Properties

Label 672.2.j.d
Level 672
Weight 2
Character orbit 672.j
Analytic conductor 5.366
Analytic rank 0
Dimension 12
CM No
Inner twists 4

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) = \( 672 = 2^{5} \cdot 3 \cdot 7 \)
Weight: \( k \) = \( 2 \)
Character orbit: \([\chi]\) = 672.j (of order \(2\) and degree \(1\))

Newform invariants

Self dual: No
Analytic conductor: \(5.36594701583\)
Analytic rank: \(0\)
Dimension: \(12\)
Coefficient field: 12.0.2593100598870016.2
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{9} \)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{11}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_{3} q^{3} + ( -\beta_{6} - \beta_{7} ) q^{5} + \beta_{1} q^{7} + ( -\beta_{2} - \beta_{8} ) q^{9} +O(q^{10})\) \( q + \beta_{3} q^{3} + ( -\beta_{6} - \beta_{7} ) q^{5} + \beta_{1} q^{7} + ( -\beta_{2} - \beta_{8} ) q^{9} + ( -\beta_{4} - \beta_{5} ) q^{13} + ( 3 \beta_{1} - \beta_{4} - \beta_{7} ) q^{15} + \beta_{9} q^{17} + ( 4 + \beta_{2} + \beta_{3} ) q^{19} + \beta_{6} q^{21} + ( \beta_{4} - \beta_{5} + \beta_{6} + \beta_{7} - \beta_{11} ) q^{23} + ( 1 + \beta_{2} + \beta_{3} + \beta_{8} - \beta_{10} ) q^{25} + ( -2 + \beta_{2} + \beta_{9} ) q^{27} + ( 2 \beta_{4} - 2 \beta_{5} ) q^{29} + ( -\beta_{2} + \beta_{3} ) q^{35} + ( 4 \beta_{1} - 2 \beta_{6} + 2 \beta_{7} ) q^{37} + ( -\beta_{1} - \beta_{4} + 3 \beta_{7} - \beta_{11} ) q^{39} + ( 2 \beta_{2} - 2 \beta_{3} + 2 \beta_{8} + \beta_{9} + 2 \beta_{10} ) q^{41} + ( -4 - \beta_{2} - \beta_{3} - \beta_{8} + \beta_{10} ) q^{43} + ( 2 \beta_{1} + 3 \beta_{6} + \beta_{7} - \beta_{11} ) q^{45} + ( 2 \beta_{4} - 2 \beta_{5} - 2 \beta_{6} - 2 \beta_{7} ) q^{47} - q^{49} + ( -\beta_{2} + \beta_{3} - \beta_{8} - 3 \beta_{10} ) q^{51} -2 \beta_{11} q^{53} + ( 3 - \beta_{2} + 4 \beta_{3} - \beta_{8} ) q^{57} + ( \beta_{2} - \beta_{3} + 2 \beta_{8} + 2 \beta_{10} ) q^{59} + ( 4 \beta_{1} - \beta_{4} - \beta_{5} + 2 \beta_{6} - 2 \beta_{7} ) q^{61} + ( \beta_{4} + \beta_{7} ) q^{63} + ( -3 \beta_{2} + 3 \beta_{3} + \beta_{8} - 2 \beta_{9} + \beta_{10} ) q^{65} + ( 4 - \beta_{2} - \beta_{3} + \beta_{8} - \beta_{10} ) q^{67} + ( -2 \beta_{1} - \beta_{4} + 3 \beta_{5} - \beta_{6} + \beta_{7} + \beta_{11} ) q^{69} + \beta_{11} q^{71} -6 q^{73} + ( 2 - 4 \beta_{2} + \beta_{3} - \beta_{9} ) q^{75} + ( 4 \beta_{6} - 4 \beta_{7} ) q^{79} + ( 3 - \beta_{2} - \beta_{3} - \beta_{8} - 3 \beta_{10} ) q^{81} + ( 3 \beta_{2} - 3 \beta_{3} + 2 \beta_{8} + 2 \beta_{9} + 2 \beta_{10} ) q^{83} + ( 2 \beta_{4} + 2 \beta_{5} ) q^{85} + ( 2 \beta_{1} - 2 \beta_{4} + 2 \beta_{7} + 2 \beta_{11} ) q^{87} + ( 2 \beta_{2} - 2 \beta_{3} - 2 \beta_{8} - \beta_{9} - 2 \beta_{10} ) q^{89} + ( -\beta_{8} + \beta_{10} ) q^{91} + ( -\beta_{4} + \beta_{5} - 5 \beta_{6} - 5 \beta_{7} ) q^{95} + ( -6 + 2 \beta_{2} + 2 \beta_{3} - 2 \beta_{8} + 2 \beta_{10} ) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12q + 4q^{9} + O(q^{10}) \) \( 12q + 4q^{9} + 48q^{19} + 4q^{25} - 24q^{27} - 40q^{43} - 12q^{49} - 8q^{51} + 40q^{57} + 40q^{67} - 72q^{73} + 24q^{75} + 28q^{81} + 8q^{91} - 56q^{97} + O(q^{100}) \)

Basis of coefficient ring in terms of a root \(\nu\) of \(x^{12} - 2 x^{10} + x^{8} + 4 x^{6} + 4 x^{4} - 32 x^{2} + 64\):

\(\beta_{0}\)\(=\)\( 1 \)
\(\beta_{1}\)\(=\)\((\)\( -\nu^{8} - \nu^{4} + 2 \nu^{2} - 8 \)\()/16\)
\(\beta_{2}\)\(=\)\((\)\( \nu^{11} - 2 \nu^{10} + 2 \nu^{9} - 4 \nu^{8} + 9 \nu^{7} + 14 \nu^{6} + 8 \nu^{5} + 16 \nu^{4} + 4 \nu^{3} - 72 \nu^{2} + 48 \nu + 32 \)\()/128\)
\(\beta_{3}\)\(=\)\((\)\( -\nu^{11} - 2 \nu^{10} - 2 \nu^{9} - 4 \nu^{8} - 9 \nu^{7} + 14 \nu^{6} - 8 \nu^{5} + 16 \nu^{4} - 4 \nu^{3} - 72 \nu^{2} - 48 \nu + 32 \)\()/128\)
\(\beta_{4}\)\(=\)\((\)\( -\nu^{11} + 6 \nu^{10} + 6 \nu^{9} - 4 \nu^{8} - 9 \nu^{7} + 22 \nu^{6} - 20 \nu^{3} + 120 \nu^{2} + 144 \nu - 96 \)\()/128\)
\(\beta_{5}\)\(=\)\((\)\( \nu^{11} + 6 \nu^{10} - 6 \nu^{9} - 4 \nu^{8} + 9 \nu^{7} + 22 \nu^{6} + 20 \nu^{3} + 120 \nu^{2} - 144 \nu - 96 \)\()/128\)
\(\beta_{6}\)\(=\)\((\)\( 3 \nu^{11} - 2 \nu^{10} - 2 \nu^{9} + 4 \nu^{8} - 5 \nu^{7} + 14 \nu^{6} + 16 \nu^{5} - 40 \nu^{4} - 4 \nu^{3} - 24 \nu^{2} - 112 \nu + 96 \)\()/128\)
\(\beta_{7}\)\(=\)\((\)\( 3 \nu^{11} + 2 \nu^{10} - 2 \nu^{9} - 4 \nu^{8} - 5 \nu^{7} - 14 \nu^{6} + 16 \nu^{5} + 40 \nu^{4} - 4 \nu^{3} + 24 \nu^{2} - 112 \nu - 96 \)\()/128\)
\(\beta_{8}\)\(=\)\((\)\( 3 \nu^{11} - 10 \nu^{10} - 10 \nu^{9} + 12 \nu^{8} - 5 \nu^{7} + 6 \nu^{6} + 8 \nu^{5} - 16 \nu^{4} + 12 \nu^{3} + 24 \nu^{2} - 48 \nu + 160 \)\()/128\)
\(\beta_{9}\)\(=\)\((\)\( \nu^{11} + 2 \nu^{9} - 7 \nu^{7} + 8 \nu^{5} + 52 \nu^{3} - 48 \nu \)\()/32\)
\(\beta_{10}\)\(=\)\((\)\( 3 \nu^{11} + 10 \nu^{10} - 10 \nu^{9} - 12 \nu^{8} - 5 \nu^{7} - 6 \nu^{6} + 8 \nu^{5} + 16 \nu^{4} + 12 \nu^{3} - 24 \nu^{2} - 48 \nu - 160 \)\()/128\)
\(\beta_{11}\)\(=\)\((\)\( -\nu^{11} - \nu^{7} + 10 \nu^{5} - 16 \nu^{3} + 16 \nu \)\()/16\)
\(1\)\(=\)\(\beta_0\)
\(\nu\)\(=\)\((\)\(\beta_{10} + \beta_{8} - \beta_{7} - \beta_{6} - \beta_{5} + \beta_{4} - \beta_{3} + \beta_{2}\)\()/4\)
\(\nu^{2}\)\(=\)\((\)\(-\beta_{10} + \beta_{8} + \beta_{7} - \beta_{6} + \beta_{5} + \beta_{4} - \beta_{3} - \beta_{2} + 2 \beta_{1} + 2\)\()/4\)
\(\nu^{3}\)\(=\)\((\)\(\beta_{10} + 2 \beta_{9} + \beta_{8} - 3 \beta_{7} - 3 \beta_{6} + \beta_{5} - \beta_{4} - \beta_{3} + \beta_{2}\)\()/4\)
\(\nu^{4}\)\(=\)\((\)\(-\beta_{10} + \beta_{8} + 5 \beta_{7} - 5 \beta_{6} + \beta_{5} + \beta_{4} + 3 \beta_{3} + 3 \beta_{2} - 6 \beta_{1} + 2\)\()/4\)
\(\nu^{5}\)\(=\)\((\)\(4 \beta_{11} + \beta_{10} + 2 \beta_{9} + \beta_{8} + \beta_{7} + \beta_{6} + \beta_{5} - \beta_{4} - 5 \beta_{3} + 5 \beta_{2}\)\()/4\)
\(\nu^{6}\)\(=\)\((\)\(-\beta_{10} + \beta_{8} - 3 \beta_{7} + 3 \beta_{6} + 5 \beta_{5} + 5 \beta_{4} + 7 \beta_{3} + 7 \beta_{2} - 6 \beta_{1} - 6\)\()/4\)
\(\nu^{7}\)\(=\)\((\)\(-3 \beta_{10} - 2 \beta_{9} - 3 \beta_{8} - 3 \beta_{7} - 3 \beta_{6} + 9 \beta_{5} - 9 \beta_{4} - 13 \beta_{3} + 13 \beta_{2}\)\()/4\)
\(\nu^{8}\)\(=\)\((\)\(-\beta_{10} + \beta_{8} - 3 \beta_{7} + 3 \beta_{6} + \beta_{5} + \beta_{4} - 5 \beta_{3} - 5 \beta_{2} - 54 \beta_{1} - 30\)\()/4\)
\(\nu^{9}\)\(=\)\((\)\(-4 \beta_{11} - 23 \beta_{10} + 2 \beta_{9} - 23 \beta_{8} + 17 \beta_{7} + 17 \beta_{6} - 7 \beta_{5} + 7 \beta_{4} - 5 \beta_{3} + 5 \beta_{2}\)\()/4\)
\(\nu^{10}\)\(=\)\((\)\(23 \beta_{10} - 23 \beta_{8} - 11 \beta_{7} + 11 \beta_{6} + 5 \beta_{5} + 5 \beta_{4} - 9 \beta_{3} - 9 \beta_{2} - 54 \beta_{1} + 26\)\()/4\)
\(\nu^{11}\)\(=\)\((\)\(-24 \beta_{11} + 13 \beta_{10} - 10 \beta_{9} + 13 \beta_{8} + 45 \beta_{7} + 45 \beta_{6} - 31 \beta_{5} + 31 \beta_{4} - 37 \beta_{3} + 37 \beta_{2}\)\()/4\)

Character Values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/672\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(421\) \(449\) \(577\)
\(\chi(n)\) \(-1\) \(-1\) \(-1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
239.1
−1.19877 0.750295i
1.19877 0.750295i
−1.19877 + 0.750295i
1.19877 + 0.750295i
−1.37027 + 0.349801i
1.37027 + 0.349801i
−1.37027 0.349801i
1.37027 0.349801i
0.430469 + 1.34711i
−0.430469 + 1.34711i
0.430469 1.34711i
−0.430469 1.34711i
0 −1.67298 0.448478i 0 −0.896956 0 1.00000i 0 2.59774 + 1.50059i 0
239.2 0 −1.67298 0.448478i 0 0.896956 0 1.00000i 0 2.59774 + 1.50059i 0
239.3 0 −1.67298 + 0.448478i 0 −0.896956 0 1.00000i 0 2.59774 1.50059i 0
239.4 0 −1.67298 + 0.448478i 0 0.896956 0 1.00000i 0 2.59774 1.50059i 0
239.5 0 0.203364 1.72007i 0 −3.44014 0 1.00000i 0 −2.91729 0.699602i 0
239.6 0 0.203364 1.72007i 0 3.44014 0 1.00000i 0 −2.91729 0.699602i 0
239.7 0 0.203364 + 1.72007i 0 −3.44014 0 1.00000i 0 −2.91729 + 0.699602i 0
239.8 0 0.203364 + 1.72007i 0 3.44014 0 1.00000i 0 −2.91729 + 0.699602i 0
239.9 0 1.46962 0.916638i 0 −1.83328 0 1.00000i 0 1.31955 2.69421i 0
239.10 0 1.46962 0.916638i 0 1.83328 0 1.00000i 0 1.31955 2.69421i 0
239.11 0 1.46962 + 0.916638i 0 −1.83328 0 1.00000i 0 1.31955 + 2.69421i 0
239.12 0 1.46962 + 0.916638i 0 1.83328 0 1.00000i 0 1.31955 + 2.69421i 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 239.12
Significant digits:
Format:

Inner twists

Char. orbit Parity Mult. Self Twist Proved
1.a Even 1 trivial yes
3.b Odd 1 yes
8.d Odd 1 yes
24.f Even 1 yes

Hecke kernels

This newform can be constructed as the kernel of the linear operator \( T_{5}^{6} - 16 T_{5}^{4} + 52 T_{5}^{2} - 32 \) acting on \(S_{2}^{\mathrm{new}}(672, [\chi])\).