Properties

Label 672.2.j.a
Level 672
Weight 2
Character orbit 672.j
Analytic conductor 5.366
Analytic rank 0
Dimension 4
CM No
Inner twists 4

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) = \( 672 = 2^{5} \cdot 3 \cdot 7 \)
Weight: \( k \) = \( 2 \)
Character orbit: \([\chi]\) = 672.j (of order \(2\) and degree \(1\))

Newform invariants

Self dual: No
Analytic conductor: \(5.36594701583\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{8})\)
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2 \)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{8}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( -1 - \zeta_{8} - \zeta_{8}^{3} ) q^{3} + ( -2 \zeta_{8} + 2 \zeta_{8}^{3} ) q^{5} -\zeta_{8}^{2} q^{7} + ( -1 + 2 \zeta_{8} + 2 \zeta_{8}^{3} ) q^{9} +O(q^{10})\) \( q + ( -1 - \zeta_{8} - \zeta_{8}^{3} ) q^{3} + ( -2 \zeta_{8} + 2 \zeta_{8}^{3} ) q^{5} -\zeta_{8}^{2} q^{7} + ( -1 + 2 \zeta_{8} + 2 \zeta_{8}^{3} ) q^{9} + ( 4 \zeta_{8} + 4 \zeta_{8}^{3} ) q^{11} -4 \zeta_{8}^{2} q^{13} + ( 2 \zeta_{8} + 4 \zeta_{8}^{2} - 2 \zeta_{8}^{3} ) q^{15} + ( 2 \zeta_{8} + 2 \zeta_{8}^{3} ) q^{17} + 2 q^{19} + ( -\zeta_{8} + \zeta_{8}^{2} + \zeta_{8}^{3} ) q^{21} + ( 2 \zeta_{8} - 2 \zeta_{8}^{3} ) q^{23} + 3 q^{25} + ( 5 - \zeta_{8} - \zeta_{8}^{3} ) q^{27} + ( 4 \zeta_{8} - 4 \zeta_{8}^{3} ) q^{29} + ( 8 - 4 \zeta_{8} - 4 \zeta_{8}^{3} ) q^{33} + ( 2 \zeta_{8} + 2 \zeta_{8}^{3} ) q^{35} + 8 \zeta_{8}^{2} q^{37} + ( -4 \zeta_{8} + 4 \zeta_{8}^{2} + 4 \zeta_{8}^{3} ) q^{39} + ( 2 \zeta_{8} + 2 \zeta_{8}^{3} ) q^{41} + 10 q^{43} + ( 2 \zeta_{8} - 8 \zeta_{8}^{2} - 2 \zeta_{8}^{3} ) q^{45} - q^{49} + ( 4 - 2 \zeta_{8} - 2 \zeta_{8}^{3} ) q^{51} + ( -4 \zeta_{8} + 4 \zeta_{8}^{3} ) q^{53} -16 \zeta_{8}^{2} q^{55} + ( -2 - 2 \zeta_{8} - 2 \zeta_{8}^{3} ) q^{57} + ( 6 \zeta_{8} + 6 \zeta_{8}^{3} ) q^{59} + 12 \zeta_{8}^{2} q^{61} + ( 2 \zeta_{8} + \zeta_{8}^{2} - 2 \zeta_{8}^{3} ) q^{63} + ( 8 \zeta_{8} + 8 \zeta_{8}^{3} ) q^{65} -6 q^{67} + ( -2 \zeta_{8} - 4 \zeta_{8}^{2} + 2 \zeta_{8}^{3} ) q^{69} + ( -6 \zeta_{8} + 6 \zeta_{8}^{3} ) q^{71} + 10 q^{73} + ( -3 - 3 \zeta_{8} - 3 \zeta_{8}^{3} ) q^{75} + ( 4 \zeta_{8} - 4 \zeta_{8}^{3} ) q^{77} + 8 \zeta_{8}^{2} q^{79} + ( -7 - 4 \zeta_{8} - 4 \zeta_{8}^{3} ) q^{81} + ( -2 \zeta_{8} - 2 \zeta_{8}^{3} ) q^{83} -8 \zeta_{8}^{2} q^{85} + ( -4 \zeta_{8} - 8 \zeta_{8}^{2} + 4 \zeta_{8}^{3} ) q^{87} + ( -2 \zeta_{8} - 2 \zeta_{8}^{3} ) q^{89} -4 q^{91} + ( -4 \zeta_{8} + 4 \zeta_{8}^{3} ) q^{95} -2 q^{97} + ( -16 - 4 \zeta_{8} - 4 \zeta_{8}^{3} ) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4q - 4q^{3} - 4q^{9} + O(q^{10}) \) \( 4q - 4q^{3} - 4q^{9} + 8q^{19} + 12q^{25} + 20q^{27} + 32q^{33} + 40q^{43} - 4q^{49} + 16q^{51} - 8q^{57} - 24q^{67} + 40q^{73} - 12q^{75} - 28q^{81} - 16q^{91} - 8q^{97} - 64q^{99} + O(q^{100}) \)

Character Values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/672\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(421\) \(449\) \(577\)
\(\chi(n)\) \(-1\) \(-1\) \(-1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
239.1
0.707107 + 0.707107i
−0.707107 + 0.707107i
0.707107 0.707107i
−0.707107 0.707107i
0 −1.00000 1.41421i 0 −2.82843 0 1.00000i 0 −1.00000 + 2.82843i 0
239.2 0 −1.00000 1.41421i 0 2.82843 0 1.00000i 0 −1.00000 + 2.82843i 0
239.3 0 −1.00000 + 1.41421i 0 −2.82843 0 1.00000i 0 −1.00000 2.82843i 0
239.4 0 −1.00000 + 1.41421i 0 2.82843 0 1.00000i 0 −1.00000 2.82843i 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char. orbit Parity Mult. Self Twist Proved
1.a Even 1 trivial yes
3.b Odd 1 yes
8.d Odd 1 yes
24.f Even 1 yes

Hecke kernels

This newform can be constructed as the kernel of the linear operator \( T_{5}^{2} - 8 \) acting on \(S_{2}^{\mathrm{new}}(672, [\chi])\).