Properties

Label 668.2.e.a.9.10
Level $668$
Weight $2$
Character 668.9
Analytic conductor $5.334$
Analytic rank $0$
Dimension $1148$
CM no
Inner twists $2$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 668 = 2^{2} \cdot 167 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 668.e (of order \(83\), degree \(82\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(5.33400685502\)
Analytic rank: \(0\)
Dimension: \(1148\)
Relative dimension: \(14\) over \(\Q(\zeta_{83})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{83}]$

Embedding invariants

Embedding label 9.10
Character \(\chi\) \(=\) 668.9
Dual form 668.2.e.a.297.10

$q$-expansion

\(f(q)\) \(=\) \(q+(0.189949 + 1.42543i) q^{3} +(2.53109 + 1.11927i) q^{5} +(0.927279 - 1.99403i) q^{7} +(0.899535 - 0.244073i) q^{9} +O(q^{10})\) \(q+(0.189949 + 1.42543i) q^{3} +(2.53109 + 1.11927i) q^{5} +(0.927279 - 1.99403i) q^{7} +(0.899535 - 0.244073i) q^{9} +(-1.13091 + 1.45001i) q^{11} +(2.39283 - 4.67431i) q^{13} +(-1.11467 + 3.82051i) q^{15} +(5.66373 + 0.429571i) q^{17} +(1.03489 - 1.55678i) q^{19} +(3.01849 + 0.943010i) q^{21} +(-3.88484 - 1.54493i) q^{23} +(1.78931 + 1.96717i) q^{25} +(2.18855 + 5.21372i) q^{27} +(-7.12459 + 2.83331i) q^{29} +(-2.93838 + 0.679028i) q^{31} +(-2.28171 - 1.33661i) q^{33} +(4.57889 - 4.00919i) q^{35} +(-4.45775 - 1.20953i) q^{37} +(7.11743 + 2.52294i) q^{39} +(-3.49204 + 1.70500i) q^{41} +(0.277331 - 2.92205i) q^{43} +(2.54999 + 0.389051i) q^{45} +(0.140827 + 7.44035i) q^{47} +(1.39448 + 1.65480i) q^{49} +(0.463497 + 8.15487i) q^{51} +(2.20354 + 12.8118i) q^{53} +(-4.48540 + 2.40432i) q^{55} +(2.41566 + 1.17945i) q^{57} +(-4.66117 + 0.353531i) q^{59} +(7.59924 - 7.74443i) q^{61} +(0.347431 - 2.02002i) q^{63} +(11.2883 - 9.15288i) q^{65} +(4.57112 - 2.02139i) q^{67} +(1.46427 - 5.83104i) q^{69} +(-13.5269 + 1.54264i) q^{71} +(1.29764 - 0.973148i) q^{73} +(-2.46419 + 2.92420i) q^{75} +(1.84269 + 3.59963i) q^{77} +(-3.94817 + 10.5026i) q^{79} +(-4.60340 + 2.69664i) q^{81} +(6.95087 - 9.64360i) q^{83} +(13.8546 + 7.42654i) q^{85} +(-5.39200 - 9.61744i) q^{87} +(-2.28824 - 7.84293i) q^{89} +(-7.10187 - 9.10576i) q^{91} +(-1.52605 - 4.05948i) q^{93} +(4.36186 - 2.78203i) q^{95} +(-12.5380 - 2.89741i) q^{97} +(-0.663384 + 1.58036i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 1148q - 2q^{5} - 14q^{9} + O(q^{10}) \) \( 1148q - 2q^{5} - 14q^{9} + 2q^{11} + 4q^{13} + 14q^{15} + 2q^{17} + 2q^{19} + 14q^{23} - 6q^{25} + 2q^{29} - 2q^{31} + 16q^{33} - 2q^{35} + 10q^{37} + 6q^{39} + 4q^{41} + 4q^{43} - 2q^{45} + 2q^{47} - 30q^{49} - 2q^{51} - 6q^{55} - 4q^{57} + 6q^{59} + 2q^{61} + 14q^{63} + 22q^{65} + 12q^{67} - 14q^{69} - 8q^{71} - 18q^{73} - 26q^{75} - 2q^{79} - 6q^{81} - 22q^{83} + 34q^{85} + 2q^{87} + 14q^{89} - 6q^{91} + 32q^{93} - 8q^{95} + 44q^{97} + 2q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/668\mathbb{Z}\right)^\times\).

\(n\) \(5\) \(335\)
\(\chi(n)\) \(e\left(\frac{11}{83}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.189949 + 1.42543i 0.109667 + 0.822974i 0.956627 + 0.291317i \(0.0940933\pi\)
−0.846959 + 0.531658i \(0.821569\pi\)
\(4\) 0 0
\(5\) 2.53109 + 1.11927i 1.13194 + 0.500553i 0.883657 0.468134i \(-0.155074\pi\)
0.248282 + 0.968688i \(0.420134\pi\)
\(6\) 0 0
\(7\) 0.927279 1.99403i 0.350478 0.753671i −0.649499 0.760362i \(-0.725021\pi\)
0.999978 + 0.00669110i \(0.00212986\pi\)
\(8\) 0 0
\(9\) 0.899535 0.244073i 0.299845 0.0813577i
\(10\) 0 0
\(11\) −1.13091 + 1.45001i −0.340982 + 0.437195i −0.928114 0.372297i \(-0.878570\pi\)
0.587131 + 0.809492i \(0.300257\pi\)
\(12\) 0 0
\(13\) 2.39283 4.67431i 0.663652 1.29642i −0.278242 0.960511i \(-0.589752\pi\)
0.941895 0.335909i \(-0.109043\pi\)
\(14\) 0 0
\(15\) −1.11467 + 3.82051i −0.287806 + 0.986451i
\(16\) 0 0
\(17\) 5.66373 + 0.429571i 1.37366 + 0.104186i 0.741655 0.670781i \(-0.234041\pi\)
0.632001 + 0.774967i \(0.282234\pi\)
\(18\) 0 0
\(19\) 1.03489 1.55678i 0.237420 0.357150i −0.694700 0.719299i \(-0.744463\pi\)
0.932120 + 0.362149i \(0.117957\pi\)
\(20\) 0 0
\(21\) 3.01849 + 0.943010i 0.658688 + 0.205782i
\(22\) 0 0
\(23\) −3.88484 1.54493i −0.810046 0.322139i −0.0724415 0.997373i \(-0.523079\pi\)
−0.737604 + 0.675233i \(0.764043\pi\)
\(24\) 0 0
\(25\) 1.78931 + 1.96717i 0.357861 + 0.393434i
\(26\) 0 0
\(27\) 2.18855 + 5.21372i 0.421187 + 1.00338i
\(28\) 0 0
\(29\) −7.12459 + 2.83331i −1.32300 + 0.526132i −0.921020 0.389515i \(-0.872643\pi\)
−0.401982 + 0.915647i \(0.631679\pi\)
\(30\) 0 0
\(31\) −2.93838 + 0.679028i −0.527748 + 0.121957i −0.480615 0.876932i \(-0.659587\pi\)
−0.0471325 + 0.998889i \(0.515008\pi\)
\(32\) 0 0
\(33\) −2.28171 1.33661i −0.397195 0.232674i
\(34\) 0 0
\(35\) 4.57889 4.00919i 0.773973 0.677677i
\(36\) 0 0
\(37\) −4.45775 1.20953i −0.732850 0.198846i −0.124169 0.992261i \(-0.539626\pi\)
−0.608681 + 0.793415i \(0.708301\pi\)
\(38\) 0 0
\(39\) 7.11743 + 2.52294i 1.13970 + 0.403994i
\(40\) 0 0
\(41\) −3.49204 + 1.70500i −0.545365 + 0.266276i −0.690744 0.723100i \(-0.742717\pi\)
0.145378 + 0.989376i \(0.453560\pi\)
\(42\) 0 0
\(43\) 0.277331 2.92205i 0.0422925 0.445608i −0.949127 0.314892i \(-0.898032\pi\)
0.991420 0.130715i \(-0.0417274\pi\)
\(44\) 0 0
\(45\) 2.54999 + 0.389051i 0.380130 + 0.0579963i
\(46\) 0 0
\(47\) 0.140827 + 7.44035i 0.0205418 + 1.08529i 0.850021 + 0.526749i \(0.176589\pi\)
−0.829479 + 0.558538i \(0.811363\pi\)
\(48\) 0 0
\(49\) 1.39448 + 1.65480i 0.199212 + 0.236400i
\(50\) 0 0
\(51\) 0.463497 + 8.15487i 0.0649026 + 1.14191i
\(52\) 0 0
\(53\) 2.20354 + 12.8118i 0.302680 + 1.75983i 0.595206 + 0.803573i \(0.297070\pi\)
−0.292526 + 0.956257i \(0.594496\pi\)
\(54\) 0 0
\(55\) −4.48540 + 2.40432i −0.604811 + 0.324199i
\(56\) 0 0
\(57\) 2.41566 + 1.17945i 0.319962 + 0.156223i
\(58\) 0 0
\(59\) −4.66117 + 0.353531i −0.606833 + 0.0460258i −0.375459 0.926839i \(-0.622515\pi\)
−0.231374 + 0.972865i \(0.574322\pi\)
\(60\) 0 0
\(61\) 7.59924 7.74443i 0.972983 0.991573i −0.0269849 0.999636i \(-0.508591\pi\)
0.999967 + 0.00806283i \(0.00256651\pi\)
\(62\) 0 0
\(63\) 0.347431 2.02002i 0.0437722 0.254499i
\(64\) 0 0
\(65\) 11.2883 9.15288i 1.40014 1.13528i
\(66\) 0 0
\(67\) 4.57112 2.02139i 0.558451 0.246952i −0.105894 0.994377i \(-0.533771\pi\)
0.664346 + 0.747426i \(0.268710\pi\)
\(68\) 0 0
\(69\) 1.46427 5.83104i 0.176277 0.701975i
\(70\) 0 0
\(71\) −13.5269 + 1.54264i −1.60535 + 0.183077i −0.869453 0.494016i \(-0.835528\pi\)
−0.735897 + 0.677094i \(0.763239\pi\)
\(72\) 0 0
\(73\) 1.29764 0.973148i 0.151878 0.113898i −0.521318 0.853362i \(-0.674560\pi\)
0.673196 + 0.739464i \(0.264921\pi\)
\(74\) 0 0
\(75\) −2.46419 + 2.92420i −0.284540 + 0.337657i
\(76\) 0 0
\(77\) 1.84269 + 3.59963i 0.209994 + 0.410216i
\(78\) 0 0
\(79\) −3.94817 + 10.5026i −0.444203 + 1.18163i 0.503926 + 0.863747i \(0.331889\pi\)
−0.948129 + 0.317886i \(0.897027\pi\)
\(80\) 0 0
\(81\) −4.60340 + 2.69664i −0.511489 + 0.299626i
\(82\) 0 0
\(83\) 6.95087 9.64360i 0.762957 1.05852i −0.233327 0.972398i \(-0.574961\pi\)
0.996284 0.0861245i \(-0.0274483\pi\)
\(84\) 0 0
\(85\) 13.8546 + 7.42654i 1.50275 + 0.805521i
\(86\) 0 0
\(87\) −5.39200 9.61744i −0.578083 1.03110i
\(88\) 0 0
\(89\) −2.28824 7.84293i −0.242553 0.831349i −0.986591 0.163212i \(-0.947815\pi\)
0.744038 0.668138i \(-0.232908\pi\)
\(90\) 0 0
\(91\) −7.10187 9.10576i −0.744478 0.954543i
\(92\) 0 0
\(93\) −1.52605 4.05948i −0.158244 0.420948i
\(94\) 0 0
\(95\) 4.36186 2.78203i 0.447517 0.285431i
\(96\) 0 0
\(97\) −12.5380 2.89741i −1.27304 0.294187i −0.466056 0.884755i \(-0.654325\pi\)
−0.806988 + 0.590568i \(0.798904\pi\)
\(98\) 0 0
\(99\) −0.663384 + 1.58036i −0.0666726 + 0.158832i
\(100\) 0 0
\(101\) 0.266983 + 2.81302i 0.0265658 + 0.279906i 0.998923 + 0.0464064i \(0.0147769\pi\)
−0.972357 + 0.233500i \(0.924982\pi\)
\(102\) 0 0
\(103\) −4.87498 + 3.37545i −0.480346 + 0.332593i −0.784604 0.619997i \(-0.787134\pi\)
0.304258 + 0.952590i \(0.401592\pi\)
\(104\) 0 0
\(105\) 6.58459 + 5.76535i 0.642590 + 0.562641i
\(106\) 0 0
\(107\) −1.82805 1.26574i −0.176724 0.122364i 0.477603 0.878576i \(-0.341506\pi\)
−0.654327 + 0.756212i \(0.727048\pi\)
\(108\) 0 0
\(109\) −1.60171 1.02159i −0.153416 0.0978501i 0.458805 0.888537i \(-0.348278\pi\)
−0.612221 + 0.790687i \(0.709724\pi\)
\(110\) 0 0
\(111\) 0.877363 6.58398i 0.0832756 0.624923i
\(112\) 0 0
\(113\) 2.48840 4.06934i 0.234089 0.382811i −0.714341 0.699798i \(-0.753273\pi\)
0.948430 + 0.316987i \(0.102671\pi\)
\(114\) 0 0
\(115\) −8.10371 8.25854i −0.755675 0.770113i
\(116\) 0 0
\(117\) 1.01156 4.78873i 0.0935190 0.442718i
\(118\) 0 0
\(119\) 6.10843 10.8953i 0.559959 0.998770i
\(120\) 0 0
\(121\) 1.85552 + 7.38909i 0.168683 + 0.671736i
\(122\) 0 0
\(123\) −3.09368 4.65381i −0.278947 0.419620i
\(124\) 0 0
\(125\) −2.04846 6.14582i −0.183220 0.549699i
\(126\) 0 0
\(127\) −19.6762 2.24391i −1.74598 0.199115i −0.818888 0.573953i \(-0.805409\pi\)
−0.927090 + 0.374838i \(0.877698\pi\)
\(128\) 0 0
\(129\) 4.21786 0.159724i 0.371362 0.0140630i
\(130\) 0 0
\(131\) 0.888945 15.6403i 0.0776674 1.36650i −0.689143 0.724625i \(-0.742013\pi\)
0.766811 0.641873i \(-0.221842\pi\)
\(132\) 0 0
\(133\) −2.14463 3.50716i −0.185963 0.304110i
\(134\) 0 0
\(135\) −0.296140 + 15.6460i −0.0254877 + 1.34659i
\(136\) 0 0
\(137\) −2.20400 + 0.781259i −0.188300 + 0.0667475i −0.426583 0.904448i \(-0.640283\pi\)
0.238283 + 0.971196i \(0.423415\pi\)
\(138\) 0 0
\(139\) 11.4810 + 10.8470i 0.973804 + 0.920028i 0.996818 0.0797074i \(-0.0253986\pi\)
−0.0230142 + 0.999735i \(0.507326\pi\)
\(140\) 0 0
\(141\) −10.5790 + 1.61403i −0.890910 + 0.135926i
\(142\) 0 0
\(143\) 4.07172 + 8.75586i 0.340495 + 0.732202i
\(144\) 0 0
\(145\) −21.2042 0.802975i −1.76092 0.0666834i
\(146\) 0 0
\(147\) −2.09393 + 2.30207i −0.172704 + 0.189872i
\(148\) 0 0
\(149\) 2.54595 + 2.06433i 0.208572 + 0.169117i 0.728395 0.685158i \(-0.240267\pi\)
−0.519822 + 0.854275i \(0.674002\pi\)
\(150\) 0 0
\(151\) −5.96557 4.47378i −0.485471 0.364071i 0.328948 0.944348i \(-0.393306\pi\)
−0.814419 + 0.580277i \(0.802944\pi\)
\(152\) 0 0
\(153\) 5.19957 0.995951i 0.420360 0.0805179i
\(154\) 0 0
\(155\) −8.19732 1.57015i −0.658425 0.126118i
\(156\) 0 0
\(157\) −2.77631 13.1430i −0.221574 1.04893i −0.936754 0.349988i \(-0.886186\pi\)
0.715180 0.698940i \(-0.246345\pi\)
\(158\) 0 0
\(159\) −17.8437 + 5.57459i −1.41510 + 0.442094i
\(160\) 0 0
\(161\) −6.68295 + 6.31390i −0.526691 + 0.497605i
\(162\) 0 0
\(163\) −1.52658 + 4.58006i −0.119571 + 0.358738i −0.991364 0.131135i \(-0.958138\pi\)
0.871794 + 0.489874i \(0.162957\pi\)
\(164\) 0 0
\(165\) −4.27920 5.93694i −0.333135 0.462190i
\(166\) 0 0
\(167\) 0.211440 + 12.9211i 0.0163617 + 0.999866i
\(168\) 0 0
\(169\) −8.52216 11.8236i −0.655551 0.909508i
\(170\) 0 0
\(171\) 0.550950 1.65297i 0.0421322 0.126405i
\(172\) 0 0
\(173\) 6.76612 6.39247i 0.514418 0.486011i −0.385111 0.922870i \(-0.625837\pi\)
0.899530 + 0.436859i \(0.143909\pi\)
\(174\) 0 0
\(175\) 5.58177 1.74381i 0.421942 0.131820i
\(176\) 0 0
\(177\) −1.38932 6.57703i −0.104428 0.494360i
\(178\) 0 0
\(179\) 17.9375 + 3.43584i 1.34071 + 0.256807i 0.807846 0.589393i \(-0.200633\pi\)
0.532866 + 0.846200i \(0.321115\pi\)
\(180\) 0 0
\(181\) 16.1056 3.08495i 1.19712 0.229302i 0.449409 0.893326i \(-0.351635\pi\)
0.747711 + 0.664024i \(0.231153\pi\)
\(182\) 0 0
\(183\) 12.4826 + 9.36116i 0.922743 + 0.691996i
\(184\) 0 0
\(185\) −9.92919 8.05088i −0.730008 0.591912i
\(186\) 0 0
\(187\) −7.02806 + 7.72667i −0.513942 + 0.565030i
\(188\) 0 0
\(189\) 12.4257 + 0.470543i 0.903836 + 0.0342270i
\(190\) 0 0
\(191\) −5.78822 12.4470i −0.418821 0.900636i −0.996438 0.0843280i \(-0.973126\pi\)
0.577617 0.816308i \(-0.303983\pi\)
\(192\) 0 0
\(193\) 5.91490 0.902434i 0.425764 0.0649587i 0.0655964 0.997846i \(-0.479105\pi\)
0.360168 + 0.932888i \(0.382719\pi\)
\(194\) 0 0
\(195\) 15.1910 + 14.3521i 1.08785 + 1.02778i
\(196\) 0 0
\(197\) −16.4283 + 5.82339i −1.17047 + 0.414899i −0.847130 0.531385i \(-0.821672\pi\)
−0.323335 + 0.946284i \(0.604804\pi\)
\(198\) 0 0
\(199\) 0.423647 22.3826i 0.0300315 1.58666i −0.593482 0.804848i \(-0.702247\pi\)
0.623513 0.781813i \(-0.285705\pi\)
\(200\) 0 0
\(201\) 3.74964 + 6.13187i 0.264479 + 0.432508i
\(202\) 0 0
\(203\) −0.956785 + 16.8339i −0.0671531 + 1.18151i
\(204\) 0 0
\(205\) −10.7470 + 0.406975i −0.750606 + 0.0284244i
\(206\) 0 0
\(207\) −3.87163 0.441528i −0.269097 0.0306883i
\(208\) 0 0
\(209\) 1.08698 + 3.26118i 0.0751882 + 0.225580i
\(210\) 0 0
\(211\) −3.68072 5.53690i −0.253391 0.381176i 0.683984 0.729497i \(-0.260246\pi\)
−0.937375 + 0.348321i \(0.886752\pi\)
\(212\) 0 0
\(213\) −4.76836 18.9887i −0.326722 1.30108i
\(214\) 0 0
\(215\) 3.97251 7.08556i 0.270923 0.483231i
\(216\) 0 0
\(217\) −1.37069 + 6.48885i −0.0930487 + 0.440492i
\(218\) 0 0
\(219\) 1.63364 + 1.66486i 0.110391 + 0.112501i
\(220\) 0 0
\(221\) 15.5603 25.4461i 1.04670 1.71169i
\(222\) 0 0
\(223\) −2.88819 + 21.6738i −0.193408 + 1.45139i 0.578516 + 0.815671i \(0.303632\pi\)
−0.771924 + 0.635715i \(0.780706\pi\)
\(224\) 0 0
\(225\) 2.08968 + 1.33281i 0.139312 + 0.0888543i
\(226\) 0 0
\(227\) 11.2033 + 7.75720i 0.743591 + 0.514864i 0.879524 0.475854i \(-0.157861\pi\)
−0.135933 + 0.990718i \(0.543403\pi\)
\(228\) 0 0
\(229\) −9.36684 8.20144i −0.618978 0.541967i 0.290947 0.956739i \(-0.406030\pi\)
−0.909925 + 0.414773i \(0.863861\pi\)
\(230\) 0 0
\(231\) −4.78102 + 3.31038i −0.314568 + 0.217807i
\(232\) 0 0
\(233\) 0.567776 + 5.98227i 0.0371962 + 0.391912i 0.994648 + 0.103319i \(0.0329463\pi\)
−0.957452 + 0.288593i \(0.906813\pi\)
\(234\) 0 0
\(235\) −7.97132 + 18.9898i −0.519992 + 1.23876i
\(236\) 0 0
\(237\) −15.7207 3.63289i −1.02117 0.235981i
\(238\) 0 0
\(239\) 8.29259 5.28909i 0.536403 0.342123i −0.241608 0.970374i \(-0.577675\pi\)
0.778011 + 0.628251i \(0.216229\pi\)
\(240\) 0 0
\(241\) −7.53353 20.0401i −0.485277 1.29089i −0.920560 0.390601i \(-0.872267\pi\)
0.435283 0.900294i \(-0.356648\pi\)
\(242\) 0 0
\(243\) 5.71411 + 7.32643i 0.366561 + 0.469990i
\(244\) 0 0
\(245\) 1.67740 + 5.74926i 0.107165 + 0.367307i
\(246\) 0 0
\(247\) −4.80055 8.56250i −0.305452 0.544819i
\(248\) 0 0
\(249\) 15.0666 + 8.07621i 0.954808 + 0.511809i
\(250\) 0 0
\(251\) 3.65828 5.07548i 0.230909 0.320361i −0.679810 0.733388i \(-0.737938\pi\)
0.910719 + 0.413026i \(0.135528\pi\)
\(252\) 0 0
\(253\) 6.63357 3.88590i 0.417049 0.244304i
\(254\) 0 0
\(255\) −7.95435 + 21.1595i −0.498121 + 1.32506i
\(256\) 0 0
\(257\) 12.3000 + 24.0276i 0.767252 + 1.49880i 0.864001 + 0.503490i \(0.167951\pi\)
−0.0967486 + 0.995309i \(0.530844\pi\)
\(258\) 0 0
\(259\) −6.54542 + 7.76730i −0.406713 + 0.482636i
\(260\) 0 0
\(261\) −5.71728 + 4.28758i −0.353891 + 0.265395i
\(262\) 0 0
\(263\) −12.6877 + 1.44693i −0.782355 + 0.0892214i −0.495333 0.868703i \(-0.664954\pi\)
−0.287021 + 0.957924i \(0.592665\pi\)
\(264\) 0 0
\(265\) −8.76246 + 34.8941i −0.538274 + 2.14353i
\(266\) 0 0
\(267\) 10.7449 4.75150i 0.657579 0.290787i
\(268\) 0 0
\(269\) −3.15659 + 2.55946i −0.192461 + 0.156053i −0.721189 0.692738i \(-0.756404\pi\)
0.528728 + 0.848791i \(0.322669\pi\)
\(270\) 0 0
\(271\) 2.85643 16.6077i 0.173516 1.00885i −0.759897 0.650044i \(-0.774751\pi\)
0.933413 0.358805i \(-0.116816\pi\)
\(272\) 0 0
\(273\) 11.6307 11.8529i 0.703919 0.717369i
\(274\) 0 0
\(275\) −4.87596 + 0.369822i −0.294032 + 0.0223011i
\(276\) 0 0
\(277\) −3.77417 1.84275i −0.226768 0.110720i 0.321859 0.946788i \(-0.395692\pi\)
−0.548626 + 0.836068i \(0.684849\pi\)
\(278\) 0 0
\(279\) −2.47744 + 1.32799i −0.148320 + 0.0795046i
\(280\) 0 0
\(281\) 3.26241 + 18.9682i 0.194619 + 1.13155i 0.904259 + 0.426983i \(0.140424\pi\)
−0.709640 + 0.704564i \(0.751143\pi\)
\(282\) 0 0
\(283\) 0.0958791 + 1.68692i 0.00569942 + 0.100277i 0.999979 0.00653526i \(-0.00208025\pi\)
−0.994279 + 0.106812i \(0.965936\pi\)
\(284\) 0 0
\(285\) 4.79414 + 5.68909i 0.283980 + 0.336993i
\(286\) 0 0
\(287\) 0.161721 + 8.54423i 0.00954610 + 0.504350i
\(288\) 0 0
\(289\) 15.0878 + 2.30194i 0.887517 + 0.135408i
\(290\) 0 0
\(291\) 1.74847 18.4225i 0.102497 1.07994i
\(292\) 0 0
\(293\) 21.3428 10.4207i 1.24686 0.608784i 0.307446 0.951566i \(-0.400526\pi\)
0.939415 + 0.342782i \(0.111369\pi\)
\(294\) 0 0
\(295\) −12.1936 4.32229i −0.709936 0.251654i
\(296\) 0 0
\(297\) −10.0350 2.72283i −0.582290 0.157994i
\(298\) 0 0
\(299\) −16.5172 + 14.4622i −0.955216 + 0.836371i
\(300\) 0 0
\(301\) −5.56947 3.26255i −0.321019 0.188051i
\(302\) 0 0
\(303\) −3.95906 + 0.914899i −0.227442 + 0.0525596i
\(304\) 0 0
\(305\) 27.9025 11.0963i 1.59769 0.635371i
\(306\) 0 0
\(307\) −7.37046 17.5584i −0.420654 1.00211i −0.984365 0.176140i \(-0.943639\pi\)
0.563711 0.825972i \(-0.309373\pi\)
\(308\) 0 0
\(309\) −5.73747 6.30780i −0.326394 0.358838i
\(310\) 0 0
\(311\) 17.0840 + 6.79396i 0.968744 + 0.385250i 0.799728 0.600363i \(-0.204977\pi\)
0.169016 + 0.985613i \(0.445941\pi\)
\(312\) 0 0
\(313\) −24.1077 7.53151i −1.36265 0.425706i −0.472480 0.881342i \(-0.656641\pi\)
−0.890167 + 0.455635i \(0.849412\pi\)
\(314\) 0 0
\(315\) 3.14033 4.72399i 0.176938 0.266167i
\(316\) 0 0
\(317\) 2.80539 + 0.212778i 0.157567 + 0.0119508i 0.154176 0.988043i \(-0.450728\pi\)
0.00339097 + 0.999994i \(0.498921\pi\)
\(318\) 0 0
\(319\) 3.94894 13.5350i 0.221098 0.757812i
\(320\) 0 0
\(321\) 1.45699 2.84618i 0.0813215 0.158859i
\(322\) 0 0
\(323\) 6.53008 8.37262i 0.363343 0.465865i
\(324\) 0 0
\(325\) 13.4767 3.65666i 0.747550 0.202835i
\(326\) 0 0
\(327\) 1.15196 2.47718i 0.0637034 0.136988i
\(328\) 0 0
\(329\) 14.9668 + 6.61846i 0.825149 + 0.364888i
\(330\) 0 0
\(331\) −0.909861 6.82785i −0.0500105 0.375293i −0.998320 0.0579451i \(-0.981545\pi\)
0.948309 0.317348i \(-0.102792\pi\)
\(332\) 0 0
\(333\) −4.30512 −0.235919
\(334\) 0 0
\(335\) 13.8324 0.755746
\(336\) 0 0
\(337\) 2.11332 + 15.8589i 0.115120 + 0.863890i 0.949735 + 0.313056i \(0.101353\pi\)
−0.834615 + 0.550834i \(0.814310\pi\)
\(338\) 0 0
\(339\) 6.27324 + 2.77408i 0.340715 + 0.150667i
\(340\) 0 0
\(341\) 2.33844 5.02860i 0.126634 0.272314i
\(342\) 0 0
\(343\) 19.4492 5.27722i 1.05016 0.284943i
\(344\) 0 0
\(345\) 10.2327 13.1200i 0.550911 0.706357i
\(346\) 0 0
\(347\) −7.45837 + 14.5696i −0.400386 + 0.782139i −0.999833 0.0182754i \(-0.994182\pi\)
0.599447 + 0.800415i \(0.295387\pi\)
\(348\) 0 0
\(349\) −9.09744 + 31.1814i −0.486975 + 1.66910i 0.230938 + 0.972968i \(0.425820\pi\)
−0.717913 + 0.696133i \(0.754902\pi\)
\(350\) 0 0
\(351\) 29.6074 + 2.24560i 1.58032 + 0.119861i
\(352\) 0 0
\(353\) 13.4630 20.2524i 0.716564 1.07793i −0.276576 0.960992i \(-0.589200\pi\)
0.993140 0.116933i \(-0.0373064\pi\)
\(354\) 0 0
\(355\) −35.9645 11.2357i −1.90880 0.596330i
\(356\) 0 0
\(357\) 16.6908 + 6.63761i 0.883371 + 0.351299i
\(358\) 0 0
\(359\) 4.63201 + 5.09244i 0.244468 + 0.268769i 0.849684 0.527292i \(-0.176793\pi\)
−0.605216 + 0.796061i \(0.706913\pi\)
\(360\) 0 0
\(361\) 6.00139 + 14.2969i 0.315862 + 0.752470i
\(362\) 0 0
\(363\) −10.1802 + 4.04847i −0.534322 + 0.212489i
\(364\) 0 0
\(365\) 4.37368 1.01071i 0.228929 0.0529031i
\(366\) 0 0
\(367\) 12.2457 + 7.17345i 0.639221 + 0.374451i 0.789110 0.614252i \(-0.210542\pi\)
−0.149889 + 0.988703i \(0.547891\pi\)
\(368\) 0 0
\(369\) −2.72507 + 2.38602i −0.141861 + 0.124211i
\(370\) 0 0
\(371\) 27.5903 + 7.48615i 1.43242 + 0.388661i
\(372\) 0 0
\(373\) −20.0442 7.10514i −1.03785 0.367890i −0.240017 0.970769i \(-0.577153\pi\)
−0.797833 + 0.602878i \(0.794020\pi\)
\(374\) 0 0
\(375\) 8.37135 4.08734i 0.432295 0.211069i
\(376\) 0 0
\(377\) −3.80418 + 40.0821i −0.195925 + 2.06433i
\(378\) 0 0
\(379\) 23.0136 + 3.51117i 1.18213 + 0.180357i 0.711960 0.702220i \(-0.247808\pi\)
0.470168 + 0.882577i \(0.344193\pi\)
\(380\) 0 0
\(381\) −0.538929 28.4733i −0.0276102 1.45873i
\(382\) 0 0
\(383\) 2.15487 + 2.55713i 0.110109 + 0.130663i 0.816950 0.576709i \(-0.195663\pi\)
−0.706841 + 0.707373i \(0.749880\pi\)
\(384\) 0 0
\(385\) 0.635065 + 11.1735i 0.0323659 + 0.569453i
\(386\) 0 0
\(387\) −0.463725 2.69617i −0.0235724 0.137054i
\(388\) 0 0
\(389\) 11.5805 6.20754i 0.587156 0.314735i −0.151882 0.988399i \(-0.548533\pi\)
0.739038 + 0.673664i \(0.235280\pi\)
\(390\) 0 0
\(391\) −21.3390 10.4189i −1.07916 0.526904i
\(392\) 0 0
\(393\) 22.4630 1.70373i 1.13311 0.0859418i
\(394\) 0 0
\(395\) −21.7484 + 22.1640i −1.09428 + 1.11519i
\(396\) 0 0
\(397\) −6.52092 + 37.9137i −0.327276 + 1.90283i 0.0934089 + 0.995628i \(0.470224\pi\)
−0.420685 + 0.907207i \(0.638210\pi\)
\(398\) 0 0
\(399\) 4.59186 3.72321i 0.229880 0.186394i
\(400\) 0 0
\(401\) 13.6146 6.02049i 0.679880 0.300649i −0.0355146 0.999369i \(-0.511307\pi\)
0.715395 + 0.698720i \(0.246247\pi\)
\(402\) 0 0
\(403\) −3.85705 + 15.3597i −0.192133 + 0.765120i
\(404\) 0 0
\(405\) −14.6699 + 1.67299i −0.728954 + 0.0831314i
\(406\) 0 0
\(407\) 6.79516 5.09592i 0.336823 0.252595i
\(408\) 0 0
\(409\) 13.5342 16.0607i 0.669221 0.794149i −0.318907 0.947786i \(-0.603316\pi\)
0.988127 + 0.153637i \(0.0490988\pi\)
\(410\) 0 0
\(411\) −1.53228 2.99325i −0.0755818 0.147646i
\(412\) 0 0
\(413\) −3.61725 + 9.62232i −0.177993 + 0.473483i
\(414\) 0 0
\(415\) 28.3871 16.6290i 1.39347 0.816283i
\(416\) 0 0
\(417\) −13.2808 + 18.4257i −0.650365 + 0.902313i
\(418\) 0 0
\(419\) 24.5664 + 13.1684i 1.20015 + 0.643317i 0.946100 0.323875i \(-0.104986\pi\)
0.254045 + 0.967192i \(0.418239\pi\)
\(420\) 0 0
\(421\) −11.9144 21.2511i −0.580673 1.03572i −0.992240 0.124337i \(-0.960320\pi\)
0.411567 0.911379i \(-0.364982\pi\)
\(422\) 0 0
\(423\) 1.94267 + 6.65848i 0.0944558 + 0.323746i
\(424\) 0 0
\(425\) 9.28910 + 11.9101i 0.450588 + 0.577727i
\(426\) 0 0
\(427\) −8.39599 22.3343i −0.406311 1.08083i
\(428\) 0 0
\(429\) −11.7075 + 7.46714i −0.565242 + 0.360517i
\(430\) 0 0
\(431\) 8.00984 + 1.85099i 0.385820 + 0.0891591i 0.413609 0.910455i \(-0.364268\pi\)
−0.0277884 + 0.999614i \(0.508846\pi\)
\(432\) 0 0
\(433\) −9.39191 + 22.3741i −0.451346 + 1.07523i 0.523435 + 0.852066i \(0.324650\pi\)
−0.974781 + 0.223163i \(0.928362\pi\)
\(434\) 0 0
\(435\) −2.88314 30.3777i −0.138236 1.45650i
\(436\) 0 0
\(437\) −6.42549 + 4.44902i −0.307373 + 0.212825i
\(438\) 0 0
\(439\) 21.0442 + 18.4259i 1.00438 + 0.879420i 0.992712 0.120512i \(-0.0384537\pi\)
0.0116707 + 0.999932i \(0.496285\pi\)
\(440\) 0 0
\(441\) 1.65828 + 1.14820i 0.0789657 + 0.0546760i
\(442\) 0 0
\(443\) −27.1480 17.3153i −1.28984 0.822674i −0.298556 0.954392i \(-0.596505\pi\)
−0.991287 + 0.131718i \(0.957951\pi\)
\(444\) 0 0
\(445\) 2.98661 22.4124i 0.141579 1.06245i
\(446\) 0 0
\(447\) −2.45896 + 4.02120i −0.116305 + 0.190196i
\(448\) 0 0
\(449\) −5.74751 5.85732i −0.271242 0.276424i 0.564636 0.825340i \(-0.309017\pi\)
−0.835878 + 0.548916i \(0.815041\pi\)
\(450\) 0 0
\(451\) 1.47692 6.99171i 0.0695452 0.329227i
\(452\) 0 0
\(453\) 5.24392 9.35331i 0.246381 0.439457i
\(454\) 0 0
\(455\) −7.78369 30.9964i −0.364905 1.45314i
\(456\) 0 0
\(457\) 20.2463 + 30.4564i 0.947080 + 1.42469i 0.904921 + 0.425580i \(0.139930\pi\)
0.0421594 + 0.999111i \(0.486576\pi\)
\(458\) 0 0
\(459\) 10.1557 + 30.4692i 0.474027 + 1.42218i
\(460\) 0 0
\(461\) −11.8671 1.35335i −0.552707 0.0630319i −0.167517 0.985869i \(-0.553575\pi\)
−0.385190 + 0.922837i \(0.625864\pi\)
\(462\) 0 0
\(463\) −5.22490 + 0.197860i −0.242822 + 0.00919532i −0.158972 0.987283i \(-0.550818\pi\)
−0.0838497 + 0.996478i \(0.526722\pi\)
\(464\) 0 0
\(465\) 0.681075 11.9830i 0.0315841 0.555698i
\(466\) 0 0
\(467\) 4.25201 + 6.95342i 0.196760 + 0.321766i 0.936207 0.351448i \(-0.114311\pi\)
−0.739447 + 0.673214i \(0.764913\pi\)
\(468\) 0 0
\(469\) 0.208001 10.9893i 0.00960458 0.507440i
\(470\) 0 0
\(471\) 18.2072 6.45396i 0.838942 0.297383i
\(472\) 0 0
\(473\) 3.92336 + 3.70670i 0.180396 + 0.170434i
\(474\) 0 0
\(475\) 4.91418 0.749754i 0.225478 0.0344011i
\(476\) 0 0
\(477\) 5.10917 + 10.9868i 0.233933 + 0.503051i
\(478\) 0 0
\(479\) −18.3128 0.693482i −0.836735 0.0316860i −0.384002 0.923332i \(-0.625454\pi\)
−0.452733 + 0.891646i \(0.649551\pi\)
\(480\) 0 0
\(481\) −16.3204 + 17.9427i −0.744145 + 0.818116i
\(482\) 0 0
\(483\) −10.2695 8.32678i −0.467277 0.378882i
\(484\) 0 0
\(485\) −28.4919 21.3671i −1.29375 0.970228i
\(486\) 0 0
\(487\) −13.0337 + 2.49654i −0.590613 + 0.113129i −0.474726 0.880134i \(-0.657453\pi\)
−0.115887 + 0.993262i \(0.536971\pi\)
\(488\) 0 0
\(489\) −6.81855 1.30606i −0.308345 0.0590620i
\(490\) 0 0
\(491\) −8.38280 39.6841i −0.378311 1.79092i −0.583410 0.812178i \(-0.698282\pi\)
0.205099 0.978741i \(-0.434248\pi\)
\(492\) 0 0
\(493\) −41.5688 + 12.9866i −1.87217 + 0.584886i
\(494\) 0 0
\(495\) −3.44794 + 3.25754i −0.154973 + 0.146415i
\(496\) 0 0
\(497\) −9.46716 + 28.4035i −0.424660 + 1.27407i
\(498\) 0 0
\(499\) 12.3356 + 17.1144i 0.552219 + 0.766146i 0.991203 0.132349i \(-0.0422518\pi\)
−0.438984 + 0.898495i \(0.644661\pi\)
\(500\) 0 0
\(501\) −18.3780 + 2.75575i −0.821070 + 0.123118i
\(502\) 0 0
\(503\) −12.9076 17.9079i −0.575519 0.798473i 0.418437 0.908246i \(-0.362578\pi\)
−0.993957 + 0.109773i \(0.964988\pi\)
\(504\) 0 0
\(505\) −2.47278 + 7.41885i −0.110037 + 0.330135i
\(506\) 0 0
\(507\) 15.2350 14.3937i 0.676609 0.639245i
\(508\) 0 0
\(509\) −40.2782 + 12.5834i −1.78530 + 0.557748i −0.998250 0.0591414i \(-0.981164\pi\)
−0.787050 + 0.616889i \(0.788393\pi\)
\(510\) 0 0
\(511\) −0.737204 3.48992i −0.0326120 0.154385i
\(512\) 0 0
\(513\) 10.3815 + 1.98853i 0.458355 + 0.0877956i
\(514\) 0 0
\(515\) −16.1171 + 3.08714i −0.710203 + 0.136036i
\(516\) 0 0
\(517\) −10.9479 8.21017i −0.481486 0.361083i
\(518\) 0 0
\(519\) 10.3973 + 8.43040i 0.456389 + 0.370054i
\(520\) 0 0
\(521\) −19.0304 + 20.9221i −0.833736 + 0.916612i −0.997556 0.0698784i \(-0.977739\pi\)
0.163820 + 0.986490i \(0.447618\pi\)
\(522\) 0 0
\(523\) 17.4862 + 0.662178i 0.764618 + 0.0289550i 0.417272 0.908782i \(-0.362986\pi\)
0.347347 + 0.937737i \(0.387083\pi\)
\(524\) 0 0
\(525\) 3.54594 + 7.62521i 0.154757 + 0.332791i
\(526\) 0 0
\(527\) −16.9339 + 2.58359i −0.737650 + 0.112543i
\(528\) 0 0
\(529\) −4.01332 3.79169i −0.174492 0.164856i
\(530\) 0 0
\(531\) −4.10660 + 1.45568i −0.178211 + 0.0631711i
\(532\) 0 0
\(533\) −0.386172 + 20.4027i −0.0167270 + 0.883737i
\(534\) 0 0
\(535\) −3.21025 5.24979i −0.138791 0.226968i
\(536\) 0 0
\(537\) −1.49034 + 26.2214i −0.0643129 + 1.13153i
\(538\) 0 0
\(539\) −3.97652 + 0.150585i −0.171281 + 0.00648616i
\(540\) 0 0
\(541\) 12.9047 + 1.47168i 0.554818 + 0.0632727i 0.386211 0.922411i \(-0.373784\pi\)
0.168608 + 0.985683i \(0.446073\pi\)
\(542\) 0 0
\(543\) 7.45663 + 22.3715i 0.319995 + 0.960052i
\(544\) 0 0
\(545\) −2.91065 4.37848i −0.124678 0.187553i
\(546\) 0 0
\(547\) −5.02925 20.0276i −0.215035 0.856320i −0.977782 0.209623i \(-0.932776\pi\)
0.762747 0.646697i \(-0.223850\pi\)
\(548\) 0 0
\(549\) 4.94557 8.82116i 0.211072 0.376478i
\(550\) 0 0
\(551\) −2.96231 + 14.0236i −0.126199 + 0.597424i
\(552\) 0 0
\(553\) 17.2814 + 17.6116i 0.734879 + 0.748920i
\(554\) 0 0
\(555\) 9.58994 15.6827i 0.407070 0.665692i
\(556\) 0 0
\(557\) 4.70442 35.3033i 0.199332 1.49585i −0.550843 0.834609i \(-0.685694\pi\)
0.750176 0.661238i \(-0.229969\pi\)
\(558\) 0 0
\(559\) −12.9949 8.28829i −0.549627 0.350557i
\(560\) 0 0
\(561\) −12.3488 8.55035i −0.521368 0.360996i
\(562\) 0 0
\(563\) −6.92798 6.06602i −0.291980 0.255652i 0.500242 0.865886i \(-0.333244\pi\)
−0.792222 + 0.610233i \(0.791076\pi\)
\(564\) 0 0
\(565\) 10.8531 7.51468i 0.456592 0.316145i
\(566\) 0 0
\(567\) 1.10853 + 11.6798i 0.0465539 + 0.490507i
\(568\) 0 0
\(569\) 0.521139 1.24149i 0.0218473 0.0520462i −0.910768 0.412919i \(-0.864509\pi\)
0.932615 + 0.360873i \(0.117521\pi\)
\(570\) 0 0
\(571\) 18.5298 + 4.28204i 0.775448 + 0.179198i 0.594284 0.804255i \(-0.297435\pi\)
0.181163 + 0.983453i \(0.442014\pi\)
\(572\) 0 0
\(573\) 16.6430 10.6150i 0.695269 0.443449i
\(574\) 0 0
\(575\) −3.91204 10.4065i −0.163143 0.433980i
\(576\) 0 0
\(577\) −7.08573 9.08506i −0.294983 0.378216i 0.618025 0.786159i \(-0.287933\pi\)
−0.913008 + 0.407942i \(0.866246\pi\)
\(578\) 0 0
\(579\) 2.40989 + 8.25988i 0.100152 + 0.343269i
\(580\) 0 0
\(581\) −12.7842 22.8025i −0.530378 0.946008i
\(582\) 0 0
\(583\) −21.0692 11.2938i −0.872598 0.467741i
\(584\) 0 0
\(585\) 7.92025 10.9885i 0.327462 0.454319i
\(586\) 0 0
\(587\) 8.10822 4.74973i 0.334662 0.196042i −0.328527 0.944495i \(-0.606552\pi\)
0.663189 + 0.748452i \(0.269203\pi\)
\(588\) 0 0
\(589\) −1.98379 + 5.27712i −0.0817408 + 0.217440i
\(590\) 0 0
\(591\) −11.4214 22.3112i −0.469813 0.917762i
\(592\) 0 0
\(593\) −25.5202 + 30.2842i −1.04799 + 1.24362i −0.0789064 + 0.996882i \(0.525143\pi\)
−0.969081 + 0.246741i \(0.920640\pi\)
\(594\) 0 0
\(595\) 27.6558 20.7400i 1.13378 0.850258i
\(596\) 0 0
\(597\) 31.9854 3.64768i 1.30907 0.149290i
\(598\) 0 0
\(599\) 6.09844 24.2854i 0.249176 0.992275i −0.708796 0.705413i \(-0.750761\pi\)
0.957972 0.286862i \(-0.0926120\pi\)
\(600\) 0 0
\(601\) −22.5806 + 9.98535i −0.921083 + 0.407311i −0.809953 0.586495i \(-0.800507\pi\)
−0.111130 + 0.993806i \(0.535447\pi\)
\(602\) 0 0
\(603\) 3.61852 2.93400i 0.147357 0.119482i
\(604\) 0 0
\(605\) −3.57391 + 20.7793i −0.145300 + 0.844799i
\(606\) 0 0
\(607\) 11.2711 11.4865i 0.457481 0.466222i −0.445886 0.895090i \(-0.647111\pi\)
0.903367 + 0.428868i \(0.141087\pi\)
\(608\) 0 0
\(609\) −24.1773 + 1.83375i −0.979714 + 0.0743074i
\(610\) 0 0
\(611\) 35.1155 + 17.1452i 1.42062 + 0.693622i
\(612\) 0 0
\(613\) −12.2471 + 6.56483i −0.494655 + 0.265151i −0.700784 0.713374i \(-0.747166\pi\)
0.206129 + 0.978525i \(0.433913\pi\)
\(614\) 0 0
\(615\) −2.62151 15.2419i −0.105709 0.614612i
\(616\) 0 0
\(617\) −2.03403 35.7872i −0.0818869 1.44074i −0.732210 0.681079i \(-0.761511\pi\)
0.650323 0.759658i \(-0.274633\pi\)
\(618\) 0 0
\(619\) −27.0340 32.0807i −1.08659 1.28943i −0.954506 0.298193i \(-0.903616\pi\)
−0.132084 0.991239i \(-0.542167\pi\)
\(620\) 0 0
\(621\) −0.447364 23.6356i −0.0179521 0.948465i
\(622\) 0 0
\(623\) −17.7609 2.70977i −0.711574 0.108565i
\(624\) 0 0
\(625\) 2.95027 31.0850i 0.118011 1.24340i
\(626\) 0 0
\(627\) −4.44212 + 2.16888i −0.177401 + 0.0866167i
\(628\) 0 0
\(629\) −24.7279 8.76539i −0.985967 0.349499i
\(630\) 0 0
\(631\) −2.82771 0.767250i −0.112569 0.0305438i 0.205134 0.978734i \(-0.434237\pi\)
−0.317703 + 0.948190i \(0.602912\pi\)
\(632\) 0 0
\(633\) 7.19332 6.29835i 0.285909 0.250337i
\(634\) 0 0
\(635\) −47.2907 27.7025i −1.87667 1.09934i
\(636\) 0 0
\(637\) 11.0718 2.55858i 0.438681 0.101375i
\(638\) 0 0
\(639\) −11.7914 + 4.68921i −0.466461 + 0.185502i
\(640\) 0 0
\(641\) 2.59582 + 6.18395i 0.102529 + 0.244251i 0.965200 0.261515i \(-0.0842220\pi\)
−0.862671 + 0.505766i \(0.831210\pi\)
\(642\) 0 0
\(643\) 2.59402 + 2.85188i 0.102298 + 0.112467i 0.788767 0.614692i \(-0.210720\pi\)
−0.686469 + 0.727159i \(0.740840\pi\)
\(644\) 0 0
\(645\) 10.8546 + 4.31665i 0.427398 + 0.169968i
\(646\) 0 0
\(647\) 22.4266 + 7.00631i 0.881679 + 0.275447i 0.705328 0.708881i \(-0.250800\pi\)
0.176351 + 0.984327i \(0.443571\pi\)
\(648\) 0 0
\(649\) 4.75874 7.15856i 0.186797 0.280998i
\(650\) 0 0
\(651\) −9.50978 0.721278i −0.372718 0.0282691i
\(652\) 0 0
\(653\) −3.73956 + 12.8173i −0.146340 + 0.501580i −0.999809 0.0195647i \(-0.993772\pi\)
0.853468 + 0.521145i \(0.174495\pi\)
\(654\) 0 0
\(655\) 19.7557 38.5921i 0.771920 1.50792i
\(656\) 0 0
\(657\) 0.929757 1.19210i 0.0362733 0.0465083i
\(658\) 0 0
\(659\) 13.6397 3.70089i 0.531326 0.144166i 0.0139150 0.999903i \(-0.495571\pi\)
0.517411 + 0.855737i \(0.326896\pi\)
\(660\) 0 0
\(661\) 12.3227 26.4989i 0.479299 1.03069i −0.506420 0.862287i \(-0.669031\pi\)
0.985719 0.168401i \(-0.0538602\pi\)
\(662\) 0 0
\(663\) 39.2274 + 17.3467i 1.52347 + 0.673690i
\(664\) 0 0
\(665\) −1.50279 11.2774i −0.0582758 0.437318i
\(666\) 0 0
\(667\) 32.0551 1.24118
\(668\) 0 0
\(669\) −31.4432 −1.21566
\(670\) 0 0
\(671\) 2.63546 + 19.7772i 0.101741 + 0.763492i
\(672\) 0 0
\(673\) −13.9056 6.14919i −0.536023 0.237034i 0.118663 0.992935i \(-0.462139\pi\)
−0.654686 + 0.755901i \(0.727199\pi\)
\(674\) 0 0
\(675\) −6.34028 + 13.6342i −0.244037 + 0.524780i
\(676\) 0 0
\(677\) 27.8484 7.55619i 1.07030 0.290408i 0.317232 0.948348i \(-0.397247\pi\)
0.753070 + 0.657940i \(0.228572\pi\)
\(678\) 0 0
\(679\) −17.4038 + 22.3144i −0.667895 + 0.856350i
\(680\) 0 0
\(681\) −8.92931 + 17.4431i −0.342172 + 0.668420i
\(682\) 0 0
\(683\) −6.17314 + 21.1584i −0.236209 + 0.809603i 0.752350 + 0.658764i \(0.228920\pi\)
−0.988558 + 0.150839i \(0.951802\pi\)
\(684\) 0 0
\(685\) −6.45297 0.489431i −0.246555 0.0187002i
\(686\) 0 0
\(687\) 9.91138 14.9097i 0.378143 0.568839i
\(688\) 0 0
\(689\) 65.1588 + 20.3564i 2.48235 + 0.775515i
\(690\) 0 0
\(691\) 12.7126 + 5.05554i 0.483609 + 0.192322i 0.598605 0.801044i \(-0.295722\pi\)
−0.114996 + 0.993366i \(0.536686\pi\)
\(692\) 0 0
\(693\) 2.53614 + 2.78824i 0.0963400 + 0.105917i
\(694\) 0 0
\(695\) 16.9187 + 40.3050i 0.641764 + 1.52886i
\(696\) 0 0
\(697\) −20.5104 + 8.15658i −0.776887 + 0.308953i
\(698\) 0 0
\(699\) −8.41948 + 1.94566i −0.318454 + 0.0735915i
\(700\) 0 0
\(701\) −30.3323 17.7684i −1.14563 0.671104i −0.194812 0.980841i \(-0.562410\pi\)
−0.950822 + 0.309737i \(0.899759\pi\)
\(702\) 0 0
\(703\) −6.49625 + 5.68800i −0.245011 + 0.214527i
\(704\) 0 0
\(705\) −28.5829 7.75548i −1.07649 0.292088i
\(706\) 0 0
\(707\) 5.85681 + 2.07609i 0.220268 + 0.0780792i
\(708\) 0 0
\(709\) −7.85215 + 3.83384i −0.294894 + 0.143983i −0.580249 0.814439i \(-0.697045\pi\)
0.285356 + 0.958422i \(0.407888\pi\)
\(710\) 0 0
\(711\) −0.988113 + 10.4111i −0.0370571 + 0.390446i
\(712\) 0 0
\(713\) 12.4642 + 1.90165i 0.466787 + 0.0712175i
\(714\) 0 0
\(715\) 0.505729 + 26.7193i 0.0189132 + 0.999244i
\(716\) 0 0
\(717\) 9.11442 + 10.8159i 0.340384 + 0.403926i
\(718\) 0 0
\(719\) −1.25258 22.0382i −0.0467134 0.821886i −0.933250 0.359228i \(-0.883040\pi\)
0.886537 0.462659i \(-0.153104\pi\)
\(720\) 0 0
\(721\) 2.21026 + 12.8508i 0.0823145 + 0.478590i
\(722\) 0 0
\(723\) 27.1348 14.5451i 1.00915 0.540940i
\(724\) 0 0
\(725\) −18.3217 8.94561i −0.680449 0.332231i
\(726\) 0 0
\(727\) −18.4019 + 1.39571i −0.682489 + 0.0517640i −0.412306 0.911045i \(-0.635277\pi\)
−0.270182 + 0.962809i \(0.587084\pi\)
\(728\) 0 0
\(729\) −20.5678 + 20.9608i −0.761769 + 0.776324i
\(730\) 0 0
\(731\) 2.82595 16.4305i 0.104522 0.607706i
\(732\) 0 0
\(733\) −22.2945 + 18.0770i −0.823466 + 0.667690i −0.945782 0.324801i \(-0.894703\pi\)
0.122317 + 0.992491i \(0.460968\pi\)
\(734\) 0 0
\(735\) −7.87657 + 3.48309i −0.290532 + 0.128476i
\(736\) 0 0
\(737\) −2.23849 + 8.91419i −0.0824559 + 0.328358i
\(738\) 0 0
\(739\) 25.1158 2.86426i 0.923899 0.105363i 0.361633 0.932320i \(-0.382219\pi\)
0.562265 + 0.826957i \(0.309930\pi\)
\(740\) 0 0
\(741\) 11.2934 8.46931i 0.414874 0.311128i
\(742\) 0 0
\(743\) 4.86963 5.77868i 0.178649 0.211999i −0.667984 0.744176i \(-0.732843\pi\)
0.846634 + 0.532176i \(0.178626\pi\)
\(744\) 0 0
\(745\) 4.13349 + 8.07462i 0.151439 + 0.295831i
\(746\) 0 0
\(747\) 3.89880 10.3713i 0.142650 0.379465i
\(748\) 0 0
\(749\) −4.21903 + 2.47148i −0.154160 + 0.0903058i
\(750\) 0 0
\(751\) 15.6400 21.6988i 0.570710 0.791801i −0.422717 0.906262i \(-0.638924\pi\)
0.993428 + 0.114461i \(0.0365140\pi\)
\(752\) 0 0
\(753\) 7.92965 + 4.25055i 0.288972 + 0.154899i
\(754\) 0 0
\(755\) −10.0920 18.0006i −0.367287 0.655111i
\(756\) 0 0
\(757\) 3.87906 + 13.2955i 0.140987 + 0.483231i 0.999566 0.0294493i \(-0.00937535\pi\)
−0.858579 + 0.512681i \(0.828652\pi\)
\(758\) 0 0
\(759\) 6.79913 + 8.71759i 0.246793 + 0.316428i
\(760\) 0 0
\(761\) 3.12440 + 8.31127i 0.113259 + 0.301283i 0.980473 0.196653i \(-0.0630071\pi\)
−0.867214 + 0.497936i \(0.834091\pi\)
\(762\) 0 0
\(763\) −3.52230 + 2.24656i −0.127516 + 0.0813308i
\(764\) 0 0
\(765\) 14.2753 + 3.29888i 0.516126 + 0.119271i
\(766\) 0 0
\(767\) −9.50089 + 22.6337i −0.343057 + 0.817255i
\(768\) 0 0
\(769\) 2.14094 + 22.5576i 0.0772043 + 0.813449i 0.947254 + 0.320485i \(0.103846\pi\)
−0.870049 + 0.492965i \(0.835913\pi\)
\(770\) 0 0
\(771\) −31.9133 + 22.0968i −1.14933 + 0.795798i
\(772\) 0 0
\(773\) −25.2467 22.1056i −0.908062 0.795083i 0.0712464 0.997459i \(-0.477302\pi\)
−0.979308 + 0.202376i \(0.935134\pi\)
\(774\) 0 0
\(775\) −6.59341 4.56529i −0.236842 0.163990i
\(776\) 0 0
\(777\) −12.3151 7.85466i −0.441800 0.281785i
\(778\) 0 0
\(779\) −0.959562 + 7.20082i −0.0343799 + 0.257996i
\(780\) 0 0
\(781\) 13.0609 21.3588i 0.467355 0.764277i
\(782\) 0 0
\(783\) −30.3646 30.9447i −1.08514 1.10588i
\(784\) 0 0
\(785\) 7.68352 36.3737i 0.274236 1.29823i
\(786\) 0 0
\(787\) −6.87277 + 12.2586i −0.244988 + 0.436972i −0.966952 0.254958i \(-0.917938\pi\)
0.721964 + 0.691930i \(0.243239\pi\)
\(788\) 0 0
\(789\) −4.47251 17.8106i −0.159226 0.634073i
\(790\) 0 0
\(791\) −5.80693 8.73534i −0.206470 0.310593i
\(792\) 0 0
\(793\) −18.0162 54.0523i −0.639773 1.91945i
\(794\) 0 0
\(795\) −51.4037 5.86218i −1.82310 0.207910i
\(796\) 0 0