Newspace parameters
Level: | \( N \) | \(=\) | \( 672 = 2^{5} \cdot 3 \cdot 7 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 672.bi (of order \(6\), degree \(2\), not minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(5.36594701583\) |
Analytic rank: | \(0\) |
Dimension: | \(4\) |
Relative dimension: | \(2\) over \(\Q(\zeta_{6})\) |
Coefficient field: | \(\Q(\sqrt{2}, \sqrt{-3})\) |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
\( x^{4} + 2x^{2} + 4 \)
|
Coefficient ring: | \(\Z[a_1, \ldots, a_{11}]\) |
Coefficient ring index: | \( 1 \) |
Twist minimal: | no (minimal twist has level 168) |
Sato-Tate group: | $\mathrm{U}(1)[D_{6}]$ |
$q$-expansion
Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.
Basis of coefficient ring in terms of a root \(\nu\) of
\( x^{4} + 2x^{2} + 4 \)
:
\(\beta_{1}\) | \(=\) |
\( \nu \)
|
\(\beta_{2}\) | \(=\) |
\( ( \nu^{2} ) / 2 \)
|
\(\beta_{3}\) | \(=\) |
\( ( \nu^{3} ) / 2 \)
|
\(\nu\) | \(=\) |
\( \beta_1 \)
|
\(\nu^{2}\) | \(=\) |
\( 2\beta_{2} \)
|
\(\nu^{3}\) | \(=\) |
\( 2\beta_{3} \)
|
Character values
We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/672\mathbb{Z}\right)^\times\).
\(n\) | \(127\) | \(421\) | \(449\) | \(577\) |
\(\chi(n)\) | \(1\) | \(-1\) | \(-1\) | \(-\beta_{2}\) |
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \(\iota_m(\nu)\) | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
17.1 |
|
0 | −1.50000 | − | 0.866025i | 0 | −3.62132 | + | 2.09077i | 0 | −1.62132 | − | 2.09077i | 0 | 1.50000 | + | 2.59808i | 0 | ||||||||||||||||||||||
17.2 | 0 | −1.50000 | − | 0.866025i | 0 | 0.621320 | − | 0.358719i | 0 | 2.62132 | + | 0.358719i | 0 | 1.50000 | + | 2.59808i | 0 | |||||||||||||||||||||||
593.1 | 0 | −1.50000 | + | 0.866025i | 0 | −3.62132 | − | 2.09077i | 0 | −1.62132 | + | 2.09077i | 0 | 1.50000 | − | 2.59808i | 0 | |||||||||||||||||||||||
593.2 | 0 | −1.50000 | + | 0.866025i | 0 | 0.621320 | + | 0.358719i | 0 | 2.62132 | − | 0.358719i | 0 | 1.50000 | − | 2.59808i | 0 | |||||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
24.h | odd | 2 | 1 | CM by \(\Q(\sqrt{-6}) \) |
7.d | odd | 6 | 1 | inner |
168.ba | even | 6 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 672.2.bi.a | 4 | |
3.b | odd | 2 | 1 | 672.2.bi.b | 4 | ||
4.b | odd | 2 | 1 | 168.2.ba.b | yes | 4 | |
7.d | odd | 6 | 1 | inner | 672.2.bi.a | 4 | |
8.b | even | 2 | 1 | 672.2.bi.b | 4 | ||
8.d | odd | 2 | 1 | 168.2.ba.a | ✓ | 4 | |
12.b | even | 2 | 1 | 168.2.ba.a | ✓ | 4 | |
21.g | even | 6 | 1 | 672.2.bi.b | 4 | ||
24.f | even | 2 | 1 | 168.2.ba.b | yes | 4 | |
24.h | odd | 2 | 1 | CM | 672.2.bi.a | 4 | |
28.f | even | 6 | 1 | 168.2.ba.b | yes | 4 | |
56.j | odd | 6 | 1 | 672.2.bi.b | 4 | ||
56.m | even | 6 | 1 | 168.2.ba.a | ✓ | 4 | |
84.j | odd | 6 | 1 | 168.2.ba.a | ✓ | 4 | |
168.ba | even | 6 | 1 | inner | 672.2.bi.a | 4 | |
168.be | odd | 6 | 1 | 168.2.ba.b | yes | 4 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
168.2.ba.a | ✓ | 4 | 8.d | odd | 2 | 1 | |
168.2.ba.a | ✓ | 4 | 12.b | even | 2 | 1 | |
168.2.ba.a | ✓ | 4 | 56.m | even | 6 | 1 | |
168.2.ba.a | ✓ | 4 | 84.j | odd | 6 | 1 | |
168.2.ba.b | yes | 4 | 4.b | odd | 2 | 1 | |
168.2.ba.b | yes | 4 | 24.f | even | 2 | 1 | |
168.2.ba.b | yes | 4 | 28.f | even | 6 | 1 | |
168.2.ba.b | yes | 4 | 168.be | odd | 6 | 1 | |
672.2.bi.a | 4 | 1.a | even | 1 | 1 | trivial | |
672.2.bi.a | 4 | 7.d | odd | 6 | 1 | inner | |
672.2.bi.a | 4 | 24.h | odd | 2 | 1 | CM | |
672.2.bi.a | 4 | 168.ba | even | 6 | 1 | inner | |
672.2.bi.b | 4 | 3.b | odd | 2 | 1 | ||
672.2.bi.b | 4 | 8.b | even | 2 | 1 | ||
672.2.bi.b | 4 | 21.g | even | 6 | 1 | ||
672.2.bi.b | 4 | 56.j | odd | 6 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{5}^{4} + 6T_{5}^{3} + 9T_{5}^{2} - 18T_{5} + 9 \)
acting on \(S_{2}^{\mathrm{new}}(672, [\chi])\).
Hecke characteristic polynomials
$p$
$F_p(T)$
$2$
\( T^{4} \)
$3$
\( (T^{2} + 3 T + 3)^{2} \)
$5$
\( T^{4} + 6 T^{3} + 9 T^{2} - 18 T + 9 \)
$7$
\( T^{4} - 2 T^{3} - 3 T^{2} - 14 T + 49 \)
$11$
\( T^{4} + 6 T^{3} + 35 T^{2} + 6 T + 1 \)
$13$
\( T^{4} \)
$17$
\( T^{4} \)
$19$
\( T^{4} \)
$23$
\( T^{4} \)
$29$
\( (T^{2} - 18 T + 79)^{2} \)
$31$
\( T^{4} - 30 T^{3} + 369 T^{2} + \cdots + 4761 \)
$37$
\( T^{4} \)
$41$
\( T^{4} \)
$43$
\( T^{4} \)
$47$
\( T^{4} \)
$53$
\( T^{4} - 6 T^{3} + 77 T^{2} + \cdots + 1681 \)
$59$
\( T^{4} - 18 T^{3} + 39 T^{2} + \cdots + 4761 \)
$61$
\( T^{4} \)
$67$
\( T^{4} \)
$71$
\( T^{4} \)
$73$
\( T^{4} - 96T^{2} + 9216 \)
$79$
\( T^{4} + 10 T^{3} + 237 T^{2} + \cdots + 18769 \)
$83$
\( T^{4} + 198T^{2} + 2601 \)
$89$
\( T^{4} \)
$97$
\( T^{4} + 198T^{2} + 8649 \)
show more
show less