Properties

Label 668.2.e.a.9.11
Level $668$
Weight $2$
Character 668.9
Analytic conductor $5.334$
Analytic rank $0$
Dimension $1148$
CM no
Inner twists $2$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 668 = 2^{2} \cdot 167 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 668.e (of order \(83\), degree \(82\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(5.33400685502\)
Analytic rank: \(0\)
Dimension: \(1148\)
Relative dimension: \(14\) over \(\Q(\zeta_{83})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{83}]$

Embedding invariants

Embedding label 9.11
Character \(\chi\) \(=\) 668.9
Dual form 668.2.e.a.297.11

$q$-expansion

\(f(q)\) \(=\) \(q+(0.200238 + 1.50264i) q^{3} +(-0.247141 - 0.109288i) q^{5} +(1.16135 - 2.49738i) q^{7} +(0.677472 - 0.183820i) q^{9} +O(q^{10})\) \(q+(0.200238 + 1.50264i) q^{3} +(-0.247141 - 0.109288i) q^{5} +(1.16135 - 2.49738i) q^{7} +(0.677472 - 0.183820i) q^{9} +(2.49761 - 3.20234i) q^{11} +(0.271031 - 0.529450i) q^{13} +(0.114733 - 0.393248i) q^{15} +(-4.18754 - 0.317608i) q^{17} +(1.83233 - 2.75637i) q^{19} +(3.98522 + 1.24503i) q^{21} +(3.58513 + 1.42574i) q^{23} +(-3.31523 - 3.64477i) q^{25} +(2.17209 + 5.17451i) q^{27} +(7.40935 - 2.94655i) q^{29} +(-7.51054 + 1.73561i) q^{31} +(5.31210 + 3.11179i) q^{33} +(-0.559950 + 0.490282i) q^{35} +(5.34597 + 1.45054i) q^{37} +(0.849845 + 0.301248i) q^{39} +(8.67736 - 4.23675i) q^{41} +(-0.643414 + 6.77922i) q^{43} +(-0.187520 - 0.0286098i) q^{45} +(0.215760 + 11.3993i) q^{47} +(-0.377389 - 0.447839i) q^{49} +(-0.361254 - 6.35597i) q^{51} +(-0.737486 - 4.28786i) q^{53} +(-0.967238 + 0.518471i) q^{55} +(4.50874 + 2.20141i) q^{57} +(1.52942 - 0.116001i) q^{59} +(-7.21740 + 7.35530i) q^{61} +(0.327714 - 1.90538i) q^{63} +(-0.124845 + 0.101228i) q^{65} +(-11.7033 + 5.17529i) q^{67} +(-1.42449 + 5.67267i) q^{69} +(-10.4610 + 1.19300i) q^{71} +(11.5486 - 8.66068i) q^{73} +(4.81296 - 5.71143i) q^{75} +(-5.09687 - 9.95653i) q^{77} +(3.00491 - 7.99342i) q^{79} +(-5.52342 + 3.23558i) q^{81} +(2.42434 - 3.36352i) q^{83} +(1.00020 + 0.536140i) q^{85} +(5.91125 + 10.5436i) q^{87} +(5.19207 + 17.7958i) q^{89} +(-1.00747 - 1.29175i) q^{91} +(-4.11190 - 10.9381i) q^{93} +(-0.754080 + 0.480960i) q^{95} +(1.75883 + 0.406447i) q^{97} +(1.10340 - 2.62861i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 1148q - 2q^{5} - 14q^{9} + O(q^{10}) \) \( 1148q - 2q^{5} - 14q^{9} + 2q^{11} + 4q^{13} + 14q^{15} + 2q^{17} + 2q^{19} + 14q^{23} - 6q^{25} + 2q^{29} - 2q^{31} + 16q^{33} - 2q^{35} + 10q^{37} + 6q^{39} + 4q^{41} + 4q^{43} - 2q^{45} + 2q^{47} - 30q^{49} - 2q^{51} - 6q^{55} - 4q^{57} + 6q^{59} + 2q^{61} + 14q^{63} + 22q^{65} + 12q^{67} - 14q^{69} - 8q^{71} - 18q^{73} - 26q^{75} - 2q^{79} - 6q^{81} - 22q^{83} + 34q^{85} + 2q^{87} + 14q^{89} - 6q^{91} + 32q^{93} - 8q^{95} + 44q^{97} + 2q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/668\mathbb{Z}\right)^\times\).

\(n\) \(5\) \(335\)
\(\chi(n)\) \(e\left(\frac{11}{83}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.200238 + 1.50264i 0.115608 + 0.867552i 0.949090 + 0.315005i \(0.102006\pi\)
−0.833482 + 0.552546i \(0.813656\pi\)
\(4\) 0 0
\(5\) −0.247141 0.109288i −0.110525 0.0488749i 0.348429 0.937335i \(-0.386715\pi\)
−0.458953 + 0.888460i \(0.651776\pi\)
\(6\) 0 0
\(7\) 1.16135 2.49738i 0.438950 0.943921i −0.554768 0.832005i \(-0.687193\pi\)
0.993718 0.111916i \(-0.0356987\pi\)
\(8\) 0 0
\(9\) 0.677472 0.183820i 0.225824 0.0612734i
\(10\) 0 0
\(11\) 2.49761 3.20234i 0.753058 0.965543i −0.246936 0.969032i \(-0.579424\pi\)
0.999994 + 0.00348855i \(0.00111044\pi\)
\(12\) 0 0
\(13\) 0.271031 0.529450i 0.0751706 0.146843i −0.849527 0.527545i \(-0.823113\pi\)
0.924698 + 0.380702i \(0.124318\pi\)
\(14\) 0 0
\(15\) 0.114733 0.393248i 0.0296240 0.101536i
\(16\) 0 0
\(17\) −4.18754 0.317608i −1.01563 0.0770312i −0.442727 0.896656i \(-0.645989\pi\)
−0.572900 + 0.819625i \(0.694182\pi\)
\(18\) 0 0
\(19\) 1.83233 2.75637i 0.420365 0.632355i −0.560244 0.828328i \(-0.689293\pi\)
0.980609 + 0.195973i \(0.0627866\pi\)
\(20\) 0 0
\(21\) 3.98522 + 1.24503i 0.869646 + 0.271687i
\(22\) 0 0
\(23\) 3.58513 + 1.42574i 0.747552 + 0.297287i 0.712094 0.702084i \(-0.247747\pi\)
0.0354583 + 0.999371i \(0.488711\pi\)
\(24\) 0 0
\(25\) −3.31523 3.64477i −0.663046 0.728955i
\(26\) 0 0
\(27\) 2.17209 + 5.17451i 0.418019 + 0.995835i
\(28\) 0 0
\(29\) 7.40935 2.94655i 1.37588 0.547161i 0.439531 0.898227i \(-0.355145\pi\)
0.936351 + 0.351066i \(0.114181\pi\)
\(30\) 0 0
\(31\) −7.51054 + 1.73561i −1.34893 + 0.311724i −0.836954 0.547274i \(-0.815666\pi\)
−0.511979 + 0.858998i \(0.671087\pi\)
\(32\) 0 0
\(33\) 5.31210 + 3.11179i 0.924718 + 0.541693i
\(34\) 0 0
\(35\) −0.559950 + 0.490282i −0.0946488 + 0.0828728i
\(36\) 0 0
\(37\) 5.34597 + 1.45054i 0.878873 + 0.238467i 0.672581 0.740024i \(-0.265186\pi\)
0.206292 + 0.978491i \(0.433860\pi\)
\(38\) 0 0
\(39\) 0.849845 + 0.301248i 0.136084 + 0.0482382i
\(40\) 0 0
\(41\) 8.67736 4.23675i 1.35518 0.661669i 0.389406 0.921066i \(-0.372680\pi\)
0.965771 + 0.259397i \(0.0835238\pi\)
\(42\) 0 0
\(43\) −0.643414 + 6.77922i −0.0981198 + 1.03382i 0.801749 + 0.597661i \(0.203903\pi\)
−0.899869 + 0.436161i \(0.856338\pi\)
\(44\) 0 0
\(45\) −0.187520 0.0286098i −0.0279538 0.00426490i
\(46\) 0 0
\(47\) 0.215760 + 11.3993i 0.0314719 + 1.66276i 0.571119 + 0.820867i \(0.306509\pi\)
−0.539648 + 0.841891i \(0.681442\pi\)
\(48\) 0 0
\(49\) −0.377389 0.447839i −0.0539127 0.0639770i
\(50\) 0 0
\(51\) −0.361254 6.35597i −0.0505856 0.890014i
\(52\) 0 0
\(53\) −0.737486 4.28786i −0.101301 0.588983i −0.991152 0.132731i \(-0.957625\pi\)
0.889851 0.456252i \(-0.150808\pi\)
\(54\) 0 0
\(55\) −0.967238 + 0.518471i −0.130422 + 0.0699106i
\(56\) 0 0
\(57\) 4.50874 + 2.20141i 0.597198 + 0.291584i
\(58\) 0 0
\(59\) 1.52942 0.116001i 0.199114 0.0151020i 0.0243062 0.999705i \(-0.492262\pi\)
0.174808 + 0.984603i \(0.444070\pi\)
\(60\) 0 0
\(61\) −7.21740 + 7.35530i −0.924093 + 0.941749i −0.998460 0.0554817i \(-0.982331\pi\)
0.0743668 + 0.997231i \(0.476306\pi\)
\(62\) 0 0
\(63\) 0.327714 1.90538i 0.0412881 0.240056i
\(64\) 0 0
\(65\) −0.124845 + 0.101228i −0.0154851 + 0.0125558i
\(66\) 0 0
\(67\) −11.7033 + 5.17529i −1.42978 + 0.632262i −0.967131 0.254278i \(-0.918162\pi\)
−0.462651 + 0.886540i \(0.653102\pi\)
\(68\) 0 0
\(69\) −1.42449 + 5.67267i −0.171489 + 0.682909i
\(70\) 0 0
\(71\) −10.4610 + 1.19300i −1.24150 + 0.141583i −0.709221 0.704987i \(-0.750953\pi\)
−0.532278 + 0.846570i \(0.678664\pi\)
\(72\) 0 0
\(73\) 11.5486 8.66068i 1.35166 1.01366i 0.354763 0.934956i \(-0.384562\pi\)
0.996898 0.0786999i \(-0.0250769\pi\)
\(74\) 0 0
\(75\) 4.81296 5.71143i 0.555753 0.659499i
\(76\) 0 0
\(77\) −5.09687 9.95653i −0.580842 1.13465i
\(78\) 0 0
\(79\) 3.00491 7.99342i 0.338079 0.899330i −0.651924 0.758284i \(-0.726038\pi\)
0.990003 0.141046i \(-0.0450465\pi\)
\(80\) 0 0
\(81\) −5.52342 + 3.23558i −0.613714 + 0.359509i
\(82\) 0 0
\(83\) 2.42434 3.36352i 0.266106 0.369194i −0.656901 0.753977i \(-0.728133\pi\)
0.923007 + 0.384782i \(0.125724\pi\)
\(84\) 0 0
\(85\) 1.00020 + 0.536140i 0.108487 + 0.0581525i
\(86\) 0 0
\(87\) 5.91125 + 10.5436i 0.633753 + 1.13039i
\(88\) 0 0
\(89\) 5.19207 + 17.7958i 0.550358 + 1.88635i 0.454004 + 0.891000i \(0.349995\pi\)
0.0963537 + 0.995347i \(0.469282\pi\)
\(90\) 0 0
\(91\) −1.00747 1.29175i −0.105612 0.135412i
\(92\) 0 0
\(93\) −4.11190 10.9381i −0.426384 1.13423i
\(94\) 0 0
\(95\) −0.754080 + 0.480960i −0.0773670 + 0.0493454i
\(96\) 0 0
\(97\) 1.75883 + 0.406447i 0.178582 + 0.0412685i 0.313499 0.949588i \(-0.398499\pi\)
−0.134917 + 0.990857i \(0.543077\pi\)
\(98\) 0 0
\(99\) 1.10340 2.62861i 0.110896 0.264185i
\(100\) 0 0
\(101\) −1.70320 17.9454i −0.169474 1.78564i −0.525131 0.851021i \(-0.675984\pi\)
0.355656 0.934617i \(-0.384257\pi\)
\(102\) 0 0
\(103\) −8.12832 + 5.62806i −0.800907 + 0.554549i −0.897624 0.440763i \(-0.854708\pi\)
0.0967167 + 0.995312i \(0.469166\pi\)
\(104\) 0 0
\(105\) −0.848843 0.743232i −0.0828386 0.0725320i
\(106\) 0 0
\(107\) −7.64010 5.29002i −0.738596 0.511405i 0.139304 0.990250i \(-0.455514\pi\)
−0.877900 + 0.478844i \(0.841056\pi\)
\(108\) 0 0
\(109\) −14.8959 9.50073i −1.42677 0.910005i −0.999984 0.00565063i \(-0.998201\pi\)
−0.426782 0.904354i \(-0.640353\pi\)
\(110\) 0 0
\(111\) −1.10917 + 8.32355i −0.105278 + 0.790036i
\(112\) 0 0
\(113\) 5.21336 8.52552i 0.490431 0.802014i −0.507799 0.861475i \(-0.669541\pi\)
0.998231 + 0.0594618i \(0.0189384\pi\)
\(114\) 0 0
\(115\) −0.730216 0.744168i −0.0680930 0.0693941i
\(116\) 0 0
\(117\) 0.0862925 0.408508i 0.00797775 0.0377666i
\(118\) 0 0
\(119\) −5.65639 + 10.0890i −0.518521 + 0.924859i
\(120\) 0 0
\(121\) −1.33786 5.32766i −0.121624 0.484333i
\(122\) 0 0
\(123\) 8.10387 + 12.1906i 0.730701 + 1.09919i
\(124\) 0 0
\(125\) 0.848237 + 2.54489i 0.0758686 + 0.227622i
\(126\) 0 0
\(127\) −5.09852 0.581446i −0.452421 0.0515950i −0.115878 0.993263i \(-0.536968\pi\)
−0.336542 + 0.941668i \(0.609257\pi\)
\(128\) 0 0
\(129\) −10.3156 + 0.390637i −0.908237 + 0.0343937i
\(130\) 0 0
\(131\) −0.128148 + 2.25466i −0.0111963 + 0.196991i 0.987920 + 0.154964i \(0.0495261\pi\)
−0.999116 + 0.0420269i \(0.986618\pi\)
\(132\) 0 0
\(133\) −4.75572 7.77714i −0.412373 0.674364i
\(134\) 0 0
\(135\) 0.0286982 1.51621i 0.00246994 0.130495i
\(136\) 0 0
\(137\) 8.34193 2.95699i 0.712699 0.252633i 0.0470441 0.998893i \(-0.485020\pi\)
0.665655 + 0.746260i \(0.268152\pi\)
\(138\) 0 0
\(139\) −6.83071 6.45349i −0.579373 0.547378i 0.340172 0.940363i \(-0.389515\pi\)
−0.919545 + 0.392985i \(0.871442\pi\)
\(140\) 0 0
\(141\) −17.0859 + 2.60679i −1.43889 + 0.219531i
\(142\) 0 0
\(143\) −1.01855 2.19030i −0.0851754 0.183162i
\(144\) 0 0
\(145\) −2.15317 0.0815376i −0.178811 0.00677133i
\(146\) 0 0
\(147\) 0.597374 0.656756i 0.0492706 0.0541683i
\(148\) 0 0
\(149\) −3.36740 2.73039i −0.275868 0.223682i 0.481867 0.876245i \(-0.339959\pi\)
−0.757735 + 0.652563i \(0.773694\pi\)
\(150\) 0 0
\(151\) 5.36548 + 4.02376i 0.436637 + 0.327449i 0.795513 0.605937i \(-0.207201\pi\)
−0.358876 + 0.933385i \(0.616840\pi\)
\(152\) 0 0
\(153\) −2.89532 + 0.554584i −0.234073 + 0.0448354i
\(154\) 0 0
\(155\) 2.04584 + 0.391870i 0.164326 + 0.0314758i
\(156\) 0 0
\(157\) 3.37207 + 15.9634i 0.269121 + 1.27401i 0.877195 + 0.480134i \(0.159412\pi\)
−0.608074 + 0.793880i \(0.708058\pi\)
\(158\) 0 0
\(159\) 6.29546 1.96677i 0.499262 0.155975i
\(160\) 0 0
\(161\) 7.72421 7.29766i 0.608753 0.575136i
\(162\) 0 0
\(163\) 1.10580 3.31765i 0.0866132 0.259858i −0.896444 0.443157i \(-0.853858\pi\)
0.983057 + 0.183299i \(0.0586777\pi\)
\(164\) 0 0
\(165\) −0.972755 1.34960i −0.0757289 0.105066i
\(166\) 0 0
\(167\) −8.23680 + 9.95767i −0.637382 + 0.770548i
\(168\) 0 0
\(169\) 7.39449 + 10.2591i 0.568807 + 0.789159i
\(170\) 0 0
\(171\) 0.734675 2.20418i 0.0561820 0.168558i
\(172\) 0 0
\(173\) −2.92107 + 2.75976i −0.222085 + 0.209821i −0.789733 0.613450i \(-0.789781\pi\)
0.567648 + 0.823271i \(0.307853\pi\)
\(174\) 0 0
\(175\) −12.9525 + 4.04652i −0.979119 + 0.305888i
\(176\) 0 0
\(177\) 0.480557 + 2.27495i 0.0361209 + 0.170996i
\(178\) 0 0
\(179\) 16.0825 + 3.08052i 1.20206 + 0.230249i 0.749817 0.661645i \(-0.230142\pi\)
0.452244 + 0.891894i \(0.350624\pi\)
\(180\) 0 0
\(181\) −11.8450 + 2.26885i −0.880432 + 0.168642i −0.608385 0.793642i \(-0.708182\pi\)
−0.272047 + 0.962284i \(0.587701\pi\)
\(182\) 0 0
\(183\) −12.4976 9.37236i −0.923848 0.692825i
\(184\) 0 0
\(185\) −1.16268 0.942735i −0.0854820 0.0693113i
\(186\) 0 0
\(187\) −11.4759 + 12.6167i −0.839203 + 0.922623i
\(188\) 0 0
\(189\) 15.4453 + 0.584891i 1.12348 + 0.0425446i
\(190\) 0 0
\(191\) 9.45105 + 20.3236i 0.683854 + 1.47056i 0.872548 + 0.488528i \(0.162466\pi\)
−0.188694 + 0.982036i \(0.560425\pi\)
\(192\) 0 0
\(193\) −16.0175 + 2.44378i −1.15296 + 0.175907i −0.699005 0.715117i \(-0.746374\pi\)
−0.453957 + 0.891024i \(0.649988\pi\)
\(194\) 0 0
\(195\) −0.177108 0.167328i −0.0126830 0.0119826i
\(196\) 0 0
\(197\) −11.2829 + 3.99948i −0.803871 + 0.284951i −0.704138 0.710063i \(-0.748666\pi\)
−0.0997328 + 0.995014i \(0.531799\pi\)
\(198\) 0 0
\(199\) −0.149578 + 7.90267i −0.0106033 + 0.560205i 0.954482 + 0.298269i \(0.0964093\pi\)
−0.965085 + 0.261936i \(0.915639\pi\)
\(200\) 0 0
\(201\) −10.1201 16.5496i −0.713814 1.16732i
\(202\) 0 0
\(203\) 1.24620 21.9260i 0.0874662 1.53890i
\(204\) 0 0
\(205\) −2.60755 + 0.0987444i −0.182119 + 0.00689661i
\(206\) 0 0
\(207\) 2.69091 + 0.306877i 0.187031 + 0.0213294i
\(208\) 0 0
\(209\) −4.25040 12.7521i −0.294006 0.882081i
\(210\) 0 0
\(211\) −7.40703 11.1424i −0.509921 0.767073i 0.484245 0.874932i \(-0.339094\pi\)
−0.994166 + 0.107859i \(0.965600\pi\)
\(212\) 0 0
\(213\) −3.88736 15.4803i −0.266357 1.06070i
\(214\) 0 0
\(215\) 0.899899 1.60510i 0.0613726 0.109467i
\(216\) 0 0
\(217\) −4.38791 + 20.7723i −0.297871 + 1.41012i
\(218\) 0 0
\(219\) 15.3264 + 15.6192i 1.03566 + 1.05545i
\(220\) 0 0
\(221\) −1.30311 + 2.13101i −0.0876568 + 0.143347i
\(222\) 0 0
\(223\) −2.10069 + 15.7642i −0.140673 + 1.05565i 0.768684 + 0.639629i \(0.220912\pi\)
−0.909357 + 0.416017i \(0.863426\pi\)
\(224\) 0 0
\(225\) −2.91596 1.85982i −0.194397 0.123988i
\(226\) 0 0
\(227\) 13.5606 + 9.38939i 0.900049 + 0.623196i 0.926434 0.376456i \(-0.122857\pi\)
−0.0263850 + 0.999652i \(0.508400\pi\)
\(228\) 0 0
\(229\) −18.8871 16.5372i −1.24809 1.09281i −0.992011 0.126152i \(-0.959737\pi\)
−0.256081 0.966655i \(-0.582431\pi\)
\(230\) 0 0
\(231\) 13.9405 9.65245i 0.917220 0.635085i
\(232\) 0 0
\(233\) 0.401628 + 4.23169i 0.0263115 + 0.277227i 0.998985 + 0.0450487i \(0.0143443\pi\)
−0.972673 + 0.232178i \(0.925415\pi\)
\(234\) 0 0
\(235\) 1.19248 2.84081i 0.0777887 0.185314i
\(236\) 0 0
\(237\) 12.6130 + 2.91473i 0.819300 + 0.189332i
\(238\) 0 0
\(239\) −0.610311 + 0.389262i −0.0394777 + 0.0251793i −0.557334 0.830288i \(-0.688176\pi\)
0.517857 + 0.855467i \(0.326730\pi\)
\(240\) 0 0
\(241\) 5.53687 + 14.7287i 0.356661 + 0.948761i 0.985265 + 0.171035i \(0.0547111\pi\)
−0.628604 + 0.777726i \(0.716373\pi\)
\(242\) 0 0
\(243\) 4.38603 + 5.62360i 0.281364 + 0.360754i
\(244\) 0 0
\(245\) 0.0443249 + 0.151923i 0.00283181 + 0.00970601i
\(246\) 0 0
\(247\) −0.962740 1.71719i −0.0612577 0.109262i
\(248\) 0 0
\(249\) 5.53962 + 2.96942i 0.351059 + 0.188179i
\(250\) 0 0
\(251\) 13.2505 18.3837i 0.836366 1.16037i −0.148817 0.988865i \(-0.547546\pi\)
0.985183 0.171506i \(-0.0548632\pi\)
\(252\) 0 0
\(253\) 13.5200 7.91990i 0.849993 0.497920i
\(254\) 0 0
\(255\) −0.605349 + 1.61030i −0.0379084 + 0.100841i
\(256\) 0 0
\(257\) −5.99892 11.7187i −0.374202 0.730990i 0.624547 0.780987i \(-0.285284\pi\)
−0.998749 + 0.0499970i \(0.984079\pi\)
\(258\) 0 0
\(259\) 9.83110 11.6663i 0.610875 0.724911i
\(260\) 0 0
\(261\) 4.47799 3.35819i 0.277181 0.207867i
\(262\) 0 0
\(263\) 3.41090 0.388987i 0.210325 0.0239859i −0.00750857 0.999972i \(-0.502390\pi\)
0.217834 + 0.975986i \(0.430101\pi\)
\(264\) 0 0
\(265\) −0.286348 + 1.14030i −0.0175902 + 0.0700482i
\(266\) 0 0
\(267\) −25.7010 + 11.3652i −1.57288 + 0.695540i
\(268\) 0 0
\(269\) 4.53647 3.67830i 0.276593 0.224270i −0.481451 0.876473i \(-0.659890\pi\)
0.758044 + 0.652203i \(0.226155\pi\)
\(270\) 0 0
\(271\) −3.61935 + 21.0435i −0.219860 + 1.27830i 0.640241 + 0.768175i \(0.278835\pi\)
−0.860100 + 0.510125i \(0.829599\pi\)
\(272\) 0 0
\(273\) 1.73930 1.77253i 0.105267 0.107278i
\(274\) 0 0
\(275\) −19.9520 + 1.51328i −1.20315 + 0.0912540i
\(276\) 0 0
\(277\) 25.1050 + 12.2576i 1.50841 + 0.736487i 0.992738 0.120298i \(-0.0383850\pi\)
0.515674 + 0.856785i \(0.327542\pi\)
\(278\) 0 0
\(279\) −4.76914 + 2.55641i −0.285521 + 0.153049i
\(280\) 0 0
\(281\) 2.21858 + 12.8992i 0.132350 + 0.769502i 0.973498 + 0.228697i \(0.0734466\pi\)
−0.841148 + 0.540805i \(0.818120\pi\)
\(282\) 0 0
\(283\) 1.06882 + 18.8050i 0.0635346 + 1.11784i 0.859044 + 0.511901i \(0.171059\pi\)
−0.795510 + 0.605941i \(0.792797\pi\)
\(284\) 0 0
\(285\) −0.873706 1.03681i −0.0517539 0.0614152i
\(286\) 0 0
\(287\) −0.503302 26.5910i −0.0297090 1.56962i
\(288\) 0 0
\(289\) 0.629072 + 0.0959772i 0.0370042 + 0.00564572i
\(290\) 0 0
\(291\) −0.258561 + 2.72428i −0.0151571 + 0.159700i
\(292\) 0 0
\(293\) −3.30340 + 1.61290i −0.192987 + 0.0942264i −0.532706 0.846301i \(-0.678825\pi\)
0.339719 + 0.940527i \(0.389668\pi\)
\(294\) 0 0
\(295\) −0.390660 0.138479i −0.0227451 0.00806254i
\(296\) 0 0
\(297\) 21.9956 + 5.96813i 1.27631 + 0.346306i
\(298\) 0 0
\(299\) 1.72654 1.51173i 0.0998484 0.0874255i
\(300\) 0 0
\(301\) 16.1831 + 9.47992i 0.932777 + 0.546413i
\(302\) 0 0
\(303\) 26.6246 6.15266i 1.52954 0.353461i
\(304\) 0 0
\(305\) 2.58755 1.02902i 0.148163 0.0589215i
\(306\) 0 0
\(307\) 1.67680 + 3.99460i 0.0957003 + 0.227984i 0.962835 0.270089i \(-0.0870532\pi\)
−0.867135 + 0.498073i \(0.834041\pi\)
\(308\) 0 0
\(309\) −10.0846 11.0870i −0.573691 0.630718i
\(310\) 0 0
\(311\) −15.2207 6.05299i −0.863089 0.343234i −0.104281 0.994548i \(-0.533254\pi\)
−0.758808 + 0.651314i \(0.774218\pi\)
\(312\) 0 0
\(313\) 9.43465 + 2.94749i 0.533278 + 0.166602i 0.552965 0.833204i \(-0.313496\pi\)
−0.0196878 + 0.999806i \(0.506267\pi\)
\(314\) 0 0
\(315\) −0.289226 + 0.435082i −0.0162961 + 0.0245141i
\(316\) 0 0
\(317\) −2.44667 0.185570i −0.137418 0.0104226i 0.00673976 0.999977i \(-0.497855\pi\)
−0.144158 + 0.989555i \(0.546047\pi\)
\(318\) 0 0
\(319\) 9.06980 31.0866i 0.507811 1.74052i
\(320\) 0 0
\(321\) 6.41917 12.5396i 0.358283 0.699893i
\(322\) 0 0
\(323\) −8.54840 + 10.9604i −0.475646 + 0.609855i
\(324\) 0 0
\(325\) −2.82826 + 0.767398i −0.156883 + 0.0425676i
\(326\) 0 0
\(327\) 11.2935 24.2856i 0.624531 1.34300i
\(328\) 0 0
\(329\) 28.7189 + 12.6998i 1.58333 + 0.700161i
\(330\) 0 0
\(331\) −2.70250 20.2803i −0.148543 1.11471i −0.893972 0.448122i \(-0.852093\pi\)
0.745430 0.666584i \(-0.232244\pi\)
\(332\) 0 0
\(333\) 3.88838 0.213082
\(334\) 0 0
\(335\) 3.45795 0.188928
\(336\) 0 0
\(337\) −2.11788 15.8932i −0.115368 0.865757i −0.949406 0.314050i \(-0.898314\pi\)
0.834038 0.551707i \(-0.186023\pi\)
\(338\) 0 0
\(339\) 13.8547 + 6.12668i 0.752486 + 0.332756i
\(340\) 0 0
\(341\) −13.2004 + 28.3862i −0.714841 + 1.53720i
\(342\) 0 0
\(343\) 17.0500 4.62621i 0.920612 0.249792i
\(344\) 0 0
\(345\) 0.972003 1.24627i 0.0523309 0.0670967i
\(346\) 0 0
\(347\) 8.04335 15.7124i 0.431790 0.843485i −0.568001 0.823028i \(-0.692283\pi\)
0.999791 0.0204570i \(-0.00651212\pi\)
\(348\) 0 0
\(349\) 3.91370 13.4142i 0.209495 0.718043i −0.785566 0.618778i \(-0.787628\pi\)
0.995061 0.0992650i \(-0.0316492\pi\)
\(350\) 0 0
\(351\) 3.32835 + 0.252442i 0.177654 + 0.0134743i
\(352\) 0 0
\(353\) 2.54329 3.82587i 0.135366 0.203630i −0.758851 0.651264i \(-0.774239\pi\)
0.894217 + 0.447633i \(0.147733\pi\)
\(354\) 0 0
\(355\) 2.71573 + 0.848425i 0.144136 + 0.0450297i
\(356\) 0 0
\(357\) −16.2928 6.47934i −0.862308 0.342923i
\(358\) 0 0
\(359\) 15.4888 + 17.0284i 0.817467 + 0.898726i 0.996369 0.0851406i \(-0.0271339\pi\)
−0.178902 + 0.983867i \(0.557254\pi\)
\(360\) 0 0
\(361\) 3.11382 + 7.41795i 0.163885 + 0.390419i
\(362\) 0 0
\(363\) 7.73769 3.07713i 0.406123 0.161507i
\(364\) 0 0
\(365\) −3.80063 + 0.878287i −0.198934 + 0.0459716i
\(366\) 0 0
\(367\) −19.9202 11.6691i −1.03983 0.609124i −0.116522 0.993188i \(-0.537175\pi\)
−0.923306 + 0.384065i \(0.874524\pi\)
\(368\) 0 0
\(369\) 5.09987 4.46535i 0.265488 0.232457i
\(370\) 0 0
\(371\) −11.5649 3.13794i −0.600420 0.162914i
\(372\) 0 0
\(373\) −17.6358 6.25144i −0.913149 0.323687i −0.164287 0.986413i \(-0.552532\pi\)
−0.748863 + 0.662725i \(0.769400\pi\)
\(374\) 0 0
\(375\) −3.65421 + 1.78418i −0.188703 + 0.0921347i
\(376\) 0 0
\(377\) 0.448115 4.72149i 0.0230791 0.243169i
\(378\) 0 0
\(379\) −23.5684 3.59582i −1.21063 0.184705i −0.486070 0.873920i \(-0.661570\pi\)
−0.724557 + 0.689215i \(0.757956\pi\)
\(380\) 0 0
\(381\) −0.147212 7.77769i −0.00754191 0.398463i
\(382\) 0 0
\(383\) 8.32030 + 9.87351i 0.425148 + 0.504513i 0.934460 0.356069i \(-0.115883\pi\)
−0.509312 + 0.860582i \(0.670100\pi\)
\(384\) 0 0
\(385\) 0.171516 + 3.01769i 0.00874126 + 0.153796i
\(386\) 0 0
\(387\) 0.810263 + 4.71100i 0.0411880 + 0.239474i
\(388\) 0 0
\(389\) 19.6029 10.5078i 0.993908 0.532767i 0.106776 0.994283i \(-0.465947\pi\)
0.887132 + 0.461516i \(0.152694\pi\)
\(390\) 0 0
\(391\) −14.5601 7.10900i −0.736334 0.359517i
\(392\) 0 0
\(393\) −3.41361 + 0.258909i −0.172194 + 0.0130602i
\(394\) 0 0
\(395\) −1.61622 + 1.64710i −0.0813208 + 0.0828745i
\(396\) 0 0
\(397\) −1.98213 + 11.5244i −0.0994803 + 0.578395i 0.892403 + 0.451240i \(0.149018\pi\)
−0.991883 + 0.127155i \(0.959416\pi\)
\(398\) 0 0
\(399\) 10.7340 8.70344i 0.537372 0.435717i
\(400\) 0 0
\(401\) 1.77807 0.786277i 0.0887925 0.0392648i −0.359557 0.933123i \(-0.617072\pi\)
0.448350 + 0.893858i \(0.352012\pi\)
\(402\) 0 0
\(403\) −1.11668 + 4.44686i −0.0556255 + 0.221514i
\(404\) 0 0
\(405\) 1.71867 0.196001i 0.0854014 0.00973936i
\(406\) 0 0
\(407\) 17.9973 13.4968i 0.892092 0.669010i
\(408\) 0 0
\(409\) −10.0717 + 11.9519i −0.498015 + 0.590983i −0.954300 0.298851i \(-0.903397\pi\)
0.456285 + 0.889834i \(0.349180\pi\)
\(410\) 0 0
\(411\) 6.11368 + 11.9428i 0.301565 + 0.589097i
\(412\) 0 0
\(413\) 1.48650 3.95427i 0.0731460 0.194577i
\(414\) 0 0
\(415\) −0.966744 + 0.566311i −0.0474556 + 0.0277991i
\(416\) 0 0
\(417\) 8.32953 11.5564i 0.407899 0.565917i
\(418\) 0 0
\(419\) 13.1663 + 7.05760i 0.643218 + 0.344786i 0.761472 0.648197i \(-0.224477\pi\)
−0.118254 + 0.992983i \(0.537730\pi\)
\(420\) 0 0
\(421\) −6.75587 12.0501i −0.329261 0.587286i 0.656722 0.754133i \(-0.271943\pi\)
−0.985983 + 0.166847i \(0.946641\pi\)
\(422\) 0 0
\(423\) 2.24159 + 7.68304i 0.108990 + 0.373562i
\(424\) 0 0
\(425\) 12.7250 + 16.3156i 0.617255 + 0.791421i
\(426\) 0 0
\(427\) 9.98703 + 26.5667i 0.483306 + 1.28565i
\(428\) 0 0
\(429\) 3.08728 1.96910i 0.149055 0.0950689i
\(430\) 0 0
\(431\) −32.4457 7.49787i −1.56286 0.361160i −0.646943 0.762538i \(-0.723953\pi\)
−0.915912 + 0.401379i \(0.868531\pi\)
\(432\) 0 0
\(433\) −6.88553 + 16.4032i −0.330897 + 0.788287i 0.668124 + 0.744050i \(0.267098\pi\)
−0.999021 + 0.0442368i \(0.985914\pi\)
\(434\) 0 0
\(435\) −0.308625 3.25178i −0.0147975 0.155911i
\(436\) 0 0
\(437\) 10.4990 7.26953i 0.502236 0.347749i
\(438\) 0 0
\(439\) −3.00689 2.63278i −0.143511 0.125656i 0.583994 0.811758i \(-0.301489\pi\)
−0.727505 + 0.686102i \(0.759320\pi\)
\(440\) 0 0
\(441\) −0.337992 0.234026i −0.0160949 0.0111441i
\(442\) 0 0
\(443\) 15.9503 + 10.1733i 0.757823 + 0.483347i 0.859288 0.511492i \(-0.170907\pi\)
−0.101465 + 0.994839i \(0.532353\pi\)
\(444\) 0 0
\(445\) 0.661687 4.96548i 0.0313669 0.235386i
\(446\) 0 0
\(447\) 3.42852 5.60673i 0.162163 0.265189i
\(448\) 0 0
\(449\) 16.6433 + 16.9613i 0.785447 + 0.800454i 0.983723 0.179692i \(-0.0575102\pi\)
−0.198276 + 0.980146i \(0.563534\pi\)
\(450\) 0 0
\(451\) 8.10514 38.3697i 0.381656 1.80676i
\(452\) 0 0
\(453\) −4.97190 + 8.86811i −0.233600 + 0.416660i
\(454\) 0 0
\(455\) 0.107816 + 0.429347i 0.00505448 + 0.0201281i
\(456\) 0 0
\(457\) 20.4243 + 30.7242i 0.955409 + 1.43722i 0.898567 + 0.438836i \(0.144609\pi\)
0.0568424 + 0.998383i \(0.481897\pi\)
\(458\) 0 0
\(459\) −7.45225 22.3583i −0.347841 1.04360i
\(460\) 0 0
\(461\) −6.26787 0.714801i −0.291924 0.0332916i −0.0338836 0.999426i \(-0.510788\pi\)
−0.258040 + 0.966134i \(0.583077\pi\)
\(462\) 0 0
\(463\) −0.912225 + 0.0345447i −0.0423947 + 0.00160543i −0.0590303 0.998256i \(-0.518801\pi\)
0.0166356 + 0.999862i \(0.494704\pi\)
\(464\) 0 0
\(465\) −0.179186 + 3.15263i −0.00830954 + 0.146200i
\(466\) 0 0
\(467\) 13.2200 + 21.6190i 0.611749 + 1.00041i 0.996985 + 0.0775892i \(0.0247223\pi\)
−0.385237 + 0.922818i \(0.625880\pi\)
\(468\) 0 0
\(469\) −0.666965 + 35.2379i −0.0307976 + 1.62713i
\(470\) 0 0
\(471\) −23.3120 + 8.26349i −1.07416 + 0.380762i
\(472\) 0 0
\(473\) 20.1024 + 18.9923i 0.924310 + 0.873267i
\(474\) 0 0
\(475\) −16.1209 + 2.45956i −0.739679 + 0.112853i
\(476\) 0 0
\(477\) −1.28782 2.76934i −0.0589653 0.126799i
\(478\) 0 0
\(479\) −12.6826 0.480274i −0.579485 0.0219443i −0.253527 0.967328i \(-0.581591\pi\)
−0.325958 + 0.945384i \(0.605687\pi\)
\(480\) 0 0
\(481\) 2.21691 2.43728i 0.101083 0.111131i
\(482\) 0 0
\(483\) 12.5125 + 10.1455i 0.569337 + 0.461635i
\(484\) 0 0
\(485\) −0.390258 0.292668i −0.0177207 0.0132894i
\(486\) 0 0
\(487\) −20.0413 + 3.83880i −0.908157 + 0.173953i −0.620890 0.783898i \(-0.713229\pi\)
−0.287267 + 0.957851i \(0.592747\pi\)
\(488\) 0 0
\(489\) 5.20666 + 0.997310i 0.235453 + 0.0450999i
\(490\) 0 0
\(491\) −3.25925 15.4293i −0.147088 0.696314i −0.987913 0.155007i \(-0.950460\pi\)
0.840825 0.541307i \(-0.182070\pi\)
\(492\) 0 0
\(493\) −31.9628 + 9.98554i −1.43953 + 0.449726i
\(494\) 0 0
\(495\) −0.559970 + 0.529047i −0.0251688 + 0.0237789i
\(496\) 0 0
\(497\) −9.16959 + 27.5107i −0.411312 + 1.23402i
\(498\) 0 0
\(499\) 5.62572 + 7.80509i 0.251842 + 0.349404i 0.918122 0.396297i \(-0.129705\pi\)
−0.666281 + 0.745701i \(0.732115\pi\)
\(500\) 0 0
\(501\) −16.6121 10.3831i −0.742176 0.463881i
\(502\) 0 0
\(503\) 12.0017 + 16.6512i 0.535132 + 0.742439i 0.988884 0.148689i \(-0.0475053\pi\)
−0.453752 + 0.891128i \(0.649915\pi\)
\(504\) 0 0
\(505\) −1.54029 + 4.62118i −0.0685418 + 0.205640i
\(506\) 0 0
\(507\) −13.9351 + 13.1655i −0.618878 + 0.584702i
\(508\) 0 0
\(509\) −7.54924 + 2.35847i −0.334614 + 0.104537i −0.460888 0.887458i \(-0.652469\pi\)
0.126274 + 0.991995i \(0.459698\pi\)
\(510\) 0 0
\(511\) −8.21703 38.8993i −0.363500 1.72081i
\(512\) 0 0
\(513\) 18.2428 + 3.49432i 0.805441 + 0.154278i
\(514\) 0 0
\(515\) 2.62391 0.502597i 0.115623 0.0221471i
\(516\) 0 0
\(517\) 37.0434 + 27.7801i 1.62917 + 1.22177i
\(518\) 0 0
\(519\) −4.73184 3.83672i −0.207705 0.168413i
\(520\) 0 0
\(521\) 22.5956 24.8417i 0.989933 1.08834i −0.00615630 0.999981i \(-0.501960\pi\)
0.996089 0.0883546i \(-0.0281609\pi\)
\(522\) 0 0
\(523\) −37.4028 1.41639i −1.63551 0.0619345i −0.796006 0.605289i \(-0.793058\pi\)
−0.839503 + 0.543354i \(0.817154\pi\)
\(524\) 0 0
\(525\) −8.67407 18.6528i −0.378567 0.814074i
\(526\) 0 0
\(527\) 32.0019 4.88252i 1.39403 0.212686i
\(528\) 0 0
\(529\) −5.89807 5.57236i −0.256438 0.242277i
\(530\) 0 0
\(531\) 1.01482 0.359726i 0.0440394 0.0156108i
\(532\) 0 0
\(533\) 0.108692 5.74252i 0.00470796 0.248736i
\(534\) 0 0
\(535\) 1.31004 + 2.14235i 0.0566382 + 0.0926217i
\(536\) 0 0
\(537\) −1.40859 + 24.7831i −0.0607852 + 1.06947i
\(538\) 0 0
\(539\) −2.37671 + 0.0900025i −0.102372 + 0.00387668i
\(540\) 0 0
\(541\) −29.9258 3.41280i −1.28661 0.146728i −0.556954 0.830543i \(-0.688030\pi\)
−0.729655 + 0.683816i \(0.760319\pi\)
\(542\) 0 0
\(543\) −5.78109 17.3445i −0.248090 0.744324i
\(544\) 0 0
\(545\) 2.64306 + 3.97595i 0.113216 + 0.170311i
\(546\) 0 0
\(547\) −1.36330 5.42899i −0.0582907 0.232127i 0.933773 0.357867i \(-0.116496\pi\)
−0.992063 + 0.125740i \(0.959869\pi\)
\(548\) 0 0
\(549\) −3.53753 + 6.30971i −0.150978 + 0.269292i
\(550\) 0 0
\(551\) 5.45459 25.8220i 0.232373 1.10005i
\(552\) 0 0
\(553\) −16.4728 16.7876i −0.700497 0.713881i
\(554\) 0 0
\(555\) 1.18378 1.93587i 0.0502488 0.0821730i
\(556\) 0 0
\(557\) −0.300539 + 2.25533i −0.0127342 + 0.0955613i −0.996453 0.0841554i \(-0.973181\pi\)
0.983718 + 0.179717i \(0.0575181\pi\)
\(558\) 0 0
\(559\) 3.41487 + 2.17804i 0.144434 + 0.0921212i
\(560\) 0 0
\(561\) −21.2563 14.7179i −0.897441 0.621390i
\(562\) 0 0
\(563\) −27.1894 23.8066i −1.14590 1.00333i −0.999901 0.0140425i \(-0.995530\pi\)
−0.145996 0.989285i \(-0.546639\pi\)
\(564\) 0 0
\(565\) −2.22017 + 1.53725i −0.0934031 + 0.0646724i
\(566\) 0 0
\(567\) 1.66583 + 17.5517i 0.0699583 + 0.737104i
\(568\) 0 0
\(569\) 1.01975 2.42932i 0.0427502 0.101843i −0.899276 0.437381i \(-0.855906\pi\)
0.942027 + 0.335538i \(0.108918\pi\)
\(570\) 0 0
\(571\) 23.9245 + 5.52871i 1.00121 + 0.231369i 0.693769 0.720198i \(-0.255949\pi\)
0.307441 + 0.951567i \(0.400527\pi\)
\(572\) 0 0
\(573\) −28.6467 + 18.2711i −1.19673 + 0.763287i
\(574\) 0 0
\(575\) −6.68905 17.7936i −0.278952 0.742046i
\(576\) 0 0
\(577\) −20.0853 25.7526i −0.836162 1.07210i −0.996380 0.0850142i \(-0.972906\pi\)
0.160218 0.987082i \(-0.448780\pi\)
\(578\) 0 0
\(579\) −6.87944 23.5792i −0.285900 0.979918i
\(580\) 0 0
\(581\) −5.58447 9.96073i −0.231683 0.413241i
\(582\) 0 0
\(583\) −15.5732 8.34773i −0.644975 0.345728i
\(584\) 0 0
\(585\) −0.0659713 + 0.0915282i −0.00272758 + 0.00378423i
\(586\) 0 0
\(587\) −18.6090 + 10.9010i −0.768076 + 0.449933i −0.836667 0.547712i \(-0.815499\pi\)
0.0685912 + 0.997645i \(0.478150\pi\)
\(588\) 0 0
\(589\) −8.97781 + 23.8820i −0.369924 + 0.984042i
\(590\) 0 0
\(591\) −8.26905 16.1533i −0.340143 0.664457i
\(592\) 0 0
\(593\) −19.4407 + 23.0699i −0.798336 + 0.947366i −0.999482 0.0321948i \(-0.989750\pi\)
0.201146 + 0.979561i \(0.435533\pi\)
\(594\) 0 0
\(595\) 2.50053 1.87523i 0.102512 0.0768770i
\(596\) 0 0
\(597\) −11.9048 + 1.35765i −0.487233 + 0.0555651i
\(598\) 0 0
\(599\) −8.07912 + 32.1729i −0.330104 + 1.31455i 0.548160 + 0.836373i \(0.315328\pi\)
−0.878264 + 0.478176i \(0.841298\pi\)
\(600\) 0 0
\(601\) −10.0868 + 4.46049i −0.411451 + 0.181947i −0.599791 0.800157i \(-0.704750\pi\)
0.188340 + 0.982104i \(0.439689\pi\)
\(602\) 0 0
\(603\) −6.97731 + 5.65741i −0.284138 + 0.230387i
\(604\) 0 0
\(605\) −0.251608 + 1.46289i −0.0102293 + 0.0594750i
\(606\) 0 0
\(607\) 14.8500 15.1337i 0.602741 0.614257i −0.342938 0.939358i \(-0.611422\pi\)
0.945679 + 0.325100i \(0.105398\pi\)
\(608\) 0 0
\(609\) 33.1964 2.51782i 1.34519 0.102027i
\(610\) 0 0
\(611\) 6.09383 + 2.97533i 0.246530 + 0.120369i
\(612\) 0 0
\(613\) 14.9785 8.02895i 0.604974 0.324286i −0.141257 0.989973i \(-0.545114\pi\)
0.746231 + 0.665687i \(0.231861\pi\)
\(614\) 0 0
\(615\) −0.670509 3.89845i −0.0270375 0.157201i
\(616\) 0 0
\(617\) 0.681021 + 11.9820i 0.0274169 + 0.482378i 0.982526 + 0.186125i \(0.0595928\pi\)
−0.955109 + 0.296254i \(0.904263\pi\)
\(618\) 0 0
\(619\) 7.85840 + 9.32538i 0.315856 + 0.374819i 0.899298 0.437336i \(-0.144078\pi\)
−0.583443 + 0.812154i \(0.698295\pi\)
\(620\) 0 0
\(621\) 0.409746 + 21.6481i 0.0164425 + 0.868710i
\(622\) 0 0
\(623\) 50.4726 + 7.70058i 2.02214 + 0.308517i
\(624\) 0 0
\(625\) −2.25914 + 23.8030i −0.0903656 + 0.952121i
\(626\) 0 0
\(627\) 18.3108 8.94029i 0.731261 0.357041i
\(628\) 0 0
\(629\) −21.9258 7.77211i −0.874238 0.309894i
\(630\) 0 0
\(631\) −38.2555 10.3800i −1.52293 0.413220i −0.600575 0.799568i \(-0.705062\pi\)
−0.922353 + 0.386348i \(0.873736\pi\)
\(632\) 0 0
\(633\) 15.2599 13.3613i 0.606525 0.531062i
\(634\) 0 0
\(635\) 1.19651 + 0.700904i 0.0474819 + 0.0278145i
\(636\) 0 0
\(637\) −0.339392 + 0.0784301i −0.0134472 + 0.00310751i
\(638\) 0 0
\(639\) −6.86777 + 2.73118i −0.271685 + 0.108044i
\(640\) 0 0
\(641\) −19.3269 46.0419i −0.763366 1.81855i −0.534703 0.845040i \(-0.679577\pi\)
−0.228663 0.973506i \(-0.573435\pi\)
\(642\) 0 0
\(643\) 26.0430 + 28.6318i 1.02704 + 1.12913i 0.991546 + 0.129756i \(0.0414194\pi\)
0.0354892 + 0.999370i \(0.488701\pi\)
\(644\) 0 0
\(645\) 2.59209 + 1.03082i 0.102064 + 0.0405887i
\(646\) 0 0
\(647\) −15.6887 4.90132i −0.616786 0.192691i −0.0261881 0.999657i \(-0.508337\pi\)
−0.590598 + 0.806966i \(0.701108\pi\)
\(648\) 0 0
\(649\) 3.44843 5.18747i 0.135363 0.203626i
\(650\) 0 0
\(651\) −32.0920 2.43405i −1.25779 0.0953980i
\(652\) 0 0
\(653\) 9.38920 32.1814i 0.367428 1.25936i −0.540897 0.841089i \(-0.681915\pi\)
0.908324 0.418266i \(-0.137362\pi\)
\(654\) 0 0
\(655\) 0.278077 0.543213i 0.0108654 0.0212251i
\(656\) 0 0
\(657\) 6.23184 7.99023i 0.243127 0.311729i
\(658\) 0 0
\(659\) −21.3726 + 5.79910i −0.832560 + 0.225901i −0.652533 0.757761i \(-0.726293\pi\)
−0.180028 + 0.983662i \(0.557619\pi\)
\(660\) 0 0
\(661\) 10.4234 22.4145i 0.405423 0.871824i −0.592386 0.805655i \(-0.701814\pi\)
0.997808 0.0661695i \(-0.0210778\pi\)
\(662\) 0 0
\(663\) −3.46308 1.53140i −0.134495 0.0594748i
\(664\) 0 0
\(665\) 0.325386 + 2.44179i 0.0126179 + 0.0946885i
\(666\) 0 0
\(667\) 30.7645 1.19121
\(668\) 0 0
\(669\) −24.1085 −0.932090
\(670\) 0 0
\(671\) 5.52795 + 41.4833i 0.213404 + 1.60144i
\(672\) 0 0
\(673\) 4.30925 + 1.90559i 0.166109 + 0.0734549i 0.485814 0.874062i \(-0.338523\pi\)
−0.319704 + 0.947517i \(0.603584\pi\)
\(674\) 0 0
\(675\) 11.6589 25.0715i 0.448753 0.965001i
\(676\) 0 0
\(677\) −26.1094 + 7.08433i −1.00347 + 0.272273i −0.725428 0.688298i \(-0.758358\pi\)
−0.278037 + 0.960570i \(0.589684\pi\)
\(678\) 0 0
\(679\) 3.05767 3.92044i 0.117343 0.150453i
\(680\) 0 0
\(681\) −11.3936 + 22.2569i −0.436602 + 0.852886i
\(682\) 0 0
\(683\) −6.88514 + 23.5987i −0.263452 + 0.902981i 0.715452 + 0.698662i \(0.246221\pi\)
−0.978904 + 0.204319i \(0.934502\pi\)
\(684\) 0 0
\(685\) −2.38479 0.180877i −0.0911182 0.00691095i
\(686\) 0 0
\(687\) 21.0676 31.6919i 0.803778 1.20912i
\(688\) 0 0
\(689\) −2.47009 0.771684i −0.0941029 0.0293988i
\(690\) 0 0
\(691\) −25.6193 10.1883i −0.974603 0.387581i −0.172661 0.984981i \(-0.555236\pi\)
−0.801943 + 0.597401i \(0.796200\pi\)
\(692\) 0 0
\(693\) −5.28319 5.80836i −0.200692 0.220641i
\(694\) 0 0
\(695\) 0.982857 + 2.34143i 0.0372819 + 0.0888156i
\(696\) 0 0
\(697\) −37.6824 + 14.9856i −1.42732 + 0.567619i
\(698\) 0 0
\(699\) −6.27829 + 1.45085i −0.237467 + 0.0548762i
\(700\) 0 0
\(701\) −0.0197329 0.0115594i −0.000745303 0.000436593i 0.505081 0.863072i \(-0.331463\pi\)
−0.505826 + 0.862636i \(0.668812\pi\)
\(702\) 0 0
\(703\) 13.7938 12.0776i 0.520243 0.455516i
\(704\) 0 0
\(705\) 4.50750 + 1.22303i 0.169762 + 0.0460621i
\(706\) 0 0
\(707\) −46.7946 16.5875i −1.75989 0.623835i
\(708\) 0 0
\(709\) 40.7020 19.8729i 1.52860 0.746342i 0.533551 0.845768i \(-0.320857\pi\)
0.995045 + 0.0994255i \(0.0317005\pi\)
\(710\) 0 0
\(711\) 0.566391 5.96768i 0.0212413 0.223805i
\(712\) 0 0
\(713\) −29.4008 4.48567i −1.10107 0.167990i
\(714\) 0 0
\(715\) 0.0123526 + 0.652626i 0.000461960 + 0.0244068i
\(716\) 0 0
\(717\) −0.707130 0.839134i −0.0264082 0.0313380i
\(718\) 0 0
\(719\) 0.866145 + 15.2391i 0.0323017 + 0.568324i 0.973246 + 0.229764i \(0.0737953\pi\)
−0.940945 + 0.338560i \(0.890060\pi\)
\(720\) 0 0
\(721\) 4.61557 + 26.8357i 0.171893 + 0.999412i
\(722\) 0 0
\(723\) −21.0233 + 11.2692i −0.781866 + 0.419106i
\(724\) 0 0
\(725\) −35.3032 17.2369i −1.31113 0.640163i
\(726\) 0 0
\(727\) 1.61720 0.122658i 0.0599785 0.00454913i −0.0456053 0.998960i \(-0.514522\pi\)
0.105584 + 0.994410i \(0.466329\pi\)
\(728\) 0 0
\(729\) −21.0222 + 21.4239i −0.778600 + 0.793477i
\(730\) 0 0
\(731\) 4.84746 28.1839i 0.179290 1.04242i
\(732\) 0 0
\(733\) 22.1891 17.9916i 0.819575 0.664535i −0.125245 0.992126i \(-0.539972\pi\)
0.944820 + 0.327591i \(0.106237\pi\)
\(734\) 0 0
\(735\) −0.219411 + 0.0970253i −0.00809309 + 0.00357883i
\(736\) 0 0
\(737\) −12.6572 + 50.4038i −0.466233 + 1.85665i
\(738\) 0 0
\(739\) 28.2122 3.21738i 1.03780 0.118353i 0.422274 0.906468i \(-0.361232\pi\)
0.615528 + 0.788115i \(0.288943\pi\)
\(740\) 0 0
\(741\) 2.38755 1.79050i 0.0877087 0.0657757i
\(742\) 0 0
\(743\) 5.21684 6.19071i 0.191387 0.227115i −0.660519 0.750810i \(-0.729664\pi\)
0.851906 + 0.523695i \(0.175447\pi\)
\(744\) 0 0
\(745\) 0.533824 + 1.04280i 0.0195578 + 0.0382054i
\(746\) 0 0
\(747\) 1.02414 2.72433i 0.0374713 0.0996781i
\(748\) 0 0
\(749\) −22.0840 + 12.9367i −0.806933 + 0.472695i
\(750\) 0 0
\(751\) 23.9981 33.2948i 0.875702 1.21494i −0.0998123 0.995006i \(-0.531824\pi\)
0.975514 0.219938i \(-0.0705854\pi\)
\(752\) 0 0
\(753\) 30.2774 + 16.2297i 1.10337 + 0.591443i
\(754\) 0 0
\(755\) −0.886281 1.58081i −0.0322551 0.0575317i
\(756\) 0 0
\(757\) 4.05559 + 13.9005i 0.147403 + 0.505222i 0.999845 0.0175994i \(-0.00560235\pi\)
−0.852442 + 0.522821i \(0.824879\pi\)
\(758\) 0 0
\(759\) 14.6080 + 18.7298i 0.530237 + 0.679850i
\(760\) 0 0
\(761\) −5.91798 15.7425i −0.214527 0.570666i 0.784233 0.620467i \(-0.213057\pi\)
−0.998759 + 0.0498011i \(0.984141\pi\)
\(762\) 0 0
\(763\) −41.0263 + 26.1670i −1.48525 + 0.947308i
\(764\) 0 0
\(765\) 0.776160 + 0.179363i 0.0280621 + 0.00648487i
\(766\) 0 0
\(767\) 0.353106 0.841193i 0.0127499 0.0303737i
\(768\) 0 0
\(769\) 2.08849 + 22.0051i 0.0753130 + 0.793523i 0.950702 + 0.310104i \(0.100364\pi\)
−0.875389 + 0.483418i \(0.839395\pi\)
\(770\) 0 0
\(771\) 16.4078 11.3608i 0.590911 0.409148i
\(772\) 0 0
\(773\) −6.16645 5.39924i −0.221792 0.194197i 0.540661 0.841240i \(-0.318174\pi\)
−0.762453 + 0.647043i \(0.776005\pi\)
\(774\) 0 0
\(775\) 31.2250 + 21.6203i 1.12164 + 0.776623i
\(776\) 0 0
\(777\) 19.4989 + 12.4366i 0.699520 + 0.446160i
\(778\) 0 0
\(779\) 4.22174 31.6811i 0.151260 1.13509i
\(780\) 0 0
\(781\) −22.3072 + 36.4795i −0.798216 + 1.30534i
\(782\) 0 0
\(783\) 31.3408 + 31.9396i 1.12003 + 1.14143i
\(784\) 0 0
\(785\) 0.911222 4.31372i 0.0325229 0.153963i
\(786\) 0 0
\(787\) 25.5986 45.6590i 0.912493 1.62757i 0.142236 0.989833i \(-0.454571\pi\)
0.770257 0.637734i \(-0.220128\pi\)
\(788\) 0 0
\(789\) 1.26750 + 5.04748i 0.0451242 + 0.179695i
\(790\) 0 0
\(791\) −15.2369 22.9209i −0.541763 0.814972i
\(792\) 0 0
\(793\) 1.93812 + 5.81476i 0.0688246 + 0.206488i
\(794\) 0 0
\(795\) −1.77081 0.201946i −0.0628040 0.00716230i
\(796\) 0 0