle raw display
$31$ \( T^{2} - 2T - 16 \) Copy content Toggle raw display
$37$ \( (T - 2)^{2} \) Copy content Toggle raw display
$41$ \( (T - 2)^{2} \) Copy content Toggle raw display
$43$ \( T^{2} + 4T - 64 \) Copy content Toggle raw display
$47$ \( T^{2} \) Copy content Toggle raw display
$53$ \( T^{2} + 2T - 152 \) Copy content Toggle raw display
$59$ \( (T - 4)^{2} \) Copy content Toggle raw display
$61$ \( T^{2} - 68 \) Copy content Toggle raw display
$67$ \( T^{2} + 12T - 32 \) Copy content Toggle raw display
$71$ \( T^{2} + 2T - 16 \) Copy content Toggle raw display
$73$ \( T^{2} - 22T + 104 \) Copy content Toggle raw display
$79$ \( T^{2} - 12T - 32 \) Copy content Toggle raw display
$83$ \( (T - 4)^{2} \) Copy content Toggle raw display
$89$ \( T^{2} - 16T - 4 \) Copy content Toggle raw display
$97$ \( T^{2} - 18T + 64 \) Copy content Toggle raw display
show more
show less