Newspace parameters
| Level: | \( N \) | \(=\) | \( 672 = 2^{5} \cdot 3 \cdot 7 \) |
| Weight: | \( k \) | \(=\) | \( 2 \) |
| Character orbit: | \([\chi]\) | \(=\) | 672.cj (of order \(24\), degree \(8\), minimal) |
Newform invariants
| Self dual: | no |
| Analytic conductor: | \(5.36594701583\) |
| Analytic rank: | \(0\) |
| Dimension: | \(512\) |
| Relative dimension: | \(64\) over \(\Q(\zeta_{24})\) |
| Twist minimal: | yes |
| Sato-Tate group: | $\mathrm{SU}(2)[C_{24}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
| Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 37.1 | −1.41272 | + | 0.0650669i | 0.608761 | − | 0.793353i | 1.99153 | − | 0.183842i | 0.793153 | − | 0.608607i | −0.808386 | + | 1.16039i | 2.15682 | + | 1.53235i | −2.80151 | + | 0.389300i | −0.258819 | − | 0.965926i | −1.08090 | + | 0.911397i |
| 37.2 | −1.41057 | + | 0.101443i | −0.608761 | + | 0.793353i | 1.97942 | − | 0.286185i | 2.37132 | − | 1.81958i | 0.778221 | − | 1.18084i | 0.892352 | + | 2.49072i | −2.76308 | + | 0.604481i | −0.258819 | − | 0.965926i | −3.16033 | + | 2.80720i |
| 37.3 | −1.40602 | + | 0.152013i | −0.608761 | + | 0.793353i | 1.95378 | − | 0.427466i | −3.05794 | + | 2.34644i | 0.735331 | − | 1.20801i | −1.56959 | − | 2.12988i | −2.68208 | + | 0.898026i | −0.258819 | − | 0.965926i | 3.94284 | − | 3.76399i |
| 37.4 | −1.40441 | − | 0.166200i | 0.608761 | − | 0.793353i | 1.94476 | + | 0.466826i | −3.53997 | + | 2.71631i | −0.986808 | + | 1.01302i | −1.01327 | + | 2.44403i | −2.65365 | − | 0.978835i | −0.258819 | − | 0.965926i | 5.42303 | − | 3.22649i |
| 37.5 | −1.39097 | + | 0.255335i | 0.608761 | − | 0.793353i | 1.86961 | − | 0.710329i | 1.77094 | − | 1.35889i | −0.644199 | + | 1.25897i | −2.25409 | + | 1.38531i | −2.41920 | + | 1.46542i | −0.258819 | − | 0.965926i | −2.11636 | + | 2.34236i |
| 37.6 | −1.38887 | + | 0.266508i | 0.608761 | − | 0.793353i | 1.85795 | − | 0.740294i | −0.342802 | + | 0.263041i | −0.634058 | + | 1.26411i | −0.219164 | − | 2.63666i | −2.38316 | + | 1.52333i | −0.258819 | − | 0.965926i | 0.406006 | − | 0.456691i |
| 37.7 | −1.38600 | − | 0.281097i | −0.608761 | + | 0.793353i | 1.84197 | + | 0.779198i | −1.29803 | + | 0.996014i | 1.06675 | − | 0.928464i | 1.75011 | + | 1.98422i | −2.33393 | − | 1.59774i | −0.258819 | − | 0.965926i | 2.07904 | − | 1.01560i |
| 37.8 | −1.33766 | − | 0.458976i | 0.608761 | − | 0.793353i | 1.57868 | + | 1.22791i | 1.59131 | − | 1.22106i | −1.17845 | + | 0.781832i | 2.60325 | − | 0.472310i | −1.54816 | − | 2.36711i | −0.258819 | − | 0.965926i | −2.68908 | + | 0.902988i |
| 37.9 | −1.30025 | + | 0.556198i | −0.608761 | + | 0.793353i | 1.38129 | − | 1.44639i | 0.874472 | − | 0.671006i | 0.350279 | − | 1.37015i | 2.18520 | − | 1.49161i | −0.991534 | + | 2.64894i | −0.258819 | − | 0.965926i | −0.763817 | + | 1.35885i |
| 37.10 | −1.27720 | + | 0.607254i | −0.608761 | + | 0.793353i | 1.26249 | − | 1.55117i | 0.101604 | − | 0.0779635i | 0.295744 | − | 1.38294i | −2.55596 | + | 0.683426i | −0.670493 | + | 2.74781i | −0.258819 | − | 0.965926i | −0.0824251 | + | 0.161274i |
| 37.11 | −1.22621 | − | 0.704559i | −0.608761 | + | 0.793353i | 1.00719 | + | 1.72788i | −0.601499 | + | 0.461547i | 1.30543 | − | 0.543912i | −2.34514 | + | 1.22487i | −0.0176438 | − | 2.82837i | −0.258819 | − | 0.965926i | 1.06275 | − | 0.142163i |
| 37.12 | −1.19253 | − | 0.760181i | −0.608761 | + | 0.793353i | 0.844250 | + | 1.81308i | 1.70446 | − | 1.30788i | 1.32906 | − | 0.483328i | −1.89849 | − | 1.84275i | 0.371472 | − | 2.80393i | −0.258819 | − | 0.965926i | −3.02685 | + | 0.263985i |
| 37.13 | −1.14852 | + | 0.825172i | 0.608761 | − | 0.793353i | 0.638182 | − | 1.89545i | −1.92032 | + | 1.47351i | −0.0445198 | + | 1.41351i | 2.30408 | + | 1.30046i | 0.831107 | + | 2.70356i | −0.258819 | − | 0.965926i | 0.989617 | − | 3.27695i |
| 37.14 | −1.14821 | − | 0.825600i | 0.608761 | − | 0.793353i | 0.636770 | + | 1.89592i | −2.87168 | + | 2.20351i | −1.35398 | + | 0.408343i | 1.27376 | − | 2.31895i | 0.834128 | − | 2.70263i | −0.258819 | − | 0.965926i | 5.11651 | − | 0.159241i |
| 37.15 | −1.09201 | + | 0.898623i | 0.608761 | − | 0.793353i | 0.384954 | − | 1.96260i | 3.01788 | − | 2.31570i | 0.0481542 | + | 1.41339i | −0.423858 | − | 2.61158i | 1.34327 | + | 2.48910i | −0.258819 | − | 0.965926i | −1.21460 | + | 5.24069i |
| 37.16 | −1.05500 | + | 0.941796i | 0.608761 | − | 0.793353i | 0.226042 | − | 1.98719i | −1.87609 | + | 1.43957i | 0.104934 | + | 1.41032i | −2.64497 | − | 0.0642908i | 1.63305 | + | 2.30936i | −0.258819 | − | 0.965926i | 0.623485 | − | 3.28563i |
| 37.17 | −0.976671 | − | 1.02280i | 0.608761 | − | 0.793353i | −0.0922281 | + | 1.99787i | −0.440961 | + | 0.338361i | −1.40600 | + | 0.152206i | −0.156173 | + | 2.64114i | 2.13349 | − | 1.85693i | −0.258819 | − | 0.965926i | 0.776749 | + | 0.120546i |
| 37.18 | −0.961805 | + | 1.03679i | −0.608761 | + | 0.793353i | −0.149861 | − | 1.99438i | −1.59412 | + | 1.22321i | −0.237030 | − | 1.39421i | −1.44227 | + | 2.21808i | 2.21188 | + | 1.76283i | −0.258819 | − | 0.965926i | 0.265022 | − | 2.82925i |
| 37.19 | −0.958402 | − | 1.03994i | −0.608761 | + | 0.793353i | −0.162930 | + | 1.99335i | 2.79050 | − | 2.14123i | 1.40847 | − | 0.127279i | 2.64551 | − | 0.0353797i | 2.22911 | − | 1.74100i | −0.258819 | − | 0.965926i | −4.90116 | − | 0.849783i |
| 37.20 | −0.937240 | − | 1.05905i | −0.608761 | + | 0.793353i | −0.243161 | + | 1.98516i | −1.89948 | + | 1.45752i | 1.41075 | − | 0.0988559i | −0.272298 | − | 2.63170i | 2.33028 | − | 1.60306i | −0.258819 | − | 0.965926i | 3.32386 | + | 0.645590i |
| See next 80 embeddings (of 512 total) | |||||||||||||||||||||||||||
Inner twists
| Char | Parity | Ord | Mult | Type |
|---|---|---|---|---|
| 1.a | even | 1 | 1 | trivial |
| 7.c | even | 3 | 1 | inner |
| 32.g | even | 8 | 1 | inner |
| 224.bd | even | 24 | 1 | inner |
Twists
| By twisting character orbit | |||||||
|---|---|---|---|---|---|---|---|
| Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
| 1.a | even | 1 | 1 | trivial | 672.2.cj.a | ✓ | 512 |
| 7.c | even | 3 | 1 | inner | 672.2.cj.a | ✓ | 512 |
| 32.g | even | 8 | 1 | inner | 672.2.cj.a | ✓ | 512 |
| 224.bd | even | 24 | 1 | inner | 672.2.cj.a | ✓ | 512 |
| By twisted newform orbit | |||||||
|---|---|---|---|---|---|---|---|
| Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
| 672.2.cj.a | ✓ | 512 | 1.a | even | 1 | 1 | trivial |
| 672.2.cj.a | ✓ | 512 | 7.c | even | 3 | 1 | inner |
| 672.2.cj.a | ✓ | 512 | 32.g | even | 8 | 1 | inner |
| 672.2.cj.a | ✓ | 512 | 224.bd | even | 24 | 1 | inner |
Hecke kernels
This newform subspace is the entire newspace \(S_{2}^{\mathrm{new}}(672, [\chi])\).