Properties

Label 670.2.e.c
Level 670
Weight 2
Character orbit 670.e
Analytic conductor 5.350
Analytic rank 0
Dimension 2
CM No
Inner twists 2

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) = \( 670 = 2 \cdot 5 \cdot 67 \)
Weight: \( k \) = \( 2 \)
Character orbit: \([\chi]\) = 670.e (of order \(3\) and degree \(2\))

Newform invariants

Self dual: No
Analytic conductor: \(5.34997693543\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-3}) \)
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{6}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( -1 + \zeta_{6} ) q^{2} + q^{3} -\zeta_{6} q^{4} - q^{5} + ( -1 + \zeta_{6} ) q^{6} + 5 \zeta_{6} q^{7} + q^{8} -2 q^{9} +O(q^{10})\) \( q + ( -1 + \zeta_{6} ) q^{2} + q^{3} -\zeta_{6} q^{4} - q^{5} + ( -1 + \zeta_{6} ) q^{6} + 5 \zeta_{6} q^{7} + q^{8} -2 q^{9} + ( 1 - \zeta_{6} ) q^{10} -\zeta_{6} q^{12} + ( -2 + 2 \zeta_{6} ) q^{13} -5 q^{14} - q^{15} + ( -1 + \zeta_{6} ) q^{16} + ( -4 + 4 \zeta_{6} ) q^{17} + ( 2 - 2 \zeta_{6} ) q^{18} + ( 8 - 8 \zeta_{6} ) q^{19} + \zeta_{6} q^{20} + 5 \zeta_{6} q^{21} + ( -7 + 7 \zeta_{6} ) q^{23} + q^{24} + q^{25} -2 \zeta_{6} q^{26} -5 q^{27} + ( 5 - 5 \zeta_{6} ) q^{28} + \zeta_{6} q^{29} + ( 1 - \zeta_{6} ) q^{30} -2 \zeta_{6} q^{31} -\zeta_{6} q^{32} -4 \zeta_{6} q^{34} -5 \zeta_{6} q^{35} + 2 \zeta_{6} q^{36} + ( -10 + 10 \zeta_{6} ) q^{37} + 8 \zeta_{6} q^{38} + ( -2 + 2 \zeta_{6} ) q^{39} - q^{40} + 7 \zeta_{6} q^{41} -5 q^{42} + 7 q^{43} + 2 q^{45} -7 \zeta_{6} q^{46} + 7 \zeta_{6} q^{47} + ( -1 + \zeta_{6} ) q^{48} + ( -18 + 18 \zeta_{6} ) q^{49} + ( -1 + \zeta_{6} ) q^{50} + ( -4 + 4 \zeta_{6} ) q^{51} + 2 q^{52} + ( 5 - 5 \zeta_{6} ) q^{54} + 5 \zeta_{6} q^{56} + ( 8 - 8 \zeta_{6} ) q^{57} - q^{58} -12 q^{59} + \zeta_{6} q^{60} + ( 6 - 6 \zeta_{6} ) q^{61} + 2 q^{62} -10 \zeta_{6} q^{63} + q^{64} + ( 2 - 2 \zeta_{6} ) q^{65} + ( 9 - 7 \zeta_{6} ) q^{67} + 4 q^{68} + ( -7 + 7 \zeta_{6} ) q^{69} + 5 q^{70} -2 q^{72} + ( 10 - 10 \zeta_{6} ) q^{73} -10 \zeta_{6} q^{74} + q^{75} -8 q^{76} -2 \zeta_{6} q^{78} + 6 \zeta_{6} q^{79} + ( 1 - \zeta_{6} ) q^{80} + q^{81} -7 q^{82} + ( 13 - 13 \zeta_{6} ) q^{83} + ( 5 - 5 \zeta_{6} ) q^{84} + ( 4 - 4 \zeta_{6} ) q^{85} + ( -7 + 7 \zeta_{6} ) q^{86} + \zeta_{6} q^{87} + 10 q^{89} + ( -2 + 2 \zeta_{6} ) q^{90} -10 q^{91} + 7 q^{92} -2 \zeta_{6} q^{93} -7 q^{94} + ( -8 + 8 \zeta_{6} ) q^{95} -\zeta_{6} q^{96} + ( 2 - 2 \zeta_{6} ) q^{97} -18 \zeta_{6} q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2q - q^{2} + 2q^{3} - q^{4} - 2q^{5} - q^{6} + 5q^{7} + 2q^{8} - 4q^{9} + O(q^{10}) \) \( 2q - q^{2} + 2q^{3} - q^{4} - 2q^{5} - q^{6} + 5q^{7} + 2q^{8} - 4q^{9} + q^{10} - q^{12} - 2q^{13} - 10q^{14} - 2q^{15} - q^{16} - 4q^{17} + 2q^{18} + 8q^{19} + q^{20} + 5q^{21} - 7q^{23} + 2q^{24} + 2q^{25} - 2q^{26} - 10q^{27} + 5q^{28} + q^{29} + q^{30} - 2q^{31} - q^{32} - 4q^{34} - 5q^{35} + 2q^{36} - 10q^{37} + 8q^{38} - 2q^{39} - 2q^{40} + 7q^{41} - 10q^{42} + 14q^{43} + 4q^{45} - 7q^{46} + 7q^{47} - q^{48} - 18q^{49} - q^{50} - 4q^{51} + 4q^{52} + 5q^{54} + 5q^{56} + 8q^{57} - 2q^{58} - 24q^{59} + q^{60} + 6q^{61} + 4q^{62} - 10q^{63} + 2q^{64} + 2q^{65} + 11q^{67} + 8q^{68} - 7q^{69} + 10q^{70} - 4q^{72} + 10q^{73} - 10q^{74} + 2q^{75} - 16q^{76} - 2q^{78} + 6q^{79} + q^{80} + 2q^{81} - 14q^{82} + 13q^{83} + 5q^{84} + 4q^{85} - 7q^{86} + q^{87} + 20q^{89} - 2q^{90} - 20q^{91} + 14q^{92} - 2q^{93} - 14q^{94} - 8q^{95} - q^{96} + 2q^{97} - 18q^{98} + O(q^{100}) \)

Character Values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/670\mathbb{Z}\right)^\times\).

\(n\) \(471\) \(537\)
\(\chi(n)\) \(-\zeta_{6}\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
171.1
0.500000 0.866025i
0.500000 + 0.866025i
−0.500000 0.866025i 1.00000 −0.500000 + 0.866025i −1.00000 −0.500000 0.866025i 2.50000 4.33013i 1.00000 −2.00000 0.500000 + 0.866025i
431.1 −0.500000 + 0.866025i 1.00000 −0.500000 0.866025i −1.00000 −0.500000 + 0.866025i 2.50000 + 4.33013i 1.00000 −2.00000 0.500000 0.866025i
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char. orbit Parity Mult. Self Twist Proved
1.a Even 1 trivial yes
67.c Even 1 yes

Hecke kernels

This newform can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(670, [\chi])\):

\( T_{3} - 1 \)
\( T_{7}^{2} - 5 T_{7} + 25 \)
\( T_{11} \)