Properties

Label 668.2.e.a.9.4
Level $668$
Weight $2$
Character 668.9
Analytic conductor $5.334$
Analytic rank $0$
Dimension $1148$
CM no
Inner twists $2$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 668 = 2^{2} \cdot 167 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 668.e (of order \(83\), degree \(82\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(5.33400685502\)
Analytic rank: \(0\)
Dimension: \(1148\)
Relative dimension: \(14\) over \(\Q(\zeta_{83})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{83}]$

Embedding invariants

Embedding label 9.4
Character \(\chi\) \(=\) 668.9
Dual form 668.2.e.a.297.4

$q$-expansion

\(f(q)\) \(=\) \(q+(-0.198520 - 1.48975i) q^{3} +(-0.0282706 - 0.0125015i) q^{5} +(2.06702 - 4.44493i) q^{7} +(0.715369 - 0.194103i) q^{9} +O(q^{10})\) \(q+(-0.198520 - 1.48975i) q^{3} +(-0.0282706 - 0.0125015i) q^{5} +(2.06702 - 4.44493i) q^{7} +(0.715369 - 0.194103i) q^{9} +(1.41544 - 1.81482i) q^{11} +(-2.91156 + 5.68762i) q^{13} +(-0.0130118 + 0.0445980i) q^{15} +(6.97762 + 0.529224i) q^{17} +(0.209281 - 0.314820i) q^{19} +(-7.03218 - 2.19693i) q^{21} +(-8.13282 - 3.23426i) q^{23} +(-3.36372 - 3.69809i) q^{25} +(-2.17630 - 5.18453i) q^{27} +(-5.14171 + 2.04476i) q^{29} +(3.60376 - 0.832792i) q^{31} +(-2.98462 - 1.74837i) q^{33} +(-0.114004 + 0.0998202i) q^{35} +(5.79065 + 1.57119i) q^{37} +(9.05114 + 3.20839i) q^{39} +(7.28078 - 3.55486i) q^{41} +(-0.603945 + 6.36336i) q^{43} +(-0.0226505 - 0.00345578i) q^{45} +(-0.0246519 - 1.30244i) q^{47} +(-10.9741 - 13.0227i) q^{49} +(-0.596785 - 10.5000i) q^{51} +(-0.848005 - 4.93044i) q^{53} +(-0.0627033 + 0.0336110i) q^{55} +(-0.510550 - 0.249278i) q^{57} +(-1.08146 + 0.0820246i) q^{59} +(-6.52529 + 6.64997i) q^{61} +(0.615906 - 3.58098i) q^{63} +(0.153416 - 0.124394i) q^{65} +(7.57019 - 3.34760i) q^{67} +(-3.20372 + 12.7579i) q^{69} +(6.58962 - 0.751495i) q^{71} +(-4.31633 + 3.23696i) q^{73} +(-4.84146 + 5.74525i) q^{75} +(-5.14102 - 10.0428i) q^{77} +(-4.94963 + 13.1666i) q^{79} +(-5.37288 + 3.14739i) q^{81} +(-0.616826 + 0.855781i) q^{83} +(-0.190646 - 0.102192i) q^{85} +(4.06691 + 7.25394i) q^{87} +(-0.357183 - 1.22424i) q^{89} +(19.2628 + 24.6981i) q^{91} +(-1.95607 - 5.20338i) q^{93} +(-0.00985223 + 0.00628384i) q^{95} +(5.87162 + 1.35687i) q^{97} +(0.660298 - 1.57301i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 1148q - 2q^{5} - 14q^{9} + O(q^{10}) \) \( 1148q - 2q^{5} - 14q^{9} + 2q^{11} + 4q^{13} + 14q^{15} + 2q^{17} + 2q^{19} + 14q^{23} - 6q^{25} + 2q^{29} - 2q^{31} + 16q^{33} - 2q^{35} + 10q^{37} + 6q^{39} + 4q^{41} + 4q^{43} - 2q^{45} + 2q^{47} - 30q^{49} - 2q^{51} - 6q^{55} - 4q^{57} + 6q^{59} + 2q^{61} + 14q^{63} + 22q^{65} + 12q^{67} - 14q^{69} - 8q^{71} - 18q^{73} - 26q^{75} - 2q^{79} - 6q^{81} - 22q^{83} + 34q^{85} + 2q^{87} + 14q^{89} - 6q^{91} + 32q^{93} - 8q^{95} + 44q^{97} + 2q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/668\mathbb{Z}\right)^\times\).

\(n\) \(5\) \(335\)
\(\chi(n)\) \(e\left(\frac{11}{83}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.198520 1.48975i −0.114616 0.860108i −0.950396 0.311043i \(-0.899322\pi\)
0.835780 0.549064i \(-0.185016\pi\)
\(4\) 0 0
\(5\) −0.0282706 0.0125015i −0.0126430 0.00559085i 0.398099 0.917342i \(-0.369670\pi\)
−0.410742 + 0.911752i \(0.634730\pi\)
\(6\) 0 0
\(7\) 2.06702 4.44493i 0.781259 1.68003i 0.0491957 0.998789i \(-0.484334\pi\)
0.732064 0.681236i \(-0.238557\pi\)
\(8\) 0 0
\(9\) 0.715369 0.194103i 0.238456 0.0647010i
\(10\) 0 0
\(11\) 1.41544 1.81482i 0.426770 0.547189i −0.526157 0.850387i \(-0.676368\pi\)
0.952928 + 0.303198i \(0.0980544\pi\)
\(12\) 0 0
\(13\) −2.91156 + 5.68762i −0.807521 + 1.57746i 0.00886860 + 0.999961i \(0.497177\pi\)
−0.816390 + 0.577501i \(0.804028\pi\)
\(14\) 0 0
\(15\) −0.0130118 + 0.0445980i −0.00335964 + 0.0115152i
\(16\) 0 0
\(17\) 6.97762 + 0.529224i 1.69232 + 0.128356i 0.886172 0.463357i \(-0.153355\pi\)
0.806149 + 0.591713i \(0.201548\pi\)
\(18\) 0 0
\(19\) 0.209281 0.314820i 0.0480123 0.0722247i −0.807992 0.589193i \(-0.799446\pi\)
0.856004 + 0.516969i \(0.172940\pi\)
\(20\) 0 0
\(21\) −7.03218 2.19693i −1.53455 0.479410i
\(22\) 0 0
\(23\) −8.13282 3.23426i −1.69581 0.674390i −0.696732 0.717331i \(-0.745364\pi\)
−0.999078 + 0.0429406i \(0.986327\pi\)
\(24\) 0 0
\(25\) −3.36372 3.69809i −0.672744 0.739617i
\(26\) 0 0
\(27\) −2.17630 5.18453i −0.418828 0.997762i
\(28\) 0 0
\(29\) −5.14171 + 2.04476i −0.954792 + 0.379702i −0.794430 0.607356i \(-0.792230\pi\)
−0.160362 + 0.987058i \(0.551266\pi\)
\(30\) 0 0
\(31\) 3.60376 0.832792i 0.647255 0.149574i 0.111255 0.993792i \(-0.464513\pi\)
0.536000 + 0.844218i \(0.319935\pi\)
\(32\) 0 0
\(33\) −2.98462 1.74837i −0.519556 0.304352i
\(34\) 0 0
\(35\) −0.114004 + 0.0998202i −0.0192702 + 0.0168727i
\(36\) 0 0
\(37\) 5.79065 + 1.57119i 0.951978 + 0.258303i 0.703789 0.710409i \(-0.251490\pi\)
0.248189 + 0.968712i \(0.420165\pi\)
\(38\) 0 0
\(39\) 9.05114 + 3.20839i 1.44934 + 0.513753i
\(40\) 0 0
\(41\) 7.28078 3.55486i 1.13707 0.555177i 0.228761 0.973483i \(-0.426533\pi\)
0.908306 + 0.418306i \(0.137376\pi\)
\(42\) 0 0
\(43\) −0.603945 + 6.36336i −0.0921007 + 0.970403i 0.823232 + 0.567705i \(0.192169\pi\)
−0.915333 + 0.402698i \(0.868072\pi\)
\(44\) 0 0
\(45\) −0.0226505 0.00345578i −0.00337654 0.000515157i
\(46\) 0 0
\(47\) −0.0246519 1.30244i −0.00359585 0.189980i −0.997096 0.0761514i \(-0.975737\pi\)
0.993500 0.113828i \(-0.0363114\pi\)
\(48\) 0 0
\(49\) −10.9741 13.0227i −1.56772 1.86038i
\(50\) 0 0
\(51\) −0.596785 10.5000i −0.0835666 1.47029i
\(52\) 0 0
\(53\) −0.848005 4.93044i −0.116483 0.677248i −0.983769 0.179439i \(-0.942572\pi\)
0.867287 0.497809i \(-0.165862\pi\)
\(54\) 0 0
\(55\) −0.0627033 + 0.0336110i −0.00845492 + 0.00453211i
\(56\) 0 0
\(57\) −0.510550 0.249278i −0.0676240 0.0330176i
\(58\) 0 0
\(59\) −1.08146 + 0.0820246i −0.140794 + 0.0106787i −0.145837 0.989309i \(-0.546588\pi\)
0.00504280 + 0.999987i \(0.498395\pi\)
\(60\) 0 0
\(61\) −6.52529 + 6.64997i −0.835478 + 0.851441i −0.990647 0.136447i \(-0.956432\pi\)
0.155170 + 0.987888i \(0.450408\pi\)
\(62\) 0 0
\(63\) 0.615906 3.58098i 0.0775969 0.451161i
\(64\) 0 0
\(65\) 0.153416 0.124394i 0.0190289 0.0154291i
\(66\) 0 0
\(67\) 7.57019 3.34760i 0.924845 0.408974i 0.113498 0.993538i \(-0.463795\pi\)
0.811348 + 0.584564i \(0.198734\pi\)
\(68\) 0 0
\(69\) −3.20372 + 12.7579i −0.385682 + 1.53587i
\(70\) 0 0
\(71\) 6.58962 0.751495i 0.782044 0.0891860i 0.286858 0.957973i \(-0.407389\pi\)
0.495186 + 0.868787i \(0.335100\pi\)
\(72\) 0 0
\(73\) −4.31633 + 3.23696i −0.505189 + 0.378858i −0.821871 0.569674i \(-0.807070\pi\)
0.316682 + 0.948532i \(0.397431\pi\)
\(74\) 0 0
\(75\) −4.84146 + 5.74525i −0.559043 + 0.663404i
\(76\) 0 0
\(77\) −5.14102 10.0428i −0.585873 1.14448i
\(78\) 0 0
\(79\) −4.94963 + 13.1666i −0.556877 + 1.48136i 0.293902 + 0.955835i \(0.405046\pi\)
−0.850779 + 0.525523i \(0.823870\pi\)
\(80\) 0 0
\(81\) −5.37288 + 3.14739i −0.596986 + 0.349710i
\(82\) 0 0
\(83\) −0.616826 + 0.855781i −0.0677054 + 0.0939342i −0.843728 0.536771i \(-0.819644\pi\)
0.776023 + 0.630705i \(0.217234\pi\)
\(84\) 0 0
\(85\) −0.190646 0.102192i −0.0206784 0.0110843i
\(86\) 0 0
\(87\) 4.06691 + 7.25394i 0.436019 + 0.777704i
\(88\) 0 0
\(89\) −0.357183 1.22424i −0.0378613 0.129769i 0.938850 0.344326i \(-0.111892\pi\)
−0.976712 + 0.214556i \(0.931169\pi\)
\(90\) 0 0
\(91\) 19.2628 + 24.6981i 2.01929 + 2.58906i
\(92\) 0 0
\(93\) −1.95607 5.20338i −0.202835 0.539565i
\(94\) 0 0
\(95\) −0.00985223 + 0.00628384i −0.00101082 + 0.000644709i
\(96\) 0 0
\(97\) 5.87162 + 1.35687i 0.596173 + 0.137769i 0.512446 0.858719i \(-0.328739\pi\)
0.0837268 + 0.996489i \(0.473318\pi\)
\(98\) 0 0
\(99\) 0.660298 1.57301i 0.0663624 0.158093i
\(100\) 0 0
\(101\) −1.04374 10.9972i −0.103856 1.09427i −0.883624 0.468197i \(-0.844904\pi\)
0.779768 0.626069i \(-0.215337\pi\)
\(102\) 0 0
\(103\) 0.308695 0.213741i 0.0304166 0.0210605i −0.553957 0.832546i \(-0.686883\pi\)
0.584373 + 0.811485i \(0.301340\pi\)
\(104\) 0 0
\(105\) 0.171339 + 0.150022i 0.0167210 + 0.0146406i
\(106\) 0 0
\(107\) −2.57701 1.78433i −0.249129 0.172497i 0.438126 0.898914i \(-0.355642\pi\)
−0.687255 + 0.726416i \(0.741185\pi\)
\(108\) 0 0
\(109\) 9.31293 + 5.93988i 0.892017 + 0.568937i 0.902347 0.431010i \(-0.141843\pi\)
−0.0103304 + 0.999947i \(0.503288\pi\)
\(110\) 0 0
\(111\) 1.19113 8.93854i 0.113057 0.848409i
\(112\) 0 0
\(113\) −10.1344 + 16.5731i −0.953368 + 1.55906i −0.130033 + 0.991510i \(0.541508\pi\)
−0.823335 + 0.567555i \(0.807889\pi\)
\(114\) 0 0
\(115\) 0.189487 + 0.193107i 0.0176697 + 0.0180073i
\(116\) 0 0
\(117\) −0.978855 + 4.63389i −0.0904951 + 0.428403i
\(118\) 0 0
\(119\) 16.7752 29.9211i 1.53778 2.74286i
\(120\) 0 0
\(121\) 1.38898 + 5.53123i 0.126271 + 0.502839i
\(122\) 0 0
\(123\) −6.74124 10.1408i −0.607837 0.914368i
\(124\) 0 0
\(125\) 0.0977350 + 0.293226i 0.00874168 + 0.0262269i
\(126\) 0 0
\(127\) −3.07736 0.350949i −0.273072 0.0311417i −0.0243031 0.999705i \(-0.507737\pi\)
−0.248769 + 0.968563i \(0.580026\pi\)
\(128\) 0 0
\(129\) 9.59971 0.363528i 0.845207 0.0320068i
\(130\) 0 0
\(131\) −0.636760 + 11.2033i −0.0556340 + 0.978836i 0.842384 + 0.538878i \(0.181151\pi\)
−0.898018 + 0.439959i \(0.854993\pi\)
\(132\) 0 0
\(133\) −0.966767 1.58098i −0.0838293 0.137088i
\(134\) 0 0
\(135\) −0.00328916 + 0.173777i −0.000283086 + 0.0149563i
\(136\) 0 0
\(137\) 17.0189 6.03274i 1.45402 0.515412i 0.514377 0.857564i \(-0.328023\pi\)
0.939644 + 0.342152i \(0.111156\pi\)
\(138\) 0 0
\(139\) 12.1293 + 11.4595i 1.02880 + 0.971982i 0.999619 0.0275918i \(-0.00878386\pi\)
0.0291763 + 0.999574i \(0.490712\pi\)
\(140\) 0 0
\(141\) −1.93541 + 0.295285i −0.162991 + 0.0248675i
\(142\) 0 0
\(143\) 6.20089 + 13.3344i 0.518544 + 1.11508i
\(144\) 0 0
\(145\) 0.170922 + 0.00647258i 0.0141943 + 0.000537518i
\(146\) 0 0
\(147\) −17.2219 + 18.9339i −1.42044 + 1.56164i
\(148\) 0 0
\(149\) 11.2464 + 9.11887i 0.921337 + 0.747047i 0.967760 0.251875i \(-0.0810472\pi\)
−0.0464226 + 0.998922i \(0.514782\pi\)
\(150\) 0 0
\(151\) 18.3831 + 13.7861i 1.49600 + 1.12190i 0.960825 + 0.277156i \(0.0893920\pi\)
0.535173 + 0.844743i \(0.320247\pi\)
\(152\) 0 0
\(153\) 5.09430 0.975786i 0.411849 0.0788876i
\(154\) 0 0
\(155\) −0.112292 0.0215089i −0.00901950 0.00172764i
\(156\) 0 0
\(157\) 1.59874 + 7.56842i 0.127593 + 0.604026i 0.994427 + 0.105428i \(0.0336214\pi\)
−0.866834 + 0.498598i \(0.833849\pi\)
\(158\) 0 0
\(159\) −7.17678 + 2.24211i −0.569156 + 0.177811i
\(160\) 0 0
\(161\) −31.1868 + 29.4645i −2.45786 + 2.32213i
\(162\) 0 0
\(163\) 4.56759 13.7037i 0.357761 1.07336i −0.603416 0.797427i \(-0.706194\pi\)
0.961177 0.275933i \(-0.0889866\pi\)
\(164\) 0 0
\(165\) 0.0625199 + 0.0867398i 0.00486717 + 0.00675269i
\(166\) 0 0
\(167\) −8.49817 9.73556i −0.657608 0.753360i
\(168\) 0 0
\(169\) −16.2705 22.5736i −1.25158 1.73643i
\(170\) 0 0
\(171\) 0.0886053 0.265835i 0.00677581 0.0203289i
\(172\) 0 0
\(173\) 12.6495 11.9509i 0.961720 0.908611i −0.0341487 0.999417i \(-0.510872\pi\)
0.995869 + 0.0908058i \(0.0289443\pi\)
\(174\) 0 0
\(175\) −23.3906 + 7.30749i −1.76816 + 0.552394i
\(176\) 0 0
\(177\) 0.336888 + 1.59483i 0.0253221 + 0.119874i
\(178\) 0 0
\(179\) 15.6538 + 2.99840i 1.17002 + 0.224111i 0.736120 0.676851i \(-0.236656\pi\)
0.433898 + 0.900962i \(0.357138\pi\)
\(180\) 0 0
\(181\) 24.1431 4.62449i 1.79454 0.343735i 0.820770 0.571259i \(-0.193545\pi\)
0.973773 + 0.227524i \(0.0730629\pi\)
\(182\) 0 0
\(183\) 11.2022 + 8.40090i 0.828089 + 0.621012i
\(184\) 0 0
\(185\) −0.144063 0.116811i −0.0105917 0.00858809i
\(186\) 0 0
\(187\) 10.8368 11.9140i 0.792467 0.871241i
\(188\) 0 0
\(189\) −27.5433 1.04303i −2.00348 0.0758690i
\(190\) 0 0
\(191\) −6.49496 13.9668i −0.469959 1.01060i −0.987887 0.155178i \(-0.950405\pi\)
0.517928 0.855424i \(-0.326704\pi\)
\(192\) 0 0
\(193\) 2.70297 0.412392i 0.194564 0.0296846i −0.0528100 0.998605i \(-0.516818\pi\)
0.247374 + 0.968920i \(0.420432\pi\)
\(194\) 0 0
\(195\) −0.215772 0.203856i −0.0154517 0.0145984i
\(196\) 0 0
\(197\) −15.2052 + 5.38982i −1.08332 + 0.384009i −0.815084 0.579343i \(-0.803309\pi\)
−0.268239 + 0.963353i \(0.586442\pi\)
\(198\) 0 0
\(199\) −0.326444 + 17.2471i −0.0231410 + 1.22261i 0.779598 + 0.626281i \(0.215424\pi\)
−0.802739 + 0.596331i \(0.796625\pi\)
\(200\) 0 0
\(201\) −6.48992 10.6131i −0.457764 0.748592i
\(202\) 0 0
\(203\) −1.53920 + 27.0811i −0.108031 + 1.90072i
\(204\) 0 0
\(205\) −0.250274 + 0.00947751i −0.0174799 + 0.000661938i
\(206\) 0 0
\(207\) −6.44575 0.735087i −0.448010 0.0510921i
\(208\) 0 0
\(209\) −0.275119 0.825415i −0.0190304 0.0570951i
\(210\) 0 0
\(211\) −0.228415 0.343604i −0.0157247 0.0236546i 0.824835 0.565373i \(-0.191268\pi\)
−0.840560 + 0.541719i \(0.817774\pi\)
\(212\) 0 0
\(213\) −2.42771 9.66770i −0.166344 0.662420i
\(214\) 0 0
\(215\) 0.0966256 0.172346i 0.00658981 0.0117539i
\(216\) 0 0
\(217\) 3.74734 17.7399i 0.254386 1.20426i
\(218\) 0 0
\(219\) 5.67915 + 5.78766i 0.383761 + 0.391094i
\(220\) 0 0
\(221\) −23.3258 + 38.1452i −1.56906 + 2.56592i
\(222\) 0 0
\(223\) 2.01049 15.0873i 0.134632 1.01032i −0.785542 0.618808i \(-0.787616\pi\)
0.920174 0.391509i \(-0.128047\pi\)
\(224\) 0 0
\(225\) −3.12411 1.99259i −0.208274 0.132839i
\(226\) 0 0
\(227\) −2.61858 1.81311i −0.173801 0.120340i 0.479173 0.877721i \(-0.340937\pi\)
−0.652974 + 0.757380i \(0.726479\pi\)
\(228\) 0 0
\(229\) 3.91192 + 3.42521i 0.258507 + 0.226344i 0.778212 0.628002i \(-0.216127\pi\)
−0.519705 + 0.854346i \(0.673958\pi\)
\(230\) 0 0
\(231\) −13.9406 + 9.65253i −0.917227 + 0.635090i
\(232\) 0 0
\(233\) 0.553791 + 5.83493i 0.0362801 + 0.382259i 0.995147 + 0.0984019i \(0.0313731\pi\)
−0.958867 + 0.283857i \(0.908386\pi\)
\(234\) 0 0
\(235\) −0.0155855 + 0.0371289i −0.00101669 + 0.00242202i
\(236\) 0 0
\(237\) 20.5975 + 4.75988i 1.33795 + 0.309187i
\(238\) 0 0
\(239\) −8.01696 + 5.11329i −0.518574 + 0.330751i −0.770969 0.636873i \(-0.780228\pi\)
0.252395 + 0.967624i \(0.418782\pi\)
\(240\) 0 0
\(241\) 1.60271 + 4.26339i 0.103239 + 0.274629i 0.977538 0.210760i \(-0.0675938\pi\)
−0.874298 + 0.485389i \(0.838678\pi\)
\(242\) 0 0
\(243\) −4.61854 5.92172i −0.296279 0.379879i
\(244\) 0 0
\(245\) 0.147441 + 0.505351i 0.00941963 + 0.0322857i
\(246\) 0 0
\(247\) 1.18125 + 2.10693i 0.0751608 + 0.134060i
\(248\) 0 0
\(249\) 1.39735 + 0.749027i 0.0885536 + 0.0474676i
\(250\) 0 0
\(251\) −2.10514 + 2.92066i −0.132875 + 0.184350i −0.872420 0.488757i \(-0.837450\pi\)
0.739545 + 0.673107i \(0.235041\pi\)
\(252\) 0 0
\(253\) −17.3811 + 10.1817i −1.09274 + 0.640119i
\(254\) 0 0
\(255\) −0.114394 + 0.304302i −0.00716363 + 0.0190561i
\(256\) 0 0
\(257\) −10.8116 21.1200i −0.674407 1.31743i −0.935915 0.352227i \(-0.885425\pi\)
0.261508 0.965201i \(-0.415780\pi\)
\(258\) 0 0
\(259\) 18.9532 22.4914i 1.17770 1.39755i
\(260\) 0 0
\(261\) −3.28133 + 2.46078i −0.203109 + 0.152318i
\(262\) 0 0
\(263\) 2.56867 0.292937i 0.158391 0.0180632i −0.0337516 0.999430i \(-0.510746\pi\)
0.192143 + 0.981367i \(0.438456\pi\)
\(264\) 0 0
\(265\) −0.0376644 + 0.149988i −0.00231370 + 0.00921370i
\(266\) 0 0
\(267\) −1.75291 + 0.775150i −0.107276 + 0.0474384i
\(268\) 0 0
\(269\) −4.14893 + 3.36408i −0.252965 + 0.205111i −0.747887 0.663826i \(-0.768932\pi\)
0.494922 + 0.868937i \(0.335197\pi\)
\(270\) 0 0
\(271\) −2.48639 + 14.4563i −0.151037 + 0.878156i 0.806796 + 0.590830i \(0.201200\pi\)
−0.957833 + 0.287325i \(0.907234\pi\)
\(272\) 0 0
\(273\) 32.9699 33.5999i 1.99543 2.03356i
\(274\) 0 0
\(275\) −11.4725 + 0.870143i −0.691818 + 0.0524716i
\(276\) 0 0
\(277\) −12.7916 6.24556i −0.768575 0.375259i 0.0123179 0.999924i \(-0.496079\pi\)
−0.780893 + 0.624665i \(0.785236\pi\)
\(278\) 0 0
\(279\) 2.41637 1.29525i 0.144664 0.0775449i
\(280\) 0 0
\(281\) −2.75347 16.0091i −0.164258 0.955023i −0.944249 0.329232i \(-0.893210\pi\)
0.779991 0.625791i \(-0.215224\pi\)
\(282\) 0 0
\(283\) −0.143015 2.51624i −0.00850135 0.149575i −0.999834 0.0182015i \(-0.994206\pi\)
0.991333 0.131373i \(-0.0419386\pi\)
\(284\) 0 0
\(285\) 0.0113172 + 0.0134299i 0.000670374 + 0.000795518i
\(286\) 0 0
\(287\) −0.751622 39.7105i −0.0443668 2.34404i
\(288\) 0 0
\(289\) 31.6015 + 4.82143i 1.85891 + 0.283614i
\(290\) 0 0
\(291\) 0.855765 9.01662i 0.0501658 0.528563i
\(292\) 0 0
\(293\) 18.6203 9.09141i 1.08781 0.531126i 0.194652 0.980872i \(-0.437642\pi\)
0.893156 + 0.449746i \(0.148486\pi\)
\(294\) 0 0
\(295\) 0.0315991 + 0.0112010i 0.00183977 + 0.000652150i
\(296\) 0 0
\(297\) −12.4894 3.38878i −0.724708 0.196637i
\(298\) 0 0
\(299\) 42.0744 36.8396i 2.43323 2.13049i
\(300\) 0 0
\(301\) 27.0363 + 15.8377i 1.55835 + 0.912868i
\(302\) 0 0
\(303\) −16.1759 + 3.73809i −0.929283 + 0.214748i
\(304\) 0 0
\(305\) 0.267609 0.106423i 0.0153232 0.00609375i
\(306\) 0 0
\(307\) −2.16696 5.16228i −0.123675 0.294627i 0.848377 0.529392i \(-0.177580\pi\)
−0.972052 + 0.234765i \(0.924568\pi\)
\(308\) 0 0
\(309\) −0.379702 0.417446i −0.0216005 0.0237477i
\(310\) 0 0
\(311\) −9.81929 3.90494i −0.556801 0.221429i 0.0741561 0.997247i \(-0.476374\pi\)
−0.630957 + 0.775818i \(0.717338\pi\)
\(312\) 0 0
\(313\) −4.93567 1.54196i −0.278981 0.0871567i 0.155506 0.987835i \(-0.450299\pi\)
−0.434487 + 0.900678i \(0.643070\pi\)
\(314\) 0 0
\(315\) −0.0621797 + 0.0935368i −0.00350343 + 0.00527020i
\(316\) 0 0
\(317\) −26.2675 1.99228i −1.47533 0.111898i −0.686779 0.726866i \(-0.740976\pi\)
−0.788552 + 0.614969i \(0.789169\pi\)
\(318\) 0 0
\(319\) −3.56690 + 12.2255i −0.199708 + 0.684497i
\(320\) 0 0
\(321\) −2.14661 + 4.19333i −0.119812 + 0.234049i
\(322\) 0 0
\(323\) 1.62689 2.08594i 0.0905226 0.116065i
\(324\) 0 0
\(325\) 30.8270 8.36437i 1.70997 0.463972i
\(326\) 0 0
\(327\) 7.00013 15.0531i 0.387108 0.832439i
\(328\) 0 0
\(329\) −5.84019 2.58258i −0.321980 0.142382i
\(330\) 0 0
\(331\) −0.0221989 0.166587i −0.00122016 0.00915644i 0.990617 0.136666i \(-0.0436389\pi\)
−0.991837 + 0.127510i \(0.959302\pi\)
\(332\) 0 0
\(333\) 4.44743 0.243718
\(334\) 0 0
\(335\) −0.255864 −0.0139793
\(336\) 0 0
\(337\) −1.71530 12.8721i −0.0934386 0.701189i −0.973885 0.227043i \(-0.927094\pi\)
0.880446 0.474146i \(-0.157243\pi\)
\(338\) 0 0
\(339\) 26.7016 + 11.8077i 1.45023 + 0.641306i
\(340\) 0 0
\(341\) 3.58953 7.71895i 0.194384 0.418004i
\(342\) 0 0
\(343\) −47.4515 + 12.8752i −2.56214 + 0.695193i
\(344\) 0 0
\(345\) 0.250065 0.320624i 0.0134630 0.0172618i
\(346\) 0 0
\(347\) −8.76259 + 17.1174i −0.470400 + 0.918909i 0.527205 + 0.849738i \(0.323240\pi\)
−0.997605 + 0.0691707i \(0.977965\pi\)
\(348\) 0 0
\(349\) −6.84398 + 23.4577i −0.366350 + 1.25566i 0.543037 + 0.839709i \(0.317274\pi\)
−0.909387 + 0.415952i \(0.863448\pi\)
\(350\) 0 0
\(351\) 35.8240 + 2.71711i 1.91215 + 0.145028i
\(352\) 0 0
\(353\) 7.53022 11.3277i 0.400793 0.602912i −0.575909 0.817514i \(-0.695352\pi\)
0.976702 + 0.214602i \(0.0688455\pi\)
\(354\) 0 0
\(355\) −0.195688 0.0611351i −0.0103860 0.00324471i
\(356\) 0 0
\(357\) −47.9052 19.0510i −2.53541 1.00828i
\(358\) 0 0
\(359\) 13.4397 + 14.7757i 0.709322 + 0.779832i 0.983317 0.181900i \(-0.0582246\pi\)
−0.273995 + 0.961731i \(0.588345\pi\)
\(360\) 0 0
\(361\) 7.29864 + 17.3873i 0.384139 + 0.915123i
\(362\) 0 0
\(363\) 7.96441 3.16729i 0.418023 0.166240i
\(364\) 0 0
\(365\) 0.162492 0.0375503i 0.00850525 0.00196547i
\(366\) 0 0
\(367\) −0.809045 0.473932i −0.0422318 0.0247391i 0.484186 0.874965i \(-0.339116\pi\)
−0.526418 + 0.850226i \(0.676465\pi\)
\(368\) 0 0
\(369\) 4.51843 3.95626i 0.235220 0.205955i
\(370\) 0 0
\(371\) −23.6683 6.42199i −1.22880 0.333413i
\(372\) 0 0
\(373\) 6.90448 + 2.44745i 0.357500 + 0.126724i 0.506791 0.862069i \(-0.330832\pi\)
−0.149291 + 0.988793i \(0.547699\pi\)
\(374\) 0 0
\(375\) 0.417431 0.203812i 0.0215560 0.0105248i
\(376\) 0 0
\(377\) 3.34059 35.1975i 0.172049 1.81277i
\(378\) 0 0
\(379\) −27.1672 4.14489i −1.39548 0.212908i −0.590899 0.806746i \(-0.701227\pi\)
−0.804585 + 0.593837i \(0.797612\pi\)
\(380\) 0 0
\(381\) 0.0880919 + 4.65417i 0.00451308 + 0.238440i
\(382\) 0 0
\(383\) −6.61825 7.85373i −0.338177 0.401307i 0.568808 0.822471i \(-0.307405\pi\)
−0.906985 + 0.421164i \(0.861622\pi\)
\(384\) 0 0
\(385\) 0.0197898 + 0.348187i 0.00100858 + 0.0177452i
\(386\) 0 0
\(387\) 0.803104 + 4.66938i 0.0408241 + 0.237358i
\(388\) 0 0
\(389\) −30.7791 + 16.4986i −1.56056 + 0.836512i −0.560597 + 0.828089i \(0.689428\pi\)
−0.999965 + 0.00842353i \(0.997319\pi\)
\(390\) 0 0
\(391\) −55.0361 26.8715i −2.78329 1.35895i
\(392\) 0 0
\(393\) 16.8165 1.27546i 0.848281 0.0643387i
\(394\) 0 0
\(395\) 0.304532 0.310350i 0.0153227 0.0156154i
\(396\) 0 0
\(397\) −4.73738 + 27.5439i −0.237762 + 1.38239i 0.583628 + 0.812021i \(0.301633\pi\)
−0.821390 + 0.570367i \(0.806801\pi\)
\(398\) 0 0
\(399\) −2.16334 + 1.75410i −0.108302 + 0.0878147i
\(400\) 0 0
\(401\) 17.0728 7.54975i 0.852576 0.377016i 0.0684775 0.997653i \(-0.478186\pi\)
0.784099 + 0.620636i \(0.213126\pi\)
\(402\) 0 0
\(403\) −5.75596 + 22.9216i −0.286725 + 1.14180i
\(404\) 0 0
\(405\) 0.191242 0.0218096i 0.00950288 0.00108373i
\(406\) 0 0
\(407\) 11.0477 8.28508i 0.547616 0.410676i
\(408\) 0 0
\(409\) 3.49299 4.14506i 0.172717 0.204960i −0.671434 0.741064i \(-0.734321\pi\)
0.844152 + 0.536104i \(0.180105\pi\)
\(410\) 0 0
\(411\) −12.3659 24.1563i −0.609963 1.19154i
\(412\) 0 0
\(413\) −1.87081 + 4.97657i −0.0920565 + 0.244881i
\(414\) 0 0
\(415\) 0.0281366 0.0164822i 0.00138117 0.000809080i
\(416\) 0 0
\(417\) 14.6639 20.3446i 0.718093 0.996279i
\(418\) 0 0
\(419\) −10.9202 5.85361i −0.533488 0.285967i 0.183539 0.983012i \(-0.441245\pi\)
−0.717027 + 0.697045i \(0.754498\pi\)
\(420\) 0 0
\(421\) 7.67685 + 13.6928i 0.374147 + 0.667346i 0.992994 0.118165i \(-0.0377012\pi\)
−0.618847 + 0.785511i \(0.712400\pi\)
\(422\) 0 0
\(423\) −0.270442 0.926938i −0.0131493 0.0450693i
\(424\) 0 0
\(425\) −21.5136 27.5840i −1.04356 1.33802i
\(426\) 0 0
\(427\) 16.0707 + 42.7500i 0.777718 + 2.06882i
\(428\) 0 0
\(429\) 18.6340 11.8849i 0.899656 0.573809i
\(430\) 0 0
\(431\) 4.41981 + 1.02137i 0.212895 + 0.0491978i 0.330256 0.943892i \(-0.392865\pi\)
−0.117361 + 0.993089i \(0.537443\pi\)
\(432\) 0 0
\(433\) −6.42673 + 15.3102i −0.308849 + 0.735762i 0.691067 + 0.722791i \(0.257141\pi\)
−0.999916 + 0.0129713i \(0.995871\pi\)
\(434\) 0 0
\(435\) −0.0242889 0.255916i −0.00116456 0.0122702i
\(436\) 0 0
\(437\) −2.72025 + 1.88351i −0.130127 + 0.0901004i
\(438\) 0 0
\(439\) −2.25687 1.97608i −0.107715 0.0943130i 0.603205 0.797586i \(-0.293890\pi\)
−0.710920 + 0.703273i \(0.751721\pi\)
\(440\) 0 0
\(441\) −10.3782 7.18591i −0.494202 0.342186i
\(442\) 0 0
\(443\) 25.3810 + 16.1883i 1.20589 + 0.769128i 0.978814 0.204750i \(-0.0656380\pi\)
0.227075 + 0.973877i \(0.427084\pi\)
\(444\) 0 0
\(445\) −0.00520709 + 0.0390754i −0.000246840 + 0.00185235i
\(446\) 0 0
\(447\) 11.3522 18.5645i 0.536941 0.878072i
\(448\) 0 0
\(449\) 26.7536 + 27.2647i 1.26258 + 1.28670i 0.940419 + 0.340018i \(0.110433\pi\)
0.322160 + 0.946685i \(0.395591\pi\)
\(450\) 0 0
\(451\) 3.85404 18.2450i 0.181480 0.859124i
\(452\) 0 0
\(453\) 16.8885 30.1231i 0.793489 1.41531i
\(454\) 0 0
\(455\) −0.235809 0.939045i −0.0110549 0.0440231i
\(456\) 0 0
\(457\) 10.7267 + 16.1362i 0.501775 + 0.754818i 0.993240 0.116079i \(-0.0370325\pi\)
−0.491465 + 0.870897i \(0.663539\pi\)
\(458\) 0 0
\(459\) −12.4416 37.3274i −0.580723 1.74229i
\(460\) 0 0
\(461\) −9.66163 1.10183i −0.449987 0.0513175i −0.114629 0.993408i \(-0.536568\pi\)
−0.335358 + 0.942091i \(0.608857\pi\)
\(462\) 0 0
\(463\) 29.7817 1.12779i 1.38407 0.0524130i 0.664739 0.747076i \(-0.268543\pi\)
0.719336 + 0.694663i \(0.244446\pi\)
\(464\) 0 0
\(465\) −0.00975074 + 0.171557i −0.000452180 + 0.00795575i
\(466\) 0 0
\(467\) −7.03357 11.5022i −0.325475 0.532256i 0.647827 0.761788i \(-0.275678\pi\)
−0.973301 + 0.229532i \(0.926281\pi\)
\(468\) 0 0
\(469\) 0.767861 40.5685i 0.0354565 1.87328i
\(470\) 0 0
\(471\) 10.9577 3.88421i 0.504903 0.178975i
\(472\) 0 0
\(473\) 10.6935 + 10.1030i 0.491688 + 0.464536i
\(474\) 0 0
\(475\) −1.86819 + 0.285029i −0.0857186 + 0.0130780i
\(476\) 0 0
\(477\) −1.56365 3.36248i −0.0715946 0.153958i
\(478\) 0 0
\(479\) −21.1175 0.799691i −0.964884 0.0365388i −0.449303 0.893379i \(-0.648328\pi\)
−0.515581 + 0.856841i \(0.672424\pi\)
\(480\) 0 0
\(481\) −25.7962 + 28.3604i −1.17620 + 1.29312i
\(482\) 0 0
\(483\) 50.0860 + 40.6112i 2.27899 + 1.84787i
\(484\) 0 0
\(485\) −0.149032 0.111764i −0.00676718 0.00507493i
\(486\) 0 0
\(487\) −17.5514 + 3.36189i −0.795331 + 0.152342i −0.569680 0.821866i \(-0.692933\pi\)
−0.225651 + 0.974208i \(0.572451\pi\)
\(488\) 0 0
\(489\) −21.3219 4.08410i −0.964209 0.184689i
\(490\) 0 0
\(491\) −4.45486 21.0893i −0.201045 0.951746i −0.955408 0.295289i \(-0.904584\pi\)
0.754363 0.656458i \(-0.227946\pi\)
\(492\) 0 0
\(493\) −36.9590 + 11.5464i −1.66455 + 0.520025i
\(494\) 0 0
\(495\) −0.0383320 + 0.0362152i −0.00172290 + 0.00162775i
\(496\) 0 0
\(497\) 10.2805 30.8438i 0.461145 1.38353i
\(498\) 0 0
\(499\) −0.631286 0.875843i −0.0282602 0.0392081i 0.796869 0.604152i \(-0.206488\pi\)
−0.825129 + 0.564944i \(0.808898\pi\)
\(500\) 0 0
\(501\) −12.8165 + 14.5929i −0.572599 + 0.651960i
\(502\) 0 0
\(503\) 3.49432 + 4.84801i 0.155804 + 0.216162i 0.881906 0.471425i \(-0.156260\pi\)
−0.726102 + 0.687587i \(0.758670\pi\)
\(504\) 0 0
\(505\) −0.107975 + 0.323947i −0.00480482 + 0.0144155i
\(506\) 0 0
\(507\) −30.3990 + 28.7203i −1.35007 + 1.27551i
\(508\) 0 0
\(509\) 15.6984 4.90435i 0.695819 0.217382i 0.0702255 0.997531i \(-0.477628\pi\)
0.625593 + 0.780149i \(0.284857\pi\)
\(510\) 0 0
\(511\) 5.46614 + 25.8767i 0.241808 + 1.14472i
\(512\) 0 0
\(513\) −2.08765 0.399879i −0.0921720 0.0176551i
\(514\) 0 0
\(515\) −0.0113991 + 0.00218344i −0.000502304 + 9.62137e-5i
\(516\) 0 0
\(517\) −2.39858 1.79878i −0.105490 0.0791102i
\(518\) 0 0
\(519\) −20.3150 16.4720i −0.891731 0.723042i
\(520\) 0 0
\(521\) −6.28114 + 6.90551i −0.275182 + 0.302536i −0.861718 0.507387i \(-0.830612\pi\)
0.586537 + 0.809923i \(0.300491\pi\)
\(522\) 0 0
\(523\) −4.29876 0.162788i −0.187972 0.00711822i −0.0563121 0.998413i \(-0.517934\pi\)
−0.131660 + 0.991295i \(0.542031\pi\)
\(524\) 0 0
\(525\) 15.5298 + 33.3955i 0.677777 + 1.45750i
\(526\) 0 0
\(527\) 25.5864 3.90371i 1.11456 0.170048i
\(528\) 0 0
\(529\) 38.9638 + 36.8121i 1.69408 + 1.60053i
\(530\) 0 0
\(531\) −0.757724 + 0.268593i −0.0328824 + 0.0116559i
\(532\) 0 0
\(533\) −0.979698 + 51.7605i −0.0424354 + 2.24200i
\(534\) 0 0
\(535\) 0.0505469 + 0.0826606i 0.00218534 + 0.00357373i
\(536\) 0 0
\(537\) 1.35928 23.9155i 0.0586572 1.03203i
\(538\) 0 0
\(539\) −39.1669 + 1.48320i −1.68704 + 0.0638857i
\(540\) 0 0
\(541\) −18.7307 2.13609i −0.805297 0.0918377i −0.299062 0.954234i \(-0.596674\pi\)
−0.506234 + 0.862396i \(0.668963\pi\)
\(542\) 0 0
\(543\) −11.6822 35.0491i −0.501332 1.50410i
\(544\) 0 0
\(545\) −0.189025 0.284350i −0.00809694 0.0121802i
\(546\) 0 0
\(547\) −3.09273 12.3159i −0.132235 0.526592i −0.999583 0.0288883i \(-0.990803\pi\)
0.867347 0.497703i \(-0.165823\pi\)
\(548\) 0 0
\(549\) −3.37721 + 6.02376i −0.144136 + 0.257088i
\(550\) 0 0
\(551\) −0.432329 + 2.04664i −0.0184178 + 0.0871899i
\(552\) 0 0
\(553\) 48.2936 + 49.2164i 2.05365 + 2.09289i
\(554\) 0 0
\(555\) −0.145419 + 0.237807i −0.00617270 + 0.0100944i
\(556\) 0 0
\(557\) −1.11352 + 8.35614i −0.0471812 + 0.354061i 0.951711 + 0.306996i \(0.0993240\pi\)
−0.998892 + 0.0470645i \(0.985013\pi\)
\(558\) 0 0
\(559\) −34.4340 21.9623i −1.45640 0.928907i
\(560\) 0 0
\(561\) −19.9003 13.7790i −0.840190 0.581749i
\(562\) 0 0
\(563\) −14.0007 12.2587i −0.590058 0.516644i 0.310962 0.950422i \(-0.399349\pi\)
−0.901020 + 0.433778i \(0.857180\pi\)
\(564\) 0 0
\(565\) 0.493696 0.341836i 0.0207699 0.0143811i
\(566\) 0 0
\(567\) 2.88410 + 30.3878i 0.121121 + 1.27617i
\(568\) 0 0
\(569\) −6.90253 + 16.4437i −0.289369 + 0.689355i −0.999898 0.0143130i \(-0.995444\pi\)
0.710529 + 0.703668i \(0.248456\pi\)
\(570\) 0 0
\(571\) −10.5611 2.44057i −0.441970 0.102135i −0.00169653 0.999999i \(-0.500540\pi\)
−0.440273 + 0.897864i \(0.645118\pi\)
\(572\) 0 0
\(573\) −19.5177 + 12.4486i −0.815362 + 0.520046i
\(574\) 0 0
\(575\) 15.3959 + 40.9550i 0.642055 + 1.70794i
\(576\) 0 0
\(577\) −7.95813 10.2036i −0.331301 0.424782i 0.593735 0.804660i \(-0.297653\pi\)
−0.925037 + 0.379878i \(0.875966\pi\)
\(578\) 0 0
\(579\) −1.15096 3.94489i −0.0478321 0.163944i
\(580\) 0 0
\(581\) 2.52890 + 4.51066i 0.104916 + 0.187134i
\(582\) 0 0
\(583\) −10.1482 5.43975i −0.420294 0.225292i
\(584\) 0 0
\(585\) 0.0856035 0.118766i 0.00353927 0.00491036i
\(586\) 0 0
\(587\) 26.0538 15.2621i 1.07536 0.629935i 0.142358 0.989815i \(-0.454532\pi\)
0.932999 + 0.359880i \(0.117182\pi\)
\(588\) 0 0
\(589\) 0.492017 1.30882i 0.0202732 0.0539292i
\(590\) 0 0
\(591\) 11.0480 + 21.5819i 0.454455 + 0.887760i
\(592\) 0 0
\(593\) 27.5631 32.7085i 1.13188 1.34318i 0.200261 0.979743i \(-0.435821\pi\)
0.931620 0.363435i \(-0.118396\pi\)
\(594\) 0 0
\(595\) −0.848306 + 0.636173i −0.0347771 + 0.0260806i
\(596\) 0 0
\(597\) 25.7586 2.93757i 1.05423 0.120227i
\(598\) 0 0
\(599\) −2.28873 + 9.11424i −0.0935149 + 0.372398i −0.998604 0.0528245i \(-0.983178\pi\)
0.905089 + 0.425222i \(0.139804\pi\)
\(600\) 0 0
\(601\) −14.8167 + 6.55209i −0.604388 + 0.267265i −0.683908 0.729568i \(-0.739721\pi\)
0.0795207 + 0.996833i \(0.474661\pi\)
\(602\) 0 0
\(603\) 4.76570 3.86417i 0.194074 0.157361i
\(604\) 0 0
\(605\) 0.0298815 0.173736i 0.00121485 0.00706336i
\(606\) 0 0
\(607\) −14.9247 + 15.2099i −0.605776 + 0.617350i −0.946457 0.322829i \(-0.895366\pi\)
0.340682 + 0.940179i \(0.389342\pi\)
\(608\) 0 0
\(609\) 40.6496 3.08311i 1.64721 0.124934i
\(610\) 0 0
\(611\) 7.47954 + 3.65191i 0.302590 + 0.147740i
\(612\) 0 0
\(613\) −0.301107 + 0.161403i −0.0121616 + 0.00651902i −0.478509 0.878083i \(-0.658823\pi\)
0.466348 + 0.884602i \(0.345570\pi\)
\(614\) 0 0
\(615\) 0.0638034 + 0.370964i 0.00257280 + 0.0149587i
\(616\) 0 0
\(617\) 2.13791 + 37.6148i 0.0860689 + 1.51431i 0.693798 + 0.720170i \(0.255936\pi\)
−0.607729 + 0.794145i \(0.707919\pi\)
\(618\) 0 0
\(619\) −12.5913 14.9418i −0.506086 0.600561i 0.450224 0.892916i \(-0.351344\pi\)
−0.956310 + 0.292355i \(0.905561\pi\)
\(620\) 0 0
\(621\) 0.931301 + 49.2035i 0.0373718 + 1.97447i
\(622\) 0 0
\(623\) −6.17997 0.942876i −0.247595 0.0377755i
\(624\) 0 0
\(625\) −2.36077 + 24.8739i −0.0944310 + 0.994956i
\(626\) 0 0
\(627\) −1.17505 + 0.573720i −0.0469268 + 0.0229122i
\(628\) 0 0
\(629\) 39.5735 + 14.0277i 1.57790 + 0.559323i
\(630\) 0 0
\(631\) −36.0767 9.78878i −1.43619 0.389685i −0.543139 0.839643i \(-0.682764\pi\)
−0.893050 + 0.449958i \(0.851439\pi\)
\(632\) 0 0
\(633\) −0.466539 + 0.408493i −0.0185432 + 0.0162361i
\(634\) 0 0
\(635\) 0.0826116 + 0.0483932i 0.00327834 + 0.00192043i
\(636\) 0 0
\(637\) 106.020 24.5000i 4.20065 0.970726i
\(638\) 0 0
\(639\) 4.56815 1.81666i 0.180713 0.0718660i
\(640\) 0 0
\(641\) 2.36857 + 5.64257i 0.0935528 + 0.222868i 0.962077 0.272779i \(-0.0879429\pi\)
−0.868524 + 0.495647i \(0.834931\pi\)
\(642\) 0 0
\(643\) −16.6062 18.2569i −0.654884 0.719982i 0.318815 0.947817i \(-0.396715\pi\)
−0.973700 + 0.227835i \(0.926835\pi\)
\(644\) 0 0
\(645\) −0.275935 0.109734i −0.0108649 0.00432076i
\(646\) 0 0
\(647\) −3.48800 1.08969i −0.137127 0.0428402i 0.228864 0.973458i \(-0.426499\pi\)
−0.365991 + 0.930618i \(0.619270\pi\)
\(648\) 0 0
\(649\) −1.38188 + 2.07876i −0.0542436 + 0.0815986i
\(650\) 0 0
\(651\) −27.1719 2.06088i −1.06495 0.0807722i
\(652\) 0 0
\(653\) 6.04993 20.7361i 0.236752 0.811466i −0.751644 0.659569i \(-0.770739\pi\)
0.988396 0.151897i \(-0.0485383\pi\)
\(654\) 0 0
\(655\) 0.158060 0.308764i 0.00617591 0.0120644i
\(656\) 0 0
\(657\) −2.45947 + 3.15344i −0.0959529 + 0.123027i
\(658\) 0 0
\(659\) −33.5955 + 9.11555i −1.30869 + 0.355091i −0.846832 0.531861i \(-0.821493\pi\)
−0.461861 + 0.886952i \(0.652818\pi\)
\(660\) 0 0
\(661\) 4.82598 10.3778i 0.187709 0.403650i −0.790151 0.612912i \(-0.789998\pi\)
0.977860 + 0.209262i \(0.0671062\pi\)
\(662\) 0 0
\(663\) 61.4574 + 27.1770i 2.38681 + 1.05547i
\(664\) 0 0
\(665\) 0.00756652 + 0.0567813i 0.000293417 + 0.00220188i
\(666\) 0 0
\(667\) 48.4299 1.87521
\(668\) 0 0
\(669\) −22.8754 −0.884412
\(670\) 0 0
\(671\) 2.83236 + 21.2548i 0.109342 + 0.820534i
\(672\) 0 0
\(673\) −16.0994 7.11930i −0.620587 0.274429i 0.0701484 0.997537i \(-0.477653\pi\)
−0.690735 + 0.723108i \(0.742713\pi\)
\(674\) 0 0
\(675\) −11.8524 + 25.4874i −0.456198 + 0.981011i
\(676\) 0 0
\(677\) 2.03577 0.552370i 0.0782409 0.0212293i −0.222529 0.974926i \(-0.571431\pi\)
0.300770 + 0.953697i \(0.402756\pi\)
\(678\) 0 0
\(679\) 18.1679 23.2943i 0.697222 0.893952i
\(680\) 0 0
\(681\) −2.18124 + 4.26096i −0.0835852 + 0.163280i
\(682\) 0 0
\(683\) 1.81222 6.21138i 0.0693428 0.237672i −0.917921 0.396763i \(-0.870133\pi\)
0.987264 + 0.159091i \(0.0508564\pi\)
\(684\) 0 0
\(685\) −0.556553 0.0422123i −0.0212648 0.00161285i
\(686\) 0 0
\(687\) 4.32611 6.50775i 0.165051 0.248286i
\(688\) 0 0
\(689\) 30.5115 + 9.53214i 1.16240 + 0.363146i
\(690\) 0 0
\(691\) −13.0370 5.18457i −0.495952 0.197231i 0.108154 0.994134i \(-0.465506\pi\)
−0.604106 + 0.796904i \(0.706470\pi\)
\(692\) 0 0
\(693\) −5.62706 6.18641i −0.213754 0.235002i
\(694\) 0 0
\(695\) −0.199643 0.475602i −0.00757287 0.0180406i
\(696\) 0 0
\(697\) 52.6838 20.9513i 1.99554 0.793588i
\(698\) 0 0
\(699\) 8.58264 1.98336i 0.324625 0.0750176i
\(700\) 0 0
\(701\) −8.88196 5.20298i −0.335467 0.196514i 0.328078 0.944651i \(-0.393599\pi\)
−0.663545 + 0.748137i \(0.730949\pi\)
\(702\) 0 0
\(703\) 1.70652 1.49419i 0.0643624 0.0563546i
\(704\) 0 0
\(705\) 0.0584068 + 0.0158477i 0.00219973 + 0.000596858i
\(706\) 0 0
\(707\) −51.0394 18.0921i −1.91953 0.680424i
\(708\) 0 0
\(709\) 2.45861 1.20042i 0.0923349 0.0450828i −0.392002 0.919964i \(-0.628217\pi\)
0.484337 + 0.874881i \(0.339061\pi\)
\(710\) 0 0
\(711\) −0.985136 + 10.3797i −0.0369455 + 0.389270i
\(712\) 0 0
\(713\) −32.0022 4.88256i −1.19849 0.182853i
\(714\) 0 0
\(715\) −0.00860243 0.454493i −0.000321713 0.0169971i
\(716\) 0 0
\(717\) 9.20906 + 10.9282i 0.343919 + 0.408120i
\(718\) 0 0
\(719\) −1.25873 22.1463i −0.0469425 0.825917i −0.932452 0.361295i \(-0.882335\pi\)
0.885509 0.464622i \(-0.153810\pi\)
\(720\) 0 0
\(721\) −0.311985 1.81393i −0.0116189 0.0675544i
\(722\) 0 0
\(723\) 6.03321 3.23400i 0.224378 0.120274i
\(724\) 0 0
\(725\) 24.8570 + 12.1365i 0.923164 + 0.450738i
\(726\) 0 0
\(727\) 47.1428 3.57559i 1.74843 0.132611i 0.837838 0.545919i \(-0.183819\pi\)
0.910591 + 0.413308i \(0.135627\pi\)
\(728\) 0 0
\(729\) −20.9886 + 21.3896i −0.777356 + 0.792209i
\(730\) 0 0
\(731\) −7.58174 + 44.0815i −0.280421 + 1.63041i
\(732\) 0 0
\(733\) −10.3277 + 8.37401i −0.381463 + 0.309301i −0.801260 0.598317i \(-0.795836\pi\)
0.419797 + 0.907618i \(0.362101\pi\)
\(734\) 0 0
\(735\) 0.723577 0.319972i 0.0266895 0.0118023i
\(736\) 0 0
\(737\) 4.63983 18.4769i 0.170910 0.680604i
\(738\) 0 0
\(739\) −33.8770 + 3.86341i −1.24619 + 0.142118i −0.711350 0.702838i \(-0.751916\pi\)
−0.534837 + 0.844956i \(0.679627\pi\)
\(740\) 0 0
\(741\) 2.90429 2.17803i 0.106692 0.0800118i
\(742\) 0 0
\(743\) −26.4738 + 31.4159i −0.971231 + 1.15254i 0.0170441 + 0.999855i \(0.494574\pi\)
−0.988275 + 0.152683i \(0.951209\pi\)
\(744\) 0 0
\(745\) −0.203942 0.398393i −0.00747185 0.0145960i
\(746\) 0 0
\(747\) −0.275148 + 0.731927i −0.0100672 + 0.0267798i
\(748\) 0 0
\(749\) −13.2579 + 7.76639i −0.484434 + 0.283778i
\(750\) 0 0
\(751\) 19.5744 27.1574i 0.714279 0.990987i −0.285192 0.958470i \(-0.592057\pi\)
0.999471 0.0325169i \(-0.0103523\pi\)
\(752\) 0 0
\(753\) 4.76896 + 2.55632i 0.173791 + 0.0931574i
\(754\) 0 0
\(755\) −0.347355 0.619560i −0.0126416 0.0225481i
\(756\) 0 0
\(757\) 7.50326 + 25.7173i 0.272711 + 0.934713i 0.974885 + 0.222708i \(0.0714897\pi\)
−0.702175 + 0.712005i \(0.747787\pi\)
\(758\) 0 0
\(759\) 18.6187 + 23.8722i 0.675816 + 0.866507i
\(760\) 0 0
\(761\) −4.77730 12.7082i −0.173177 0.460671i 0.820674 0.571397i \(-0.193598\pi\)
−0.993851 + 0.110726i \(0.964683\pi\)
\(762\) 0 0
\(763\) 45.6523 29.1175i 1.65272 1.05412i
\(764\) 0 0
\(765\) −0.156218 0.0361003i −0.00564807 0.00130521i
\(766\) 0 0
\(767\) 2.68222 6.38977i 0.0968493 0.230721i
\(768\) 0 0
\(769\) −3.68697 38.8471i −0.132956 1.40086i −0.773916 0.633289i \(-0.781705\pi\)
0.640960 0.767574i \(-0.278536\pi\)
\(770\) 0 0
\(771\) −29.3172 + 20.2993i −1.05583 + 0.731060i
\(772\) 0 0
\(773\) −8.75387 7.66473i −0.314855 0.275681i 0.486743 0.873545i \(-0.338185\pi\)
−0.801597 + 0.597864i \(0.796016\pi\)
\(774\) 0 0
\(775\) −15.2018 10.5257i −0.546064 0.378096i
\(776\) 0 0
\(777\) −37.2691 23.7706i −1.33702 0.852765i
\(778\) 0 0
\(779\) 0.404582 3.03610i 0.0144957 0.108780i
\(780\) 0 0
\(781\) 7.96337 13.0227i 0.284952 0.465988i
\(782\) 0 0
\(783\) 21.7910 + 22.2073i 0.778746 + 0.793625i
\(784\) 0 0
\(785\) 0.0494194 0.233951i 0.00176385 0.00835007i
\(786\) 0 0
\(787\) −20.8148 + 37.1263i −0.741967 + 1.32341i 0.197341 + 0.980335i \(0.436769\pi\)
−0.939309 + 0.343074i \(0.888532\pi\)
\(788\) 0 0
\(789\) −0.946335 3.76852i −0.0336904 0.134163i
\(790\) 0 0
\(791\) 52.7181 + 79.3038i 1.87444 + 2.81972i
\(792\) 0 0
\(793\) −18.8237 56.4751i −0.668450 2.00549i
\(794\) 0 0
\(795\) 0.230922 + 0.0263348i 0.00818996 + 0.000934000i