Properties

Label 668.2.e.a.9.8
Level $668$
Weight $2$
Character 668.9
Analytic conductor $5.334$
Analytic rank $0$
Dimension $1148$
CM no
Inner twists $2$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 668 = 2^{2} \cdot 167 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 668.e (of order \(83\), degree \(82\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(5.33400685502\)
Analytic rank: \(0\)
Dimension: \(1148\)
Relative dimension: \(14\) over \(\Q(\zeta_{83})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{83}]$

Embedding invariants

Embedding label 9.8
Character \(\chi\) \(=\) 668.9
Dual form 668.2.e.a.297.8

$q$-expansion

\(f(q)\) \(=\) \(q+(0.0433273 + 0.325140i) q^{3} +(3.41908 + 1.51194i) q^{5} +(-1.67119 + 3.59374i) q^{7} +(2.79147 - 0.757419i) q^{9} +O(q^{10})\) \(q+(0.0433273 + 0.325140i) q^{3} +(3.41908 + 1.51194i) q^{5} +(-1.67119 + 3.59374i) q^{7} +(2.79147 - 0.757419i) q^{9} +(3.68722 - 4.72762i) q^{11} +(0.965873 - 1.88680i) q^{13} +(-0.343455 + 1.17719i) q^{15} +(-2.68591 - 0.203715i) q^{17} +(-3.77888 + 5.68456i) q^{19} +(-1.24088 - 0.387664i) q^{21} +(-3.13185 - 1.24547i) q^{23} +(6.03974 + 6.64011i) q^{25} +(0.748089 + 1.78215i) q^{27} +(-2.45570 + 0.976584i) q^{29} +(1.67743 - 0.387636i) q^{31} +(1.69690 + 0.994029i) q^{33} +(-11.1474 + 9.76051i) q^{35} +(4.12317 + 1.11875i) q^{37} +(0.655322 + 0.232295i) q^{39} +(7.06029 - 3.44721i) q^{41} +(-0.853909 + 8.99707i) q^{43} +(10.6894 + 1.63088i) q^{45} +(-0.188917 - 9.98110i) q^{47} +(-5.61129 - 6.65879i) q^{49} +(-0.0501372 - 0.882124i) q^{51} +(-1.47669 - 8.58570i) q^{53} +(19.7548 - 10.5892i) q^{55} +(-2.01201 - 0.982371i) q^{57} +(-12.6765 + 0.961465i) q^{59} +(-1.28468 + 1.30922i) q^{61} +(-1.94312 + 11.2976i) q^{63} +(6.15512 - 4.99075i) q^{65} +(2.11722 - 0.936252i) q^{67} +(0.269260 - 1.07225i) q^{69} +(11.5437 - 1.31646i) q^{71} +(-12.5732 + 9.42903i) q^{73} +(-1.89728 + 2.25146i) q^{75} +(10.8278 + 21.1516i) q^{77} +(2.71245 - 7.21543i) q^{79} +(6.94014 - 4.06548i) q^{81} +(-3.89753 + 5.40742i) q^{83} +(-8.87532 - 4.75746i) q^{85} +(-0.423926 - 0.756135i) q^{87} +(2.75536 + 9.44398i) q^{89} +(5.16649 + 6.62429i) q^{91} +(0.198714 + 0.528604i) q^{93} +(-21.5150 + 13.7225i) q^{95} +(-16.6328 - 3.84367i) q^{97} +(6.71199 - 15.9898i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 1148q - 2q^{5} - 14q^{9} + O(q^{10}) \) \( 1148q - 2q^{5} - 14q^{9} + 2q^{11} + 4q^{13} + 14q^{15} + 2q^{17} + 2q^{19} + 14q^{23} - 6q^{25} + 2q^{29} - 2q^{31} + 16q^{33} - 2q^{35} + 10q^{37} + 6q^{39} + 4q^{41} + 4q^{43} - 2q^{45} + 2q^{47} - 30q^{49} - 2q^{51} - 6q^{55} - 4q^{57} + 6q^{59} + 2q^{61} + 14q^{63} + 22q^{65} + 12q^{67} - 14q^{69} - 8q^{71} - 18q^{73} - 26q^{75} - 2q^{79} - 6q^{81} - 22q^{83} + 34q^{85} + 2q^{87} + 14q^{89} - 6q^{91} + 32q^{93} - 8q^{95} + 44q^{97} + 2q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/668\mathbb{Z}\right)^\times\).

\(n\) \(5\) \(335\)
\(\chi(n)\) \(e\left(\frac{11}{83}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.0433273 + 0.325140i 0.0250150 + 0.187720i 0.999292 0.0376362i \(-0.0119828\pi\)
−0.974276 + 0.225356i \(0.927645\pi\)
\(4\) 0 0
\(5\) 3.41908 + 1.51194i 1.52906 + 0.676162i 0.986486 0.163848i \(-0.0523906\pi\)
0.542571 + 0.840010i \(0.317451\pi\)
\(6\) 0 0
\(7\) −1.67119 + 3.59374i −0.631650 + 1.35830i 0.284967 + 0.958537i \(0.408017\pi\)
−0.916617 + 0.399767i \(0.869091\pi\)
\(8\) 0 0
\(9\) 2.79147 0.757419i 0.930492 0.252473i
\(10\) 0 0
\(11\) 3.68722 4.72762i 1.11174 1.42543i 0.218505 0.975836i \(-0.429882\pi\)
0.893233 0.449594i \(-0.148431\pi\)
\(12\) 0 0
\(13\) 0.965873 1.88680i 0.267885 0.523303i −0.716879 0.697197i \(-0.754430\pi\)
0.984764 + 0.173894i \(0.0556350\pi\)
\(14\) 0 0
\(15\) −0.343455 + 1.17719i −0.0886796 + 0.303949i
\(16\) 0 0
\(17\) −2.68591 0.203715i −0.651429 0.0494082i −0.254234 0.967143i \(-0.581823\pi\)
−0.397194 + 0.917734i \(0.630016\pi\)
\(18\) 0 0
\(19\) −3.77888 + 5.68456i −0.866935 + 1.30413i 0.0845458 + 0.996420i \(0.473056\pi\)
−0.951481 + 0.307708i \(0.900438\pi\)
\(20\) 0 0
\(21\) −1.24088 0.387664i −0.270782 0.0845952i
\(22\) 0 0
\(23\) −3.13185 1.24547i −0.653035 0.259699i 0.0194488 0.999811i \(-0.493809\pi\)
−0.672484 + 0.740111i \(0.734773\pi\)
\(24\) 0 0
\(25\) 6.03974 + 6.64011i 1.20795 + 1.32802i
\(26\) 0 0
\(27\) 0.748089 + 1.78215i 0.143970 + 0.342975i
\(28\) 0 0
\(29\) −2.45570 + 0.976584i −0.456012 + 0.181347i −0.586241 0.810137i \(-0.699393\pi\)
0.130229 + 0.991484i \(0.458429\pi\)
\(30\) 0 0
\(31\) 1.67743 0.387636i 0.301275 0.0696214i −0.0718114 0.997418i \(-0.522878\pi\)
0.373086 + 0.927797i \(0.378300\pi\)
\(32\) 0 0
\(33\) 1.69690 + 0.994029i 0.295392 + 0.173038i
\(34\) 0 0
\(35\) −11.1474 + 9.76051i −1.88426 + 1.64983i
\(36\) 0 0
\(37\) 4.12317 + 1.11875i 0.677845 + 0.183921i 0.584108 0.811676i \(-0.301444\pi\)
0.0937363 + 0.995597i \(0.470119\pi\)
\(38\) 0 0
\(39\) 0.655322 + 0.232295i 0.104936 + 0.0371969i
\(40\) 0 0
\(41\) 7.06029 3.44721i 1.10263 0.538363i 0.204845 0.978794i \(-0.434331\pi\)
0.897786 + 0.440431i \(0.145174\pi\)
\(42\) 0 0
\(43\) −0.853909 + 8.99707i −0.130220 + 1.37204i 0.656312 + 0.754490i \(0.272116\pi\)
−0.786532 + 0.617550i \(0.788125\pi\)
\(44\) 0 0
\(45\) 10.6894 + 1.63088i 1.59349 + 0.243118i
\(46\) 0 0
\(47\) −0.188917 9.98110i −0.0275564 1.45589i −0.699151 0.714974i \(-0.746438\pi\)
0.671594 0.740919i \(-0.265610\pi\)
\(48\) 0 0
\(49\) −5.61129 6.65879i −0.801613 0.951255i
\(50\) 0 0
\(51\) −0.0501372 0.882124i −0.00702061 0.123522i
\(52\) 0 0
\(53\) −1.47669 8.58570i −0.202839 1.17934i −0.891077 0.453852i \(-0.850049\pi\)
0.688238 0.725485i \(-0.258384\pi\)
\(54\) 0 0
\(55\) 19.7548 10.5892i 2.66373 1.42785i
\(56\) 0 0
\(57\) −2.01201 0.982371i −0.266497 0.130118i
\(58\) 0 0
\(59\) −12.6765 + 0.961465i −1.65035 + 0.125172i −0.867631 0.497209i \(-0.834358\pi\)
−0.782714 + 0.622381i \(0.786165\pi\)
\(60\) 0 0
\(61\) −1.28468 + 1.30922i −0.164486 + 0.167629i −0.791071 0.611724i \(-0.790476\pi\)
0.626585 + 0.779353i \(0.284452\pi\)
\(62\) 0 0
\(63\) −1.94312 + 11.2976i −0.244810 + 1.42337i
\(64\) 0 0
\(65\) 6.15512 4.99075i 0.763449 0.619027i
\(66\) 0 0
\(67\) 2.11722 0.936252i 0.258659 0.114381i −0.271036 0.962569i \(-0.587366\pi\)
0.529696 + 0.848188i \(0.322306\pi\)
\(68\) 0 0
\(69\) 0.269260 1.07225i 0.0324150 0.129084i
\(70\) 0 0
\(71\) 11.5437 1.31646i 1.36998 0.156236i 0.602916 0.797804i \(-0.294005\pi\)
0.767065 + 0.641569i \(0.221716\pi\)
\(72\) 0 0
\(73\) −12.5732 + 9.42903i −1.47158 + 1.10358i −0.500236 + 0.865889i \(0.666754\pi\)
−0.971340 + 0.237696i \(0.923608\pi\)
\(74\) 0 0
\(75\) −1.89728 + 2.25146i −0.219079 + 0.259976i
\(76\) 0 0
\(77\) 10.8278 + 21.1516i 1.23394 + 2.41045i
\(78\) 0 0
\(79\) 2.71245 7.21543i 0.305174 0.811799i −0.690873 0.722976i \(-0.742774\pi\)
0.996047 0.0888232i \(-0.0283106\pi\)
\(80\) 0 0
\(81\) 6.94014 4.06548i 0.771126 0.451720i
\(82\) 0 0
\(83\) −3.89753 + 5.40742i −0.427810 + 0.593541i −0.968909 0.247418i \(-0.920418\pi\)
0.541099 + 0.840959i \(0.318008\pi\)
\(84\) 0 0
\(85\) −8.87532 4.75746i −0.962663 0.516019i
\(86\) 0 0
\(87\) −0.423926 0.756135i −0.0454496 0.0810661i
\(88\) 0 0
\(89\) 2.75536 + 9.44398i 0.292068 + 1.00106i 0.965195 + 0.261533i \(0.0842279\pi\)
−0.673127 + 0.739527i \(0.735049\pi\)
\(90\) 0 0
\(91\) 5.16649 + 6.62429i 0.541595 + 0.694414i
\(92\) 0 0
\(93\) 0.198714 + 0.528604i 0.0206057 + 0.0548137i
\(94\) 0 0
\(95\) −21.5150 + 13.7225i −2.20739 + 1.40790i
\(96\) 0 0
\(97\) −16.6328 3.84367i −1.68880 0.390265i −0.732070 0.681229i \(-0.761446\pi\)
−0.956734 + 0.290964i \(0.906024\pi\)
\(98\) 0 0
\(99\) 6.71199 15.9898i 0.674581 1.60703i
\(100\) 0 0
\(101\) −0.984855 10.3768i −0.0979967 1.03253i −0.900201 0.435476i \(-0.856580\pi\)
0.802204 0.597050i \(-0.203661\pi\)
\(102\) 0 0
\(103\) −1.36317 + 0.943859i −0.134317 + 0.0930012i −0.634518 0.772908i \(-0.718801\pi\)
0.500201 + 0.865909i \(0.333259\pi\)
\(104\) 0 0
\(105\) −3.65653 3.20159i −0.356840 0.312443i
\(106\) 0 0
\(107\) −5.59238 3.87217i −0.540636 0.374337i 0.267295 0.963615i \(-0.413870\pi\)
−0.807931 + 0.589278i \(0.799412\pi\)
\(108\) 0 0
\(109\) 9.02259 + 5.75469i 0.864207 + 0.551200i 0.893853 0.448361i \(-0.147992\pi\)
−0.0296455 + 0.999560i \(0.509438\pi\)
\(110\) 0 0
\(111\) −0.185105 + 1.38908i −0.0175694 + 0.131846i
\(112\) 0 0
\(113\) −2.38950 + 3.90760i −0.224785 + 0.367596i −0.945493 0.325643i \(-0.894419\pi\)
0.720708 + 0.693239i \(0.243817\pi\)
\(114\) 0 0
\(115\) −8.82493 8.99355i −0.822929 0.838653i
\(116\) 0 0
\(117\) 1.26712 5.99851i 0.117145 0.554563i
\(118\) 0 0
\(119\) 5.22076 9.31200i 0.478586 0.853630i
\(120\) 0 0
\(121\) −6.07568 24.1947i −0.552334 2.19952i
\(122\) 0 0
\(123\) 1.42673 + 2.14623i 0.128644 + 0.193519i
\(124\) 0 0
\(125\) 4.70020 + 14.1016i 0.420399 + 1.26129i
\(126\) 0 0
\(127\) 1.36216 + 0.155344i 0.120872 + 0.0137845i 0.173534 0.984828i \(-0.444481\pi\)
−0.0526618 + 0.998612i \(0.516771\pi\)
\(128\) 0 0
\(129\) −2.96231 + 0.112178i −0.260817 + 0.00987676i
\(130\) 0 0
\(131\) 0.625911 11.0124i 0.0546861 0.962160i −0.847495 0.530803i \(-0.821890\pi\)
0.902181 0.431357i \(-0.141965\pi\)
\(132\) 0 0
\(133\) −14.1136 23.0803i −1.22380 2.00131i
\(134\) 0 0
\(135\) −0.136739 + 7.22438i −0.0117687 + 0.621775i
\(136\) 0 0
\(137\) 1.68894 0.598685i 0.144296 0.0511491i −0.260976 0.965345i \(-0.584044\pi\)
0.405272 + 0.914196i \(0.367177\pi\)
\(138\) 0 0
\(139\) −3.92220 3.70560i −0.332677 0.314305i 0.502190 0.864757i \(-0.332528\pi\)
−0.834867 + 0.550452i \(0.814455\pi\)
\(140\) 0 0
\(141\) 3.23707 0.493879i 0.272611 0.0415921i
\(142\) 0 0
\(143\) −5.35866 11.5233i −0.448114 0.963627i
\(144\) 0 0
\(145\) −9.87276 0.373868i −0.819888 0.0310480i
\(146\) 0 0
\(147\) 1.92192 2.11296i 0.158517 0.174274i
\(148\) 0 0
\(149\) −6.67446 5.41185i −0.546793 0.443356i 0.316112 0.948722i \(-0.397622\pi\)
−0.862905 + 0.505366i \(0.831357\pi\)
\(150\) 0 0
\(151\) −10.1862 7.63897i −0.828941 0.621651i 0.0987028 0.995117i \(-0.468531\pi\)
−0.927644 + 0.373466i \(0.878169\pi\)
\(152\) 0 0
\(153\) −7.65195 + 1.46569i −0.618623 + 0.118494i
\(154\) 0 0
\(155\) 6.32133 + 1.21082i 0.507741 + 0.0972553i
\(156\) 0 0
\(157\) −2.73690 12.9565i −0.218428 1.03404i −0.939862 0.341554i \(-0.889047\pi\)
0.721434 0.692483i \(-0.243483\pi\)
\(158\) 0 0
\(159\) 2.72758 0.852127i 0.216311 0.0675780i
\(160\) 0 0
\(161\) 9.70982 9.17361i 0.765241 0.722982i
\(162\) 0 0
\(163\) 1.09154 3.27487i 0.0854964 0.256507i −0.897233 0.441558i \(-0.854426\pi\)
0.982729 + 0.185051i \(0.0592451\pi\)
\(164\) 0 0
\(165\) 4.29890 + 5.96427i 0.334669 + 0.464318i
\(166\) 0 0
\(167\) 2.67393 + 12.6432i 0.206915 + 0.978359i
\(168\) 0 0
\(169\) 4.97426 + 6.90126i 0.382635 + 0.530866i
\(170\) 0 0
\(171\) −6.24306 + 18.7305i −0.477419 + 1.43236i
\(172\) 0 0
\(173\) 5.10437 4.82249i 0.388078 0.366647i −0.467792 0.883839i \(-0.654950\pi\)
0.855870 + 0.517191i \(0.173022\pi\)
\(174\) 0 0
\(175\) −33.9563 + 10.6083i −2.56686 + 0.801916i
\(176\) 0 0
\(177\) −0.861852 4.08000i −0.0647808 0.306672i
\(178\) 0 0
\(179\) 18.0325 + 3.45402i 1.34781 + 0.258166i 0.810757 0.585383i \(-0.199056\pi\)
0.537052 + 0.843549i \(0.319538\pi\)
\(180\) 0 0
\(181\) −0.600379 + 0.114999i −0.0446258 + 0.00854784i −0.210389 0.977618i \(-0.567473\pi\)
0.165763 + 0.986166i \(0.446991\pi\)
\(182\) 0 0
\(183\) −0.481343 0.360976i −0.0355819 0.0266841i
\(184\) 0 0
\(185\) 12.4059 + 10.0591i 0.912102 + 0.739559i
\(186\) 0 0
\(187\) −10.8666 + 11.9468i −0.794646 + 0.873637i
\(188\) 0 0
\(189\) −7.65478 0.289876i −0.556803 0.0210854i
\(190\) 0 0
\(191\) −6.42553 13.8175i −0.464935 0.999799i −0.988972 0.148104i \(-0.952683\pi\)
0.524037 0.851696i \(-0.324425\pi\)
\(192\) 0 0
\(193\) 13.1317 2.00350i 0.945241 0.144215i 0.340150 0.940371i \(-0.389522\pi\)
0.605091 + 0.796156i \(0.293137\pi\)
\(194\) 0 0
\(195\) 1.88938 + 1.78504i 0.135301 + 0.127830i
\(196\) 0 0
\(197\) 11.2667 3.99375i 0.802719 0.284543i 0.0990607 0.995081i \(-0.468416\pi\)
0.703658 + 0.710539i \(0.251549\pi\)
\(198\) 0 0
\(199\) 0.391700 20.6947i 0.0277669 1.46701i −0.665537 0.746365i \(-0.731797\pi\)
0.693304 0.720645i \(-0.256154\pi\)
\(200\) 0 0
\(201\) 0.396147 + 0.647828i 0.0279420 + 0.0456943i
\(202\) 0 0
\(203\) 0.594354 10.4572i 0.0417155 0.733951i
\(204\) 0 0
\(205\) 29.3516 1.11151i 2.05001 0.0776309i
\(206\) 0 0
\(207\) −9.68582 1.10459i −0.673211 0.0767744i
\(208\) 0 0
\(209\) 12.9409 + 38.8253i 0.895138 + 2.68560i
\(210\) 0 0
\(211\) 0.307953 + 0.463253i 0.0212004 + 0.0318917i 0.843229 0.537554i \(-0.180652\pi\)
−0.822029 + 0.569446i \(0.807158\pi\)
\(212\) 0 0
\(213\) 0.928192 + 3.69628i 0.0635987 + 0.253265i
\(214\) 0 0
\(215\) −16.5226 + 29.4706i −1.12683 + 2.00988i
\(216\) 0 0
\(217\) −1.41023 + 6.67604i −0.0957330 + 0.453199i
\(218\) 0 0
\(219\) −3.61052 3.67951i −0.243976 0.248638i
\(220\) 0 0
\(221\) −2.97862 + 4.87100i −0.200363 + 0.327659i
\(222\) 0 0
\(223\) −3.00416 + 22.5441i −0.201174 + 1.50966i 0.541893 + 0.840447i \(0.317708\pi\)
−0.743067 + 0.669217i \(0.766630\pi\)
\(224\) 0 0
\(225\) 21.8891 + 13.9611i 1.45927 + 0.930739i
\(226\) 0 0
\(227\) −22.2126 15.3801i −1.47431 1.02081i −0.989235 0.146336i \(-0.953252\pi\)
−0.485070 0.874475i \(-0.661206\pi\)
\(228\) 0 0
\(229\) −6.24724 5.46997i −0.412829 0.361466i 0.427061 0.904223i \(-0.359549\pi\)
−0.839890 + 0.542757i \(0.817380\pi\)
\(230\) 0 0
\(231\) −6.40811 + 4.43699i −0.421623 + 0.291932i
\(232\) 0 0
\(233\) 1.44086 + 15.1814i 0.0943937 + 0.994563i 0.909626 + 0.415429i \(0.136368\pi\)
−0.815232 + 0.579135i \(0.803391\pi\)
\(234\) 0 0
\(235\) 14.4449 34.4118i 0.942284 2.24478i
\(236\) 0 0
\(237\) 2.46355 + 0.569301i 0.160025 + 0.0369801i
\(238\) 0 0
\(239\) 16.9535 10.8131i 1.09663 0.699443i 0.139828 0.990176i \(-0.455345\pi\)
0.956804 + 0.290733i \(0.0938991\pi\)
\(240\) 0 0
\(241\) −5.08334 13.5223i −0.327447 0.871047i −0.992276 0.124051i \(-0.960411\pi\)
0.664829 0.746995i \(-0.268504\pi\)
\(242\) 0 0
\(243\) 5.18855 + 6.65256i 0.332845 + 0.426762i
\(244\) 0 0
\(245\) −9.11770 31.2508i −0.582509 1.99654i
\(246\) 0 0
\(247\) 7.07569 + 12.6205i 0.450215 + 0.803026i
\(248\) 0 0
\(249\) −1.92704 1.03296i −0.122121 0.0654610i
\(250\) 0 0
\(251\) −0.136789 + 0.189780i −0.00863403 + 0.0119788i −0.815531 0.578714i \(-0.803555\pi\)
0.806897 + 0.590692i \(0.201145\pi\)
\(252\) 0 0
\(253\) −17.4359 + 10.2138i −1.09619 + 0.642138i
\(254\) 0 0
\(255\) 1.16230 3.09185i 0.0727860 0.193619i
\(256\) 0 0
\(257\) −7.84159 15.3183i −0.489145 0.955527i −0.995640 0.0932834i \(-0.970264\pi\)
0.506494 0.862243i \(-0.330941\pi\)
\(258\) 0 0
\(259\) −10.9111 + 12.9479i −0.677982 + 0.804546i
\(260\) 0 0
\(261\) −6.11534 + 4.58610i −0.378530 + 0.283873i
\(262\) 0 0
\(263\) 0.184467 0.0210370i 0.0113747 0.00129720i −0.107618 0.994192i \(-0.534322\pi\)
0.118993 + 0.992895i \(0.462033\pi\)
\(264\) 0 0
\(265\) 7.93220 31.5878i 0.487271 1.94043i
\(266\) 0 0
\(267\) −2.95124 + 1.30506i −0.180613 + 0.0798685i
\(268\) 0 0
\(269\) 2.47599 2.00760i 0.150964 0.122406i −0.551348 0.834275i \(-0.685886\pi\)
0.702311 + 0.711870i \(0.252151\pi\)
\(270\) 0 0
\(271\) 0.409677 2.38193i 0.0248861 0.144692i −0.970427 0.241394i \(-0.922396\pi\)
0.995313 + 0.0967016i \(0.0308293\pi\)
\(272\) 0 0
\(273\) −1.92997 + 1.96685i −0.116807 + 0.119039i
\(274\) 0 0
\(275\) 53.6617 4.07002i 3.23592 0.245432i
\(276\) 0 0
\(277\) 13.7294 + 6.70340i 0.824917 + 0.402768i 0.802260 0.596975i \(-0.203631\pi\)
0.0226569 + 0.999743i \(0.492787\pi\)
\(278\) 0 0
\(279\) 4.38889 2.35259i 0.262756 0.140846i
\(280\) 0 0
\(281\) 4.38172 + 25.4760i 0.261392 + 1.51977i 0.758263 + 0.651949i \(0.226048\pi\)
−0.496871 + 0.867824i \(0.665518\pi\)
\(282\) 0 0
\(283\) −1.09958 19.3463i −0.0653633 1.15002i −0.848859 0.528619i \(-0.822710\pi\)
0.783496 0.621397i \(-0.213434\pi\)
\(284\) 0 0
\(285\) −5.39392 6.40085i −0.319508 0.379153i
\(286\) 0 0
\(287\) 0.589284 + 31.1337i 0.0347844 + 1.83777i
\(288\) 0 0
\(289\) −9.63292 1.46969i −0.566642 0.0864524i
\(290\) 0 0
\(291\) 0.529077 5.57453i 0.0310151 0.326785i
\(292\) 0 0
\(293\) 5.15600 2.51744i 0.301217 0.147070i −0.281934 0.959434i \(-0.590976\pi\)
0.583151 + 0.812364i \(0.301819\pi\)
\(294\) 0 0
\(295\) −44.7957 15.8789i −2.60811 0.924506i
\(296\) 0 0
\(297\) 11.1837 + 3.03450i 0.648944 + 0.176080i
\(298\) 0 0
\(299\) −5.37492 + 4.70619i −0.310840 + 0.272166i
\(300\) 0 0
\(301\) −30.9060 18.1045i −1.78139 1.04353i
\(302\) 0 0
\(303\) 3.33123 0.769813i 0.191374 0.0442246i
\(304\) 0 0
\(305\) −6.37188 + 2.53397i −0.364853 + 0.145095i
\(306\) 0 0
\(307\) 6.54331 + 15.5879i 0.373447 + 0.889651i 0.994388 + 0.105794i \(0.0337384\pi\)
−0.620941 + 0.783857i \(0.713250\pi\)
\(308\) 0 0
\(309\) −0.365949 0.402326i −0.0208181 0.0228875i
\(310\) 0 0
\(311\) 14.3418 + 5.70346i 0.813250 + 0.323414i 0.738897 0.673818i \(-0.235347\pi\)
0.0743532 + 0.997232i \(0.476311\pi\)
\(312\) 0 0
\(313\) −28.6027 8.93582i −1.61672 0.505082i −0.649789 0.760114i \(-0.725143\pi\)
−0.966933 + 0.255032i \(0.917914\pi\)
\(314\) 0 0
\(315\) −23.7250 + 35.6895i −1.33675 + 2.01088i
\(316\) 0 0
\(317\) 0.839528 + 0.0636748i 0.0471526 + 0.00357633i 0.0991839 0.995069i \(-0.468377\pi\)
−0.0520313 + 0.998645i \(0.516570\pi\)
\(318\) 0 0
\(319\) −4.43779 + 15.2105i −0.248469 + 0.851624i
\(320\) 0 0
\(321\) 1.01670 1.98608i 0.0567465 0.110852i
\(322\) 0 0
\(323\) 11.3078 14.4984i 0.629181 0.806713i
\(324\) 0 0
\(325\) 18.3621 4.98225i 1.01855 0.276366i
\(326\) 0 0
\(327\) −1.48016 + 3.18294i −0.0818530 + 0.176017i
\(328\) 0 0
\(329\) 36.1852 + 16.0014i 1.99495 + 0.882185i
\(330\) 0 0
\(331\) 2.11036 + 15.8367i 0.115996 + 0.870465i 0.948573 + 0.316557i \(0.102527\pi\)
−0.832578 + 0.553908i \(0.813136\pi\)
\(332\) 0 0
\(333\) 12.3571 0.677164
\(334\) 0 0
\(335\) 8.65449 0.472845
\(336\) 0 0
\(337\) 1.59308 + 11.9549i 0.0867806 + 0.651226i 0.979621 + 0.200853i \(0.0643715\pi\)
−0.892841 + 0.450373i \(0.851291\pi\)
\(338\) 0 0
\(339\) −1.37405 0.607616i −0.0746281 0.0330012i
\(340\) 0 0
\(341\) 4.35244 9.35952i 0.235698 0.506847i
\(342\) 0 0
\(343\) 6.53239 1.77245i 0.352716 0.0957034i
\(344\) 0 0
\(345\) 2.54181 3.25901i 0.136846 0.175459i
\(346\) 0 0
\(347\) −1.42394 + 2.78161i −0.0764411 + 0.149325i −0.925230 0.379408i \(-0.876128\pi\)
0.848788 + 0.528733i \(0.177333\pi\)
\(348\) 0 0
\(349\) −1.42066 + 4.86930i −0.0760462 + 0.260648i −0.989112 0.147165i \(-0.952985\pi\)
0.913066 + 0.407812i \(0.133708\pi\)
\(350\) 0 0
\(351\) 4.08511 + 0.309839i 0.218047 + 0.0165380i
\(352\) 0 0
\(353\) 14.2604 21.4518i 0.759003 1.14177i −0.226814 0.973938i \(-0.572831\pi\)
0.985816 0.167827i \(-0.0536752\pi\)
\(354\) 0 0
\(355\) 41.4591 + 12.9523i 2.20042 + 0.687436i
\(356\) 0 0
\(357\) 3.25391 + 1.29402i 0.172215 + 0.0684866i
\(358\) 0 0
\(359\) 2.29129 + 2.51905i 0.120930 + 0.132951i 0.797230 0.603675i \(-0.206298\pi\)
−0.676301 + 0.736626i \(0.736418\pi\)
\(360\) 0 0
\(361\) −10.6803 25.4435i −0.562123 1.33913i
\(362\) 0 0
\(363\) 7.60345 3.02374i 0.399078 0.158705i
\(364\) 0 0
\(365\) −57.2447 + 13.2287i −2.99633 + 0.692420i
\(366\) 0 0
\(367\) 4.56517 + 2.67424i 0.238300 + 0.139594i 0.619761 0.784791i \(-0.287230\pi\)
−0.381461 + 0.924385i \(0.624579\pi\)
\(368\) 0 0
\(369\) 17.0976 14.9704i 0.890067 0.779327i
\(370\) 0 0
\(371\) 33.3226 + 9.04151i 1.73002 + 0.469412i
\(372\) 0 0
\(373\) 15.6843 + 5.55968i 0.812103 + 0.287869i 0.707562 0.706651i \(-0.249795\pi\)
0.104542 + 0.994521i \(0.466662\pi\)
\(374\) 0 0
\(375\) −4.38135 + 2.13921i −0.226252 + 0.110468i
\(376\) 0 0
\(377\) −0.529279 + 5.57666i −0.0272593 + 0.287213i
\(378\) 0 0
\(379\) −3.56675 0.544178i −0.183212 0.0279525i 0.0585695 0.998283i \(-0.481346\pi\)
−0.241781 + 0.970331i \(0.577732\pi\)
\(380\) 0 0
\(381\) 0.00851027 + 0.449624i 0.000435994 + 0.0230349i
\(382\) 0 0
\(383\) 14.7633 + 17.5193i 0.754369 + 0.895192i 0.997193 0.0748785i \(-0.0238569\pi\)
−0.242824 + 0.970070i \(0.578074\pi\)
\(384\) 0 0
\(385\) 5.04086 + 88.6900i 0.256906 + 4.52006i
\(386\) 0 0
\(387\) 4.43088 + 25.7619i 0.225234 + 1.30955i
\(388\) 0 0
\(389\) −31.6856 + 16.9845i −1.60653 + 0.861150i −0.608829 + 0.793301i \(0.708361\pi\)
−0.997696 + 0.0678491i \(0.978386\pi\)
\(390\) 0 0
\(391\) 8.15814 + 3.98324i 0.412575 + 0.201441i
\(392\) 0 0
\(393\) 3.60770 0.273630i 0.181985 0.0138028i
\(394\) 0 0
\(395\) 20.1834 20.5690i 1.01554 1.03494i
\(396\) 0 0
\(397\) 1.44525 8.40292i 0.0725350 0.421730i −0.926439 0.376445i \(-0.877146\pi\)
0.998974 0.0452856i \(-0.0144198\pi\)
\(398\) 0 0
\(399\) 6.89283 5.58891i 0.345073 0.279795i
\(400\) 0 0
\(401\) −16.4575 + 7.27764i −0.821847 + 0.363428i −0.772232 0.635341i \(-0.780860\pi\)
−0.0496152 + 0.998768i \(0.515799\pi\)
\(402\) 0 0
\(403\) 0.888790 3.53937i 0.0442738 0.176308i
\(404\) 0 0
\(405\) 29.8756 3.40708i 1.48453 0.169299i
\(406\) 0 0
\(407\) 20.4920 15.3677i 1.01575 0.761748i
\(408\) 0 0
\(409\) −25.6304 + 30.4151i −1.26734 + 1.50393i −0.494738 + 0.869042i \(0.664736\pi\)
−0.772606 + 0.634886i \(0.781047\pi\)
\(410\) 0 0
\(411\) 0.267834 + 0.523203i 0.0132113 + 0.0258077i
\(412\) 0 0
\(413\) 17.7296 47.1629i 0.872419 2.32074i
\(414\) 0 0
\(415\) −21.5017 + 12.5955i −1.05548 + 0.618290i
\(416\) 0 0
\(417\) 1.03490 1.43582i 0.0506794 0.0703124i
\(418\) 0 0
\(419\) −10.4931 5.62465i −0.512622 0.274782i 0.195710 0.980662i \(-0.437299\pi\)
−0.708332 + 0.705880i \(0.750552\pi\)
\(420\) 0 0
\(421\) 11.6523 + 20.7836i 0.567899 + 1.01293i 0.994117 + 0.108312i \(0.0345446\pi\)
−0.426218 + 0.904621i \(0.640154\pi\)
\(422\) 0 0
\(423\) −8.08723 27.7189i −0.393215 1.34774i
\(424\) 0 0
\(425\) −14.8695 19.0651i −0.721276 0.924794i
\(426\) 0 0
\(427\) −2.55807 6.80475i −0.123793 0.329305i
\(428\) 0 0
\(429\) 3.51452 2.24159i 0.169682 0.108225i
\(430\) 0 0
\(431\) −29.4916 6.81520i −1.42056 0.328276i −0.556157 0.831078i \(-0.687725\pi\)
−0.864402 + 0.502801i \(0.832303\pi\)
\(432\) 0 0
\(433\) −9.65936 + 23.0112i −0.464199 + 1.10585i 0.505780 + 0.862662i \(0.331205\pi\)
−0.969980 + 0.243186i \(0.921807\pi\)
\(434\) 0 0
\(435\) −0.306201 3.22623i −0.0146812 0.154686i
\(436\) 0 0
\(437\) 18.9149 13.0967i 0.904820 0.626499i
\(438\) 0 0
\(439\) 8.82982 + 7.73124i 0.421424 + 0.368992i 0.843102 0.537754i \(-0.180727\pi\)
−0.421677 + 0.906746i \(0.638558\pi\)
\(440\) 0 0
\(441\) −20.7073 14.3377i −0.986060 0.682750i
\(442\) 0 0
\(443\) 14.7696 + 9.42021i 0.701726 + 0.447568i 0.839830 0.542850i \(-0.182655\pi\)
−0.138104 + 0.990418i \(0.544101\pi\)
\(444\) 0 0
\(445\) −4.85798 + 36.4556i −0.230290 + 1.72816i
\(446\) 0 0
\(447\) 1.47042 2.40462i 0.0695487 0.113735i
\(448\) 0 0
\(449\) 6.62126 + 6.74777i 0.312477 + 0.318447i 0.852018 0.523512i \(-0.175378\pi\)
−0.539542 + 0.841959i \(0.681403\pi\)
\(450\) 0 0
\(451\) 9.73574 46.0889i 0.458438 2.17024i
\(452\) 0 0
\(453\) 2.04240 3.64292i 0.0959603 0.171159i
\(454\) 0 0
\(455\) 7.64907 + 30.4604i 0.358594 + 1.42800i
\(456\) 0 0
\(457\) 3.63297 + 5.46506i 0.169943 + 0.255645i 0.907885 0.419219i \(-0.137696\pi\)
−0.737942 + 0.674864i \(0.764202\pi\)
\(458\) 0 0
\(459\) −1.64625 4.93909i −0.0768403 0.230537i
\(460\) 0 0
\(461\) −14.5930 1.66422i −0.679665 0.0775105i −0.233359 0.972391i \(-0.574972\pi\)
−0.446306 + 0.894880i \(0.647261\pi\)
\(462\) 0 0
\(463\) 25.8955 0.980628i 1.20347 0.0455736i 0.571522 0.820587i \(-0.306353\pi\)
0.631945 + 0.775013i \(0.282257\pi\)
\(464\) 0 0
\(465\) −0.119800 + 2.10778i −0.00555558 + 0.0977460i
\(466\) 0 0
\(467\) −11.7695 19.2469i −0.544627 0.890641i −1.00000 0.000340541i \(-0.999892\pi\)
0.455373 0.890301i \(-0.349506\pi\)
\(468\) 0 0
\(469\) −0.173629 + 9.17338i −0.00801746 + 0.423587i
\(470\) 0 0
\(471\) 4.09408 1.45124i 0.188645 0.0668698i
\(472\) 0 0
\(473\) 39.3861 + 37.2111i 1.81098 + 1.71097i
\(474\) 0 0
\(475\) −60.5696 + 9.24107i −2.77912 + 0.424010i
\(476\) 0 0
\(477\) −10.6251 22.8483i −0.486490 1.04615i
\(478\) 0 0
\(479\) 9.77007 + 0.369979i 0.446406 + 0.0169048i 0.260088 0.965585i \(-0.416248\pi\)
0.186318 + 0.982490i \(0.440345\pi\)
\(480\) 0 0
\(481\) 6.09331 6.69901i 0.277831 0.305448i
\(482\) 0 0
\(483\) 3.40341 + 2.75959i 0.154861 + 0.125566i
\(484\) 0 0
\(485\) −51.0574 38.2896i −2.31840 1.73864i
\(486\) 0 0
\(487\) 30.0538 5.75664i 1.36187 0.260858i 0.545363 0.838200i \(-0.316392\pi\)
0.816503 + 0.577341i \(0.195910\pi\)
\(488\) 0 0
\(489\) 1.11209 + 0.213014i 0.0502902 + 0.00963284i
\(490\) 0 0
\(491\) −1.38957 6.57820i −0.0627103 0.296870i 0.935729 0.352720i \(-0.114743\pi\)
−0.998439 + 0.0558501i \(0.982213\pi\)
\(492\) 0 0
\(493\) 6.79473 2.12275i 0.306019 0.0956039i
\(494\) 0 0
\(495\) 47.1245 44.5221i 2.11809 2.00112i
\(496\) 0 0
\(497\) −14.5606 + 43.6850i −0.653133 + 1.95954i
\(498\) 0 0
\(499\) −8.02286 11.1309i −0.359153 0.498287i 0.592454 0.805604i \(-0.298159\pi\)
−0.951607 + 0.307317i \(0.900569\pi\)
\(500\) 0 0
\(501\) −3.99496 + 1.41720i −0.178481 + 0.0633158i
\(502\) 0 0
\(503\) 6.15004 + 8.53254i 0.274217 + 0.380447i 0.925727 0.378193i \(-0.123454\pi\)
−0.651510 + 0.758640i \(0.725864\pi\)
\(504\) 0 0
\(505\) 12.3218 36.9680i 0.548312 1.64505i
\(506\) 0 0
\(507\) −2.02836 + 1.91634i −0.0900825 + 0.0851079i
\(508\) 0 0
\(509\) −0.510991 + 0.159639i −0.0226493 + 0.00707589i −0.309502 0.950899i \(-0.600162\pi\)
0.286852 + 0.957975i \(0.407391\pi\)
\(510\) 0 0
\(511\) −12.8733 60.9423i −0.569483 2.69593i
\(512\) 0 0
\(513\) −12.9577 2.48198i −0.572096 0.109582i
\(514\) 0 0
\(515\) −6.08783 + 1.16609i −0.268262 + 0.0513842i
\(516\) 0 0
\(517\) −47.8834 35.9094i −2.10591 1.57929i
\(518\) 0 0
\(519\) 1.78915 + 1.45069i 0.0785348 + 0.0636783i
\(520\) 0 0
\(521\) −25.5726 + 28.1146i −1.12035 + 1.23172i −0.150350 + 0.988633i \(0.548040\pi\)
−0.970004 + 0.243088i \(0.921840\pi\)
\(522\) 0 0
\(523\) −8.91359 0.337545i −0.389764 0.0147598i −0.157767 0.987476i \(-0.550430\pi\)
−0.231997 + 0.972717i \(0.574526\pi\)
\(524\) 0 0
\(525\) −4.92044 10.5809i −0.214746 0.461790i
\(526\) 0 0
\(527\) −4.58438 + 0.699437i −0.199699 + 0.0304680i
\(528\) 0 0
\(529\) −8.46126 7.99401i −0.367881 0.347566i
\(530\) 0 0
\(531\) −34.6580 + 12.2854i −1.50403 + 0.533139i
\(532\) 0 0
\(533\) 0.315160 16.6509i 0.0136511 0.721230i
\(534\) 0 0
\(535\) −13.2663 21.6946i −0.573550 0.937940i
\(536\) 0 0
\(537\) −0.341745 + 6.01273i −0.0147474 + 0.259469i
\(538\) 0 0
\(539\) −52.1702 + 1.97561i −2.24713 + 0.0850957i
\(540\) 0 0
\(541\) −7.93652 0.905098i −0.341218 0.0389132i −0.0589842 0.998259i \(-0.518786\pi\)
−0.282234 + 0.959346i \(0.591075\pi\)
\(542\) 0 0
\(543\) −0.0634038 0.190225i −0.00272092 0.00816333i
\(544\) 0 0
\(545\) 22.1481 + 33.3174i 0.948722 + 1.42716i
\(546\) 0 0
\(547\) −3.31530 13.2023i −0.141752 0.564490i −0.998787 0.0492320i \(-0.984323\pi\)
0.857035 0.515258i \(-0.172304\pi\)
\(548\) 0 0
\(549\) −2.59452 + 4.62770i −0.110731 + 0.197506i
\(550\) 0 0
\(551\) 3.72835 17.6500i 0.158833 0.751914i
\(552\) 0 0
\(553\) 21.3973 + 21.8062i 0.909907 + 0.927292i
\(554\) 0 0
\(555\) −2.73310 + 4.46951i −0.116014 + 0.189720i
\(556\) 0 0
\(557\) −4.90617 + 36.8173i −0.207881 + 1.56000i 0.507740 + 0.861510i \(0.330481\pi\)
−0.715621 + 0.698489i \(0.753856\pi\)
\(558\) 0 0
\(559\) 16.1509 + 10.3012i 0.683109 + 0.435693i
\(560\) 0 0
\(561\) −4.35521 3.01556i −0.183877 0.127317i
\(562\) 0 0
\(563\) 22.7328 + 19.9044i 0.958072 + 0.838871i 0.987002 0.160711i \(-0.0513786\pi\)
−0.0289298 + 0.999581i \(0.509210\pi\)
\(564\) 0 0
\(565\) −14.0779 + 9.74759i −0.592263 + 0.410084i
\(566\) 0 0
\(567\) 3.01198 + 31.7352i 0.126491 + 1.33275i
\(568\) 0 0
\(569\) −13.4461 + 32.0322i −0.563688 + 1.34286i 0.350117 + 0.936706i \(0.386142\pi\)
−0.913806 + 0.406152i \(0.866870\pi\)
\(570\) 0 0
\(571\) 21.0654 + 4.86800i 0.881560 + 0.203719i 0.641578 0.767058i \(-0.278280\pi\)
0.239982 + 0.970777i \(0.422858\pi\)
\(572\) 0 0
\(573\) 4.21423 2.68787i 0.176052 0.112288i
\(574\) 0 0
\(575\) −10.6455 28.3181i −0.443946 1.18095i
\(576\) 0 0
\(577\) 22.8087 + 29.2444i 0.949538 + 1.21746i 0.975991 + 0.217812i \(0.0698920\pi\)
−0.0264531 + 0.999650i \(0.508421\pi\)
\(578\) 0 0
\(579\) 1.22038 + 4.18285i 0.0507173 + 0.173833i
\(580\) 0 0
\(581\) −12.9193 23.0435i −0.535984 0.956007i
\(582\) 0 0
\(583\) −46.0348 24.6762i −1.90657 1.02198i
\(584\) 0 0
\(585\) 13.4018 18.5936i 0.554095 0.768749i
\(586\) 0 0
\(587\) −19.1741 + 11.2321i −0.791400 + 0.463596i −0.844869 0.534973i \(-0.820322\pi\)
0.0534686 + 0.998570i \(0.482972\pi\)
\(588\) 0 0
\(589\) −4.13525 + 11.0003i −0.170390 + 0.453258i
\(590\) 0 0
\(591\) 1.78668 + 3.49022i 0.0734944 + 0.143568i
\(592\) 0 0
\(593\) −3.59942 + 4.27135i −0.147811 + 0.175403i −0.833550 0.552443i \(-0.813696\pi\)
0.685740 + 0.727847i \(0.259479\pi\)
\(594\) 0 0
\(595\) 31.9294 23.9449i 1.30898 0.981647i
\(596\) 0 0
\(597\) 6.74566 0.769290i 0.276082 0.0314849i
\(598\) 0 0
\(599\) −1.34497 + 5.35598i −0.0549540 + 0.218839i −0.991172 0.132579i \(-0.957674\pi\)
0.936218 + 0.351419i \(0.114301\pi\)
\(600\) 0 0
\(601\) 26.3553 11.6545i 1.07505 0.475398i 0.210323 0.977632i \(-0.432549\pi\)
0.864732 + 0.502234i \(0.167488\pi\)
\(602\) 0 0
\(603\) 5.20103 4.21714i 0.211802 0.171735i
\(604\) 0 0
\(605\) 15.8079 91.9097i 0.642683 3.73666i
\(606\) 0 0
\(607\) −2.11141 + 2.15176i −0.0856997 + 0.0873371i −0.755279 0.655404i \(-0.772499\pi\)
0.669579 + 0.742741i \(0.266474\pi\)
\(608\) 0 0
\(609\) 3.42581 0.259834i 0.138821 0.0105290i
\(610\) 0 0
\(611\) −19.0148 9.28403i −0.769255 0.375592i
\(612\) 0 0
\(613\) 0.919069 0.492651i 0.0371208 0.0198980i −0.453774 0.891117i \(-0.649923\pi\)
0.490895 + 0.871219i \(0.336670\pi\)
\(614\) 0 0
\(615\) 1.63312 + 9.49525i 0.0658539 + 0.382885i
\(616\) 0 0
\(617\) 1.22868 + 21.6176i 0.0494647 + 0.870292i 0.923302 + 0.384074i \(0.125479\pi\)
−0.873838 + 0.486218i \(0.838376\pi\)
\(618\) 0 0
\(619\) −0.674746 0.800705i −0.0271203 0.0321831i 0.750962 0.660346i \(-0.229590\pi\)
−0.778082 + 0.628163i \(0.783807\pi\)
\(620\) 0 0
\(621\) −0.123278 6.51315i −0.00494697 0.261364i
\(622\) 0 0
\(623\) −38.5439 5.88063i −1.54423 0.235602i
\(624\) 0 0
\(625\) −1.00997 + 10.6414i −0.0403989 + 0.425656i
\(626\) 0 0
\(627\) −12.0630 + 5.88980i −0.481749 + 0.235216i
\(628\) 0 0
\(629\) −10.8465 3.84482i −0.432480 0.153303i
\(630\) 0 0
\(631\) 45.6317 + 12.3814i 1.81657 + 0.492895i 0.996810 0.0798119i \(-0.0254320\pi\)
0.819760 + 0.572707i \(0.194107\pi\)
\(632\) 0 0
\(633\) −0.137280 + 0.120200i −0.00545637 + 0.00477750i
\(634\) 0 0
\(635\) 4.42246 + 2.59064i 0.175500 + 0.102806i
\(636\) 0 0
\(637\) −17.9836 + 4.15582i −0.712535 + 0.164659i
\(638\) 0 0
\(639\) 31.2268 12.4183i 1.23531 0.491259i
\(640\) 0 0
\(641\) 10.8991 + 25.9646i 0.430489 + 1.02554i 0.981572 + 0.191091i \(0.0612025\pi\)
−0.551084 + 0.834450i \(0.685785\pi\)
\(642\) 0 0
\(643\) 3.85773 + 4.24120i 0.152134 + 0.167257i 0.811083 0.584931i \(-0.198878\pi\)
−0.658949 + 0.752187i \(0.728999\pi\)
\(644\) 0 0
\(645\) −10.2980 4.09530i −0.405482 0.161252i
\(646\) 0 0
\(647\) −6.10429 1.90705i −0.239984 0.0749738i 0.175840 0.984419i \(-0.443736\pi\)
−0.415824 + 0.909445i \(0.636507\pi\)
\(648\) 0 0
\(649\) −42.1958 + 63.4750i −1.65633 + 2.49161i
\(650\) 0 0
\(651\) −2.23175 0.169269i −0.0874693 0.00663419i
\(652\) 0 0
\(653\) 2.54251 8.71444i 0.0994963 0.341023i −0.894964 0.446139i \(-0.852799\pi\)
0.994460 + 0.105117i \(0.0335216\pi\)
\(654\) 0 0
\(655\) 18.7902 36.7060i 0.734194 1.43422i
\(656\) 0 0
\(657\) −27.9559 + 35.8440i −1.09066 + 1.39841i
\(658\) 0 0
\(659\) 18.5782 5.04087i 0.723704 0.196365i 0.119090 0.992883i \(-0.462002\pi\)
0.604614 + 0.796519i \(0.293328\pi\)
\(660\) 0 0
\(661\) 11.9175 25.6274i 0.463535 0.996789i −0.525729 0.850652i \(-0.676207\pi\)
0.989264 0.146137i \(-0.0466841\pi\)
\(662\) 0 0
\(663\) −1.71281 0.757421i −0.0665202 0.0294158i
\(664\) 0 0
\(665\) −13.3593 100.252i −0.518053 3.88761i
\(666\) 0 0
\(667\) 8.90719 0.344888
\(668\) 0 0
\(669\) −7.46016 −0.288426
\(670\) 0 0
\(671\) 1.45262 + 10.9009i 0.0560777 + 0.420823i
\(672\) 0 0
\(673\) −20.2335 8.94743i −0.779945 0.344898i −0.0241514 0.999708i \(-0.507688\pi\)
−0.755793 + 0.654810i \(0.772749\pi\)
\(674\) 0 0
\(675\) −7.31541 + 15.7311i −0.281570 + 0.605491i
\(676\) 0 0
\(677\) −26.2783 + 7.13016i −1.00996 + 0.274034i −0.728136 0.685433i \(-0.759613\pi\)
−0.281821 + 0.959467i \(0.590938\pi\)
\(678\) 0 0
\(679\) 41.6097 53.3504i 1.59683 2.04740i
\(680\) 0 0
\(681\) 4.03827 7.88861i 0.154747 0.302292i
\(682\) 0 0
\(683\) 0.936443 3.20965i 0.0358320 0.122814i −0.940094 0.340915i \(-0.889263\pi\)
0.975926 + 0.218101i \(0.0699862\pi\)
\(684\) 0 0
\(685\) 6.67979 + 0.506635i 0.255222 + 0.0193575i
\(686\) 0 0
\(687\) 1.50783 2.26823i 0.0575274 0.0865383i
\(688\) 0 0
\(689\) −17.6258 5.50649i −0.671488 0.209781i
\(690\) 0 0
\(691\) 38.2254 + 15.2015i 1.45416 + 0.578293i 0.957187 0.289471i \(-0.0934794\pi\)
0.496977 + 0.867764i \(0.334443\pi\)
\(692\) 0 0
\(693\) 46.2461 + 50.8431i 1.75674 + 1.93137i
\(694\) 0 0
\(695\) −7.80763 18.5999i −0.296160 0.705534i
\(696\) 0 0
\(697\) −19.6655 + 7.82060i −0.744885 + 0.296226i
\(698\) 0 0
\(699\) −4.87364 + 1.12625i −0.184338 + 0.0425986i
\(700\) 0 0
\(701\) −11.0730 6.48649i −0.418222 0.244991i 0.281274 0.959627i \(-0.409243\pi\)
−0.699496 + 0.714636i \(0.746592\pi\)
\(702\) 0 0
\(703\) −21.9406 + 19.2108i −0.827504 + 0.724548i
\(704\) 0 0
\(705\) 11.8145 + 3.20567i 0.444961 + 0.120732i
\(706\) 0 0
\(707\) 38.9372 + 13.8022i 1.46438 + 0.519086i
\(708\) 0 0
\(709\) 0.460588 0.224883i 0.0172977 0.00844568i −0.430080 0.902791i \(-0.641515\pi\)
0.447378 + 0.894345i \(0.352358\pi\)
\(710\) 0 0
\(711\) 2.10663 22.1961i 0.0790048 0.832420i
\(712\) 0 0
\(713\) −5.73623 0.875175i −0.214824 0.0327756i
\(714\) 0 0
\(715\) −0.899077 47.5010i −0.0336236 1.77644i
\(716\) 0 0
\(717\) 4.25033 + 5.04377i 0.158732 + 0.188363i
\(718\) 0 0
\(719\) 2.33367 + 41.0592i 0.0870314 + 1.53125i 0.684296 + 0.729205i \(0.260110\pi\)
−0.597264 + 0.802045i \(0.703746\pi\)
\(720\) 0 0
\(721\) −1.11387 6.47623i −0.0414827 0.241187i
\(722\) 0 0
\(723\) 4.17639 2.23868i 0.155322 0.0832575i
\(724\) 0 0
\(725\) −21.3164 10.4078i −0.791671 0.386536i
\(726\) 0 0
\(727\) −19.0324 + 1.44353i −0.705872 + 0.0535375i −0.423669 0.905817i \(-0.639258\pi\)
−0.282203 + 0.959355i \(0.591065\pi\)
\(728\) 0 0
\(729\) 14.9618 15.2477i 0.554143 0.564730i
\(730\) 0 0
\(731\) 4.12636 23.9913i 0.152619 0.887352i
\(732\) 0 0
\(733\) 5.32864 4.32062i 0.196818 0.159586i −0.526327 0.850283i \(-0.676431\pi\)
0.723144 + 0.690697i \(0.242696\pi\)
\(734\) 0 0
\(735\) 9.76587 4.31855i 0.360219 0.159292i
\(736\) 0 0
\(737\) 3.38041 13.4616i 0.124519 0.495863i
\(738\) 0 0
\(739\) 21.3713 2.43723i 0.786155 0.0896548i 0.289014 0.957325i \(-0.406672\pi\)
0.497141 + 0.867670i \(0.334383\pi\)
\(740\) 0 0
\(741\) −3.79688 + 2.84741i −0.139482 + 0.104602i
\(742\) 0 0
\(743\) 22.1861 26.3277i 0.813929 0.965871i −0.185932 0.982563i \(-0.559530\pi\)
0.999861 + 0.0166921i \(0.00531351\pi\)
\(744\) 0 0
\(745\) −14.6381 28.5949i −0.536297 1.04764i
\(746\) 0 0
\(747\) −6.78419 + 18.0467i −0.248221 + 0.660296i
\(748\) 0 0
\(749\) 23.2615 13.6264i 0.849957 0.497898i
\(750\) 0 0
\(751\) −28.2764 + 39.2305i −1.03182 + 1.43154i −0.134104 + 0.990967i \(0.542816\pi\)
−0.897716 + 0.440575i \(0.854775\pi\)
\(752\) 0 0
\(753\) −0.0676319 0.0362529i −0.00246464 0.00132113i
\(754\) 0 0
\(755\) −23.2777 41.5192i −0.847161 1.51104i
\(756\) 0 0
\(757\) −1.36056 4.66331i −0.0494505 0.169491i 0.931503 0.363733i \(-0.118498\pi\)
−0.980954 + 0.194242i \(0.937775\pi\)
\(758\) 0 0
\(759\) −4.07638 5.22659i −0.147963 0.189713i
\(760\) 0 0
\(761\) 11.1294 + 29.6056i 0.403441 + 1.07320i 0.968688 + 0.248279i \(0.0798651\pi\)
−0.565247 + 0.824921i \(0.691219\pi\)
\(762\) 0 0
\(763\) −35.7593 + 22.8076i −1.29457 + 0.825691i
\(764\) 0 0
\(765\) −28.3786 6.55801i −1.02603 0.237105i
\(766\) 0 0
\(767\) −10.4298 + 24.8467i −0.376600 + 0.897163i
\(768\) 0 0
\(769\) −2.82823 29.7991i −0.101988 1.07458i −0.889081 0.457749i \(-0.848656\pi\)
0.787093 0.616835i \(-0.211585\pi\)
\(770\) 0 0
\(771\) 4.64083 3.21332i 0.167135 0.115725i
\(772\) 0 0
\(773\) −8.10448 7.09614i −0.291498 0.255230i 0.500525 0.865722i \(-0.333140\pi\)
−0.792023 + 0.610492i \(0.790972\pi\)
\(774\) 0 0
\(775\) 12.7052 + 8.79707i 0.456383 + 0.316000i
\(776\) 0 0
\(777\) −4.68265 2.98664i −0.167989 0.107145i
\(778\) 0 0
\(779\) −7.08412 + 53.1612i −0.253815 + 1.90470i
\(780\) 0 0
\(781\) 36.3403 59.4281i 1.30036 2.12651i
\(782\) 0 0
\(783\) −3.57750 3.64586i −0.127849 0.130292i
\(784\) 0 0
\(785\) 10.2318 48.4371i 0.365188 1.72880i
\(786\) 0 0
\(787\) −12.7785 + 22.7924i −0.455506 + 0.812462i −0.999648 0.0265307i \(-0.991554\pi\)
0.544142 + 0.838993i \(0.316855\pi\)
\(788\) 0 0
\(789\) 0.0148325 + 0.0590663i 0.000528050 + 0.00210282i
\(790\) 0 0
\(791\) −10.0496 15.1176i −0.357322 0.537518i
\(792\) 0 0
\(793\) 1.22940 + 3.68847i 0.0436574 + 0.130981i
\(794\) 0 0
\(795\) 10.6142 + 1.21046i 0.376446 + 0.0429307i
\(796\) 0 0