Properties

Label 672.4.a.h
Level $672$
Weight $4$
Character orbit 672.a
Self dual yes
Analytic conductor $39.649$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [672,4,Mod(1,672)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(672, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("672.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: \( N \) \(=\) \( 672 = 2^{5} \cdot 3 \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 672.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,-6,0,10] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(39.6492835239\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{137}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 34 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \sqrt{137}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - 3 q^{3} + ( - \beta + 5) q^{5} - 7 q^{7} + 9 q^{9} + (\beta - 11) q^{11} + (2 \beta + 12) q^{13} + (3 \beta - 15) q^{15} + (\beta + 15) q^{17} + (4 \beta - 16) q^{19} + 21 q^{21} + (3 \beta - 41) q^{23}+ \cdots + (9 \beta - 99) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 6 q^{3} + 10 q^{5} - 14 q^{7} + 18 q^{9} - 22 q^{11} + 24 q^{13} - 30 q^{15} + 30 q^{17} - 32 q^{19} + 42 q^{21} - 82 q^{23} + 74 q^{25} - 54 q^{27} + 36 q^{29} - 112 q^{31} + 66 q^{33} - 70 q^{35}+ \cdots - 198 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
6.35235
−5.35235
0 −3.00000 0 −6.70470 0 −7.00000 0 9.00000 0
1.2 0 −3.00000 0 16.7047 0 −7.00000 0 9.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(3\) \( +1 \)
\(7\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 672.4.a.h 2
3.b odd 2 1 2016.4.a.i 2
4.b odd 2 1 672.4.a.m yes 2
8.b even 2 1 1344.4.a.bm 2
8.d odd 2 1 1344.4.a.be 2
12.b even 2 1 2016.4.a.j 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
672.4.a.h 2 1.a even 1 1 trivial
672.4.a.m yes 2 4.b odd 2 1
1344.4.a.be 2 8.d odd 2 1
1344.4.a.bm 2 8.b even 2 1
2016.4.a.i 2 3.b odd 2 1
2016.4.a.j 2 12.b even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(672))\):

\( T_{5}^{2} - 10T_{5} - 112 \) Copy content Toggle raw display
\( T_{11}^{2} + 22T_{11} - 16 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \) Copy content Toggle raw display
$3$ \( (T + 3)^{2} \) Copy content Toggle raw display
$5$ \( T^{2} - 10T - 112 \) Copy content Toggle raw display
$7$ \( (T + 7)^{2} \) Copy content Toggle raw display
$11$ \( T^{2} + 22T - 16 \) Copy content Toggle raw display
$13$ \( T^{2} - 24T - 404 \) Copy content Toggle raw display
$17$ \( T^{2} - 30T + 88 \) Copy content Toggle raw display
$19$ \( T^{2} + 32T - 1936 \) Copy content Toggle raw display
$23$ \( T^{2} + 82T + 448 \) Copy content Toggle raw display
$29$ \( T^{2} - 36T - 54476 \) Copy content Toggle raw display
$31$ \( T^{2} + 112T - 5632 \) Copy content Toggle raw display
$37$ \( T^{2} - 48T - 26276 \) Copy content Toggle raw display
$41$ \( T^{2} + 70T + 1088 \) Copy content Toggle raw display
$43$ \( T^{2} + 40T - 54400 \) Copy content Toggle raw display
$47$ \( T^{2} + 420T - 114272 \) Copy content Toggle raw display
$53$ \( T^{2} - 176T - 36644 \) Copy content Toggle raw display
$59$ \( T^{2} + 404T + 40256 \) Copy content Toggle raw display
$61$ \( T^{2} + 156T - 213116 \) Copy content Toggle raw display
$67$ \( T^{2} - 4T - 123296 \) Copy content Toggle raw display
$71$ \( T^{2} + 814T + 162224 \) Copy content Toggle raw display
$73$ \( T^{2} + 216T - 278228 \) Copy content Toggle raw display
$79$ \( T^{2} + 1580 T + 557792 \) Copy content Toggle raw display
$83$ \( T^{2} + 464T + 51632 \) Copy content Toggle raw display
$89$ \( T^{2} + 1158 T - 701712 \) Copy content Toggle raw display
$97$ \( T^{2} + 1760 T + 247772 \) Copy content Toggle raw display
show more
show less