Properties

Label 668.2.e.a.9.14
Level $668$
Weight $2$
Character 668.9
Analytic conductor $5.334$
Analytic rank $0$
Dimension $1148$
CM no
Inner twists $2$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 668 = 2^{2} \cdot 167 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 668.e (of order \(83\), degree \(82\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(5.33400685502\)
Analytic rank: \(0\)
Dimension: \(1148\)
Relative dimension: \(14\) over \(\Q(\zeta_{83})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{83}]$

Embedding invariants

Embedding label 9.14
Character \(\chi\) \(=\) 668.9
Dual form 668.2.e.a.297.14

$q$-expansion

\(f(q)\) \(=\) \(q+(0.383878 + 2.88073i) q^{3} +(1.71454 + 0.758185i) q^{5} +(0.166885 - 0.358871i) q^{7} +(-5.25594 + 1.42611i) q^{9} +O(q^{10})\) \(q+(0.383878 + 2.88073i) q^{3} +(1.71454 + 0.758185i) q^{5} +(0.166885 - 0.358871i) q^{7} +(-5.25594 + 1.42611i) q^{9} +(0.801379 - 1.02750i) q^{11} +(-2.57893 + 5.03785i) q^{13} +(-1.52595 + 5.23019i) q^{15} +(1.81167 + 0.137408i) q^{17} +(-1.54588 + 2.32546i) q^{19} +(1.09788 + 0.342989i) q^{21} +(4.00572 + 1.59300i) q^{23} +(-0.999554 - 1.09891i) q^{25} +(-2.75135 - 6.55445i) q^{27} +(-3.15161 + 1.25333i) q^{29} +(4.27583 - 0.988100i) q^{31} +(3.26758 + 1.91412i) q^{33} +(0.558222 - 0.488770i) q^{35} +(-2.37739 - 0.645063i) q^{37} +(-15.5027 - 5.49529i) q^{39} +(-0.773470 + 0.377649i) q^{41} +(0.670758 - 7.06732i) q^{43} +(-10.0928 - 1.53985i) q^{45} +(-0.216966 - 11.4630i) q^{47} +(4.40984 + 5.23306i) q^{49} +(0.299625 + 5.27167i) q^{51} +(1.11755 + 6.49761i) q^{53} +(2.15303 - 1.15410i) q^{55} +(-7.29246 - 3.56057i) q^{57} +(1.61396 - 0.122412i) q^{59} +(-4.42349 + 4.50800i) q^{61} +(-0.365349 + 2.12420i) q^{63} +(-8.24131 + 6.68229i) q^{65} +(-1.47198 + 0.650924i) q^{67} +(-3.05129 + 12.1509i) q^{69} +(4.98792 - 0.568833i) q^{71} +(6.50564 - 4.87880i) q^{73} +(2.78197 - 3.30130i) q^{75} +(-0.235001 - 0.459066i) q^{77} +(4.64014 - 12.3433i) q^{79} +(3.72817 - 2.18394i) q^{81} +(-4.25916 + 5.90913i) q^{83} +(3.00200 + 1.60917i) q^{85} +(-4.82035 - 8.59782i) q^{87} +(1.27162 + 4.35847i) q^{89} +(1.37755 + 1.76625i) q^{91} +(4.48785 + 11.9382i) q^{93} +(-4.41361 + 2.81504i) q^{95} +(11.7440 + 2.71391i) q^{97} +(-2.74668 + 6.54333i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 1148q - 2q^{5} - 14q^{9} + O(q^{10}) \) \( 1148q - 2q^{5} - 14q^{9} + 2q^{11} + 4q^{13} + 14q^{15} + 2q^{17} + 2q^{19} + 14q^{23} - 6q^{25} + 2q^{29} - 2q^{31} + 16q^{33} - 2q^{35} + 10q^{37} + 6q^{39} + 4q^{41} + 4q^{43} - 2q^{45} + 2q^{47} - 30q^{49} - 2q^{51} - 6q^{55} - 4q^{57} + 6q^{59} + 2q^{61} + 14q^{63} + 22q^{65} + 12q^{67} - 14q^{69} - 8q^{71} - 18q^{73} - 26q^{75} - 2q^{79} - 6q^{81} - 22q^{83} + 34q^{85} + 2q^{87} + 14q^{89} - 6q^{91} + 32q^{93} - 8q^{95} + 44q^{97} + 2q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/668\mathbb{Z}\right)^\times\).

\(n\) \(5\) \(335\)
\(\chi(n)\) \(e\left(\frac{11}{83}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.383878 + 2.88073i 0.221632 + 1.66319i 0.650261 + 0.759711i \(0.274659\pi\)
−0.428629 + 0.903481i \(0.641003\pi\)
\(4\) 0 0
\(5\) 1.71454 + 0.758185i 0.766766 + 0.339071i 0.750564 0.660798i \(-0.229782\pi\)
0.0162026 + 0.999869i \(0.494842\pi\)
\(6\) 0 0
\(7\) 0.166885 0.358871i 0.0630767 0.135641i −0.872673 0.488304i \(-0.837616\pi\)
0.935750 + 0.352664i \(0.114724\pi\)
\(8\) 0 0
\(9\) −5.25594 + 1.42611i −1.75198 + 0.475369i
\(10\) 0 0
\(11\) 0.801379 1.02750i 0.241625 0.309803i −0.652351 0.757917i \(-0.726217\pi\)
0.893976 + 0.448114i \(0.147904\pi\)
\(12\) 0 0
\(13\) −2.57893 + 5.03785i −0.715267 + 1.39725i 0.193986 + 0.981004i \(0.437858\pi\)
−0.909253 + 0.416244i \(0.863346\pi\)
\(14\) 0 0
\(15\) −1.52595 + 5.23019i −0.393999 + 1.35043i
\(16\) 0 0
\(17\) 1.81167 + 0.137408i 0.439394 + 0.0333262i 0.293467 0.955969i \(-0.405191\pi\)
0.145927 + 0.989295i \(0.453384\pi\)
\(18\) 0 0
\(19\) −1.54588 + 2.32546i −0.354649 + 0.533498i −0.966229 0.257685i \(-0.917040\pi\)
0.611580 + 0.791183i \(0.290534\pi\)
\(20\) 0 0
\(21\) 1.09788 + 0.342989i 0.239576 + 0.0748463i
\(22\) 0 0
\(23\) 4.00572 + 1.59300i 0.835251 + 0.332163i 0.747733 0.664000i \(-0.231143\pi\)
0.0875182 + 0.996163i \(0.472106\pi\)
\(24\) 0 0
\(25\) −0.999554 1.09891i −0.199911 0.219783i
\(26\) 0 0
\(27\) −2.75135 6.55445i −0.529497 1.26140i
\(28\) 0 0
\(29\) −3.15161 + 1.25333i −0.585240 + 0.232738i −0.643350 0.765572i \(-0.722456\pi\)
0.0581109 + 0.998310i \(0.481492\pi\)
\(30\) 0 0
\(31\) 4.27583 0.988100i 0.767962 0.177468i 0.177047 0.984202i \(-0.443345\pi\)
0.590914 + 0.806734i \(0.298767\pi\)
\(32\) 0 0
\(33\) 3.26758 + 1.91412i 0.568813 + 0.333206i
\(34\) 0 0
\(35\) 0.558222 0.488770i 0.0943568 0.0826171i
\(36\) 0 0
\(37\) −2.37739 0.645063i −0.390840 0.106048i 0.0610201 0.998137i \(-0.480565\pi\)
−0.451860 + 0.892089i \(0.649239\pi\)
\(38\) 0 0
\(39\) −15.5027 5.49529i −2.48242 0.879951i
\(40\) 0 0
\(41\) −0.773470 + 0.377649i −0.120796 + 0.0589789i −0.498155 0.867088i \(-0.665989\pi\)
0.377359 + 0.926067i \(0.376832\pi\)
\(42\) 0 0
\(43\) 0.670758 7.06732i 0.102290 1.07776i −0.785923 0.618324i \(-0.787812\pi\)
0.888213 0.459432i \(-0.151947\pi\)
\(44\) 0 0
\(45\) −10.0928 1.53985i −1.50454 0.229547i
\(46\) 0 0
\(47\) −0.216966 11.4630i −0.0316478 1.67205i −0.564187 0.825647i \(-0.690810\pi\)
0.532539 0.846405i \(-0.321238\pi\)
\(48\) 0 0
\(49\) 4.40984 + 5.23306i 0.629977 + 0.747580i
\(50\) 0 0
\(51\) 0.299625 + 5.27167i 0.0419560 + 0.738182i
\(52\) 0 0
\(53\) 1.11755 + 6.49761i 0.153507 + 0.892516i 0.955458 + 0.295126i \(0.0953617\pi\)
−0.801951 + 0.597390i \(0.796205\pi\)
\(54\) 0 0
\(55\) 2.15303 1.15410i 0.290315 0.155618i
\(56\) 0 0
\(57\) −7.29246 3.56057i −0.965910 0.471609i
\(58\) 0 0
\(59\) 1.61396 0.122412i 0.210119 0.0159367i 0.0298518 0.999554i \(-0.490496\pi\)
0.180267 + 0.983618i \(0.442304\pi\)
\(60\) 0 0
\(61\) −4.42349 + 4.50800i −0.566369 + 0.577191i −0.936005 0.351986i \(-0.885506\pi\)
0.369636 + 0.929177i \(0.379482\pi\)
\(62\) 0 0
\(63\) −0.365349 + 2.12420i −0.0460297 + 0.267624i
\(64\) 0 0
\(65\) −8.24131 + 6.68229i −1.02221 + 0.828836i
\(66\) 0 0
\(67\) −1.47198 + 0.650924i −0.179831 + 0.0795230i −0.492387 0.870377i \(-0.663875\pi\)
0.312555 + 0.949900i \(0.398815\pi\)
\(68\) 0 0
\(69\) −3.05129 + 12.1509i −0.367332 + 1.46280i
\(70\) 0 0
\(71\) 4.98792 0.568833i 0.591957 0.0675081i 0.187815 0.982204i \(-0.439859\pi\)
0.404142 + 0.914696i \(0.367570\pi\)
\(72\) 0 0
\(73\) 6.50564 4.87880i 0.761427 0.571020i −0.146964 0.989142i \(-0.546950\pi\)
0.908391 + 0.418122i \(0.137312\pi\)
\(74\) 0 0
\(75\) 2.78197 3.30130i 0.321234 0.381201i
\(76\) 0 0
\(77\) −0.235001 0.459066i −0.0267809 0.0523154i
\(78\) 0 0
\(79\) 4.64014 12.3433i 0.522057 1.38873i −0.366694 0.930342i \(-0.619510\pi\)
0.888751 0.458391i \(-0.151574\pi\)
\(80\) 0 0
\(81\) 3.72817 2.18394i 0.414242 0.242660i
\(82\) 0 0
\(83\) −4.25916 + 5.90913i −0.467503 + 0.648612i −0.977344 0.211657i \(-0.932114\pi\)
0.509841 + 0.860269i \(0.329704\pi\)
\(84\) 0 0
\(85\) 3.00200 + 1.60917i 0.325612 + 0.174539i
\(86\) 0 0
\(87\) −4.82035 8.59782i −0.516796 0.921783i
\(88\) 0 0
\(89\) 1.27162 + 4.35847i 0.134792 + 0.461997i 0.999165 0.0408534i \(-0.0130077\pi\)
−0.864374 + 0.502850i \(0.832285\pi\)
\(90\) 0 0
\(91\) 1.37755 + 1.76625i 0.144407 + 0.185153i
\(92\) 0 0
\(93\) 4.48785 + 11.9382i 0.465369 + 1.23793i
\(94\) 0 0
\(95\) −4.41361 + 2.81504i −0.452826 + 0.288817i
\(96\) 0 0
\(97\) 11.7440 + 2.71391i 1.19242 + 0.275556i 0.774290 0.632831i \(-0.218107\pi\)
0.418130 + 0.908387i \(0.362685\pi\)
\(98\) 0 0
\(99\) −2.74668 + 6.54333i −0.276051 + 0.657629i
\(100\) 0 0
\(101\) 0.0674593 + 0.710773i 0.00671245 + 0.0707246i 0.998254 0.0590632i \(-0.0188114\pi\)
−0.991542 + 0.129788i \(0.958570\pi\)
\(102\) 0 0
\(103\) 13.3825 9.26609i 1.31862 0.913015i 0.319221 0.947680i \(-0.396579\pi\)
0.999399 + 0.0346653i \(0.0110365\pi\)
\(104\) 0 0
\(105\) 1.62230 + 1.42046i 0.158321 + 0.138623i
\(106\) 0 0
\(107\) −0.458397 0.317395i −0.0443149 0.0306837i 0.546898 0.837199i \(-0.315809\pi\)
−0.591213 + 0.806516i \(0.701351\pi\)
\(108\) 0 0
\(109\) 0.568727 + 0.362740i 0.0544742 + 0.0347442i 0.564699 0.825297i \(-0.308992\pi\)
−0.510225 + 0.860041i \(0.670438\pi\)
\(110\) 0 0
\(111\) 0.945625 7.09624i 0.0897548 0.673545i
\(112\) 0 0
\(113\) 6.59482 10.7847i 0.620388 1.01454i −0.375749 0.926722i \(-0.622614\pi\)
0.996137 0.0878135i \(-0.0279879\pi\)
\(114\) 0 0
\(115\) 5.66019 + 5.76834i 0.527815 + 0.537900i
\(116\) 0 0
\(117\) 6.37020 30.1565i 0.588925 2.78797i
\(118\) 0 0
\(119\) 0.351652 0.627224i 0.0322359 0.0574975i
\(120\) 0 0
\(121\) 2.26555 + 9.02193i 0.205959 + 0.820175i
\(122\) 0 0
\(123\) −1.38483 2.08319i −0.124865 0.187835i
\(124\) 0 0
\(125\) −3.84457 11.5345i −0.343869 1.03168i
\(126\) 0 0
\(127\) 14.4757 + 1.65084i 1.28451 + 0.146488i 0.728707 0.684826i \(-0.240122\pi\)
0.555803 + 0.831314i \(0.312411\pi\)
\(128\) 0 0
\(129\) 20.6165 0.780720i 1.81519 0.0687386i
\(130\) 0 0
\(131\) −1.05887 + 18.6300i −0.0925142 + 1.62771i 0.532030 + 0.846725i \(0.321429\pi\)
−0.624544 + 0.780989i \(0.714715\pi\)
\(132\) 0 0
\(133\) 0.576557 + 0.942857i 0.0499938 + 0.0817561i
\(134\) 0 0
\(135\) 0.252188 13.3239i 0.0217049 1.14674i
\(136\) 0 0
\(137\) −12.3919 + 4.39259i −1.05871 + 0.375284i −0.805789 0.592203i \(-0.798258\pi\)
−0.252920 + 0.967487i \(0.581391\pi\)
\(138\) 0 0
\(139\) 5.46635 + 5.16448i 0.463650 + 0.438046i 0.882714 0.469911i \(-0.155714\pi\)
−0.419064 + 0.907957i \(0.637642\pi\)
\(140\) 0 0
\(141\) 32.9386 5.02543i 2.77393 0.423217i
\(142\) 0 0
\(143\) 3.10968 + 6.68708i 0.260045 + 0.559202i
\(144\) 0 0
\(145\) −6.35383 0.240611i −0.527657 0.0199816i
\(146\) 0 0
\(147\) −13.3822 + 14.7124i −1.10374 + 1.21346i
\(148\) 0 0
\(149\) 10.7628 + 8.72679i 0.881723 + 0.714926i 0.959399 0.282052i \(-0.0910152\pi\)
−0.0776764 + 0.996979i \(0.524750\pi\)
\(150\) 0 0
\(151\) −12.9749 9.73033i −1.05588 0.791843i −0.0771590 0.997019i \(-0.524585\pi\)
−0.978725 + 0.205176i \(0.934223\pi\)
\(152\) 0 0
\(153\) −9.71797 + 1.86143i −0.785651 + 0.150487i
\(154\) 0 0
\(155\) 8.08025 + 1.54773i 0.649021 + 0.124317i
\(156\) 0 0
\(157\) −5.04300 23.8735i −0.402475 1.90531i −0.424237 0.905551i \(-0.639458\pi\)
0.0217614 0.999763i \(-0.493073\pi\)
\(158\) 0 0
\(159\) −18.2889 + 5.71365i −1.45040 + 0.453122i
\(160\) 0 0
\(161\) 1.24018 1.17169i 0.0977396 0.0923421i
\(162\) 0 0
\(163\) −3.21111 + 9.63402i −0.251514 + 0.754594i 0.744680 + 0.667422i \(0.232602\pi\)
−0.996193 + 0.0871722i \(0.972217\pi\)
\(164\) 0 0
\(165\) 4.15114 + 5.75928i 0.323166 + 0.448359i
\(166\) 0 0
\(167\) 12.7409 2.16101i 0.985919 0.167224i
\(168\) 0 0
\(169\) −11.1277 15.4385i −0.855975 1.18758i
\(170\) 0 0
\(171\) 4.80869 14.4271i 0.367730 1.10327i
\(172\) 0 0
\(173\) 1.47843 1.39679i 0.112403 0.106196i −0.628494 0.777814i \(-0.716328\pi\)
0.740897 + 0.671619i \(0.234401\pi\)
\(174\) 0 0
\(175\) −0.561179 + 0.175319i −0.0424212 + 0.0132529i
\(176\) 0 0
\(177\) 0.972199 + 4.60238i 0.0730750 + 0.345936i
\(178\) 0 0
\(179\) −5.18039 0.992277i −0.387201 0.0741663i −0.00916653 0.999958i \(-0.502918\pi\)
−0.378034 + 0.925792i \(0.623400\pi\)
\(180\) 0 0
\(181\) 9.49454 1.81863i 0.705724 0.135178i 0.177298 0.984157i \(-0.443264\pi\)
0.528426 + 0.848980i \(0.322782\pi\)
\(182\) 0 0
\(183\) −14.6844 11.0124i −1.08550 0.814056i
\(184\) 0 0
\(185\) −3.58705 2.90848i −0.263725 0.213836i
\(186\) 0 0
\(187\) 1.59302 1.75137i 0.116493 0.128073i
\(188\) 0 0
\(189\) −2.81136 0.106462i −0.204496 0.00774399i
\(190\) 0 0
\(191\) −3.37204 7.25126i −0.243992 0.524683i 0.745976 0.665973i \(-0.231983\pi\)
−0.989968 + 0.141290i \(0.954875\pi\)
\(192\) 0 0
\(193\) 8.85198 1.35054i 0.637180 0.0972142i 0.175813 0.984424i \(-0.443745\pi\)
0.461367 + 0.887209i \(0.347359\pi\)
\(194\) 0 0
\(195\) −22.4136 21.1758i −1.60507 1.51643i
\(196\) 0 0
\(197\) −1.92151 + 0.681125i −0.136902 + 0.0485282i −0.401673 0.915783i \(-0.631571\pi\)
0.264771 + 0.964311i \(0.414704\pi\)
\(198\) 0 0
\(199\) −0.206881 + 10.9302i −0.0146654 + 0.774819i 0.914381 + 0.404855i \(0.132678\pi\)
−0.929046 + 0.369964i \(0.879370\pi\)
\(200\) 0 0
\(201\) −2.44020 3.99052i −0.172118 0.281469i
\(202\) 0 0
\(203\) −0.0761719 + 1.34019i −0.00534622 + 0.0940626i
\(204\) 0 0
\(205\) −1.61247 + 0.0610622i −0.112620 + 0.00426477i
\(206\) 0 0
\(207\) −23.3256 2.66010i −1.62124 0.184890i
\(208\) 0 0
\(209\) 1.15057 + 3.45197i 0.0795869 + 0.238778i
\(210\) 0 0
\(211\) −1.23615 1.85954i −0.0851001 0.128016i 0.787768 0.615972i \(-0.211237\pi\)
−0.872868 + 0.487956i \(0.837743\pi\)
\(212\) 0 0
\(213\) 3.55341 + 14.1505i 0.243476 + 0.969576i
\(214\) 0 0
\(215\) 6.50838 11.6087i 0.443868 0.791704i
\(216\) 0 0
\(217\) 0.358972 1.69937i 0.0243686 0.115361i
\(218\) 0 0
\(219\) 16.5519 + 16.8681i 1.11847 + 1.13984i
\(220\) 0 0
\(221\) −5.36441 + 8.77254i −0.360849 + 0.590105i
\(222\) 0 0
\(223\) 3.39419 25.4710i 0.227292 1.70566i −0.391557 0.920154i \(-0.628064\pi\)
0.618849 0.785510i \(-0.287599\pi\)
\(224\) 0 0
\(225\) 6.82077 + 4.35035i 0.454718 + 0.290023i
\(226\) 0 0
\(227\) 9.90887 + 6.86092i 0.657675 + 0.455375i 0.850582 0.525842i \(-0.176250\pi\)
−0.192907 + 0.981217i \(0.561792\pi\)
\(228\) 0 0
\(229\) −14.9392 13.0805i −0.987212 0.864386i 0.00355048 0.999994i \(-0.498870\pi\)
−0.990763 + 0.135608i \(0.956701\pi\)
\(230\) 0 0
\(231\) 1.23223 0.853201i 0.0810751 0.0561365i
\(232\) 0 0
\(233\) 2.47671 + 26.0954i 0.162255 + 1.70957i 0.591437 + 0.806352i \(0.298561\pi\)
−0.429182 + 0.903218i \(0.641198\pi\)
\(234\) 0 0
\(235\) 8.31908 19.8183i 0.542677 1.29280i
\(236\) 0 0
\(237\) 37.3391 + 8.62867i 2.42543 + 0.560493i
\(238\) 0 0
\(239\) −6.57038 + 4.19065i −0.425003 + 0.271071i −0.732884 0.680354i \(-0.761826\pi\)
0.307881 + 0.951425i \(0.400380\pi\)
\(240\) 0 0
\(241\) −1.12391 2.98973i −0.0723972 0.192585i 0.894880 0.446307i \(-0.147261\pi\)
−0.967277 + 0.253722i \(0.918345\pi\)
\(242\) 0 0
\(243\) −5.39264 6.91424i −0.345938 0.443549i
\(244\) 0 0
\(245\) 3.59323 + 12.3158i 0.229563 + 0.786826i
\(246\) 0 0
\(247\) −7.72861 13.7851i −0.491760 0.877126i
\(248\) 0 0
\(249\) −18.6576 10.0011i −1.18238 0.633794i
\(250\) 0 0
\(251\) 14.0579 19.5039i 0.887329 1.23108i −0.0847457 0.996403i \(-0.527008\pi\)
0.972074 0.234673i \(-0.0754019\pi\)
\(252\) 0 0
\(253\) 4.84690 2.83928i 0.304722 0.178504i
\(254\) 0 0
\(255\) −3.48318 + 9.26568i −0.218125 + 0.580239i
\(256\) 0 0
\(257\) −8.91256 17.4104i −0.555950 1.08603i −0.983309 0.181946i \(-0.941760\pi\)
0.427358 0.904082i \(-0.359444\pi\)
\(258\) 0 0
\(259\) −0.628245 + 0.745524i −0.0390372 + 0.0463246i
\(260\) 0 0
\(261\) 14.7773 11.0820i 0.914691 0.685958i
\(262\) 0 0
\(263\) −16.5313 + 1.88526i −1.01936 + 0.116250i −0.606944 0.794744i \(-0.707605\pi\)
−0.412418 + 0.910995i \(0.635316\pi\)
\(264\) 0 0
\(265\) −3.01031 + 11.9877i −0.184922 + 0.736401i
\(266\) 0 0
\(267\) −12.0674 + 5.33632i −0.738515 + 0.326577i
\(268\) 0 0
\(269\) 0.423121 0.343079i 0.0257982 0.0209179i −0.616825 0.787101i \(-0.711581\pi\)
0.642623 + 0.766183i \(0.277846\pi\)
\(270\) 0 0
\(271\) −2.35239 + 13.6772i −0.142897 + 0.830828i 0.822251 + 0.569125i \(0.192718\pi\)
−0.965148 + 0.261703i \(0.915716\pi\)
\(272\) 0 0
\(273\) −4.55927 + 4.64638i −0.275940 + 0.281212i
\(274\) 0 0
\(275\) −1.93015 + 0.146394i −0.116393 + 0.00882792i
\(276\) 0 0
\(277\) 15.1869 + 7.41505i 0.912492 + 0.445527i 0.834237 0.551406i \(-0.185909\pi\)
0.0782549 + 0.996933i \(0.475065\pi\)
\(278\) 0 0
\(279\) −21.0644 + 11.2912i −1.26109 + 0.675986i
\(280\) 0 0
\(281\) 3.83616 + 22.3041i 0.228846 + 1.33055i 0.841526 + 0.540217i \(0.181658\pi\)
−0.612680 + 0.790331i \(0.709908\pi\)
\(282\) 0 0
\(283\) −0.125038 2.19995i −0.00743275 0.130773i −0.999962 0.00876324i \(-0.997211\pi\)
0.992529 0.122010i \(-0.0389340\pi\)
\(284\) 0 0
\(285\) −9.80366 11.6338i −0.580719 0.689126i
\(286\) 0 0
\(287\) 0.00644672 + 0.340600i 0.000380538 + 0.0201050i
\(288\) 0 0
\(289\) −13.5423 2.06614i −0.796604 0.121538i
\(290\) 0 0
\(291\) −3.30979 + 34.8731i −0.194024 + 2.04430i
\(292\) 0 0
\(293\) −6.46933 + 3.15867i −0.377943 + 0.184532i −0.617909 0.786249i \(-0.712020\pi\)
0.239967 + 0.970781i \(0.422863\pi\)
\(294\) 0 0
\(295\) 2.86000 + 1.01380i 0.166516 + 0.0590255i
\(296\) 0 0
\(297\) −8.93956 2.42560i −0.518726 0.140747i
\(298\) 0 0
\(299\) −18.3558 + 16.0720i −1.06154 + 0.929467i
\(300\) 0 0
\(301\) −2.42432 1.42015i −0.139735 0.0818559i
\(302\) 0 0
\(303\) −2.02165 + 0.467183i −0.116141 + 0.0268389i
\(304\) 0 0
\(305\) −11.0021 + 4.37534i −0.629981 + 0.250531i
\(306\) 0 0
\(307\) −8.10057 19.2978i −0.462324 1.10138i −0.970711 0.240252i \(-0.922770\pi\)
0.508386 0.861129i \(-0.330242\pi\)
\(308\) 0 0
\(309\) 31.8304 + 34.9944i 1.81077 + 1.99076i
\(310\) 0 0
\(311\) 14.1200 + 5.61526i 0.800674 + 0.318412i 0.733814 0.679350i \(-0.237738\pi\)
0.0668594 + 0.997762i \(0.478702\pi\)
\(312\) 0 0
\(313\) 0.308485 + 0.0963742i 0.0174366 + 0.00544739i 0.306904 0.951741i \(-0.400707\pi\)
−0.289467 + 0.957188i \(0.593478\pi\)
\(314\) 0 0
\(315\) −2.23694 + 3.36503i −0.126038 + 0.189598i
\(316\) 0 0
\(317\) −11.4027 0.864850i −0.640440 0.0485748i −0.248597 0.968607i \(-0.579970\pi\)
−0.391843 + 0.920032i \(0.628162\pi\)
\(318\) 0 0
\(319\) −1.23784 + 4.24267i −0.0693055 + 0.237544i
\(320\) 0 0
\(321\) 0.738361 1.44236i 0.0412113 0.0805047i
\(322\) 0 0
\(323\) −3.12016 + 4.00055i −0.173610 + 0.222596i
\(324\) 0 0
\(325\) 8.11394 2.20158i 0.450081 0.122122i
\(326\) 0 0
\(327\) −0.826633 + 1.77760i −0.0457129 + 0.0983014i
\(328\) 0 0
\(329\) −4.14995 1.83514i −0.228794 0.101175i
\(330\) 0 0
\(331\) −2.24687 16.8611i −0.123499 0.926773i −0.938006 0.346619i \(-0.887330\pi\)
0.814507 0.580154i \(-0.197008\pi\)
\(332\) 0 0
\(333\) 13.4153 0.735155
\(334\) 0 0
\(335\) −3.01730 −0.164853
\(336\) 0 0
\(337\) −2.49861 18.7503i −0.136108 1.02139i −0.917608 0.397487i \(-0.869883\pi\)
0.781500 0.623905i \(-0.214455\pi\)
\(338\) 0 0
\(339\) 33.5993 + 14.8579i 1.82486 + 0.806970i
\(340\) 0 0
\(341\) 2.41129 5.18525i 0.130579 0.280797i
\(342\) 0 0
\(343\) 5.28769 1.43472i 0.285509 0.0774678i
\(344\) 0 0
\(345\) −14.4442 + 18.5198i −0.777650 + 0.997074i
\(346\) 0 0
\(347\) −15.8722 + 31.0058i −0.852065 + 1.66448i −0.110217 + 0.993907i \(0.535155\pi\)
−0.741847 + 0.670569i \(0.766050\pi\)
\(348\) 0 0
\(349\) −1.18645 + 4.06653i −0.0635090 + 0.217677i −0.985541 0.169437i \(-0.945805\pi\)
0.922032 + 0.387114i \(0.126528\pi\)
\(350\) 0 0
\(351\) 40.1159 + 3.04263i 2.14123 + 0.162403i
\(352\) 0 0
\(353\) −13.0129 + 19.5753i −0.692606 + 1.04189i 0.303423 + 0.952856i \(0.401871\pi\)
−0.996029 + 0.0890299i \(0.971623\pi\)
\(354\) 0 0
\(355\) 8.98328 + 2.80648i 0.476783 + 0.148952i
\(356\) 0 0
\(357\) 1.94185 + 0.772238i 0.102774 + 0.0408712i
\(358\) 0 0
\(359\) 3.14740 + 3.46027i 0.166114 + 0.182626i 0.817158 0.576414i \(-0.195548\pi\)
−0.651044 + 0.759040i \(0.725669\pi\)
\(360\) 0 0
\(361\) 4.33592 + 10.3293i 0.228206 + 0.543650i
\(362\) 0 0
\(363\) −25.1201 + 9.98976i −1.31846 + 0.524326i
\(364\) 0 0
\(365\) 14.8532 3.43242i 0.777453 0.179661i
\(366\) 0 0
\(367\) 17.1688 + 10.0573i 0.896202 + 0.524988i 0.880050 0.474881i \(-0.157509\pi\)
0.0161522 + 0.999870i \(0.494858\pi\)
\(368\) 0 0
\(369\) 3.52674 3.08795i 0.183595 0.160752i
\(370\) 0 0
\(371\) 2.51831 + 0.683300i 0.130744 + 0.0354751i
\(372\) 0 0
\(373\) −8.29123 2.93902i −0.429304 0.152177i 0.110673 0.993857i \(-0.464699\pi\)
−0.539977 + 0.841680i \(0.681567\pi\)
\(374\) 0 0
\(375\) 31.7520 15.5030i 1.63967 0.800573i
\(376\) 0 0
\(377\) 1.81369 19.1096i 0.0934097 0.984195i
\(378\) 0 0
\(379\) −4.29788 0.655726i −0.220767 0.0336824i 0.0394975 0.999220i \(-0.487424\pi\)
−0.260265 + 0.965537i \(0.583810\pi\)
\(380\) 0 0
\(381\) 0.801283 + 42.3343i 0.0410510 + 2.16885i
\(382\) 0 0
\(383\) −18.9548 22.4933i −0.968547 1.14935i −0.988753 0.149557i \(-0.952215\pi\)
0.0202061 0.999796i \(-0.493568\pi\)
\(384\) 0 0
\(385\) −0.0548625 0.965262i −0.00279605 0.0491943i
\(386\) 0 0
\(387\) 6.55331 + 38.1020i 0.333123 + 1.93683i
\(388\) 0 0
\(389\) 20.1792 10.8167i 1.02312 0.548428i 0.126847 0.991922i \(-0.459514\pi\)
0.896277 + 0.443494i \(0.146261\pi\)
\(390\) 0 0
\(391\) 7.03814 + 3.43640i 0.355934 + 0.173786i
\(392\) 0 0
\(393\) −54.0747 + 4.10134i −2.72771 + 0.206885i
\(394\) 0 0
\(395\) 17.3142 17.6451i 0.871174 0.887819i
\(396\) 0 0
\(397\) 5.75801 33.4780i 0.288986 1.68021i −0.370764 0.928727i \(-0.620904\pi\)
0.659750 0.751485i \(-0.270662\pi\)
\(398\) 0 0
\(399\) −2.49479 + 2.02285i −0.124896 + 0.101269i
\(400\) 0 0
\(401\) −29.6422 + 13.1080i −1.48026 + 0.654584i −0.977709 0.209964i \(-0.932665\pi\)
−0.502551 + 0.864548i \(0.667605\pi\)
\(402\) 0 0
\(403\) −6.04918 + 24.0892i −0.301331 + 1.19997i
\(404\) 0 0
\(405\) 8.04794 0.917804i 0.399905 0.0456060i
\(406\) 0 0
\(407\) −2.56799 + 1.92582i −0.127290 + 0.0954594i
\(408\) 0 0
\(409\) 3.22974 3.83266i 0.159700 0.189513i −0.678947 0.734187i \(-0.737564\pi\)
0.838648 + 0.544674i \(0.183347\pi\)
\(410\) 0 0
\(411\) −17.4109 34.0114i −0.858814 1.67766i
\(412\) 0 0
\(413\) 0.225415 0.599631i 0.0110920 0.0295059i
\(414\) 0 0
\(415\) −11.7827 + 6.90222i −0.578391 + 0.338817i
\(416\) 0 0
\(417\) −12.7791 + 17.7296i −0.625794 + 0.868224i
\(418\) 0 0
\(419\) 20.0135 + 10.7279i 0.977725 + 0.524093i 0.881966 0.471312i \(-0.156219\pi\)
0.0957581 + 0.995405i \(0.469472\pi\)
\(420\) 0 0
\(421\) −14.4393 25.7547i −0.703730 1.25521i −0.957637 0.287979i \(-0.907017\pi\)
0.253907 0.967229i \(-0.418284\pi\)
\(422\) 0 0
\(423\) 17.4879 + 59.9395i 0.850289 + 2.91436i
\(424\) 0 0
\(425\) −1.65986 2.12821i −0.0805151 0.103233i
\(426\) 0 0
\(427\) 0.879578 + 2.33978i 0.0425658 + 0.113230i
\(428\) 0 0
\(429\) −18.0699 + 11.5252i −0.872425 + 0.556441i
\(430\) 0 0
\(431\) −10.0971 2.33333i −0.486359 0.112393i −0.0251493 0.999684i \(-0.508006\pi\)
−0.461210 + 0.887291i \(0.652584\pi\)
\(432\) 0 0
\(433\) −3.43645 + 8.18655i −0.165145 + 0.393420i −0.983404 0.181430i \(-0.941928\pi\)
0.818259 + 0.574850i \(0.194940\pi\)
\(434\) 0 0
\(435\) −1.74596 18.3960i −0.0837125 0.882022i
\(436\) 0 0
\(437\) −9.89682 + 6.85257i −0.473429 + 0.327803i
\(438\) 0 0
\(439\) 5.35208 + 4.68619i 0.255441 + 0.223660i 0.776912 0.629610i \(-0.216785\pi\)
−0.521471 + 0.853269i \(0.674616\pi\)
\(440\) 0 0
\(441\) −30.6408 21.2157i −1.45908 1.01027i
\(442\) 0 0
\(443\) −32.6764 20.8413i −1.55250 0.990202i −0.986115 0.166064i \(-0.946894\pi\)
−0.566389 0.824138i \(-0.691660\pi\)
\(444\) 0 0
\(445\) −1.12428 + 8.43690i −0.0532959 + 0.399947i
\(446\) 0 0
\(447\) −21.0079 + 34.3548i −0.993641 + 1.62492i
\(448\) 0 0
\(449\) −16.3239 16.6358i −0.770371 0.785090i 0.210944 0.977498i \(-0.432346\pi\)
−0.981315 + 0.192408i \(0.938370\pi\)
\(450\) 0 0
\(451\) −0.231809 + 1.09738i −0.0109154 + 0.0516736i
\(452\) 0 0
\(453\) 23.0497 41.1125i 1.08297 1.93164i
\(454\) 0 0
\(455\) 1.02273 + 4.07274i 0.0479463 + 0.190933i
\(456\) 0 0
\(457\) −19.5314 29.3810i −0.913640 1.37439i −0.927236 0.374478i \(-0.877822\pi\)
0.0135957 0.999908i \(-0.495672\pi\)
\(458\) 0 0
\(459\) −4.08389 12.2525i −0.190620 0.571899i
\(460\) 0 0
\(461\) −36.3775 4.14857i −1.69427 0.193218i −0.787930 0.615765i \(-0.788847\pi\)
−0.906341 + 0.422547i \(0.861136\pi\)
\(462\) 0 0
\(463\) 26.5761 1.00640i 1.23510 0.0467714i 0.587798 0.809008i \(-0.299995\pi\)
0.647299 + 0.762236i \(0.275898\pi\)
\(464\) 0 0
\(465\) −1.35676 + 23.8712i −0.0629184 + 1.10700i
\(466\) 0 0
\(467\) −11.3701 18.5939i −0.526148 0.860421i 0.473646 0.880715i \(-0.342937\pi\)
−0.999794 + 0.0202938i \(0.993540\pi\)
\(468\) 0 0
\(469\) −0.0120546 + 0.636882i −0.000556630 + 0.0294085i
\(470\) 0 0
\(471\) 66.8373 23.6921i 3.07970 1.09167i
\(472\) 0 0
\(473\) −6.72413 6.35281i −0.309176 0.292102i
\(474\) 0 0
\(475\) 4.10067 0.625638i 0.188152 0.0287062i
\(476\) 0 0
\(477\) −15.1401 32.5573i −0.693216 1.49070i
\(478\) 0 0
\(479\) 7.09128 + 0.268537i 0.324009 + 0.0122698i 0.199345 0.979929i \(-0.436118\pi\)
0.124664 + 0.992199i \(0.460215\pi\)
\(480\) 0 0
\(481\) 9.38085 10.3133i 0.427730 0.470248i
\(482\) 0 0
\(483\) 3.85140 + 3.12283i 0.175245 + 0.142094i
\(484\) 0 0
\(485\) 18.0779 + 13.5572i 0.820875 + 0.615602i
\(486\) 0 0
\(487\) −21.1134 + 4.04416i −0.956738 + 0.183258i −0.642671 0.766143i \(-0.722174\pi\)
−0.314067 + 0.949401i \(0.601692\pi\)
\(488\) 0 0
\(489\) −28.9857 5.55206i −1.31078 0.251073i
\(490\) 0 0
\(491\) 2.92914 + 13.8665i 0.132190 + 0.625787i 0.993124 + 0.117070i \(0.0373501\pi\)
−0.860933 + 0.508718i \(0.830120\pi\)
\(492\) 0 0
\(493\) −5.88189 + 1.83757i −0.264907 + 0.0827599i
\(494\) 0 0
\(495\) −9.67034 + 9.13631i −0.434649 + 0.410647i
\(496\) 0 0
\(497\) 0.628272 1.88495i 0.0281819 0.0845516i
\(498\) 0 0
\(499\) −4.42564 6.14011i −0.198119 0.274869i 0.700450 0.713701i \(-0.252983\pi\)
−0.898569 + 0.438832i \(0.855392\pi\)
\(500\) 0 0
\(501\) 11.1162 + 35.8735i 0.496637 + 1.60271i
\(502\) 0 0
\(503\) −24.0729 33.3987i −1.07336 1.48917i −0.858697 0.512484i \(-0.828725\pi\)
−0.214662 0.976688i \(-0.568865\pi\)
\(504\) 0 0
\(505\) −0.423236 + 1.26980i −0.0188337 + 0.0565052i
\(506\) 0 0
\(507\) 40.2025 37.9824i 1.78545 1.68686i
\(508\) 0 0
\(509\) 5.40387 1.68823i 0.239522 0.0748295i −0.176080 0.984376i \(-0.556342\pi\)
0.415603 + 0.909546i \(0.363571\pi\)
\(510\) 0 0
\(511\) −0.665165 3.14888i −0.0294252 0.139298i
\(512\) 0 0
\(513\) 19.4954 + 3.73424i 0.860742 + 0.164871i
\(514\) 0 0
\(515\) 29.9703 5.74066i 1.32065 0.252964i
\(516\) 0 0
\(517\) −11.9521 8.96329i −0.525653 0.394205i
\(518\) 0 0
\(519\) 4.59130 + 3.72276i 0.201536 + 0.163411i
\(520\) 0 0
\(521\) 12.7435 14.0102i 0.558301 0.613798i −0.393944 0.919135i \(-0.628889\pi\)
0.952245 + 0.305337i \(0.0987690\pi\)
\(522\) 0 0
\(523\) 23.8192 + 0.901999i 1.04154 + 0.0394416i 0.553066 0.833137i \(-0.313458\pi\)
0.488473 + 0.872579i \(0.337554\pi\)
\(524\) 0 0
\(525\) −0.720471 1.54931i −0.0314439 0.0676172i
\(526\) 0 0
\(527\) 7.88215 1.20258i 0.343352 0.0523851i
\(528\) 0 0
\(529\) −3.21036 3.03307i −0.139581 0.131873i
\(530\) 0 0
\(531\) −8.30828 + 2.94507i −0.360549 + 0.127805i
\(532\) 0 0
\(533\) 0.0921876 4.87056i 0.00399309 0.210967i
\(534\) 0 0
\(535\) −0.545297 0.891736i −0.0235752 0.0385531i
\(536\) 0 0
\(537\) 0.869844 15.3042i 0.0375366 0.660426i
\(538\) 0 0
\(539\) 8.91092 0.337444i 0.383820 0.0145347i
\(540\) 0 0
\(541\) −43.1445 4.92028i −1.85492 0.211540i −0.886825 0.462105i \(-0.847094\pi\)
−0.968100 + 0.250566i \(0.919383\pi\)
\(542\) 0 0
\(543\) 8.88374 + 26.6531i 0.381238 + 1.14379i
\(544\) 0 0
\(545\) 0.700083 + 1.05313i 0.0299882 + 0.0451112i
\(546\) 0 0
\(547\) −8.84681 35.2300i −0.378262 1.50633i −0.800217 0.599710i \(-0.795283\pi\)
0.421955 0.906617i \(-0.361344\pi\)
\(548\) 0 0
\(549\) 16.8207 30.0022i 0.717889 1.28046i
\(550\) 0 0
\(551\) 1.95743 9.26646i 0.0833893 0.394764i
\(552\) 0 0
\(553\) −3.65529 3.72513i −0.155439 0.158409i
\(554\) 0 0
\(555\) 7.00157 11.4498i 0.297200 0.486018i
\(556\) 0 0
\(557\) −1.11200 + 8.34473i −0.0471168 + 0.353578i 0.951787 + 0.306761i \(0.0992451\pi\)
−0.998903 + 0.0468169i \(0.985092\pi\)
\(558\) 0 0
\(559\) 33.8743 + 21.6053i 1.43273 + 0.913808i
\(560\) 0 0
\(561\) 5.65675 + 3.91675i 0.238828 + 0.165365i
\(562\) 0 0
\(563\) −35.5314 31.1107i −1.49747 1.31116i −0.813321 0.581816i \(-0.802342\pi\)
−0.684149 0.729342i \(-0.739826\pi\)
\(564\) 0 0
\(565\) 19.4838 13.4906i 0.819692 0.567556i
\(566\) 0 0
\(567\) −0.161574 1.70240i −0.00678549 0.0714941i
\(568\) 0 0
\(569\) 8.01388 19.0912i 0.335959 0.800346i −0.662715 0.748872i \(-0.730596\pi\)
0.998674 0.0514742i \(-0.0163920\pi\)
\(570\) 0 0
\(571\) 36.2476 + 8.37644i 1.51691 + 0.350543i 0.899790 0.436323i \(-0.143720\pi\)
0.617124 + 0.786866i \(0.288298\pi\)
\(572\) 0 0
\(573\) 19.5945 12.4976i 0.818571 0.522093i
\(574\) 0 0
\(575\) −2.25337 5.99423i −0.0939720 0.249977i
\(576\) 0 0
\(577\) 4.72977 + 6.06434i 0.196903 + 0.252462i 0.876810 0.480836i \(-0.159667\pi\)
−0.679907 + 0.733298i \(0.737980\pi\)
\(578\) 0 0
\(579\) 7.28864 + 24.9817i 0.302906 + 1.03821i
\(580\) 0 0
\(581\) 1.40983 + 2.51464i 0.0584895 + 0.104325i
\(582\) 0 0
\(583\) 7.57187 + 4.05877i 0.313595 + 0.168097i
\(584\) 0 0
\(585\) 33.7861 46.8747i 1.39689 1.93803i
\(586\) 0 0
\(587\) 3.22186 1.88734i 0.132980 0.0778988i −0.437460 0.899238i \(-0.644122\pi\)
0.570440 + 0.821339i \(0.306773\pi\)
\(588\) 0 0
\(589\) −4.31213 + 11.4708i −0.177678 + 0.472645i
\(590\) 0 0
\(591\) −2.69977 5.27389i −0.111054 0.216939i
\(592\) 0 0
\(593\) −11.0112 + 13.0667i −0.452176 + 0.536587i −0.942168 0.335140i \(-0.891216\pi\)
0.489992 + 0.871727i \(0.337000\pi\)
\(594\) 0 0
\(595\) 1.07847 0.808784i 0.0442131 0.0331569i
\(596\) 0 0
\(597\) −31.5663 + 3.59989i −1.29192 + 0.147334i
\(598\) 0 0
\(599\) −8.55400 + 34.0640i −0.349507 + 1.39182i 0.500815 + 0.865554i \(0.333034\pi\)
−0.850322 + 0.526263i \(0.823593\pi\)
\(600\) 0 0
\(601\) 11.7425 5.19264i 0.478987 0.211812i −0.150824 0.988561i \(-0.548193\pi\)
0.629811 + 0.776748i \(0.283132\pi\)
\(602\) 0 0
\(603\) 6.80837 5.52043i 0.277258 0.224809i
\(604\) 0 0
\(605\) −2.95592 + 17.1862i −0.120175 + 0.698717i
\(606\) 0 0
\(607\) −20.3394 + 20.7280i −0.825550 + 0.841323i −0.989408 0.145161i \(-0.953630\pi\)
0.163858 + 0.986484i \(0.447606\pi\)
\(608\) 0 0
\(609\) −3.88995 + 0.295037i −0.157629 + 0.0119555i
\(610\) 0 0
\(611\) 58.3085 + 28.4693i 2.35891 + 1.15174i
\(612\) 0 0
\(613\) 0.472662 0.253362i 0.0190906 0.0102332i −0.462867 0.886428i \(-0.653179\pi\)
0.481957 + 0.876195i \(0.339926\pi\)
\(614\) 0 0
\(615\) −0.794898 4.62167i −0.0320534 0.186364i
\(616\) 0 0
\(617\) 2.55417 + 44.9387i 0.102827 + 1.80916i 0.473920 + 0.880568i \(0.342838\pi\)
−0.371093 + 0.928596i \(0.621017\pi\)
\(618\) 0 0
\(619\) −6.42678 7.62652i −0.258314 0.306536i 0.620017 0.784589i \(-0.287126\pi\)
−0.878331 + 0.478053i \(0.841343\pi\)
\(620\) 0 0
\(621\) −0.579905 30.6382i −0.0232708 1.22947i
\(622\) 0 0
\(623\) 1.77634 + 0.271016i 0.0711677 + 0.0108580i
\(624\) 0 0
\(625\) 1.45184 15.2970i 0.0580734 0.611881i
\(626\) 0 0
\(627\) −9.50251 + 4.63963i −0.379494 + 0.185289i
\(628\) 0 0
\(629\) −4.21839 1.49531i −0.168198 0.0596219i
\(630\) 0 0
\(631\) 24.0964 + 6.53813i 0.959261 + 0.260279i 0.706868 0.707346i \(-0.250108\pi\)
0.252393 + 0.967625i \(0.418782\pi\)
\(632\) 0 0
\(633\) 4.88230 4.27486i 0.194054 0.169910i
\(634\) 0 0
\(635\) 23.5675 + 13.8057i 0.935249 + 0.547862i
\(636\) 0 0
\(637\) −37.7360 + 8.72041i −1.49516 + 0.345515i
\(638\) 0 0
\(639\) −25.4050 + 10.1031i −1.00501 + 0.399671i
\(640\) 0 0
\(641\) 2.87029 + 6.83781i 0.113370 + 0.270077i 0.968801 0.247838i \(-0.0797202\pi\)
−0.855432 + 0.517916i \(0.826708\pi\)
\(642\) 0 0
\(643\) 14.6929 + 16.1534i 0.579431 + 0.637029i 0.957392 0.288793i \(-0.0932539\pi\)
−0.377960 + 0.925822i \(0.623374\pi\)
\(644\) 0 0
\(645\) 35.9399 + 14.2926i 1.41513 + 0.562770i
\(646\) 0 0
\(647\) −17.0944 5.34048i −0.672050 0.209956i −0.0569164 0.998379i \(-0.518127\pi\)
−0.615134 + 0.788423i \(0.710898\pi\)
\(648\) 0 0
\(649\) 1.16761 1.75644i 0.0458328 0.0689461i
\(650\) 0 0
\(651\) 5.03324 + 0.381751i 0.197268 + 0.0149620i
\(652\) 0 0
\(653\) 10.7510 36.8491i 0.420721 1.44202i −0.423439 0.905924i \(-0.639177\pi\)
0.844160 0.536091i \(-0.180100\pi\)
\(654\) 0 0
\(655\) −15.9405 + 31.1392i −0.622847 + 1.21671i
\(656\) 0 0
\(657\) −27.2355 + 34.9204i −1.06256 + 1.36237i
\(658\) 0 0
\(659\) −10.7406 + 2.91427i −0.418393 + 0.113524i −0.464835 0.885397i \(-0.653886\pi\)
0.0464421 + 0.998921i \(0.485212\pi\)
\(660\) 0 0
\(661\) 9.99716 21.4980i 0.388844 0.836174i −0.610191 0.792255i \(-0.708907\pi\)
0.999035 0.0439191i \(-0.0139844\pi\)
\(662\) 0 0
\(663\) −27.3306 12.0858i −1.06143 0.469375i
\(664\) 0 0
\(665\) 0.273671 + 2.05370i 0.0106125 + 0.0796392i
\(666\) 0 0
\(667\) −14.6210 −0.566129
\(668\) 0 0
\(669\) 74.6780 2.88722
\(670\) 0 0
\(671\) 1.08708 + 8.15775i 0.0419662 + 0.314926i
\(672\) 0 0
\(673\) 28.2613 + 12.4974i 1.08939 + 0.481739i 0.869575 0.493802i \(-0.164393\pi\)
0.219819 + 0.975541i \(0.429453\pi\)
\(674\) 0 0
\(675\) −4.45265 + 9.57502i −0.171383 + 0.368543i
\(676\) 0 0
\(677\) 31.0180 8.41620i 1.19212 0.323461i 0.390107 0.920769i \(-0.372438\pi\)
0.802012 + 0.597308i \(0.203763\pi\)
\(678\) 0 0
\(679\) 2.93384 3.76166i 0.112590 0.144359i
\(680\) 0 0
\(681\) −15.9607 + 31.1786i −0.611614 + 1.19477i
\(682\) 0 0
\(683\) 7.76539 26.6158i 0.297134 1.01843i −0.665224 0.746643i \(-0.731664\pi\)
0.962359 0.271782i \(-0.0876129\pi\)
\(684\) 0 0
\(685\) −24.5768 1.86405i −0.939030 0.0712217i
\(686\) 0 0
\(687\) 31.9466 48.0572i 1.21884 1.83350i
\(688\) 0 0
\(689\) −35.6161 11.1269i −1.35686 0.423900i
\(690\) 0 0
\(691\) −1.39970 0.556633i −0.0532471 0.0211753i 0.342757 0.939424i \(-0.388639\pi\)
−0.396004 + 0.918249i \(0.629603\pi\)
\(692\) 0 0
\(693\) 1.88983 + 2.07769i 0.0717887 + 0.0789248i
\(694\) 0 0
\(695\) 5.45665 + 12.9992i 0.206983 + 0.493089i
\(696\) 0 0
\(697\) −1.45316 + 0.577894i −0.0550424 + 0.0218893i
\(698\) 0 0
\(699\) −74.2232 + 17.1522i −2.80738 + 0.648757i
\(700\) 0 0
\(701\) 12.1187 + 7.09904i 0.457717 + 0.268127i 0.716208 0.697886i \(-0.245876\pi\)
−0.258492 + 0.966014i \(0.583225\pi\)
\(702\) 0 0
\(703\) 5.17522 4.53133i 0.195187 0.170902i
\(704\) 0 0
\(705\) 60.2848 + 16.3572i 2.27046 + 0.616049i
\(706\) 0 0
\(707\) 0.266334 + 0.0944083i 0.0100165 + 0.00355059i
\(708\) 0 0
\(709\) −32.5531 + 15.8942i −1.22256 + 0.596918i −0.932873 0.360205i \(-0.882707\pi\)
−0.289684 + 0.957122i \(0.593550\pi\)
\(710\) 0 0
\(711\) −6.78539 + 71.4931i −0.254472 + 2.68120i
\(712\) 0 0
\(713\) 18.7018 + 2.85333i 0.700389 + 0.106858i
\(714\) 0 0
\(715\) 0.261635 + 13.8230i 0.00978459 + 0.516950i
\(716\) 0 0
\(717\) −14.5944 17.3188i −0.545037 0.646783i
\(718\) 0 0
\(719\) −1.76946 31.1323i −0.0659897 1.16104i −0.845262 0.534352i \(-0.820556\pi\)
0.779272 0.626685i \(-0.215589\pi\)
\(720\) 0 0
\(721\) −1.09198 6.34898i −0.0406676 0.236448i
\(722\) 0 0
\(723\) 8.18115 4.38537i 0.304260 0.163094i
\(724\) 0 0
\(725\) 4.52751 + 2.21057i 0.168148 + 0.0820986i
\(726\) 0 0
\(727\) −17.9299 + 1.35991i −0.664982 + 0.0504362i −0.403792 0.914851i \(-0.632308\pi\)
−0.261191 + 0.965287i \(0.584115\pi\)
\(728\) 0 0
\(729\) 26.9265 27.4410i 0.997278 1.01633i
\(730\) 0 0
\(731\) 2.18629 12.7115i 0.0808630 0.470151i
\(732\) 0 0
\(733\) −7.50865 + 6.08823i −0.277338 + 0.224874i −0.758362 0.651834i \(-0.774000\pi\)
0.481024 + 0.876708i \(0.340265\pi\)
\(734\) 0 0
\(735\) −34.0991 + 15.0789i −1.25776 + 0.556193i
\(736\) 0 0
\(737\) −0.510794 + 2.03410i −0.0188153 + 0.0749270i
\(738\) 0 0
\(739\) 2.69664 0.307530i 0.0991974 0.0113127i −0.0635677 0.997978i \(-0.520248\pi\)
0.162765 + 0.986665i \(0.447959\pi\)
\(740\) 0 0
\(741\) 36.7444 27.5559i 1.34984 1.01229i
\(742\) 0 0
\(743\) 29.5445 35.0597i 1.08388 1.28622i 0.128221 0.991746i \(-0.459073\pi\)
0.955660 0.294472i \(-0.0951436\pi\)
\(744\) 0 0
\(745\) 11.8367 + 23.1226i 0.433665 + 0.847148i
\(746\) 0 0
\(747\) 13.9588 37.1321i 0.510726 1.35859i
\(748\) 0 0
\(749\) −0.190404 + 0.111537i −0.00695719 + 0.00407547i
\(750\) 0 0
\(751\) 8.49386 11.7843i 0.309945 0.430016i −0.627252 0.778816i \(-0.715820\pi\)
0.937197 + 0.348800i \(0.113411\pi\)
\(752\) 0 0
\(753\) 61.5821 + 33.0100i 2.24417 + 1.20295i
\(754\) 0 0
\(755\) −14.8687 26.5204i −0.541126 0.965178i
\(756\) 0 0
\(757\) 13.4806 + 46.2046i 0.489961 + 1.67934i 0.710289 + 0.703910i \(0.248564\pi\)
−0.220329 + 0.975426i \(0.570713\pi\)
\(758\) 0 0
\(759\) 10.0398 + 12.8727i 0.364423 + 0.467249i
\(760\) 0 0
\(761\) −3.74036 9.94979i −0.135588 0.360680i 0.850714 0.525628i \(-0.176170\pi\)
−0.986302 + 0.164949i \(0.947254\pi\)
\(762\) 0 0
\(763\) 0.225089 0.143564i 0.00814877 0.00519736i
\(764\) 0 0
\(765\) −18.0732 4.17652i −0.653437 0.151003i
\(766\) 0 0
\(767\) −3.54559 + 8.44656i −0.128024 + 0.304987i
\(768\) 0 0
\(769\) −2.02694 21.3565i −0.0730933 0.770135i −0.954586 0.297937i \(-0.903702\pi\)
0.881492 0.472198i \(-0.156539\pi\)
\(770\) 0 0
\(771\) 46.7332 32.3582i 1.68306 1.16535i
\(772\) 0 0
\(773\) 21.7696 + 19.0611i 0.782999 + 0.685580i 0.954039 0.299684i \(-0.0968812\pi\)
−0.171039 + 0.985264i \(0.554713\pi\)
\(774\) 0 0
\(775\) −5.35976 3.71111i −0.192528 0.133307i
\(776\) 0 0
\(777\) −2.38882 1.52361i −0.0856986 0.0546594i
\(778\) 0 0
\(779\) 0.317482 2.38248i 0.0113750 0.0853611i
\(780\) 0 0
\(781\) 3.41274 5.58093i 0.122117 0.199701i
\(782\) 0 0
\(783\) 16.8861 + 17.2087i 0.603459 + 0.614989i
\(784\) 0 0
\(785\) 9.45411 44.7557i 0.337432 1.59740i
\(786\) 0 0
\(787\) −6.16674 + 10.9993i −0.219821 + 0.392083i −0.959859 0.280481i \(-0.909506\pi\)
0.740039 + 0.672564i \(0.234807\pi\)
\(788\) 0 0
\(789\) −11.7769 46.8985i −0.419270 1.66963i
\(790\) 0 0
\(791\) −2.76972 4.16649i −0.0984800 0.148143i
\(792\) 0 0
\(793\) −11.3028 33.9107i −0.401373 1.20420i
\(794\) 0 0
\(795\) −35.6891 4.07005i −1.26576 0.144350i
\(796\) 0 0