Properties

Label 668.2.e.a.9.9
Level $668$
Weight $2$
Character 668.9
Analytic conductor $5.334$
Analytic rank $0$
Dimension $1148$
CM no
Inner twists $2$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 668 = 2^{2} \cdot 167 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 668.e (of order \(83\), degree \(82\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(5.33400685502\)
Analytic rank: \(0\)
Dimension: \(1148\)
Relative dimension: \(14\) over \(\Q(\zeta_{83})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{83}]$

Embedding invariants

Embedding label 9.9
Character \(\chi\) \(=\) 668.9
Dual form 668.2.e.a.297.9

$q$-expansion

\(f(q)\) \(=\) \(q+(0.174236 + 1.30752i) q^{3} +(-3.98478 - 1.76210i) q^{5} +(-0.546271 + 1.17470i) q^{7} +(1.21607 - 0.329959i) q^{9} +O(q^{10})\) \(q+(0.174236 + 1.30752i) q^{3} +(-3.98478 - 1.76210i) q^{5} +(-0.546271 + 1.17470i) q^{7} +(1.21607 - 0.329959i) q^{9} +(3.11275 - 3.99106i) q^{11} +(-1.14839 + 2.24333i) q^{13} +(1.60969 - 5.51720i) q^{15} +(7.71084 + 0.584836i) q^{17} +(-0.906296 + 1.36334i) q^{19} +(-1.63113 - 0.509583i) q^{21} +(-3.47141 - 1.38051i) q^{23} +(9.40909 + 10.3444i) q^{25} +(2.17496 + 5.18134i) q^{27} +(7.05769 - 2.80671i) q^{29} +(5.68575 - 1.31392i) q^{31} +(5.76074 + 3.37460i) q^{33} +(4.24672 - 3.71835i) q^{35} +(-3.15074 - 0.854899i) q^{37} +(-3.13328 - 1.11067i) q^{39} +(-0.194636 + 0.0950317i) q^{41} +(1.23599 - 13.0228i) q^{43} +(-5.42718 - 0.828023i) q^{45} +(0.121934 + 6.44215i) q^{47} +(3.42926 + 4.06942i) q^{49} +(0.578825 + 10.1840i) q^{51} +(-0.180484 - 1.04936i) q^{53} +(-19.4363 + 10.4185i) q^{55} +(-1.94050 - 0.947455i) q^{57} +(-2.30974 + 0.175185i) q^{59} +(10.7678 - 10.9735i) q^{61} +(-0.276698 + 1.60877i) q^{63} +(8.52904 - 6.91559i) q^{65} +(-10.0430 + 4.44111i) q^{67} +(1.20020 - 4.77946i) q^{69} +(7.67608 - 0.875397i) q^{71} +(-5.53782 + 4.15300i) q^{73} +(-11.8861 + 14.1049i) q^{75} +(2.98791 + 5.83676i) q^{77} +(1.08069 - 2.87477i) q^{79} +(-3.13406 + 1.83591i) q^{81} +(1.49389 - 2.07261i) q^{83} +(-29.6955 - 15.9177i) q^{85} +(4.89953 + 8.73903i) q^{87} +(-1.31598 - 4.51051i) q^{89} +(-2.00792 - 2.57448i) q^{91} +(2.70864 + 7.20529i) q^{93} +(6.01373 - 3.83561i) q^{95} +(-12.7207 - 2.93962i) q^{97} +(2.46843 - 5.88047i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 1148q - 2q^{5} - 14q^{9} + O(q^{10}) \) \( 1148q - 2q^{5} - 14q^{9} + 2q^{11} + 4q^{13} + 14q^{15} + 2q^{17} + 2q^{19} + 14q^{23} - 6q^{25} + 2q^{29} - 2q^{31} + 16q^{33} - 2q^{35} + 10q^{37} + 6q^{39} + 4q^{41} + 4q^{43} - 2q^{45} + 2q^{47} - 30q^{49} - 2q^{51} - 6q^{55} - 4q^{57} + 6q^{59} + 2q^{61} + 14q^{63} + 22q^{65} + 12q^{67} - 14q^{69} - 8q^{71} - 18q^{73} - 26q^{75} - 2q^{79} - 6q^{81} - 22q^{83} + 34q^{85} + 2q^{87} + 14q^{89} - 6q^{91} + 32q^{93} - 8q^{95} + 44q^{97} + 2q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/668\mathbb{Z}\right)^\times\).

\(n\) \(5\) \(335\)
\(\chi(n)\) \(e\left(\frac{11}{83}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.174236 + 1.30752i 0.100595 + 0.754896i 0.966859 + 0.255310i \(0.0821774\pi\)
−0.866264 + 0.499587i \(0.833485\pi\)
\(4\) 0 0
\(5\) −3.98478 1.76210i −1.78205 0.788036i −0.982201 0.187831i \(-0.939854\pi\)
−0.799846 0.600206i \(-0.795085\pi\)
\(6\) 0 0
\(7\) −0.546271 + 1.17470i −0.206471 + 0.443997i −0.982391 0.186834i \(-0.940177\pi\)
0.775921 + 0.630831i \(0.217286\pi\)
\(8\) 0 0
\(9\) 1.21607 0.329959i 0.405356 0.109986i
\(10\) 0 0
\(11\) 3.11275 3.99106i 0.938530 1.20335i −0.0404058 0.999183i \(-0.512865\pi\)
0.978936 0.204166i \(-0.0654482\pi\)
\(12\) 0 0
\(13\) −1.14839 + 2.24333i −0.318505 + 0.622187i −0.993267 0.115848i \(-0.963041\pi\)
0.674762 + 0.738035i \(0.264246\pi\)
\(14\) 0 0
\(15\) 1.60969 5.51720i 0.415620 1.42453i
\(16\) 0 0
\(17\) 7.71084 + 0.584836i 1.87015 + 0.141844i 0.961341 0.275361i \(-0.0887973\pi\)
0.908813 + 0.417204i \(0.136990\pi\)
\(18\) 0 0
\(19\) −0.906296 + 1.36334i −0.207918 + 0.312771i −0.921925 0.387367i \(-0.873384\pi\)
0.714007 + 0.700139i \(0.246878\pi\)
\(20\) 0 0
\(21\) −1.63113 0.509583i −0.355941 0.111200i
\(22\) 0 0
\(23\) −3.47141 1.38051i −0.723838 0.287856i −0.0215685 0.999767i \(-0.506866\pi\)
−0.702270 + 0.711911i \(0.747830\pi\)
\(24\) 0 0
\(25\) 9.40909 + 10.3444i 1.88182 + 2.06888i
\(26\) 0 0
\(27\) 2.17496 + 5.18134i 0.418571 + 0.997149i
\(28\) 0 0
\(29\) 7.05769 2.80671i 1.31058 0.521192i 0.393291 0.919414i \(-0.371336\pi\)
0.917289 + 0.398222i \(0.130373\pi\)
\(30\) 0 0
\(31\) 5.68575 1.31392i 1.02119 0.235987i 0.318833 0.947811i \(-0.396709\pi\)
0.702358 + 0.711824i \(0.252131\pi\)
\(32\) 0 0
\(33\) 5.76074 + 3.37460i 1.00282 + 0.587442i
\(34\) 0 0
\(35\) 4.24672 3.71835i 0.717826 0.628516i
\(36\) 0 0
\(37\) −3.15074 0.854899i −0.517979 0.140545i −0.00672997 0.999977i \(-0.502142\pi\)
−0.511249 + 0.859433i \(0.670817\pi\)
\(38\) 0 0
\(39\) −3.13328 1.11067i −0.501727 0.177849i
\(40\) 0 0
\(41\) −0.194636 + 0.0950317i −0.0303971 + 0.0148415i −0.453885 0.891060i \(-0.649962\pi\)
0.423488 + 0.905902i \(0.360806\pi\)
\(42\) 0 0
\(43\) 1.23599 13.0228i 0.188487 1.98596i 0.0230645 0.999734i \(-0.492658\pi\)
0.165422 0.986223i \(-0.447101\pi\)
\(44\) 0 0
\(45\) −5.42718 0.828023i −0.809036 0.123434i
\(46\) 0 0
\(47\) 0.121934 + 6.44215i 0.0177859 + 0.939685i 0.891440 + 0.453138i \(0.149696\pi\)
−0.873654 + 0.486547i \(0.838256\pi\)
\(48\) 0 0
\(49\) 3.42926 + 4.06942i 0.489894 + 0.581346i
\(50\) 0 0
\(51\) 0.578825 + 10.1840i 0.0810517 + 1.42604i
\(52\) 0 0
\(53\) −0.180484 1.04936i −0.0247914 0.144141i 0.970495 0.241122i \(-0.0775153\pi\)
−0.995286 + 0.0969806i \(0.969082\pi\)
\(54\) 0 0
\(55\) −19.4363 + 10.4185i −2.62079 + 1.40483i
\(56\) 0 0
\(57\) −1.94050 0.947455i −0.257025 0.125494i
\(58\) 0 0
\(59\) −2.30974 + 0.175185i −0.300703 + 0.0228071i −0.225116 0.974332i \(-0.572276\pi\)
−0.0755875 + 0.997139i \(0.524083\pi\)
\(60\) 0 0
\(61\) 10.7678 10.9735i 1.37867 1.40501i 0.563050 0.826423i \(-0.309628\pi\)
0.815620 0.578588i \(-0.196396\pi\)
\(62\) 0 0
\(63\) −0.276698 + 1.60877i −0.0348606 + 0.202685i
\(64\) 0 0
\(65\) 8.52904 6.91559i 1.05790 0.857773i
\(66\) 0 0
\(67\) −10.0430 + 4.44111i −1.22695 + 0.542567i −0.913423 0.407012i \(-0.866571\pi\)
−0.313526 + 0.949579i \(0.601510\pi\)
\(68\) 0 0
\(69\) 1.20020 4.77946i 0.144487 0.575380i
\(70\) 0 0
\(71\) 7.67608 0.875397i 0.910983 0.103890i 0.354792 0.934945i \(-0.384552\pi\)
0.556191 + 0.831055i \(0.312262\pi\)
\(72\) 0 0
\(73\) −5.53782 + 4.15300i −0.648153 + 0.486072i −0.872614 0.488411i \(-0.837577\pi\)
0.224460 + 0.974483i \(0.427938\pi\)
\(74\) 0 0
\(75\) −11.8861 + 14.1049i −1.37249 + 1.62870i
\(76\) 0 0
\(77\) 2.98791 + 5.83676i 0.340504 + 0.665161i
\(78\) 0 0
\(79\) 1.08069 2.87477i 0.121587 0.323437i −0.861175 0.508308i \(-0.830271\pi\)
0.982763 + 0.184871i \(0.0591868\pi\)
\(80\) 0 0
\(81\) −3.13406 + 1.83591i −0.348229 + 0.203990i
\(82\) 0 0
\(83\) 1.49389 2.07261i 0.163976 0.227499i −0.721234 0.692692i \(-0.756425\pi\)
0.885209 + 0.465193i \(0.154015\pi\)
\(84\) 0 0
\(85\) −29.6955 15.9177i −3.22092 1.72652i
\(86\) 0 0
\(87\) 4.89953 + 8.73903i 0.525284 + 0.936923i
\(88\) 0 0
\(89\) −1.31598 4.51051i −0.139493 0.478113i 0.859988 0.510314i \(-0.170471\pi\)
−0.999481 + 0.0322018i \(0.989748\pi\)
\(90\) 0 0
\(91\) −2.00792 2.57448i −0.210487 0.269879i
\(92\) 0 0
\(93\) 2.70864 + 7.20529i 0.280873 + 0.747154i
\(94\) 0 0
\(95\) 6.01373 3.83561i 0.616996 0.393526i
\(96\) 0 0
\(97\) −12.7207 2.93962i −1.29159 0.298473i −0.477202 0.878794i \(-0.658349\pi\)
−0.814388 + 0.580320i \(0.802927\pi\)
\(98\) 0 0
\(99\) 2.46843 5.88047i 0.248087 0.591010i
\(100\) 0 0
\(101\) −0.585876 6.17298i −0.0582968 0.614234i −0.976118 0.217241i \(-0.930294\pi\)
0.917821 0.396994i \(-0.129947\pi\)
\(102\) 0 0
\(103\) 3.66609 2.53841i 0.361231 0.250117i −0.374740 0.927130i \(-0.622268\pi\)
0.735971 + 0.677013i \(0.236726\pi\)
\(104\) 0 0
\(105\) 5.60175 + 4.90479i 0.546675 + 0.478659i
\(106\) 0 0
\(107\) 12.7727 + 8.84386i 1.23479 + 0.854968i 0.993314 0.115440i \(-0.0368278\pi\)
0.241472 + 0.970408i \(0.422370\pi\)
\(108\) 0 0
\(109\) 10.8163 + 6.89871i 1.03601 + 0.660777i 0.942282 0.334821i \(-0.108676\pi\)
0.0937278 + 0.995598i \(0.470122\pi\)
\(110\) 0 0
\(111\) 0.568823 4.26861i 0.0539903 0.405158i
\(112\) 0 0
\(113\) 3.76472 6.15653i 0.354155 0.579157i −0.625408 0.780298i \(-0.715067\pi\)
0.979562 + 0.201141i \(0.0644649\pi\)
\(114\) 0 0
\(115\) 11.4002 + 11.6180i 1.06307 + 1.08338i
\(116\) 0 0
\(117\) −0.656308 + 3.10696i −0.0606757 + 0.287238i
\(118\) 0 0
\(119\) −4.89922 + 8.73848i −0.449110 + 0.801055i
\(120\) 0 0
\(121\) −3.56022 14.1776i −0.323656 1.28887i
\(122\) 0 0
\(123\) −0.158168 0.237932i −0.0142616 0.0214536i
\(124\) 0 0
\(125\) −12.3767 37.1327i −1.10700 3.32125i
\(126\) 0 0
\(127\) −13.2453 1.51052i −1.17533 0.134037i −0.496303 0.868150i \(-0.665309\pi\)
−0.679028 + 0.734112i \(0.737598\pi\)
\(128\) 0 0
\(129\) 17.2429 0.652964i 1.51815 0.0574903i
\(130\) 0 0
\(131\) −0.307833 + 5.41608i −0.0268955 + 0.473205i 0.956500 + 0.291731i \(0.0942314\pi\)
−0.983396 + 0.181474i \(0.941913\pi\)
\(132\) 0 0
\(133\) −1.10644 1.80938i −0.0959402 0.156893i
\(134\) 0 0
\(135\) 0.463326 24.4790i 0.0398768 2.10682i
\(136\) 0 0
\(137\) 12.2435 4.34000i 1.04603 0.370791i 0.245070 0.969505i \(-0.421189\pi\)
0.800963 + 0.598714i \(0.204321\pi\)
\(138\) 0 0
\(139\) 2.03764 + 1.92512i 0.172830 + 0.163286i 0.768296 0.640094i \(-0.221105\pi\)
−0.595466 + 0.803381i \(0.703033\pi\)
\(140\) 0 0
\(141\) −8.40199 + 1.28189i −0.707575 + 0.107955i
\(142\) 0 0
\(143\) 5.37861 + 11.5662i 0.449782 + 0.967214i
\(144\) 0 0
\(145\) −33.0690 1.25228i −2.74623 0.103996i
\(146\) 0 0
\(147\) −4.72335 + 5.19286i −0.389575 + 0.428300i
\(148\) 0 0
\(149\) 7.03516 + 5.70431i 0.576343 + 0.467315i 0.873035 0.487658i \(-0.162149\pi\)
−0.296692 + 0.954973i \(0.595884\pi\)
\(150\) 0 0
\(151\) −9.18791 6.89033i −0.747702 0.560727i 0.156579 0.987665i \(-0.449953\pi\)
−0.904281 + 0.426939i \(0.859592\pi\)
\(152\) 0 0
\(153\) 9.56987 1.83306i 0.773678 0.148194i
\(154\) 0 0
\(155\) −24.9717 4.78320i −2.00578 0.384196i
\(156\) 0 0
\(157\) 2.51398 + 11.9012i 0.200638 + 0.949818i 0.955740 + 0.294211i \(0.0950569\pi\)
−0.755103 + 0.655607i \(0.772413\pi\)
\(158\) 0 0
\(159\) 1.34061 0.418823i 0.106318 0.0332148i
\(160\) 0 0
\(161\) 3.51802 3.32374i 0.277259 0.261948i
\(162\) 0 0
\(163\) −4.74113 + 14.2244i −0.371354 + 1.11414i 0.582233 + 0.813022i \(0.302179\pi\)
−0.953587 + 0.301118i \(0.902640\pi\)
\(164\) 0 0
\(165\) −17.0089 23.5980i −1.32414 1.83710i
\(166\) 0 0
\(167\) −5.93515 + 11.4793i −0.459276 + 0.888294i
\(168\) 0 0
\(169\) 3.88762 + 5.39366i 0.299047 + 0.414897i
\(170\) 0 0
\(171\) −0.652271 + 1.95695i −0.0498804 + 0.149652i
\(172\) 0 0
\(173\) −5.96118 + 5.63198i −0.453220 + 0.428192i −0.879136 0.476571i \(-0.841880\pi\)
0.425916 + 0.904763i \(0.359952\pi\)
\(174\) 0 0
\(175\) −17.2915 + 5.40206i −1.30712 + 0.408358i
\(176\) 0 0
\(177\) −0.631499 2.98951i −0.0474664 0.224705i
\(178\) 0 0
\(179\) −20.7487 3.97430i −1.55083 0.297053i −0.659955 0.751305i \(-0.729425\pi\)
−0.890873 + 0.454252i \(0.849906\pi\)
\(180\) 0 0
\(181\) −7.63092 + 1.46166i −0.567202 + 0.108645i −0.463712 0.885986i \(-0.653483\pi\)
−0.103490 + 0.994631i \(0.533001\pi\)
\(182\) 0 0
\(183\) 16.2242 + 12.1671i 1.19933 + 0.899415i
\(184\) 0 0
\(185\) 11.0486 + 8.95852i 0.812308 + 0.658643i
\(186\) 0 0
\(187\) 26.3361 28.9540i 1.92588 2.11732i
\(188\) 0 0
\(189\) −7.27466 0.275481i −0.529153 0.0200383i
\(190\) 0 0
\(191\) 4.88711 + 10.5093i 0.353619 + 0.760425i 0.999997 0.00259297i \(-0.000825368\pi\)
−0.646378 + 0.763018i \(0.723717\pi\)
\(192\) 0 0
\(193\) 9.78002 1.49213i 0.703981 0.107406i 0.211051 0.977475i \(-0.432311\pi\)
0.492930 + 0.870069i \(0.335926\pi\)
\(194\) 0 0
\(195\) 10.5283 + 9.94693i 0.753949 + 0.712314i
\(196\) 0 0
\(197\) −5.69293 + 2.01799i −0.405604 + 0.143776i −0.529081 0.848572i \(-0.677463\pi\)
0.123477 + 0.992347i \(0.460596\pi\)
\(198\) 0 0
\(199\) −0.219270 + 11.5847i −0.0155437 + 0.821220i 0.903843 + 0.427865i \(0.140734\pi\)
−0.919387 + 0.393355i \(0.871314\pi\)
\(200\) 0 0
\(201\) −7.55669 12.3576i −0.533008 0.871640i
\(202\) 0 0
\(203\) −0.558361 + 9.82392i −0.0391892 + 0.689504i
\(204\) 0 0
\(205\) 0.943038 0.0357115i 0.0658646 0.00249420i
\(206\) 0 0
\(207\) −4.67697 0.533372i −0.325072 0.0370719i
\(208\) 0 0
\(209\) 2.62009 + 7.86081i 0.181235 + 0.543744i
\(210\) 0 0
\(211\) −13.7557 20.6927i −0.946984 1.42455i −0.904992 0.425428i \(-0.860124\pi\)
−0.0419918 0.999118i \(-0.513370\pi\)
\(212\) 0 0
\(213\) 2.48205 + 9.88410i 0.170067 + 0.677247i
\(214\) 0 0
\(215\) −27.8726 + 49.7150i −1.90090 + 3.39053i
\(216\) 0 0
\(217\) −1.56249 + 7.39683i −0.106069 + 0.502130i
\(218\) 0 0
\(219\) −6.39502 6.51720i −0.432135 0.440392i
\(220\) 0 0
\(221\) −10.1670 + 16.6263i −0.683906 + 1.11841i
\(222\) 0 0
\(223\) 0.208190 1.56232i 0.0139414 0.104620i −0.982886 0.184216i \(-0.941025\pi\)
0.996827 + 0.0795954i \(0.0253628\pi\)
\(224\) 0 0
\(225\) 14.8553 + 9.47486i 0.990354 + 0.631657i
\(226\) 0 0
\(227\) −16.7872 11.6235i −1.11421 0.771479i −0.138457 0.990368i \(-0.544214\pi\)
−0.975750 + 0.218890i \(0.929757\pi\)
\(228\) 0 0
\(229\) 8.88245 + 7.77732i 0.586969 + 0.513940i 0.900050 0.435787i \(-0.143530\pi\)
−0.313081 + 0.949726i \(0.601361\pi\)
\(230\) 0 0
\(231\) −7.11108 + 4.92372i −0.467874 + 0.323957i
\(232\) 0 0
\(233\) −1.60043 16.8626i −0.104848 1.10471i −0.880661 0.473747i \(-0.842901\pi\)
0.775814 0.630962i \(-0.217340\pi\)
\(234\) 0 0
\(235\) 10.8659 25.8854i 0.708811 1.68858i
\(236\) 0 0
\(237\) 3.94711 + 0.912137i 0.256392 + 0.0592496i
\(238\) 0 0
\(239\) −6.26008 + 3.99274i −0.404931 + 0.258269i −0.724473 0.689303i \(-0.757917\pi\)
0.319542 + 0.947572i \(0.396471\pi\)
\(240\) 0 0
\(241\) 5.13676 + 13.6644i 0.330888 + 0.880201i 0.991574 + 0.129539i \(0.0413496\pi\)
−0.660686 + 0.750662i \(0.729735\pi\)
\(242\) 0 0
\(243\) 7.42106 + 9.51501i 0.476061 + 0.610388i
\(244\) 0 0
\(245\) −6.49410 22.2585i −0.414893 1.42204i
\(246\) 0 0
\(247\) −2.01764 3.59876i −0.128379 0.228983i
\(248\) 0 0
\(249\) 2.97027 + 1.59216i 0.188233 + 0.100899i
\(250\) 0 0
\(251\) −1.25651 + 1.74328i −0.0793104 + 0.110035i −0.849023 0.528355i \(-0.822809\pi\)
0.769713 + 0.638390i \(0.220399\pi\)
\(252\) 0 0
\(253\) −16.3153 + 9.55739i −1.02574 + 0.600868i
\(254\) 0 0
\(255\) 15.6387 41.6008i 0.979334 2.60514i
\(256\) 0 0
\(257\) −1.86754 3.64816i −0.116494 0.227566i 0.824597 0.565721i \(-0.191402\pi\)
−0.941091 + 0.338155i \(0.890197\pi\)
\(258\) 0 0
\(259\) 2.72541 3.23418i 0.169349 0.200962i
\(260\) 0 0
\(261\) 7.65653 5.74189i 0.473927 0.355414i
\(262\) 0 0
\(263\) −11.7734 + 1.34266i −0.725979 + 0.0827921i −0.468464 0.883482i \(-0.655193\pi\)
−0.257514 + 0.966275i \(0.582903\pi\)
\(264\) 0 0
\(265\) −1.12990 + 4.49951i −0.0694090 + 0.276403i
\(266\) 0 0
\(267\) 5.66828 2.50656i 0.346893 0.153399i
\(268\) 0 0
\(269\) 10.0287 8.13160i 0.611463 0.495792i −0.273240 0.961946i \(-0.588095\pi\)
0.884704 + 0.466153i \(0.154361\pi\)
\(270\) 0 0
\(271\) −0.360619 + 2.09670i −0.0219060 + 0.127365i −0.994423 0.105468i \(-0.966366\pi\)
0.972517 + 0.232833i \(0.0747997\pi\)
\(272\) 0 0
\(273\) 3.01633 3.07396i 0.182556 0.186044i
\(274\) 0 0
\(275\) 70.5732 5.35269i 4.25573 0.322780i
\(276\) 0 0
\(277\) −14.8712 7.26093i −0.893526 0.436267i −0.0660810 0.997814i \(-0.521050\pi\)
−0.827445 + 0.561547i \(0.810206\pi\)
\(278\) 0 0
\(279\) 6.48072 3.47388i 0.387990 0.207976i
\(280\) 0 0
\(281\) −2.95668 17.1906i −0.176381 1.02551i −0.929827 0.367998i \(-0.880043\pi\)
0.753446 0.657510i \(-0.228390\pi\)
\(282\) 0 0
\(283\) 0.0579623 + 1.01980i 0.00344550 + 0.0606209i 0.999651 0.0264087i \(-0.00840711\pi\)
−0.996206 + 0.0870296i \(0.972263\pi\)
\(284\) 0 0
\(285\) 6.06295 + 7.19476i 0.359138 + 0.426181i
\(286\) 0 0
\(287\) −0.00531017 0.280553i −0.000313450 0.0165605i
\(288\) 0 0
\(289\) 42.3095 + 6.45514i 2.48879 + 0.379714i
\(290\) 0 0
\(291\) 1.62720 17.1447i 0.0953882 1.00504i
\(292\) 0 0
\(293\) 18.1167 8.84555i 1.05839 0.516762i 0.174597 0.984640i \(-0.444138\pi\)
0.883793 + 0.467878i \(0.154981\pi\)
\(294\) 0 0
\(295\) 9.51251 + 3.37193i 0.553840 + 0.196322i
\(296\) 0 0
\(297\) 27.4491 + 7.44785i 1.59276 + 0.432168i
\(298\) 0 0
\(299\) 7.08345 6.20214i 0.409646 0.358679i
\(300\) 0 0
\(301\) 14.6227 + 8.56589i 0.842841 + 0.493730i
\(302\) 0 0
\(303\) 7.96920 1.84160i 0.457819 0.105797i
\(304\) 0 0
\(305\) −62.2435 + 24.7530i −3.56405 + 1.41735i
\(306\) 0 0
\(307\) 10.7682 + 25.6528i 0.614574 + 1.46408i 0.867919 + 0.496706i \(0.165457\pi\)
−0.253345 + 0.967376i \(0.581531\pi\)
\(308\) 0 0
\(309\) 3.95778 + 4.35120i 0.225150 + 0.247531i
\(310\) 0 0
\(311\) 3.58263 + 1.42474i 0.203152 + 0.0807897i 0.468893 0.883255i \(-0.344653\pi\)
−0.265741 + 0.964044i \(0.585617\pi\)
\(312\) 0 0
\(313\) 17.8758 + 5.58461i 1.01040 + 0.315661i 0.758205 0.652016i \(-0.226076\pi\)
0.252195 + 0.967676i \(0.418848\pi\)
\(314\) 0 0
\(315\) 3.93739 5.92301i 0.221847 0.333724i
\(316\) 0 0
\(317\) 6.61079 + 0.501402i 0.371299 + 0.0281615i 0.259956 0.965620i \(-0.416292\pi\)
0.111343 + 0.993782i \(0.464485\pi\)
\(318\) 0 0
\(319\) 10.7671 36.9042i 0.602843 2.06624i
\(320\) 0 0
\(321\) −9.33804 + 18.2415i −0.521198 + 1.01814i
\(322\) 0 0
\(323\) −7.78563 + 9.98245i −0.433204 + 0.555438i
\(324\) 0 0
\(325\) −34.0111 + 9.22833i −1.88660 + 0.511896i
\(326\) 0 0
\(327\) −7.13561 + 15.3445i −0.394600 + 0.848551i
\(328\) 0 0
\(329\) −7.63424 3.37592i −0.420889 0.186121i
\(330\) 0 0
\(331\) −0.0159784 0.119907i −0.000878254 0.00659067i 0.990793 0.135384i \(-0.0432269\pi\)
−0.991671 + 0.128794i \(0.958890\pi\)
\(332\) 0 0
\(333\) −4.11359 −0.225424
\(334\) 0 0
\(335\) 47.8449 2.61404
\(336\) 0 0
\(337\) 0.766722 + 5.75370i 0.0417660 + 0.313424i 0.999655 + 0.0262835i \(0.00836725\pi\)
−0.957889 + 0.287140i \(0.907295\pi\)
\(338\) 0 0
\(339\) 8.70573 + 3.84975i 0.472830 + 0.209090i
\(340\) 0 0
\(341\) 12.4544 26.7821i 0.674444 1.45033i
\(342\) 0 0
\(343\) −15.4058 + 4.18009i −0.831834 + 0.225704i
\(344\) 0 0
\(345\) −13.2044 + 16.9302i −0.710902 + 0.911493i
\(346\) 0 0
\(347\) 9.47843 18.5157i 0.508829 0.993977i −0.484072 0.875028i \(-0.660843\pi\)
0.992900 0.118949i \(-0.0379525\pi\)
\(348\) 0 0
\(349\) −0.198407 + 0.680037i −0.0106205 + 0.0364015i −0.965114 0.261830i \(-0.915674\pi\)
0.954493 + 0.298232i \(0.0963968\pi\)
\(350\) 0 0
\(351\) −14.1211 1.07103i −0.753730 0.0571674i
\(352\) 0 0
\(353\) 9.37835 14.1078i 0.499159 0.750884i −0.493770 0.869593i \(-0.664381\pi\)
0.992929 + 0.118709i \(0.0378755\pi\)
\(354\) 0 0
\(355\) −32.1300 10.0378i −1.70528 0.532750i
\(356\) 0 0
\(357\) −12.2793 4.88326i −0.649892 0.258449i
\(358\) 0 0
\(359\) 2.52386 + 2.77474i 0.133204 + 0.146445i 0.802728 0.596346i \(-0.203381\pi\)
−0.669524 + 0.742791i \(0.733502\pi\)
\(360\) 0 0
\(361\) 6.31664 + 15.0479i 0.332455 + 0.791997i
\(362\) 0 0
\(363\) 17.9172 7.12530i 0.940407 0.373981i
\(364\) 0 0
\(365\) 29.3850 6.79057i 1.53808 0.355435i
\(366\) 0 0
\(367\) 13.3064 + 7.79477i 0.694587 + 0.406884i 0.809997 0.586434i \(-0.199469\pi\)
−0.115410 + 0.993318i \(0.536818\pi\)
\(368\) 0 0
\(369\) −0.205334 + 0.179787i −0.0106893 + 0.00935933i
\(370\) 0 0
\(371\) 1.33128 + 0.361221i 0.0691168 + 0.0187537i
\(372\) 0 0
\(373\) −5.14742 1.82462i −0.266523 0.0944755i 0.197486 0.980306i \(-0.436722\pi\)
−0.464010 + 0.885830i \(0.653590\pi\)
\(374\) 0 0
\(375\) 46.3952 22.6526i 2.39584 1.16978i
\(376\) 0 0
\(377\) −1.80859 + 19.0559i −0.0931471 + 0.981428i
\(378\) 0 0
\(379\) −26.4022 4.02817i −1.35619 0.206913i −0.568346 0.822790i \(-0.692417\pi\)
−0.787843 + 0.615876i \(0.788802\pi\)
\(380\) 0 0
\(381\) −0.332777 17.5817i −0.0170487 0.900736i
\(382\) 0 0
\(383\) −14.8124 17.5775i −0.756877 0.898168i 0.240493 0.970651i \(-0.422691\pi\)
−0.997370 + 0.0724826i \(0.976908\pi\)
\(384\) 0 0
\(385\) −1.62117 28.5232i −0.0826224 1.45368i
\(386\) 0 0
\(387\) −2.79394 16.2444i −0.142024 0.825750i
\(388\) 0 0
\(389\) 5.65210 3.02971i 0.286573 0.153612i −0.322868 0.946444i \(-0.604647\pi\)
0.609441 + 0.792832i \(0.291394\pi\)
\(390\) 0 0
\(391\) −25.9601 12.6751i −1.31286 0.641007i
\(392\) 0 0
\(393\) −7.13526 + 0.541181i −0.359926 + 0.0272990i
\(394\) 0 0
\(395\) −9.37196 + 9.55103i −0.471554 + 0.480564i
\(396\) 0 0
\(397\) −3.86340 + 22.4624i −0.193898 + 1.12736i 0.711466 + 0.702720i \(0.248032\pi\)
−0.905364 + 0.424636i \(0.860402\pi\)
\(398\) 0 0
\(399\) 2.17302 1.76195i 0.108787 0.0882077i
\(400\) 0 0
\(401\) −23.7003 + 10.4805i −1.18354 + 0.523370i −0.900126 0.435629i \(-0.856526\pi\)
−0.283410 + 0.958999i \(0.591466\pi\)
\(402\) 0 0
\(403\) −3.58188 + 14.2639i −0.178426 + 0.710535i
\(404\) 0 0
\(405\) 15.7236 1.79315i 0.781311 0.0891024i
\(406\) 0 0
\(407\) −13.2194 + 9.91370i −0.655263 + 0.491404i
\(408\) 0 0
\(409\) −20.4651 + 24.2854i −1.01193 + 1.20084i −0.0324161 + 0.999474i \(0.510320\pi\)
−0.979517 + 0.201363i \(0.935463\pi\)
\(410\) 0 0
\(411\) 7.80789 + 15.2524i 0.385135 + 0.752347i
\(412\) 0 0
\(413\) 1.05596 2.80896i 0.0519602 0.138220i
\(414\) 0 0
\(415\) −9.60498 + 5.62652i −0.471490 + 0.276195i
\(416\) 0 0
\(417\) −2.16209 + 2.99968i −0.105878 + 0.146895i
\(418\) 0 0
\(419\) −10.5627 5.66197i −0.516023 0.276605i 0.193731 0.981055i \(-0.437941\pi\)
−0.709754 + 0.704449i \(0.751194\pi\)
\(420\) 0 0
\(421\) −3.78641 6.75363i −0.184539 0.329152i 0.764329 0.644827i \(-0.223070\pi\)
−0.948867 + 0.315675i \(0.897769\pi\)
\(422\) 0 0
\(423\) 2.27393 + 7.79386i 0.110562 + 0.378950i
\(424\) 0 0
\(425\) 66.5022 + 85.2667i 3.22583 + 4.13604i
\(426\) 0 0
\(427\) 7.00850 + 18.6434i 0.339165 + 0.902218i
\(428\) 0 0
\(429\) −14.1859 + 9.04788i −0.684900 + 0.436836i
\(430\) 0 0
\(431\) 9.32339 + 2.15454i 0.449092 + 0.103780i 0.443641 0.896205i \(-0.353687\pi\)
0.00545093 + 0.999985i \(0.498265\pi\)
\(432\) 0 0
\(433\) 11.9589 28.4894i 0.574710 1.36911i −0.330361 0.943855i \(-0.607171\pi\)
0.905071 0.425260i \(-0.139817\pi\)
\(434\) 0 0
\(435\) −4.12445 43.4566i −0.197752 2.08358i
\(436\) 0 0
\(437\) 5.02822 3.48155i 0.240532 0.166545i
\(438\) 0 0
\(439\) 5.03138 + 4.40539i 0.240135 + 0.210258i 0.770377 0.637588i \(-0.220068\pi\)
−0.530243 + 0.847846i \(0.677899\pi\)
\(440\) 0 0
\(441\) 5.51295 + 3.81718i 0.262522 + 0.181770i
\(442\) 0 0
\(443\) −13.9991 8.92879i −0.665119 0.424220i 0.161583 0.986859i \(-0.448340\pi\)
−0.826702 + 0.562640i \(0.809786\pi\)
\(444\) 0 0
\(445\) −2.70409 + 20.2923i −0.128186 + 0.961945i
\(446\) 0 0
\(447\) −6.23271 + 10.1925i −0.294797 + 0.482089i
\(448\) 0 0
\(449\) −1.87996 1.91588i −0.0887208 0.0904160i 0.667973 0.744186i \(-0.267162\pi\)
−0.756693 + 0.653770i \(0.773186\pi\)
\(450\) 0 0
\(451\) −0.226577 + 1.07261i −0.0106691 + 0.0505074i
\(452\) 0 0
\(453\) 7.40836 13.2139i 0.348075 0.620844i
\(454\) 0 0
\(455\) 3.46461 + 13.7969i 0.162423 + 0.646808i
\(456\) 0 0
\(457\) −3.21092 4.83018i −0.150200 0.225946i 0.749983 0.661457i \(-0.230062\pi\)
−0.900183 + 0.435511i \(0.856568\pi\)
\(458\) 0 0
\(459\) 13.7405 + 41.2245i 0.641352 + 1.92419i
\(460\) 0 0
\(461\) −1.69531 0.193336i −0.0789583 0.00900457i 0.0737390 0.997278i \(-0.476507\pi\)
−0.152697 + 0.988273i \(0.548796\pi\)
\(462\) 0 0
\(463\) −18.8307 + 0.713092i −0.875137 + 0.0331402i −0.471589 0.881818i \(-0.656319\pi\)
−0.403548 + 0.914959i \(0.632223\pi\)
\(464\) 0 0
\(465\) 1.90315 33.4844i 0.0882564 1.55280i
\(466\) 0 0
\(467\) −3.65864 5.98307i −0.169302 0.276863i 0.757177 0.653209i \(-0.226578\pi\)
−0.926479 + 0.376346i \(0.877180\pi\)
\(468\) 0 0
\(469\) 0.269218 14.2236i 0.0124313 0.656786i
\(470\) 0 0
\(471\) −15.1230 + 5.36070i −0.696831 + 0.247008i
\(472\) 0 0
\(473\) −48.1274 45.4696i −2.21290 2.09070i
\(474\) 0 0
\(475\) −22.6303 + 3.45270i −1.03835 + 0.158421i
\(476\) 0 0
\(477\) −0.565727 1.21654i −0.0259029 0.0557017i
\(478\) 0 0
\(479\) 6.79378 + 0.257271i 0.310416 + 0.0117550i 0.192590 0.981279i \(-0.438311\pi\)
0.117826 + 0.993034i \(0.462408\pi\)
\(480\) 0 0
\(481\) 5.53609 6.08639i 0.252424 0.277516i
\(482\) 0 0
\(483\) 4.95882 + 4.02076i 0.225634 + 0.182951i
\(484\) 0 0
\(485\) 45.5092 + 34.1289i 2.06647 + 1.54971i
\(486\) 0 0
\(487\) 32.8709 6.29626i 1.48952 0.285311i 0.622123 0.782919i \(-0.286270\pi\)
0.867402 + 0.497609i \(0.165788\pi\)
\(488\) 0 0
\(489\) −19.4247 3.72071i −0.878416 0.168256i
\(490\) 0 0
\(491\) −0.176438 0.835258i −0.00796255 0.0376947i 0.974246 0.225486i \(-0.0723971\pi\)
−0.982209 + 0.187792i \(0.939867\pi\)
\(492\) 0 0
\(493\) 56.0622 17.5145i 2.52491 0.788812i
\(494\) 0 0
\(495\) −20.1982 + 19.0828i −0.907840 + 0.857706i
\(496\) 0 0
\(497\) −3.16489 + 9.49533i −0.141965 + 0.425924i
\(498\) 0 0
\(499\) 9.63634 + 13.3694i 0.431382 + 0.598497i 0.969716 0.244234i \(-0.0785366\pi\)
−0.538334 + 0.842731i \(0.680946\pi\)
\(500\) 0 0
\(501\) −16.0435 5.76021i −0.716771 0.257347i
\(502\) 0 0
\(503\) 9.60865 + 13.3310i 0.428428 + 0.594399i 0.969049 0.246867i \(-0.0794011\pi\)
−0.540621 + 0.841266i \(0.681811\pi\)
\(504\) 0 0
\(505\) −8.54284 + 25.6303i −0.380151 + 1.14053i
\(506\) 0 0
\(507\) −6.37495 + 6.02290i −0.283121 + 0.267487i
\(508\) 0 0
\(509\) 1.94487 0.607601i 0.0862050 0.0269314i −0.254791 0.966996i \(-0.582007\pi\)
0.340996 + 0.940065i \(0.389236\pi\)
\(510\) 0 0
\(511\) −1.85340 8.77397i −0.0819895 0.388137i
\(512\) 0 0
\(513\) −9.03507 1.73062i −0.398908 0.0764088i
\(514\) 0 0
\(515\) −19.0815 + 3.65496i −0.840832 + 0.161057i
\(516\) 0 0
\(517\) 26.0906 + 19.5662i 1.14746 + 0.860520i
\(518\) 0 0
\(519\) −8.40258 6.81306i −0.368832 0.299060i
\(520\) 0 0
\(521\) 0.867367 0.953586i 0.0380000 0.0417774i −0.720463 0.693493i \(-0.756071\pi\)
0.758463 + 0.651716i \(0.225950\pi\)
\(522\) 0 0
\(523\) −11.5744 0.438308i −0.506115 0.0191659i −0.216450 0.976294i \(-0.569448\pi\)
−0.289666 + 0.957128i \(0.593544\pi\)
\(524\) 0 0
\(525\) −10.0761 21.6677i −0.439757 0.945658i
\(526\) 0 0
\(527\) 44.6103 6.80618i 1.94326 0.296482i
\(528\) 0 0
\(529\) −6.57368 6.21066i −0.285812 0.270029i
\(530\) 0 0
\(531\) −2.75100 + 0.975157i −0.119383 + 0.0423182i
\(532\) 0 0
\(533\) 0.0103300 0.545766i 0.000447442 0.0236397i
\(534\) 0 0
\(535\) −35.3127 57.7477i −1.52670 2.49665i
\(536\) 0 0
\(537\) 1.58130 27.8217i 0.0682381 1.20060i
\(538\) 0 0
\(539\) 26.9157 1.01926i 1.15934 0.0439027i
\(540\) 0 0
\(541\) −13.9912 1.59559i −0.601529 0.0685996i −0.192773 0.981243i \(-0.561748\pi\)
−0.408756 + 0.912644i \(0.634037\pi\)
\(542\) 0 0
\(543\) −3.24074 9.72289i −0.139073 0.417249i
\(544\) 0 0
\(545\) −30.9441 46.5492i −1.32550 1.99395i
\(546\) 0 0
\(547\) 0.0239711 + 0.0954586i 0.00102493 + 0.00408152i 0.970398 0.241513i \(-0.0776435\pi\)
−0.969373 + 0.245594i \(0.921017\pi\)
\(548\) 0 0
\(549\) 9.47351 16.8974i 0.404320 0.721164i
\(550\) 0 0
\(551\) −2.56987 + 12.1657i −0.109480 + 0.518277i
\(552\) 0 0
\(553\) 2.78665 + 2.83990i 0.118501 + 0.120765i
\(554\) 0 0
\(555\) −9.78836 + 16.0071i −0.415493 + 0.679465i
\(556\) 0 0
\(557\) 0.509702 3.82495i 0.0215968 0.162068i −0.977122 0.212682i \(-0.931780\pi\)
0.998718 + 0.0506134i \(0.0161176\pi\)
\(558\) 0 0
\(559\) 27.7950 + 17.7279i 1.17560 + 0.749811i
\(560\) 0 0
\(561\) 42.4465 + 29.3901i 1.79209 + 1.24085i
\(562\) 0 0
\(563\) −2.62166 2.29548i −0.110490 0.0967429i 0.601730 0.798700i \(-0.294479\pi\)
−0.712219 + 0.701957i \(0.752310\pi\)
\(564\) 0 0
\(565\) −25.8500 + 17.8986i −1.08752 + 0.752999i
\(566\) 0 0
\(567\) −0.444604 4.68449i −0.0186716 0.196730i
\(568\) 0 0
\(569\) −7.60096 + 18.1075i −0.318649 + 0.759108i 0.680991 + 0.732291i \(0.261549\pi\)
−0.999640 + 0.0268166i \(0.991463\pi\)
\(570\) 0 0
\(571\) 24.5157 + 5.66532i 1.02595 + 0.237086i 0.704398 0.709806i \(-0.251217\pi\)
0.321552 + 0.946892i \(0.395796\pi\)
\(572\) 0 0
\(573\) −12.8896 + 8.22109i −0.538469 + 0.343441i
\(574\) 0 0
\(575\) −18.3822 48.8989i −0.766592 2.03923i
\(576\) 0 0
\(577\) −12.4608 15.9768i −0.518751 0.665123i 0.455593 0.890188i \(-0.349427\pi\)
−0.974344 + 0.225065i \(0.927741\pi\)
\(578\) 0 0
\(579\) 3.65503 + 12.5276i 0.151898 + 0.520628i
\(580\) 0 0
\(581\) 1.61864 + 2.88709i 0.0671526 + 0.119777i
\(582\) 0 0
\(583\) −4.74987 2.54609i −0.196719 0.105448i
\(584\) 0 0
\(585\) 8.09002 11.2241i 0.334481 0.464057i
\(586\) 0 0
\(587\) −21.0538 + 12.3332i −0.868984 + 0.509044i −0.871186 0.490954i \(-0.836648\pi\)
0.00220214 + 0.999998i \(0.499299\pi\)
\(588\) 0 0
\(589\) −3.36166 + 8.94240i −0.138515 + 0.368465i
\(590\) 0 0
\(591\) −3.63048 7.09200i −0.149338 0.291726i
\(592\) 0 0
\(593\) 12.2711 14.5619i 0.503915 0.597984i −0.451858 0.892090i \(-0.649239\pi\)
0.955773 + 0.294106i \(0.0950218\pi\)
\(594\) 0 0
\(595\) 34.9204 26.1880i 1.43160 1.07360i
\(596\) 0 0
\(597\) −15.1855 + 1.73178i −0.621499 + 0.0708771i
\(598\) 0 0
\(599\) −1.35107 + 5.38026i −0.0552031 + 0.219831i −0.991241 0.132069i \(-0.957838\pi\)
0.936037 + 0.351900i \(0.114464\pi\)
\(600\) 0 0
\(601\) −15.1558 + 6.70203i −0.618218 + 0.273381i −0.689739 0.724058i \(-0.742275\pi\)
0.0715211 + 0.997439i \(0.477215\pi\)
\(602\) 0 0
\(603\) −10.7476 + 8.71446i −0.437676 + 0.354880i
\(604\) 0 0
\(605\) −10.7957 + 62.7680i −0.438908 + 2.55188i
\(606\) 0 0
\(607\) 4.87332 4.96643i 0.197802 0.201581i −0.607713 0.794157i \(-0.707913\pi\)
0.805515 + 0.592576i \(0.201889\pi\)
\(608\) 0 0
\(609\) −12.9422 + 0.981617i −0.524446 + 0.0397771i
\(610\) 0 0
\(611\) −14.5919 7.12454i −0.590325 0.288228i
\(612\) 0 0
\(613\) −22.2598 + 11.9320i −0.899063 + 0.481927i −0.855900 0.517141i \(-0.826996\pi\)
−0.0431625 + 0.999068i \(0.513743\pi\)
\(614\) 0 0
\(615\) 0.211005 + 1.22682i 0.00850854 + 0.0494700i
\(616\) 0 0
\(617\) 1.55272 + 27.3188i 0.0625100 + 1.09981i 0.864551 + 0.502545i \(0.167603\pi\)
−0.802041 + 0.597269i \(0.796252\pi\)
\(618\) 0 0
\(619\) −13.3351 15.8244i −0.535982 0.636038i 0.427434 0.904046i \(-0.359418\pi\)
−0.963416 + 0.268009i \(0.913634\pi\)
\(620\) 0 0
\(621\) −0.397271 20.9891i −0.0159419 0.842263i
\(622\) 0 0
\(623\) 6.01739 + 0.918071i 0.241082 + 0.0367817i
\(624\) 0 0
\(625\) −9.50710 + 100.170i −0.380284 + 4.00679i
\(626\) 0 0
\(627\) −9.82165 + 4.79545i −0.392239 + 0.191512i
\(628\) 0 0
\(629\) −23.7949 8.43466i −0.948765 0.336312i
\(630\) 0 0
\(631\) −32.2294 8.74488i −1.28303 0.348128i −0.445876 0.895095i \(-0.647108\pi\)
−0.837155 + 0.546966i \(0.815783\pi\)
\(632\) 0 0
\(633\) 24.6594 21.5913i 0.980122 0.858178i
\(634\) 0 0
\(635\) 50.1179 + 29.3587i 1.98887 + 1.16506i
\(636\) 0 0
\(637\) −13.0672 + 3.01969i −0.517740 + 0.119644i
\(638\) 0 0
\(639\) 9.04579 3.59733i 0.357846 0.142308i
\(640\) 0 0
\(641\) −14.4179 34.3473i −0.569472 1.35664i −0.909297 0.416147i \(-0.863380\pi\)
0.339825 0.940489i \(-0.389632\pi\)
\(642\) 0 0
\(643\) −6.78982 7.46475i −0.267764 0.294381i 0.591085 0.806609i \(-0.298700\pi\)
−0.858849 + 0.512228i \(0.828820\pi\)
\(644\) 0 0
\(645\) −69.8597 27.7818i −2.75072 1.09391i
\(646\) 0 0
\(647\) 19.8746 + 6.20905i 0.781351 + 0.244103i 0.662752 0.748839i \(-0.269389\pi\)
0.118599 + 0.992942i \(0.462160\pi\)
\(648\) 0 0
\(649\) −6.49049 + 9.76363i −0.254774 + 0.383256i
\(650\) 0 0
\(651\) −9.94374 0.754193i −0.389726 0.0295591i
\(652\) 0 0
\(653\) 5.45814 18.7077i 0.213594 0.732090i −0.780652 0.624966i \(-0.785113\pi\)
0.994246 0.107124i \(-0.0341643\pi\)
\(654\) 0 0
\(655\) 10.7703 21.0395i 0.420832 0.822080i
\(656\) 0 0
\(657\) −5.36404 + 6.87758i −0.209271 + 0.268320i
\(658\) 0 0
\(659\) −31.1393 + 8.44911i −1.21301 + 0.329131i −0.810201 0.586152i \(-0.800642\pi\)
−0.402813 + 0.915282i \(0.631968\pi\)
\(660\) 0 0
\(661\) −20.9019 + 44.9477i −0.812991 + 1.74826i −0.165471 + 0.986215i \(0.552914\pi\)
−0.647521 + 0.762048i \(0.724194\pi\)
\(662\) 0 0
\(663\) −23.5107 10.3966i −0.913080 0.403772i
\(664\) 0 0
\(665\) 1.22059 + 9.15964i 0.0473324 + 0.355196i
\(666\) 0 0
\(667\) −28.3748 −1.09868
\(668\) 0 0
\(669\) 2.07903 0.0803800
\(670\) 0 0
\(671\) −10.2785 77.1325i −0.396796 2.97767i
\(672\) 0 0
\(673\) 13.1582 + 5.81869i 0.507213 + 0.224294i 0.642177 0.766557i \(-0.278031\pi\)
−0.134964 + 0.990851i \(0.543092\pi\)
\(674\) 0 0
\(675\) −33.1334 + 71.2503i −1.27530 + 2.74242i
\(676\) 0 0
\(677\) 21.3374 5.78955i 0.820065 0.222510i 0.172977 0.984926i \(-0.444661\pi\)
0.647088 + 0.762416i \(0.275987\pi\)
\(678\) 0 0
\(679\) 10.4021 13.3372i 0.399197 0.511836i
\(680\) 0 0
\(681\) 12.2730 23.9748i 0.470302 0.918718i
\(682\) 0 0
\(683\) 12.8439 44.0223i 0.491458 1.68447i −0.214920 0.976632i \(-0.568949\pi\)
0.706378 0.707835i \(-0.250328\pi\)
\(684\) 0 0
\(685\) −56.4352 4.28038i −2.15628 0.163545i
\(686\) 0 0
\(687\) −8.62135 + 12.9691i −0.328925 + 0.494801i
\(688\) 0 0
\(689\) 2.56133 + 0.800188i 0.0975789 + 0.0304847i
\(690\) 0 0
\(691\) −39.1930 15.5863i −1.49097 0.592931i −0.524892 0.851169i \(-0.675894\pi\)
−0.966081 + 0.258238i \(0.916858\pi\)
\(692\) 0 0
\(693\) 5.55939 + 6.11201i 0.211184 + 0.232176i
\(694\) 0 0
\(695\) −4.72729 11.2617i −0.179316 0.427180i
\(696\) 0 0
\(697\) −1.55639 + 0.618944i −0.0589523 + 0.0234442i
\(698\) 0 0
\(699\) 21.7694 5.03068i 0.823393 0.190278i
\(700\) 0 0
\(701\) −25.6464 15.0234i −0.968650 0.567428i −0.0660076 0.997819i \(-0.521026\pi\)
−0.902642 + 0.430391i \(0.858376\pi\)
\(702\) 0 0
\(703\) 4.02102 3.52073i 0.151656 0.132787i
\(704\) 0 0
\(705\) 35.7389 + 9.69713i 1.34600 + 0.365215i
\(706\) 0 0
\(707\) 7.57147 + 2.68389i 0.284754 + 0.100938i
\(708\) 0 0
\(709\) 42.7003 20.8486i 1.60364 0.782985i 0.603745 0.797177i \(-0.293674\pi\)
0.999899 + 0.0141927i \(0.00451782\pi\)
\(710\) 0 0
\(711\) 0.365639 3.85250i 0.0137125 0.144480i
\(712\) 0 0
\(713\) −21.5514 3.28809i −0.807107 0.123140i
\(714\) 0 0
\(715\) −1.05173 55.5664i −0.0393326 2.07807i
\(716\) 0 0
\(717\) −6.31131 7.48949i −0.235700 0.279700i
\(718\) 0 0
\(719\) −0.570696 10.0409i −0.0212834 0.374464i −0.991317 0.131494i \(-0.958023\pi\)
0.970034 0.242971i \(-0.0781218\pi\)
\(720\) 0 0
\(721\) 0.979201 + 5.69323i 0.0364673 + 0.212027i
\(722\) 0 0
\(723\) −16.9714 + 9.09725i −0.631174 + 0.338330i
\(724\) 0 0
\(725\) 95.4401 + 46.5989i 3.54456 + 1.73064i
\(726\) 0 0
\(727\) −19.9078 + 1.50993i −0.738340 + 0.0560001i −0.439424 0.898280i \(-0.644818\pi\)
−0.298915 + 0.954280i \(0.596625\pi\)
\(728\) 0 0
\(729\) −18.7798 + 19.1387i −0.695550 + 0.708839i
\(730\) 0 0
\(731\) 17.1467 99.6938i 0.634194 3.68731i
\(732\) 0 0
\(733\) −5.06161 + 4.10410i −0.186955 + 0.151588i −0.718711 0.695309i \(-0.755267\pi\)
0.531756 + 0.846898i \(0.321532\pi\)
\(734\) 0 0
\(735\) 27.9719 12.3694i 1.03176 0.456252i
\(736\) 0 0
\(737\) −13.5367 + 53.9063i −0.498631 + 1.98566i
\(738\) 0 0
\(739\) 20.3755 2.32366i 0.749525 0.0854774i 0.269824 0.962910i \(-0.413034\pi\)
0.479701 + 0.877432i \(0.340745\pi\)
\(740\) 0 0
\(741\) 4.35389 3.26513i 0.159944 0.119948i
\(742\) 0 0
\(743\) −18.0833 + 21.4591i −0.663413 + 0.787256i −0.987305 0.158838i \(-0.949225\pi\)
0.323892 + 0.946094i \(0.395008\pi\)
\(744\) 0 0
\(745\) −17.9820 35.1271i −0.658808 1.28696i
\(746\) 0 0
\(747\) 1.13279 3.01336i 0.0414467 0.110253i
\(748\) 0 0
\(749\) −17.3663 + 10.1730i −0.634550 + 0.371715i
\(750\) 0 0
\(751\) −9.57647 + 13.2863i −0.349450 + 0.484826i −0.948896 0.315590i \(-0.897798\pi\)
0.599445 + 0.800416i \(0.295388\pi\)
\(752\) 0 0
\(753\) −2.49830 1.33917i −0.0910431 0.0488021i
\(754\) 0 0
\(755\) 24.4703 + 43.6465i 0.890567 + 1.58846i
\(756\) 0 0
\(757\) −7.38929 25.3267i −0.268568 0.920516i −0.976731 0.214467i \(-0.931199\pi\)
0.708163 0.706049i \(-0.249524\pi\)
\(758\) 0 0
\(759\) −15.3392 19.6673i −0.556777 0.713879i
\(760\) 0 0
\(761\) −13.1259 34.9165i −0.475814 1.26572i −0.927593 0.373592i \(-0.878126\pi\)
0.451779 0.892130i \(-0.350790\pi\)
\(762\) 0 0
\(763\) −14.0126 + 8.93734i −0.507288 + 0.323553i
\(764\) 0 0
\(765\) −41.3639 9.55876i −1.49551 0.345598i
\(766\) 0 0
\(767\) 2.25948 5.38269i 0.0815851 0.194358i
\(768\) 0 0
\(769\) −0.0977317 1.02973i −0.00352430 0.0371331i 0.993591 0.113035i \(-0.0360573\pi\)
−0.997115 + 0.0759021i \(0.975816\pi\)
\(770\) 0 0
\(771\) 4.44465 3.07748i 0.160070 0.110833i
\(772\) 0 0
\(773\) 14.6081 + 12.7906i 0.525417 + 0.460046i 0.879997 0.474980i \(-0.157545\pi\)
−0.354579 + 0.935026i \(0.615376\pi\)
\(774\) 0 0
\(775\) 67.0894 + 46.4528i 2.40992 + 1.66864i
\(776\) 0 0
\(777\) 4.70362 + 3.00002i 0.168741 + 0.107625i
\(778\) 0 0
\(779\) 0.0468375 0.351482i 0.00167813 0.0125931i
\(780\) 0 0
\(781\) 20.4000 33.3606i 0.729969 1.19374i
\(782\) 0 0
\(783\) 29.8927 + 30.4638i 1.06828 + 1.08869i
\(784\) 0 0
\(785\) 10.9534 51.8535i 0.390945 1.85073i
\(786\) 0 0
\(787\) −22.2301 + 39.6507i −0.792418 + 1.41340i 0.115087 + 0.993355i \(0.463285\pi\)
−0.907505 + 0.420040i \(0.862016\pi\)
\(788\) 0 0
\(789\) −3.80691 15.1600i −0.135530 0.539710i
\(790\) 0 0
\(791\) 5.17555 + 7.78556i 0.184021 + 0.276823i
\(792\) 0 0
\(793\) 12.2516 + 36.7574i 0.435067 + 1.30529i
\(794\) 0 0
\(795\) −6.08006 0.693383i −0.215638 0.0245918i
\(796\) 0 0