Properties

Label 6720.2.a.ba.1.1
Level $6720$
Weight $2$
Character 6720.1
Self dual yes
Analytic conductor $53.659$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [6720,2,Mod(1,6720)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(6720, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("6720.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 6720 = 2^{6} \cdot 3 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 6720.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(53.6594701583\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 3360)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 6720.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000 q^{3} +1.00000 q^{5} +1.00000 q^{7} +1.00000 q^{9} +O(q^{10})\) \(q-1.00000 q^{3} +1.00000 q^{5} +1.00000 q^{7} +1.00000 q^{9} -2.00000 q^{11} -1.00000 q^{15} -6.00000 q^{17} +6.00000 q^{19} -1.00000 q^{21} -8.00000 q^{23} +1.00000 q^{25} -1.00000 q^{27} -6.00000 q^{29} -6.00000 q^{31} +2.00000 q^{33} +1.00000 q^{35} +10.0000 q^{37} +2.00000 q^{41} +4.00000 q^{43} +1.00000 q^{45} +8.00000 q^{47} +1.00000 q^{49} +6.00000 q^{51} +12.0000 q^{53} -2.00000 q^{55} -6.00000 q^{57} -12.0000 q^{59} +10.0000 q^{61} +1.00000 q^{63} +4.00000 q^{67} +8.00000 q^{69} -2.00000 q^{71} +4.00000 q^{73} -1.00000 q^{75} -2.00000 q^{77} +4.00000 q^{79} +1.00000 q^{81} -12.0000 q^{83} -6.00000 q^{85} +6.00000 q^{87} +6.00000 q^{89} +6.00000 q^{93} +6.00000 q^{95} +16.0000 q^{97} -2.00000 q^{99} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.00000 −0.577350
\(4\) 0 0
\(5\) 1.00000 0.447214
\(6\) 0 0
\(7\) 1.00000 0.377964
\(8\) 0 0
\(9\) 1.00000 0.333333
\(10\) 0 0
\(11\) −2.00000 −0.603023 −0.301511 0.953463i \(-0.597491\pi\)
−0.301511 + 0.953463i \(0.597491\pi\)
\(12\) 0 0
\(13\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(14\) 0 0
\(15\) −1.00000 −0.258199
\(16\) 0 0
\(17\) −6.00000 −1.45521 −0.727607 0.685994i \(-0.759367\pi\)
−0.727607 + 0.685994i \(0.759367\pi\)
\(18\) 0 0
\(19\) 6.00000 1.37649 0.688247 0.725476i \(-0.258380\pi\)
0.688247 + 0.725476i \(0.258380\pi\)
\(20\) 0 0
\(21\) −1.00000 −0.218218
\(22\) 0 0
\(23\) −8.00000 −1.66812 −0.834058 0.551677i \(-0.813988\pi\)
−0.834058 + 0.551677i \(0.813988\pi\)
\(24\) 0 0
\(25\) 1.00000 0.200000
\(26\) 0 0
\(27\) −1.00000 −0.192450
\(28\) 0 0
\(29\) −6.00000 −1.11417 −0.557086 0.830455i \(-0.688081\pi\)
−0.557086 + 0.830455i \(0.688081\pi\)
\(30\) 0 0
\(31\) −6.00000 −1.07763 −0.538816 0.842424i \(-0.681128\pi\)
−0.538816 + 0.842424i \(0.681128\pi\)
\(32\) 0 0
\(33\) 2.00000 0.348155
\(34\) 0 0
\(35\) 1.00000 0.169031
\(36\) 0 0
\(37\) 10.0000 1.64399 0.821995 0.569495i \(-0.192861\pi\)
0.821995 + 0.569495i \(0.192861\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 2.00000 0.312348 0.156174 0.987730i \(-0.450084\pi\)
0.156174 + 0.987730i \(0.450084\pi\)
\(42\) 0 0
\(43\) 4.00000 0.609994 0.304997 0.952353i \(-0.401344\pi\)
0.304997 + 0.952353i \(0.401344\pi\)
\(44\) 0 0
\(45\) 1.00000 0.149071
\(46\) 0 0
\(47\) 8.00000 1.16692 0.583460 0.812142i \(-0.301699\pi\)
0.583460 + 0.812142i \(0.301699\pi\)
\(48\) 0 0
\(49\) 1.00000 0.142857
\(50\) 0 0
\(51\) 6.00000 0.840168
\(52\) 0 0
\(53\) 12.0000 1.64833 0.824163 0.566352i \(-0.191646\pi\)
0.824163 + 0.566352i \(0.191646\pi\)
\(54\) 0 0
\(55\) −2.00000 −0.269680
\(56\) 0 0
\(57\) −6.00000 −0.794719
\(58\) 0 0
\(59\) −12.0000 −1.56227 −0.781133 0.624364i \(-0.785358\pi\)
−0.781133 + 0.624364i \(0.785358\pi\)
\(60\) 0 0
\(61\) 10.0000 1.28037 0.640184 0.768221i \(-0.278858\pi\)
0.640184 + 0.768221i \(0.278858\pi\)
\(62\) 0 0
\(63\) 1.00000 0.125988
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 4.00000 0.488678 0.244339 0.969690i \(-0.421429\pi\)
0.244339 + 0.969690i \(0.421429\pi\)
\(68\) 0 0
\(69\) 8.00000 0.963087
\(70\) 0 0
\(71\) −2.00000 −0.237356 −0.118678 0.992933i \(-0.537866\pi\)
−0.118678 + 0.992933i \(0.537866\pi\)
\(72\) 0 0
\(73\) 4.00000 0.468165 0.234082 0.972217i \(-0.424791\pi\)
0.234082 + 0.972217i \(0.424791\pi\)
\(74\) 0 0
\(75\) −1.00000 −0.115470
\(76\) 0 0
\(77\) −2.00000 −0.227921
\(78\) 0 0
\(79\) 4.00000 0.450035 0.225018 0.974355i \(-0.427756\pi\)
0.225018 + 0.974355i \(0.427756\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 0 0
\(83\) −12.0000 −1.31717 −0.658586 0.752506i \(-0.728845\pi\)
−0.658586 + 0.752506i \(0.728845\pi\)
\(84\) 0 0
\(85\) −6.00000 −0.650791
\(86\) 0 0
\(87\) 6.00000 0.643268
\(88\) 0 0
\(89\) 6.00000 0.635999 0.317999 0.948091i \(-0.396989\pi\)
0.317999 + 0.948091i \(0.396989\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 6.00000 0.622171
\(94\) 0 0
\(95\) 6.00000 0.615587
\(96\) 0 0
\(97\) 16.0000 1.62455 0.812277 0.583272i \(-0.198228\pi\)
0.812277 + 0.583272i \(0.198228\pi\)
\(98\) 0 0
\(99\) −2.00000 −0.201008
\(100\) 0 0
\(101\) 10.0000 0.995037 0.497519 0.867453i \(-0.334245\pi\)
0.497519 + 0.867453i \(0.334245\pi\)
\(102\) 0 0
\(103\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(104\) 0 0
\(105\) −1.00000 −0.0975900
\(106\) 0 0
\(107\) 16.0000 1.54678 0.773389 0.633932i \(-0.218560\pi\)
0.773389 + 0.633932i \(0.218560\pi\)
\(108\) 0 0
\(109\) 14.0000 1.34096 0.670478 0.741929i \(-0.266089\pi\)
0.670478 + 0.741929i \(0.266089\pi\)
\(110\) 0 0
\(111\) −10.0000 −0.949158
\(112\) 0 0
\(113\) −4.00000 −0.376288 −0.188144 0.982141i \(-0.560247\pi\)
−0.188144 + 0.982141i \(0.560247\pi\)
\(114\) 0 0
\(115\) −8.00000 −0.746004
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −6.00000 −0.550019
\(120\) 0 0
\(121\) −7.00000 −0.636364
\(122\) 0 0
\(123\) −2.00000 −0.180334
\(124\) 0 0
\(125\) 1.00000 0.0894427
\(126\) 0 0
\(127\) −8.00000 −0.709885 −0.354943 0.934888i \(-0.615500\pi\)
−0.354943 + 0.934888i \(0.615500\pi\)
\(128\) 0 0
\(129\) −4.00000 −0.352180
\(130\) 0 0
\(131\) −8.00000 −0.698963 −0.349482 0.936943i \(-0.613642\pi\)
−0.349482 + 0.936943i \(0.613642\pi\)
\(132\) 0 0
\(133\) 6.00000 0.520266
\(134\) 0 0
\(135\) −1.00000 −0.0860663
\(136\) 0 0
\(137\) −8.00000 −0.683486 −0.341743 0.939793i \(-0.611017\pi\)
−0.341743 + 0.939793i \(0.611017\pi\)
\(138\) 0 0
\(139\) −2.00000 −0.169638 −0.0848189 0.996396i \(-0.527031\pi\)
−0.0848189 + 0.996396i \(0.527031\pi\)
\(140\) 0 0
\(141\) −8.00000 −0.673722
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) −6.00000 −0.498273
\(146\) 0 0
\(147\) −1.00000 −0.0824786
\(148\) 0 0
\(149\) −18.0000 −1.47462 −0.737309 0.675556i \(-0.763904\pi\)
−0.737309 + 0.675556i \(0.763904\pi\)
\(150\) 0 0
\(151\) −8.00000 −0.651031 −0.325515 0.945537i \(-0.605538\pi\)
−0.325515 + 0.945537i \(0.605538\pi\)
\(152\) 0 0
\(153\) −6.00000 −0.485071
\(154\) 0 0
\(155\) −6.00000 −0.481932
\(156\) 0 0
\(157\) 12.0000 0.957704 0.478852 0.877896i \(-0.341053\pi\)
0.478852 + 0.877896i \(0.341053\pi\)
\(158\) 0 0
\(159\) −12.0000 −0.951662
\(160\) 0 0
\(161\) −8.00000 −0.630488
\(162\) 0 0
\(163\) −12.0000 −0.939913 −0.469956 0.882690i \(-0.655730\pi\)
−0.469956 + 0.882690i \(0.655730\pi\)
\(164\) 0 0
\(165\) 2.00000 0.155700
\(166\) 0 0
\(167\) 8.00000 0.619059 0.309529 0.950890i \(-0.399829\pi\)
0.309529 + 0.950890i \(0.399829\pi\)
\(168\) 0 0
\(169\) −13.0000 −1.00000
\(170\) 0 0
\(171\) 6.00000 0.458831
\(172\) 0 0
\(173\) 26.0000 1.97674 0.988372 0.152057i \(-0.0485898\pi\)
0.988372 + 0.152057i \(0.0485898\pi\)
\(174\) 0 0
\(175\) 1.00000 0.0755929
\(176\) 0 0
\(177\) 12.0000 0.901975
\(178\) 0 0
\(179\) 22.0000 1.64436 0.822179 0.569230i \(-0.192758\pi\)
0.822179 + 0.569230i \(0.192758\pi\)
\(180\) 0 0
\(181\) 14.0000 1.04061 0.520306 0.853980i \(-0.325818\pi\)
0.520306 + 0.853980i \(0.325818\pi\)
\(182\) 0 0
\(183\) −10.0000 −0.739221
\(184\) 0 0
\(185\) 10.0000 0.735215
\(186\) 0 0
\(187\) 12.0000 0.877527
\(188\) 0 0
\(189\) −1.00000 −0.0727393
\(190\) 0 0
\(191\) 18.0000 1.30243 0.651217 0.758891i \(-0.274259\pi\)
0.651217 + 0.758891i \(0.274259\pi\)
\(192\) 0 0
\(193\) −14.0000 −1.00774 −0.503871 0.863779i \(-0.668091\pi\)
−0.503871 + 0.863779i \(0.668091\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 24.0000 1.70993 0.854965 0.518686i \(-0.173579\pi\)
0.854965 + 0.518686i \(0.173579\pi\)
\(198\) 0 0
\(199\) 10.0000 0.708881 0.354441 0.935079i \(-0.384671\pi\)
0.354441 + 0.935079i \(0.384671\pi\)
\(200\) 0 0
\(201\) −4.00000 −0.282138
\(202\) 0 0
\(203\) −6.00000 −0.421117
\(204\) 0 0
\(205\) 2.00000 0.139686
\(206\) 0 0
\(207\) −8.00000 −0.556038
\(208\) 0 0
\(209\) −12.0000 −0.830057
\(210\) 0 0
\(211\) 4.00000 0.275371 0.137686 0.990476i \(-0.456034\pi\)
0.137686 + 0.990476i \(0.456034\pi\)
\(212\) 0 0
\(213\) 2.00000 0.137038
\(214\) 0 0
\(215\) 4.00000 0.272798
\(216\) 0 0
\(217\) −6.00000 −0.407307
\(218\) 0 0
\(219\) −4.00000 −0.270295
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 20.0000 1.33930 0.669650 0.742677i \(-0.266444\pi\)
0.669650 + 0.742677i \(0.266444\pi\)
\(224\) 0 0
\(225\) 1.00000 0.0666667
\(226\) 0 0
\(227\) −12.0000 −0.796468 −0.398234 0.917284i \(-0.630377\pi\)
−0.398234 + 0.917284i \(0.630377\pi\)
\(228\) 0 0
\(229\) −14.0000 −0.925146 −0.462573 0.886581i \(-0.653074\pi\)
−0.462573 + 0.886581i \(0.653074\pi\)
\(230\) 0 0
\(231\) 2.00000 0.131590
\(232\) 0 0
\(233\) 12.0000 0.786146 0.393073 0.919507i \(-0.371412\pi\)
0.393073 + 0.919507i \(0.371412\pi\)
\(234\) 0 0
\(235\) 8.00000 0.521862
\(236\) 0 0
\(237\) −4.00000 −0.259828
\(238\) 0 0
\(239\) 6.00000 0.388108 0.194054 0.980991i \(-0.437836\pi\)
0.194054 + 0.980991i \(0.437836\pi\)
\(240\) 0 0
\(241\) −18.0000 −1.15948 −0.579741 0.814801i \(-0.696846\pi\)
−0.579741 + 0.814801i \(0.696846\pi\)
\(242\) 0 0
\(243\) −1.00000 −0.0641500
\(244\) 0 0
\(245\) 1.00000 0.0638877
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 12.0000 0.760469
\(250\) 0 0
\(251\) −20.0000 −1.26239 −0.631194 0.775625i \(-0.717435\pi\)
−0.631194 + 0.775625i \(0.717435\pi\)
\(252\) 0 0
\(253\) 16.0000 1.00591
\(254\) 0 0
\(255\) 6.00000 0.375735
\(256\) 0 0
\(257\) 6.00000 0.374270 0.187135 0.982334i \(-0.440080\pi\)
0.187135 + 0.982334i \(0.440080\pi\)
\(258\) 0 0
\(259\) 10.0000 0.621370
\(260\) 0 0
\(261\) −6.00000 −0.371391
\(262\) 0 0
\(263\) 28.0000 1.72655 0.863277 0.504730i \(-0.168408\pi\)
0.863277 + 0.504730i \(0.168408\pi\)
\(264\) 0 0
\(265\) 12.0000 0.737154
\(266\) 0 0
\(267\) −6.00000 −0.367194
\(268\) 0 0
\(269\) 10.0000 0.609711 0.304855 0.952399i \(-0.401392\pi\)
0.304855 + 0.952399i \(0.401392\pi\)
\(270\) 0 0
\(271\) −26.0000 −1.57939 −0.789694 0.613501i \(-0.789761\pi\)
−0.789694 + 0.613501i \(0.789761\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −2.00000 −0.120605
\(276\) 0 0
\(277\) −22.0000 −1.32185 −0.660926 0.750451i \(-0.729836\pi\)
−0.660926 + 0.750451i \(0.729836\pi\)
\(278\) 0 0
\(279\) −6.00000 −0.359211
\(280\) 0 0
\(281\) 22.0000 1.31241 0.656205 0.754583i \(-0.272161\pi\)
0.656205 + 0.754583i \(0.272161\pi\)
\(282\) 0 0
\(283\) 20.0000 1.18888 0.594438 0.804141i \(-0.297374\pi\)
0.594438 + 0.804141i \(0.297374\pi\)
\(284\) 0 0
\(285\) −6.00000 −0.355409
\(286\) 0 0
\(287\) 2.00000 0.118056
\(288\) 0 0
\(289\) 19.0000 1.11765
\(290\) 0 0
\(291\) −16.0000 −0.937937
\(292\) 0 0
\(293\) 10.0000 0.584206 0.292103 0.956387i \(-0.405645\pi\)
0.292103 + 0.956387i \(0.405645\pi\)
\(294\) 0 0
\(295\) −12.0000 −0.698667
\(296\) 0 0
\(297\) 2.00000 0.116052
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) 4.00000 0.230556
\(302\) 0 0
\(303\) −10.0000 −0.574485
\(304\) 0 0
\(305\) 10.0000 0.572598
\(306\) 0 0
\(307\) −16.0000 −0.913168 −0.456584 0.889680i \(-0.650927\pi\)
−0.456584 + 0.889680i \(0.650927\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(312\) 0 0
\(313\) 16.0000 0.904373 0.452187 0.891923i \(-0.350644\pi\)
0.452187 + 0.891923i \(0.350644\pi\)
\(314\) 0 0
\(315\) 1.00000 0.0563436
\(316\) 0 0
\(317\) 12.0000 0.673987 0.336994 0.941507i \(-0.390590\pi\)
0.336994 + 0.941507i \(0.390590\pi\)
\(318\) 0 0
\(319\) 12.0000 0.671871
\(320\) 0 0
\(321\) −16.0000 −0.893033
\(322\) 0 0
\(323\) −36.0000 −2.00309
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) −14.0000 −0.774202
\(328\) 0 0
\(329\) 8.00000 0.441054
\(330\) 0 0
\(331\) 20.0000 1.09930 0.549650 0.835395i \(-0.314761\pi\)
0.549650 + 0.835395i \(0.314761\pi\)
\(332\) 0 0
\(333\) 10.0000 0.547997
\(334\) 0 0
\(335\) 4.00000 0.218543
\(336\) 0 0
\(337\) −14.0000 −0.762629 −0.381314 0.924445i \(-0.624528\pi\)
−0.381314 + 0.924445i \(0.624528\pi\)
\(338\) 0 0
\(339\) 4.00000 0.217250
\(340\) 0 0
\(341\) 12.0000 0.649836
\(342\) 0 0
\(343\) 1.00000 0.0539949
\(344\) 0 0
\(345\) 8.00000 0.430706
\(346\) 0 0
\(347\) −20.0000 −1.07366 −0.536828 0.843692i \(-0.680378\pi\)
−0.536828 + 0.843692i \(0.680378\pi\)
\(348\) 0 0
\(349\) −22.0000 −1.17763 −0.588817 0.808267i \(-0.700406\pi\)
−0.588817 + 0.808267i \(0.700406\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −6.00000 −0.319348 −0.159674 0.987170i \(-0.551044\pi\)
−0.159674 + 0.987170i \(0.551044\pi\)
\(354\) 0 0
\(355\) −2.00000 −0.106149
\(356\) 0 0
\(357\) 6.00000 0.317554
\(358\) 0 0
\(359\) 2.00000 0.105556 0.0527780 0.998606i \(-0.483192\pi\)
0.0527780 + 0.998606i \(0.483192\pi\)
\(360\) 0 0
\(361\) 17.0000 0.894737
\(362\) 0 0
\(363\) 7.00000 0.367405
\(364\) 0 0
\(365\) 4.00000 0.209370
\(366\) 0 0
\(367\) −28.0000 −1.46159 −0.730794 0.682598i \(-0.760850\pi\)
−0.730794 + 0.682598i \(0.760850\pi\)
\(368\) 0 0
\(369\) 2.00000 0.104116
\(370\) 0 0
\(371\) 12.0000 0.623009
\(372\) 0 0
\(373\) 6.00000 0.310668 0.155334 0.987862i \(-0.450355\pi\)
0.155334 + 0.987862i \(0.450355\pi\)
\(374\) 0 0
\(375\) −1.00000 −0.0516398
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) 16.0000 0.821865 0.410932 0.911666i \(-0.365203\pi\)
0.410932 + 0.911666i \(0.365203\pi\)
\(380\) 0 0
\(381\) 8.00000 0.409852
\(382\) 0 0
\(383\) −16.0000 −0.817562 −0.408781 0.912633i \(-0.634046\pi\)
−0.408781 + 0.912633i \(0.634046\pi\)
\(384\) 0 0
\(385\) −2.00000 −0.101929
\(386\) 0 0
\(387\) 4.00000 0.203331
\(388\) 0 0
\(389\) 6.00000 0.304212 0.152106 0.988364i \(-0.451394\pi\)
0.152106 + 0.988364i \(0.451394\pi\)
\(390\) 0 0
\(391\) 48.0000 2.42746
\(392\) 0 0
\(393\) 8.00000 0.403547
\(394\) 0 0
\(395\) 4.00000 0.201262
\(396\) 0 0
\(397\) 16.0000 0.803017 0.401508 0.915855i \(-0.368486\pi\)
0.401508 + 0.915855i \(0.368486\pi\)
\(398\) 0 0
\(399\) −6.00000 −0.300376
\(400\) 0 0
\(401\) −30.0000 −1.49813 −0.749064 0.662497i \(-0.769497\pi\)
−0.749064 + 0.662497i \(0.769497\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) 1.00000 0.0496904
\(406\) 0 0
\(407\) −20.0000 −0.991363
\(408\) 0 0
\(409\) 34.0000 1.68119 0.840596 0.541663i \(-0.182205\pi\)
0.840596 + 0.541663i \(0.182205\pi\)
\(410\) 0 0
\(411\) 8.00000 0.394611
\(412\) 0 0
\(413\) −12.0000 −0.590481
\(414\) 0 0
\(415\) −12.0000 −0.589057
\(416\) 0 0
\(417\) 2.00000 0.0979404
\(418\) 0 0
\(419\) −24.0000 −1.17248 −0.586238 0.810139i \(-0.699392\pi\)
−0.586238 + 0.810139i \(0.699392\pi\)
\(420\) 0 0
\(421\) −6.00000 −0.292422 −0.146211 0.989253i \(-0.546708\pi\)
−0.146211 + 0.989253i \(0.546708\pi\)
\(422\) 0 0
\(423\) 8.00000 0.388973
\(424\) 0 0
\(425\) −6.00000 −0.291043
\(426\) 0 0
\(427\) 10.0000 0.483934
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −18.0000 −0.867029 −0.433515 0.901146i \(-0.642727\pi\)
−0.433515 + 0.901146i \(0.642727\pi\)
\(432\) 0 0
\(433\) −16.0000 −0.768911 −0.384455 0.923144i \(-0.625611\pi\)
−0.384455 + 0.923144i \(0.625611\pi\)
\(434\) 0 0
\(435\) 6.00000 0.287678
\(436\) 0 0
\(437\) −48.0000 −2.29615
\(438\) 0 0
\(439\) 26.0000 1.24091 0.620456 0.784241i \(-0.286947\pi\)
0.620456 + 0.784241i \(0.286947\pi\)
\(440\) 0 0
\(441\) 1.00000 0.0476190
\(442\) 0 0
\(443\) 28.0000 1.33032 0.665160 0.746701i \(-0.268363\pi\)
0.665160 + 0.746701i \(0.268363\pi\)
\(444\) 0 0
\(445\) 6.00000 0.284427
\(446\) 0 0
\(447\) 18.0000 0.851371
\(448\) 0 0
\(449\) 34.0000 1.60456 0.802280 0.596948i \(-0.203620\pi\)
0.802280 + 0.596948i \(0.203620\pi\)
\(450\) 0 0
\(451\) −4.00000 −0.188353
\(452\) 0 0
\(453\) 8.00000 0.375873
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 30.0000 1.40334 0.701670 0.712502i \(-0.252438\pi\)
0.701670 + 0.712502i \(0.252438\pi\)
\(458\) 0 0
\(459\) 6.00000 0.280056
\(460\) 0 0
\(461\) −18.0000 −0.838344 −0.419172 0.907907i \(-0.637680\pi\)
−0.419172 + 0.907907i \(0.637680\pi\)
\(462\) 0 0
\(463\) 8.00000 0.371792 0.185896 0.982569i \(-0.440481\pi\)
0.185896 + 0.982569i \(0.440481\pi\)
\(464\) 0 0
\(465\) 6.00000 0.278243
\(466\) 0 0
\(467\) −12.0000 −0.555294 −0.277647 0.960683i \(-0.589555\pi\)
−0.277647 + 0.960683i \(0.589555\pi\)
\(468\) 0 0
\(469\) 4.00000 0.184703
\(470\) 0 0
\(471\) −12.0000 −0.552931
\(472\) 0 0
\(473\) −8.00000 −0.367840
\(474\) 0 0
\(475\) 6.00000 0.275299
\(476\) 0 0
\(477\) 12.0000 0.549442
\(478\) 0 0
\(479\) 24.0000 1.09659 0.548294 0.836286i \(-0.315277\pi\)
0.548294 + 0.836286i \(0.315277\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) 8.00000 0.364013
\(484\) 0 0
\(485\) 16.0000 0.726523
\(486\) 0 0
\(487\) 32.0000 1.45006 0.725029 0.688718i \(-0.241826\pi\)
0.725029 + 0.688718i \(0.241826\pi\)
\(488\) 0 0
\(489\) 12.0000 0.542659
\(490\) 0 0
\(491\) 6.00000 0.270776 0.135388 0.990793i \(-0.456772\pi\)
0.135388 + 0.990793i \(0.456772\pi\)
\(492\) 0 0
\(493\) 36.0000 1.62136
\(494\) 0 0
\(495\) −2.00000 −0.0898933
\(496\) 0 0
\(497\) −2.00000 −0.0897123
\(498\) 0 0
\(499\) 24.0000 1.07439 0.537194 0.843459i \(-0.319484\pi\)
0.537194 + 0.843459i \(0.319484\pi\)
\(500\) 0 0
\(501\) −8.00000 −0.357414
\(502\) 0 0
\(503\) 24.0000 1.07011 0.535054 0.844818i \(-0.320291\pi\)
0.535054 + 0.844818i \(0.320291\pi\)
\(504\) 0 0
\(505\) 10.0000 0.444994
\(506\) 0 0
\(507\) 13.0000 0.577350
\(508\) 0 0
\(509\) 18.0000 0.797836 0.398918 0.916987i \(-0.369386\pi\)
0.398918 + 0.916987i \(0.369386\pi\)
\(510\) 0 0
\(511\) 4.00000 0.176950
\(512\) 0 0
\(513\) −6.00000 −0.264906
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) −16.0000 −0.703679
\(518\) 0 0
\(519\) −26.0000 −1.14127
\(520\) 0 0
\(521\) −6.00000 −0.262865 −0.131432 0.991325i \(-0.541958\pi\)
−0.131432 + 0.991325i \(0.541958\pi\)
\(522\) 0 0
\(523\) −16.0000 −0.699631 −0.349816 0.936819i \(-0.613756\pi\)
−0.349816 + 0.936819i \(0.613756\pi\)
\(524\) 0 0
\(525\) −1.00000 −0.0436436
\(526\) 0 0
\(527\) 36.0000 1.56818
\(528\) 0 0
\(529\) 41.0000 1.78261
\(530\) 0 0
\(531\) −12.0000 −0.520756
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) 16.0000 0.691740
\(536\) 0 0
\(537\) −22.0000 −0.949370
\(538\) 0 0
\(539\) −2.00000 −0.0861461
\(540\) 0 0
\(541\) −14.0000 −0.601907 −0.300954 0.953639i \(-0.597305\pi\)
−0.300954 + 0.953639i \(0.597305\pi\)
\(542\) 0 0
\(543\) −14.0000 −0.600798
\(544\) 0 0
\(545\) 14.0000 0.599694
\(546\) 0 0
\(547\) 44.0000 1.88130 0.940652 0.339372i \(-0.110215\pi\)
0.940652 + 0.339372i \(0.110215\pi\)
\(548\) 0 0
\(549\) 10.0000 0.426790
\(550\) 0 0
\(551\) −36.0000 −1.53365
\(552\) 0 0
\(553\) 4.00000 0.170097
\(554\) 0 0
\(555\) −10.0000 −0.424476
\(556\) 0 0
\(557\) 28.0000 1.18640 0.593199 0.805056i \(-0.297865\pi\)
0.593199 + 0.805056i \(0.297865\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) −12.0000 −0.506640
\(562\) 0 0
\(563\) 4.00000 0.168580 0.0842900 0.996441i \(-0.473138\pi\)
0.0842900 + 0.996441i \(0.473138\pi\)
\(564\) 0 0
\(565\) −4.00000 −0.168281
\(566\) 0 0
\(567\) 1.00000 0.0419961
\(568\) 0 0
\(569\) 42.0000 1.76073 0.880366 0.474295i \(-0.157297\pi\)
0.880366 + 0.474295i \(0.157297\pi\)
\(570\) 0 0
\(571\) 16.0000 0.669579 0.334790 0.942293i \(-0.391335\pi\)
0.334790 + 0.942293i \(0.391335\pi\)
\(572\) 0 0
\(573\) −18.0000 −0.751961
\(574\) 0 0
\(575\) −8.00000 −0.333623
\(576\) 0 0
\(577\) −32.0000 −1.33218 −0.666089 0.745873i \(-0.732033\pi\)
−0.666089 + 0.745873i \(0.732033\pi\)
\(578\) 0 0
\(579\) 14.0000 0.581820
\(580\) 0 0
\(581\) −12.0000 −0.497844
\(582\) 0 0
\(583\) −24.0000 −0.993978
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −12.0000 −0.495293 −0.247647 0.968850i \(-0.579657\pi\)
−0.247647 + 0.968850i \(0.579657\pi\)
\(588\) 0 0
\(589\) −36.0000 −1.48335
\(590\) 0 0
\(591\) −24.0000 −0.987228
\(592\) 0 0
\(593\) −6.00000 −0.246390 −0.123195 0.992382i \(-0.539314\pi\)
−0.123195 + 0.992382i \(0.539314\pi\)
\(594\) 0 0
\(595\) −6.00000 −0.245976
\(596\) 0 0
\(597\) −10.0000 −0.409273
\(598\) 0 0
\(599\) 18.0000 0.735460 0.367730 0.929933i \(-0.380135\pi\)
0.367730 + 0.929933i \(0.380135\pi\)
\(600\) 0 0
\(601\) −26.0000 −1.06056 −0.530281 0.847822i \(-0.677914\pi\)
−0.530281 + 0.847822i \(0.677914\pi\)
\(602\) 0 0
\(603\) 4.00000 0.162893
\(604\) 0 0
\(605\) −7.00000 −0.284590
\(606\) 0 0
\(607\) −12.0000 −0.487065 −0.243532 0.969893i \(-0.578306\pi\)
−0.243532 + 0.969893i \(0.578306\pi\)
\(608\) 0 0
\(609\) 6.00000 0.243132
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) 26.0000 1.05013 0.525065 0.851062i \(-0.324041\pi\)
0.525065 + 0.851062i \(0.324041\pi\)
\(614\) 0 0
\(615\) −2.00000 −0.0806478
\(616\) 0 0
\(617\) 4.00000 0.161034 0.0805170 0.996753i \(-0.474343\pi\)
0.0805170 + 0.996753i \(0.474343\pi\)
\(618\) 0 0
\(619\) −26.0000 −1.04503 −0.522514 0.852631i \(-0.675006\pi\)
−0.522514 + 0.852631i \(0.675006\pi\)
\(620\) 0 0
\(621\) 8.00000 0.321029
\(622\) 0 0
\(623\) 6.00000 0.240385
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 0 0
\(627\) 12.0000 0.479234
\(628\) 0 0
\(629\) −60.0000 −2.39236
\(630\) 0 0
\(631\) 20.0000 0.796187 0.398094 0.917345i \(-0.369672\pi\)
0.398094 + 0.917345i \(0.369672\pi\)
\(632\) 0 0
\(633\) −4.00000 −0.158986
\(634\) 0 0
\(635\) −8.00000 −0.317470
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) −2.00000 −0.0791188
\(640\) 0 0
\(641\) −2.00000 −0.0789953 −0.0394976 0.999220i \(-0.512576\pi\)
−0.0394976 + 0.999220i \(0.512576\pi\)
\(642\) 0 0
\(643\) 32.0000 1.26196 0.630978 0.775800i \(-0.282654\pi\)
0.630978 + 0.775800i \(0.282654\pi\)
\(644\) 0 0
\(645\) −4.00000 −0.157500
\(646\) 0 0
\(647\) 24.0000 0.943537 0.471769 0.881722i \(-0.343616\pi\)
0.471769 + 0.881722i \(0.343616\pi\)
\(648\) 0 0
\(649\) 24.0000 0.942082
\(650\) 0 0
\(651\) 6.00000 0.235159
\(652\) 0 0
\(653\) −8.00000 −0.313064 −0.156532 0.987673i \(-0.550031\pi\)
−0.156532 + 0.987673i \(0.550031\pi\)
\(654\) 0 0
\(655\) −8.00000 −0.312586
\(656\) 0 0
\(657\) 4.00000 0.156055
\(658\) 0 0
\(659\) 10.0000 0.389545 0.194772 0.980848i \(-0.437603\pi\)
0.194772 + 0.980848i \(0.437603\pi\)
\(660\) 0 0
\(661\) 2.00000 0.0777910 0.0388955 0.999243i \(-0.487616\pi\)
0.0388955 + 0.999243i \(0.487616\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 6.00000 0.232670
\(666\) 0 0
\(667\) 48.0000 1.85857
\(668\) 0 0
\(669\) −20.0000 −0.773245
\(670\) 0 0
\(671\) −20.0000 −0.772091
\(672\) 0 0
\(673\) 22.0000 0.848038 0.424019 0.905653i \(-0.360619\pi\)
0.424019 + 0.905653i \(0.360619\pi\)
\(674\) 0 0
\(675\) −1.00000 −0.0384900
\(676\) 0 0
\(677\) −30.0000 −1.15299 −0.576497 0.817099i \(-0.695581\pi\)
−0.576497 + 0.817099i \(0.695581\pi\)
\(678\) 0 0
\(679\) 16.0000 0.614024
\(680\) 0 0
\(681\) 12.0000 0.459841
\(682\) 0 0
\(683\) −36.0000 −1.37750 −0.688751 0.724998i \(-0.741841\pi\)
−0.688751 + 0.724998i \(0.741841\pi\)
\(684\) 0 0
\(685\) −8.00000 −0.305664
\(686\) 0 0
\(687\) 14.0000 0.534133
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) 10.0000 0.380418 0.190209 0.981744i \(-0.439083\pi\)
0.190209 + 0.981744i \(0.439083\pi\)
\(692\) 0 0
\(693\) −2.00000 −0.0759737
\(694\) 0 0
\(695\) −2.00000 −0.0758643
\(696\) 0 0
\(697\) −12.0000 −0.454532
\(698\) 0 0
\(699\) −12.0000 −0.453882
\(700\) 0 0
\(701\) 18.0000 0.679851 0.339925 0.940452i \(-0.389598\pi\)
0.339925 + 0.940452i \(0.389598\pi\)
\(702\) 0 0
\(703\) 60.0000 2.26294
\(704\) 0 0
\(705\) −8.00000 −0.301297
\(706\) 0 0
\(707\) 10.0000 0.376089
\(708\) 0 0
\(709\) 10.0000 0.375558 0.187779 0.982211i \(-0.439871\pi\)
0.187779 + 0.982211i \(0.439871\pi\)
\(710\) 0 0
\(711\) 4.00000 0.150012
\(712\) 0 0
\(713\) 48.0000 1.79761
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) −6.00000 −0.224074
\(718\) 0 0
\(719\) −12.0000 −0.447524 −0.223762 0.974644i \(-0.571834\pi\)
−0.223762 + 0.974644i \(0.571834\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) 18.0000 0.669427
\(724\) 0 0
\(725\) −6.00000 −0.222834
\(726\) 0 0
\(727\) −36.0000 −1.33517 −0.667583 0.744535i \(-0.732671\pi\)
−0.667583 + 0.744535i \(0.732671\pi\)
\(728\) 0 0
\(729\) 1.00000 0.0370370
\(730\) 0 0
\(731\) −24.0000 −0.887672
\(732\) 0 0
\(733\) 32.0000 1.18195 0.590973 0.806691i \(-0.298744\pi\)
0.590973 + 0.806691i \(0.298744\pi\)
\(734\) 0 0
\(735\) −1.00000 −0.0368856
\(736\) 0 0
\(737\) −8.00000 −0.294684
\(738\) 0 0
\(739\) −40.0000 −1.47142 −0.735712 0.677295i \(-0.763152\pi\)
−0.735712 + 0.677295i \(0.763152\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −28.0000 −1.02722 −0.513610 0.858024i \(-0.671692\pi\)
−0.513610 + 0.858024i \(0.671692\pi\)
\(744\) 0 0
\(745\) −18.0000 −0.659469
\(746\) 0 0
\(747\) −12.0000 −0.439057
\(748\) 0 0
\(749\) 16.0000 0.584627
\(750\) 0 0
\(751\) −12.0000 −0.437886 −0.218943 0.975738i \(-0.570261\pi\)
−0.218943 + 0.975738i \(0.570261\pi\)
\(752\) 0 0
\(753\) 20.0000 0.728841
\(754\) 0 0
\(755\) −8.00000 −0.291150
\(756\) 0 0
\(757\) −34.0000 −1.23575 −0.617876 0.786276i \(-0.712006\pi\)
−0.617876 + 0.786276i \(0.712006\pi\)
\(758\) 0 0
\(759\) −16.0000 −0.580763
\(760\) 0 0
\(761\) −26.0000 −0.942499 −0.471250 0.882000i \(-0.656197\pi\)
−0.471250 + 0.882000i \(0.656197\pi\)
\(762\) 0 0
\(763\) 14.0000 0.506834
\(764\) 0 0
\(765\) −6.00000 −0.216930
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) −26.0000 −0.937584 −0.468792 0.883309i \(-0.655311\pi\)
−0.468792 + 0.883309i \(0.655311\pi\)
\(770\) 0 0
\(771\) −6.00000 −0.216085
\(772\) 0 0
\(773\) −6.00000 −0.215805 −0.107903 0.994161i \(-0.534413\pi\)
−0.107903 + 0.994161i \(0.534413\pi\)
\(774\) 0 0
\(775\) −6.00000 −0.215526
\(776\) 0 0
\(777\) −10.0000 −0.358748
\(778\) 0 0
\(779\) 12.0000 0.429945
\(780\) 0 0
\(781\) 4.00000 0.143131
\(782\) 0 0
\(783\) 6.00000 0.214423
\(784\) 0 0
\(785\) 12.0000 0.428298
\(786\) 0 0
\(787\) 48.0000 1.71102 0.855508 0.517790i \(-0.173245\pi\)
0.855508 + 0.517790i \(0.173245\pi\)
\(788\) 0 0
\(789\) −28.0000 −0.996826
\(790\) 0 0
\(791\) −4.00000 −0.142224
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) −12.0000 −0.425596
\(796\) 0 0
\(797\) 50.0000 1.77109 0.885545 0.464553i \(-0.153785\pi\)
0.885545 + 0.464553i \(0.153785\pi\)
\(798\) 0 0
\(799\) −48.0000 −1.69812
\(800\) 0 0
\(801\) 6.00000 0.212000
\(802\) 0 0
\(803\) −8.00000 −0.282314
\(804\) 0 0
\(805\) −8.00000 −0.281963
\(806\) 0 0
\(807\) −10.0000 −0.352017
\(808\) 0 0
\(809\) −18.0000 −0.632846 −0.316423 0.948618i \(-0.602482\pi\)
−0.316423 + 0.948618i \(0.602482\pi\)
\(810\) 0 0
\(811\) −34.0000 −1.19390 −0.596951 0.802278i \(-0.703621\pi\)
−0.596951 + 0.802278i \(0.703621\pi\)
\(812\) 0 0
\(813\) 26.0000 0.911860
\(814\) 0 0
\(815\) −12.0000 −0.420342
\(816\) 0 0
\(817\) 24.0000 0.839654
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −22.0000 −0.767805 −0.383903 0.923374i \(-0.625420\pi\)
−0.383903 + 0.923374i \(0.625420\pi\)
\(822\) 0 0
\(823\) 32.0000 1.11545 0.557725 0.830026i \(-0.311674\pi\)
0.557725 + 0.830026i \(0.311674\pi\)
\(824\) 0 0
\(825\) 2.00000 0.0696311
\(826\) 0 0
\(827\) −32.0000 −1.11275 −0.556375 0.830932i \(-0.687808\pi\)
−0.556375 + 0.830932i \(0.687808\pi\)
\(828\) 0 0
\(829\) −50.0000 −1.73657 −0.868286 0.496064i \(-0.834778\pi\)
−0.868286 + 0.496064i \(0.834778\pi\)
\(830\) 0 0
\(831\) 22.0000 0.763172
\(832\) 0 0
\(833\) −6.00000 −0.207888
\(834\) 0 0
\(835\) 8.00000 0.276851
\(836\) 0 0
\(837\) 6.00000 0.207390
\(838\) 0 0
\(839\) 28.0000 0.966667 0.483334 0.875436i \(-0.339426\pi\)
0.483334 + 0.875436i \(0.339426\pi\)
\(840\) 0 0
\(841\) 7.00000 0.241379
\(842\) 0 0
\(843\) −22.0000 −0.757720
\(844\) 0 0
\(845\) −13.0000 −0.447214
\(846\) 0 0
\(847\) −7.00000 −0.240523
\(848\) 0 0
\(849\) −20.0000 −0.686398
\(850\) 0 0
\(851\) −80.0000 −2.74236
\(852\) 0 0
\(853\) 48.0000 1.64349 0.821744 0.569856i \(-0.193001\pi\)
0.821744 + 0.569856i \(0.193001\pi\)
\(854\) 0 0
\(855\) 6.00000 0.205196
\(856\) 0 0
\(857\) 30.0000 1.02478 0.512390 0.858753i \(-0.328760\pi\)
0.512390 + 0.858753i \(0.328760\pi\)
\(858\) 0 0
\(859\) −14.0000 −0.477674 −0.238837 0.971060i \(-0.576766\pi\)
−0.238837 + 0.971060i \(0.576766\pi\)
\(860\) 0 0
\(861\) −2.00000 −0.0681598
\(862\) 0 0
\(863\) −48.0000 −1.63394 −0.816970 0.576681i \(-0.804348\pi\)
−0.816970 + 0.576681i \(0.804348\pi\)
\(864\) 0 0
\(865\) 26.0000 0.884027
\(866\) 0 0
\(867\) −19.0000 −0.645274
\(868\) 0 0
\(869\) −8.00000 −0.271381
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) 16.0000 0.541518
\(874\) 0 0
\(875\) 1.00000 0.0338062
\(876\) 0 0
\(877\) −22.0000 −0.742887 −0.371444 0.928456i \(-0.621137\pi\)
−0.371444 + 0.928456i \(0.621137\pi\)
\(878\) 0 0
\(879\) −10.0000 −0.337292
\(880\) 0 0
\(881\) 30.0000 1.01073 0.505363 0.862907i \(-0.331359\pi\)
0.505363 + 0.862907i \(0.331359\pi\)
\(882\) 0 0
\(883\) 12.0000 0.403832 0.201916 0.979403i \(-0.435283\pi\)
0.201916 + 0.979403i \(0.435283\pi\)
\(884\) 0 0
\(885\) 12.0000 0.403376
\(886\) 0 0
\(887\) −24.0000 −0.805841 −0.402921 0.915235i \(-0.632005\pi\)
−0.402921 + 0.915235i \(0.632005\pi\)
\(888\) 0 0
\(889\) −8.00000 −0.268311
\(890\) 0 0
\(891\) −2.00000 −0.0670025
\(892\) 0 0
\(893\) 48.0000 1.60626
\(894\) 0 0
\(895\) 22.0000 0.735379
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 36.0000 1.20067
\(900\) 0 0
\(901\) −72.0000 −2.39867
\(902\) 0 0
\(903\) −4.00000 −0.133112
\(904\) 0 0
\(905\) 14.0000 0.465376
\(906\) 0 0
\(907\) 44.0000 1.46100 0.730498 0.682915i \(-0.239288\pi\)
0.730498 + 0.682915i \(0.239288\pi\)
\(908\) 0 0
\(909\) 10.0000 0.331679
\(910\) 0 0
\(911\) −30.0000 −0.993944 −0.496972 0.867766i \(-0.665555\pi\)
−0.496972 + 0.867766i \(0.665555\pi\)
\(912\) 0 0
\(913\) 24.0000 0.794284
\(914\) 0 0
\(915\) −10.0000 −0.330590
\(916\) 0 0
\(917\) −8.00000 −0.264183
\(918\) 0 0
\(919\) 4.00000 0.131948 0.0659739 0.997821i \(-0.478985\pi\)
0.0659739 + 0.997821i \(0.478985\pi\)
\(920\) 0 0
\(921\) 16.0000 0.527218
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) 10.0000 0.328798
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −2.00000 −0.0656179 −0.0328089 0.999462i \(-0.510445\pi\)
−0.0328089 + 0.999462i \(0.510445\pi\)
\(930\) 0 0
\(931\) 6.00000 0.196642
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 12.0000 0.392442
\(936\) 0 0
\(937\) −12.0000 −0.392023 −0.196011 0.980602i \(-0.562799\pi\)
−0.196011 + 0.980602i \(0.562799\pi\)
\(938\) 0 0
\(939\) −16.0000 −0.522140
\(940\) 0 0
\(941\) −18.0000 −0.586783 −0.293392 0.955992i \(-0.594784\pi\)
−0.293392 + 0.955992i \(0.594784\pi\)
\(942\) 0 0
\(943\) −16.0000 −0.521032
\(944\) 0 0
\(945\) −1.00000 −0.0325300
\(946\) 0 0
\(947\) −52.0000 −1.68977 −0.844886 0.534946i \(-0.820332\pi\)
−0.844886 + 0.534946i \(0.820332\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) −12.0000 −0.389127
\(952\) 0 0
\(953\) 4.00000 0.129573 0.0647864 0.997899i \(-0.479363\pi\)
0.0647864 + 0.997899i \(0.479363\pi\)
\(954\) 0 0
\(955\) 18.0000 0.582466
\(956\) 0 0
\(957\) −12.0000 −0.387905
\(958\) 0 0
\(959\) −8.00000 −0.258333
\(960\) 0 0
\(961\) 5.00000 0.161290
\(962\) 0 0
\(963\) 16.0000 0.515593
\(964\) 0 0
\(965\) −14.0000 −0.450676
\(966\) 0 0
\(967\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(968\) 0 0
\(969\) 36.0000 1.15649
\(970\) 0 0
\(971\) −12.0000 −0.385098 −0.192549 0.981287i \(-0.561675\pi\)
−0.192549 + 0.981287i \(0.561675\pi\)
\(972\) 0 0
\(973\) −2.00000 −0.0641171
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 28.0000 0.895799 0.447900 0.894084i \(-0.352172\pi\)
0.447900 + 0.894084i \(0.352172\pi\)
\(978\) 0 0
\(979\) −12.0000 −0.383522
\(980\) 0 0
\(981\) 14.0000 0.446986
\(982\) 0 0
\(983\) −32.0000 −1.02064 −0.510321 0.859984i \(-0.670473\pi\)
−0.510321 + 0.859984i \(0.670473\pi\)
\(984\) 0 0
\(985\) 24.0000 0.764704
\(986\) 0 0
\(987\) −8.00000 −0.254643
\(988\) 0 0
\(989\) −32.0000 −1.01754
\(990\) 0 0
\(991\) 20.0000 0.635321 0.317660 0.948205i \(-0.397103\pi\)
0.317660 + 0.948205i \(0.397103\pi\)
\(992\) 0 0
\(993\) −20.0000 −0.634681
\(994\) 0 0
\(995\) 10.0000 0.317021
\(996\) 0 0
\(997\) −32.0000 −1.01345 −0.506725 0.862108i \(-0.669144\pi\)
−0.506725 + 0.862108i \(0.669144\pi\)
\(998\) 0 0
\(999\) −10.0000 −0.316386
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 6720.2.a.ba.1.1 1
4.3 odd 2 6720.2.a.ce.1.1 1
8.3 odd 2 3360.2.a.b.1.1 1
8.5 even 2 3360.2.a.r.1.1 yes 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
3360.2.a.b.1.1 1 8.3 odd 2
3360.2.a.r.1.1 yes 1 8.5 even 2
6720.2.a.ba.1.1 1 1.1 even 1 trivial
6720.2.a.ce.1.1 1 4.3 odd 2