Properties

Label 668.2.e.a.9.1
Level $668$
Weight $2$
Character 668.9
Analytic conductor $5.334$
Analytic rank $0$
Dimension $1148$
CM no
Inner twists $2$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 668 = 2^{2} \cdot 167 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 668.e (of order \(83\), degree \(82\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(5.33400685502\)
Analytic rank: \(0\)
Dimension: \(1148\)
Relative dimension: \(14\) over \(\Q(\zeta_{83})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{83}]$

Embedding invariants

Embedding label 9.1
Character \(\chi\) \(=\) 668.9
Dual form 668.2.e.a.297.1

$q$-expansion

\(f(q)\) \(=\) \(q+(-0.426508 - 3.20063i) q^{3} +(-3.18243 - 1.40730i) q^{5} +(1.55798 - 3.35028i) q^{7} +(-7.16683 + 1.94460i) q^{9} +O(q^{10})\) \(q+(-0.426508 - 3.20063i) q^{3} +(-3.18243 - 1.40730i) q^{5} +(1.55798 - 3.35028i) q^{7} +(-7.16683 + 1.94460i) q^{9} +(-3.01463 + 3.86524i) q^{11} +(2.66674 - 5.20938i) q^{13} +(-3.14691 + 10.7860i) q^{15} +(3.01629 + 0.228773i) q^{17} +(0.174993 - 0.263242i) q^{19} +(-11.3875 - 3.55759i) q^{21} +(-1.18344 - 0.470632i) q^{23} +(4.78301 + 5.25846i) q^{25} +(5.53138 + 13.1772i) q^{27} +(7.69174 - 3.05885i) q^{29} +(-0.193243 + 0.0446564i) q^{31} +(13.6570 + 8.00016i) q^{33} +(-9.67299 + 8.46950i) q^{35} +(0.795647 + 0.215885i) q^{37} +(-17.8107 - 6.31343i) q^{39} +(-6.82282 + 3.33127i) q^{41} +(0.651144 - 6.86066i) q^{43} +(25.5446 + 3.89732i) q^{45} +(0.195873 + 10.3486i) q^{47} +(-4.28633 - 5.08649i) q^{49} +(-0.554250 - 9.75160i) q^{51} +(-1.85285 - 10.7728i) q^{53} +(15.0334 - 8.05839i) q^{55} +(-0.917176 - 0.447814i) q^{57} +(-4.91371 + 0.372685i) q^{59} +(-6.52326 + 6.64790i) q^{61} +(-4.65081 + 27.0406i) q^{63} +(-15.8179 + 12.8256i) q^{65} +(-5.21353 + 2.30547i) q^{67} +(-1.00157 + 3.98849i) q^{69} +(1.11805 - 0.127505i) q^{71} +(1.09822 - 0.823594i) q^{73} +(14.7904 - 17.5514i) q^{75} +(8.25294 + 16.1218i) q^{77} +(-0.238225 + 0.633707i) q^{79} +(20.5938 - 12.0637i) q^{81} +(4.51982 - 6.27077i) q^{83} +(-9.27717 - 4.97287i) q^{85} +(-13.0709 - 23.3138i) q^{87} +(-0.299594 - 1.02686i) q^{89} +(-13.2982 - 17.0504i) q^{91} +(0.225348 + 0.599453i) q^{93} +(-0.927363 + 0.591481i) q^{95} +(5.86639 + 1.35566i) q^{97} +(14.0890 - 33.5638i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 1148q - 2q^{5} - 14q^{9} + O(q^{10}) \) \( 1148q - 2q^{5} - 14q^{9} + 2q^{11} + 4q^{13} + 14q^{15} + 2q^{17} + 2q^{19} + 14q^{23} - 6q^{25} + 2q^{29} - 2q^{31} + 16q^{33} - 2q^{35} + 10q^{37} + 6q^{39} + 4q^{41} + 4q^{43} - 2q^{45} + 2q^{47} - 30q^{49} - 2q^{51} - 6q^{55} - 4q^{57} + 6q^{59} + 2q^{61} + 14q^{63} + 22q^{65} + 12q^{67} - 14q^{69} - 8q^{71} - 18q^{73} - 26q^{75} - 2q^{79} - 6q^{81} - 22q^{83} + 34q^{85} + 2q^{87} + 14q^{89} - 6q^{91} + 32q^{93} - 8q^{95} + 44q^{97} + 2q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/668\mathbb{Z}\right)^\times\).

\(n\) \(5\) \(335\)
\(\chi(n)\) \(e\left(\frac{11}{83}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.426508 3.20063i −0.246244 1.84789i −0.482122 0.876104i \(-0.660134\pi\)
0.235878 0.971783i \(-0.424203\pi\)
\(4\) 0 0
\(5\) −3.18243 1.40730i −1.42323 0.629363i −0.457567 0.889175i \(-0.651279\pi\)
−0.965659 + 0.259813i \(0.916339\pi\)
\(6\) 0 0
\(7\) 1.55798 3.35028i 0.588860 1.26629i −0.354667 0.934993i \(-0.615406\pi\)
0.943527 0.331295i \(-0.107486\pi\)
\(8\) 0 0
\(9\) −7.16683 + 1.94460i −2.38894 + 0.648199i
\(10\) 0 0
\(11\) −3.01463 + 3.86524i −0.908944 + 1.16541i 0.0767805 + 0.997048i \(0.475536\pi\)
−0.985724 + 0.168366i \(0.946151\pi\)
\(12\) 0 0
\(13\) 2.66674 5.20938i 0.739622 1.44482i −0.150267 0.988645i \(-0.548013\pi\)
0.889889 0.456177i \(-0.150782\pi\)
\(14\) 0 0
\(15\) −3.14691 + 10.7860i −0.812529 + 2.78494i
\(16\) 0 0
\(17\) 3.01629 + 0.228773i 0.731557 + 0.0554856i 0.436135 0.899881i \(-0.356347\pi\)
0.295422 + 0.955367i \(0.404540\pi\)
\(18\) 0 0
\(19\) 0.174993 0.263242i 0.0401462 0.0603918i −0.812161 0.583434i \(-0.801709\pi\)
0.852307 + 0.523042i \(0.175203\pi\)
\(20\) 0 0
\(21\) −11.3875 3.55759i −2.48496 0.776330i
\(22\) 0 0
\(23\) −1.18344 0.470632i −0.246765 0.0981335i 0.242877 0.970057i \(-0.421909\pi\)
−0.489642 + 0.871924i \(0.662873\pi\)
\(24\) 0 0
\(25\) 4.78301 + 5.25846i 0.956602 + 1.05169i
\(26\) 0 0
\(27\) 5.53138 + 13.1772i 1.06451 + 2.53596i
\(28\) 0 0
\(29\) 7.69174 3.05885i 1.42832 0.568015i 0.477742 0.878500i \(-0.341455\pi\)
0.950578 + 0.310485i \(0.100492\pi\)
\(30\) 0 0
\(31\) −0.193243 + 0.0446564i −0.0347074 + 0.00802053i −0.242474 0.970158i \(-0.577959\pi\)
0.207767 + 0.978178i \(0.433381\pi\)
\(32\) 0 0
\(33\) 13.6570 + 8.00016i 2.37738 + 1.39265i
\(34\) 0 0
\(35\) −9.67299 + 8.46950i −1.63503 + 1.43161i
\(36\) 0 0
\(37\) 0.795647 + 0.215885i 0.130804 + 0.0354913i 0.326664 0.945140i \(-0.394075\pi\)
−0.195861 + 0.980632i \(0.562750\pi\)
\(38\) 0 0
\(39\) −17.8107 6.31343i −2.85200 1.01096i
\(40\) 0 0
\(41\) −6.82282 + 3.33127i −1.06555 + 0.520256i −0.886092 0.463510i \(-0.846590\pi\)
−0.179454 + 0.983766i \(0.557433\pi\)
\(42\) 0 0
\(43\) 0.651144 6.86066i 0.0992985 1.04624i −0.797356 0.603510i \(-0.793769\pi\)
0.896654 0.442732i \(-0.145991\pi\)
\(44\) 0 0
\(45\) 25.5446 + 3.89732i 3.80796 + 0.580979i
\(46\) 0 0
\(47\) 0.195873 + 10.3486i 0.0285709 + 1.50949i 0.670029 + 0.742335i \(0.266282\pi\)
−0.641458 + 0.767158i \(0.721670\pi\)
\(48\) 0 0
\(49\) −4.28633 5.08649i −0.612332 0.726641i
\(50\) 0 0
\(51\) −0.554250 9.75160i −0.0776106 1.36550i
\(52\) 0 0
\(53\) −1.85285 10.7728i −0.254509 1.47976i −0.778291 0.627903i \(-0.783913\pi\)
0.523783 0.851852i \(-0.324520\pi\)
\(54\) 0 0
\(55\) 15.0334 8.05839i 2.02710 1.08659i
\(56\) 0 0
\(57\) −0.917176 0.447814i −0.121483 0.0593145i
\(58\) 0 0
\(59\) −4.91371 + 0.372685i −0.639710 + 0.0485194i −0.391487 0.920183i \(-0.628039\pi\)
−0.248223 + 0.968703i \(0.579847\pi\)
\(60\) 0 0
\(61\) −6.52326 + 6.64790i −0.835218 + 0.851176i −0.990616 0.136676i \(-0.956358\pi\)
0.155398 + 0.987852i \(0.450334\pi\)
\(62\) 0 0
\(63\) −4.65081 + 27.0406i −0.585947 + 3.40679i
\(64\) 0 0
\(65\) −15.8179 + 12.8256i −1.96197 + 1.59082i
\(66\) 0 0
\(67\) −5.21353 + 2.30547i −0.636933 + 0.281657i −0.697585 0.716502i \(-0.745742\pi\)
0.0606520 + 0.998159i \(0.480682\pi\)
\(68\) 0 0
\(69\) −1.00157 + 3.98849i −0.120575 + 0.480158i
\(70\) 0 0
\(71\) 1.11805 0.127505i 0.132688 0.0151320i −0.0467107 0.998908i \(-0.514874\pi\)
0.179399 + 0.983776i \(0.442585\pi\)
\(72\) 0 0
\(73\) 1.09822 0.823594i 0.128537 0.0963944i −0.533758 0.845637i \(-0.679221\pi\)
0.662296 + 0.749243i \(0.269582\pi\)
\(74\) 0 0
\(75\) 14.7904 17.5514i 1.70785 2.02667i
\(76\) 0 0
\(77\) 8.25294 + 16.1218i 0.940510 + 1.83725i
\(78\) 0 0
\(79\) −0.238225 + 0.633707i −0.0268024 + 0.0712976i −0.948767 0.315977i \(-0.897668\pi\)
0.921964 + 0.387275i \(0.126583\pi\)
\(80\) 0 0
\(81\) 20.5938 12.0637i 2.28820 1.34041i
\(82\) 0 0
\(83\) 4.51982 6.27077i 0.496114 0.688306i −0.486560 0.873647i \(-0.661749\pi\)
0.982674 + 0.185341i \(0.0593389\pi\)
\(84\) 0 0
\(85\) −9.27717 4.97287i −1.00625 0.539383i
\(86\) 0 0
\(87\) −13.0709 23.3138i −1.40134 2.49950i
\(88\) 0 0
\(89\) −0.299594 1.02686i −0.0317569 0.108846i 0.942554 0.334054i \(-0.108417\pi\)
−0.974311 + 0.225208i \(0.927694\pi\)
\(90\) 0 0
\(91\) −13.2982 17.0504i −1.39403 1.78737i
\(92\) 0 0
\(93\) 0.225348 + 0.599453i 0.0233675 + 0.0621604i
\(94\) 0 0
\(95\) −0.927363 + 0.591481i −0.0951454 + 0.0606847i
\(96\) 0 0
\(97\) 5.86639 + 1.35566i 0.595641 + 0.137647i 0.512200 0.858866i \(-0.328831\pi\)
0.0834411 + 0.996513i \(0.473409\pi\)
\(98\) 0 0
\(99\) 14.0890 33.5638i 1.41600 3.37329i
\(100\) 0 0
\(101\) 0.185363 + 1.95305i 0.0184443 + 0.194335i 0.999995 + 0.00313371i \(0.000997492\pi\)
−0.981551 + 0.191202i \(0.938762\pi\)
\(102\) 0 0
\(103\) −6.78536 + 4.69820i −0.668582 + 0.462927i −0.854372 0.519662i \(-0.826058\pi\)
0.185790 + 0.982589i \(0.440516\pi\)
\(104\) 0 0
\(105\) 31.2334 + 27.3474i 3.04807 + 2.66883i
\(106\) 0 0
\(107\) −12.6968 8.79126i −1.22744 0.849883i −0.234928 0.972013i \(-0.575486\pi\)
−0.992514 + 0.122129i \(0.961028\pi\)
\(108\) 0 0
\(109\) −14.3785 9.17072i −1.37721 0.878396i −0.378326 0.925673i \(-0.623500\pi\)
−0.998882 + 0.0472765i \(0.984946\pi\)
\(110\) 0 0
\(111\) 0.351620 2.63865i 0.0333743 0.250450i
\(112\) 0 0
\(113\) 5.73604 9.38028i 0.539602 0.882423i −0.460384 0.887720i \(-0.652288\pi\)
0.999986 + 0.00529673i \(0.00168601\pi\)
\(114\) 0 0
\(115\) 3.10390 + 3.16321i 0.289440 + 0.294971i
\(116\) 0 0
\(117\) −8.98196 + 42.5205i −0.830382 + 3.93102i
\(118\) 0 0
\(119\) 5.46576 9.74899i 0.501045 0.893688i
\(120\) 0 0
\(121\) −3.17304 12.6358i −0.288458 1.14871i
\(122\) 0 0
\(123\) 13.5721 + 20.4165i 1.22376 + 1.84090i
\(124\) 0 0
\(125\) −2.31983 6.95999i −0.207492 0.622520i
\(126\) 0 0
\(127\) −15.3406 1.74948i −1.36126 0.155241i −0.598086 0.801432i \(-0.704072\pi\)
−0.763176 + 0.646191i \(0.776361\pi\)
\(128\) 0 0
\(129\) −22.2362 + 0.842053i −1.95779 + 0.0741386i
\(130\) 0 0
\(131\) 0.353314 6.21628i 0.0308692 0.543119i −0.945313 0.326165i \(-0.894243\pi\)
0.976182 0.216954i \(-0.0696121\pi\)
\(132\) 0 0
\(133\) −0.609299 0.996401i −0.0528329 0.0863989i
\(134\) 0 0
\(135\) 0.941075 49.7199i 0.0809948 4.27921i
\(136\) 0 0
\(137\) 7.58342 2.68812i 0.647895 0.229662i 0.0101970 0.999948i \(-0.496754\pi\)
0.637698 + 0.770286i \(0.279887\pi\)
\(138\) 0 0
\(139\) −0.511899 0.483630i −0.0434187 0.0410210i 0.664736 0.747079i \(-0.268544\pi\)
−0.708154 + 0.706058i \(0.750472\pi\)
\(140\) 0 0
\(141\) 33.0384 5.04066i 2.78234 0.424500i
\(142\) 0 0
\(143\) 12.0963 + 26.0120i 1.01154 + 2.17523i
\(144\) 0 0
\(145\) −28.7831 1.08998i −2.39031 0.0905177i
\(146\) 0 0
\(147\) −14.4518 + 15.8884i −1.19197 + 1.31045i
\(148\) 0 0
\(149\) 10.4271 + 8.45463i 0.854225 + 0.692631i 0.953161 0.302463i \(-0.0978090\pi\)
−0.0989359 + 0.995094i \(0.531544\pi\)
\(150\) 0 0
\(151\) 11.7424 + 8.80604i 0.955585 + 0.716625i 0.959011 0.283369i \(-0.0914521\pi\)
−0.00342626 + 0.999994i \(0.501091\pi\)
\(152\) 0 0
\(153\) −22.0621 + 4.22588i −1.78361 + 0.341642i
\(154\) 0 0
\(155\) 0.677826 + 0.129834i 0.0544443 + 0.0104285i
\(156\) 0 0
\(157\) −2.21721 10.4963i −0.176953 0.837694i −0.972700 0.232065i \(-0.925452\pi\)
0.795747 0.605629i \(-0.207078\pi\)
\(158\) 0 0
\(159\) −33.6895 + 10.5250i −2.67175 + 0.834685i
\(160\) 0 0
\(161\) −3.42052 + 3.23163i −0.269575 + 0.254688i
\(162\) 0 0
\(163\) 3.05275 9.15890i 0.239110 0.717381i −0.758713 0.651426i \(-0.774171\pi\)
0.997823 0.0659552i \(-0.0210094\pi\)
\(164\) 0 0
\(165\) −32.2038 44.6794i −2.50706 3.47828i
\(166\) 0 0
\(167\) 12.9227 0.0594195i 0.999989 0.00459802i
\(168\) 0 0
\(169\) −12.4248 17.2381i −0.955754 1.32601i
\(170\) 0 0
\(171\) −0.742248 + 2.22690i −0.0567611 + 0.170295i
\(172\) 0 0
\(173\) 11.1683 10.5516i 0.849112 0.802222i −0.132882 0.991132i \(-0.542423\pi\)
0.981994 + 0.188910i \(0.0604954\pi\)
\(174\) 0 0
\(175\) 25.0691 7.83188i 1.89505 0.592035i
\(176\) 0 0
\(177\) 3.28856 + 15.5680i 0.247183 + 1.17016i
\(178\) 0 0
\(179\) −23.3863 4.47953i −1.74798 0.334816i −0.788165 0.615464i \(-0.788969\pi\)
−0.959811 + 0.280648i \(0.909451\pi\)
\(180\) 0 0
\(181\) 25.0502 4.79824i 1.86197 0.356650i 0.871057 0.491181i \(-0.163435\pi\)
0.990909 + 0.134531i \(0.0429529\pi\)
\(182\) 0 0
\(183\) 24.0597 + 18.0432i 1.77854 + 1.33379i
\(184\) 0 0
\(185\) −2.22828 1.80675i −0.163826 0.132835i
\(186\) 0 0
\(187\) −9.97724 + 10.9690i −0.729608 + 0.802134i
\(188\) 0 0
\(189\) 52.7652 + 1.99815i 3.83811 + 0.145344i
\(190\) 0 0
\(191\) −8.57189 18.4331i −0.620240 1.33377i −0.924501 0.381180i \(-0.875518\pi\)
0.304261 0.952589i \(-0.401591\pi\)
\(192\) 0 0
\(193\) 3.40495 0.519492i 0.245094 0.0373938i −0.0271141 0.999632i \(-0.508632\pi\)
0.272208 + 0.962239i \(0.412246\pi\)
\(194\) 0 0
\(195\) 47.7965 + 45.1570i 3.42278 + 3.23376i
\(196\) 0 0
\(197\) −1.57669 + 0.558894i −0.112334 + 0.0398195i −0.389678 0.920951i \(-0.627414\pi\)
0.277343 + 0.960771i \(0.410546\pi\)
\(198\) 0 0
\(199\) −0.383663 + 20.2701i −0.0271971 + 1.43691i 0.681718 + 0.731615i \(0.261233\pi\)
−0.708915 + 0.705294i \(0.750815\pi\)
\(200\) 0 0
\(201\) 9.60256 + 15.7033i 0.677312 + 1.10762i
\(202\) 0 0
\(203\) 1.73552 30.5351i 0.121810 2.14315i
\(204\) 0 0
\(205\) 26.4012 0.999778i 1.84394 0.0698275i
\(206\) 0 0
\(207\) 9.39672 + 1.07162i 0.653117 + 0.0744828i
\(208\) 0 0
\(209\) 0.489954 + 1.46997i 0.0338908 + 0.101680i
\(210\) 0 0
\(211\) 7.22395 + 10.8670i 0.497317 + 0.748113i 0.992706 0.120558i \(-0.0384684\pi\)
−0.495389 + 0.868671i \(0.664974\pi\)
\(212\) 0 0
\(213\) −0.884954 3.52409i −0.0606360 0.241467i
\(214\) 0 0
\(215\) −11.7272 + 20.9172i −0.799789 + 1.42654i
\(216\) 0 0
\(217\) −0.151456 + 0.716992i −0.0102815 + 0.0486726i
\(218\) 0 0
\(219\) −3.10442 3.16374i −0.209777 0.213786i
\(220\) 0 0
\(221\) 9.23543 15.1029i 0.621242 1.01593i
\(222\) 0 0
\(223\) 1.50918 11.3253i 0.101062 0.758399i −0.865307 0.501242i \(-0.832877\pi\)
0.966370 0.257157i \(-0.0827859\pi\)
\(224\) 0 0
\(225\) −44.5046 28.3855i −2.96697 1.89236i
\(226\) 0 0
\(227\) 6.80175 + 4.70954i 0.451448 + 0.312583i 0.773111 0.634271i \(-0.218700\pi\)
−0.321663 + 0.946854i \(0.604242\pi\)
\(228\) 0 0
\(229\) 12.1948 + 10.6775i 0.805854 + 0.705592i 0.959246 0.282574i \(-0.0911881\pi\)
−0.153391 + 0.988166i \(0.549019\pi\)
\(230\) 0 0
\(231\) 48.0801 33.2907i 3.16344 2.19037i
\(232\) 0 0
\(233\) −0.711518 7.49678i −0.0466131 0.491131i −0.988071 0.154000i \(-0.950785\pi\)
0.941458 0.337131i \(-0.109456\pi\)
\(234\) 0 0
\(235\) 13.9402 33.2092i 0.909355 2.16633i
\(236\) 0 0
\(237\) 2.12987 + 0.492191i 0.138350 + 0.0319712i
\(238\) 0 0
\(239\) 0.529219 0.337541i 0.0342323 0.0218337i −0.520516 0.853852i \(-0.674260\pi\)
0.554748 + 0.832018i \(0.312815\pi\)
\(240\) 0 0
\(241\) 6.34602 + 16.8811i 0.408783 + 1.08741i 0.966339 + 0.257271i \(0.0828234\pi\)
−0.557556 + 0.830139i \(0.688261\pi\)
\(242\) 0 0
\(243\) −21.0278 26.9610i −1.34893 1.72955i
\(244\) 0 0
\(245\) 6.48274 + 22.2195i 0.414167 + 1.41955i
\(246\) 0 0
\(247\) −0.904665 1.61360i −0.0575625 0.102671i
\(248\) 0 0
\(249\) −21.9982 11.7917i −1.39408 0.747271i
\(250\) 0 0
\(251\) −11.7717 + 16.3319i −0.743020 + 1.03086i 0.254936 + 0.966958i \(0.417946\pi\)
−0.997956 + 0.0639044i \(0.979645\pi\)
\(252\) 0 0
\(253\) 5.38674 3.15551i 0.338661 0.198385i
\(254\) 0 0
\(255\) −11.9595 + 31.8138i −0.748935 + 1.99226i
\(256\) 0 0
\(257\) 1.65527 + 3.23352i 0.103253 + 0.201701i 0.936041 0.351891i \(-0.114461\pi\)
−0.832788 + 0.553593i \(0.813257\pi\)
\(258\) 0 0
\(259\) 1.96288 2.32930i 0.121967 0.144736i
\(260\) 0 0
\(261\) −49.1772 + 36.8796i −3.04399 + 2.28279i
\(262\) 0 0
\(263\) −23.7235 + 2.70548i −1.46286 + 0.166827i −0.808115 0.589025i \(-0.799512\pi\)
−0.654742 + 0.755852i \(0.727223\pi\)
\(264\) 0 0
\(265\) −9.26394 + 36.8911i −0.569079 + 2.26620i
\(266\) 0 0
\(267\) −3.15881 + 1.39685i −0.193316 + 0.0854860i
\(268\) 0 0
\(269\) 11.0265 8.94061i 0.672298 0.545118i −0.231630 0.972804i \(-0.574406\pi\)
0.903928 + 0.427686i \(0.140671\pi\)
\(270\) 0 0
\(271\) 0.519397 3.01986i 0.0315511 0.183443i −0.965476 0.260491i \(-0.916116\pi\)
0.997027 + 0.0770475i \(0.0245493\pi\)
\(272\) 0 0
\(273\) −48.9004 + 49.8348i −2.95959 + 3.01614i
\(274\) 0 0
\(275\) −34.7442 + 2.63521i −2.09515 + 0.158909i
\(276\) 0 0
\(277\) 14.8924 + 7.27129i 0.894800 + 0.436889i 0.827903 0.560871i \(-0.189533\pi\)
0.0668970 + 0.997760i \(0.478690\pi\)
\(278\) 0 0
\(279\) 1.29810 0.695824i 0.0777152 0.0416579i
\(280\) 0 0
\(281\) 3.07865 + 17.8998i 0.183657 + 1.06781i 0.920208 + 0.391429i \(0.128019\pi\)
−0.736551 + 0.676382i \(0.763547\pi\)
\(282\) 0 0
\(283\) −0.497256 8.74883i −0.0295588 0.520064i −0.978711 0.205245i \(-0.934201\pi\)
0.949152 0.314819i \(-0.101944\pi\)
\(284\) 0 0
\(285\) 2.28864 + 2.71588i 0.135567 + 0.160875i
\(286\) 0 0
\(287\) 0.530887 + 28.0484i 0.0313373 + 1.65565i
\(288\) 0 0
\(289\) −7.75988 1.18392i −0.456464 0.0696425i
\(290\) 0 0
\(291\) 1.83692 19.3544i 0.107682 1.13457i
\(292\) 0 0
\(293\) 1.18468 0.578426i 0.0692100 0.0337920i −0.403819 0.914839i \(-0.632317\pi\)
0.473029 + 0.881047i \(0.343161\pi\)
\(294\) 0 0
\(295\) 16.1620 + 5.72901i 0.940989 + 0.333556i
\(296\) 0 0
\(297\) −67.6083 18.3443i −3.92303 1.06445i
\(298\) 0 0
\(299\) −5.60764 + 4.90995i −0.324298 + 0.283950i
\(300\) 0 0
\(301\) −21.9707 12.8703i −1.26637 0.741830i
\(302\) 0 0
\(303\) 6.17193 1.42627i 0.354568 0.0819370i
\(304\) 0 0
\(305\) 30.1154 11.9763i 1.72440 0.685761i
\(306\) 0 0
\(307\) −10.9812 26.1603i −0.626732 1.49304i −0.854565 0.519345i \(-0.826176\pi\)
0.227833 0.973700i \(-0.426836\pi\)
\(308\) 0 0
\(309\) 17.9312 + 19.7136i 1.02007 + 1.12147i
\(310\) 0 0
\(311\) −10.3212 4.10454i −0.585261 0.232747i 0.0580986 0.998311i \(-0.481496\pi\)
−0.643360 + 0.765564i \(0.722460\pi\)
\(312\) 0 0
\(313\) −11.4703 3.58344i −0.648337 0.202548i −0.0436947 0.999045i \(-0.513913\pi\)
−0.604642 + 0.796497i \(0.706684\pi\)
\(314\) 0 0
\(315\) 52.8550 79.5096i 2.97804 4.47986i
\(316\) 0 0
\(317\) −26.2169 1.98845i −1.47249 0.111682i −0.685241 0.728317i \(-0.740303\pi\)
−0.787250 + 0.616634i \(0.788496\pi\)
\(318\) 0 0
\(319\) −11.3645 + 38.9517i −0.636290 + 2.18088i
\(320\) 0 0
\(321\) −22.7223 + 44.3872i −1.26824 + 2.47745i
\(322\) 0 0
\(323\) 0.588052 0.753979i 0.0327201 0.0419525i
\(324\) 0 0
\(325\) 40.1484 10.8936i 2.22703 0.604267i
\(326\) 0 0
\(327\) −23.2196 + 49.9316i −1.28405 + 2.76122i
\(328\) 0 0
\(329\) 34.9758 + 15.4666i 1.92828 + 0.852700i
\(330\) 0 0
\(331\) 0.673270 + 5.05241i 0.0370063 + 0.277705i 0.999967 + 0.00806540i \(0.00256732\pi\)
−0.962961 + 0.269640i \(0.913095\pi\)
\(332\) 0 0
\(333\) −6.12208 −0.335488
\(334\) 0 0
\(335\) 19.8362 1.08376
\(336\) 0 0
\(337\) −2.22578 16.7029i −0.121246 0.909865i −0.941298 0.337576i \(-0.890393\pi\)
0.820052 0.572289i \(-0.193944\pi\)
\(338\) 0 0
\(339\) −32.4693 14.3582i −1.76349 0.779831i
\(340\) 0 0
\(341\) 0.409947 0.881553i 0.0221999 0.0477388i
\(342\) 0 0
\(343\) 1.24205 0.337007i 0.0670641 0.0181967i
\(344\) 0 0
\(345\) 8.80043 11.2836i 0.473799 0.607488i
\(346\) 0 0
\(347\) −4.33492 + 8.46810i −0.232711 + 0.454591i −0.976992 0.213274i \(-0.931587\pi\)
0.744282 + 0.667866i \(0.232792\pi\)
\(348\) 0 0
\(349\) 4.27317 14.6462i 0.228738 0.783996i −0.761926 0.647664i \(-0.775746\pi\)
0.990663 0.136331i \(-0.0435312\pi\)
\(350\) 0 0
\(351\) 83.3961 + 6.32525i 4.45135 + 0.337617i
\(352\) 0 0
\(353\) 5.84835 8.79766i 0.311276 0.468252i −0.643555 0.765400i \(-0.722541\pi\)
0.954832 + 0.297148i \(0.0960353\pi\)
\(354\) 0 0
\(355\) −3.73756 1.16765i −0.198369 0.0619727i
\(356\) 0 0
\(357\) −33.5341 13.3359i −1.77481 0.705809i
\(358\) 0 0
\(359\) −18.2838 20.1012i −0.964981 1.06090i −0.998110 0.0614521i \(-0.980427\pi\)
0.0331293 0.999451i \(-0.489453\pi\)
\(360\) 0 0
\(361\) 7.31528 + 17.4270i 0.385015 + 0.917210i
\(362\) 0 0
\(363\) −39.0891 + 15.5450i −2.05165 + 0.815899i
\(364\) 0 0
\(365\) −4.65406 + 1.07550i −0.243604 + 0.0562945i
\(366\) 0 0
\(367\) 7.32713 + 4.29218i 0.382473 + 0.224050i 0.684119 0.729370i \(-0.260187\pi\)
−0.301646 + 0.953420i \(0.597536\pi\)
\(368\) 0 0
\(369\) 42.4201 37.1423i 2.20830 1.93355i
\(370\) 0 0
\(371\) −38.9786 10.5762i −2.02367 0.549087i
\(372\) 0 0
\(373\) −22.3562 7.92468i −1.15756 0.410324i −0.315087 0.949063i \(-0.602034\pi\)
−0.842473 + 0.538739i \(0.818901\pi\)
\(374\) 0 0
\(375\) −21.2869 + 10.3934i −1.09925 + 0.536714i
\(376\) 0 0
\(377\) 4.57715 48.2264i 0.235735 2.48379i
\(378\) 0 0
\(379\) 0.251877 + 0.0384288i 0.0129381 + 0.00197396i 0.157290 0.987552i \(-0.449724\pi\)
−0.144352 + 0.989526i \(0.546110\pi\)
\(380\) 0 0
\(381\) 0.943460 + 49.8460i 0.0483349 + 2.55369i
\(382\) 0 0
\(383\) 9.60053 + 11.3927i 0.490564 + 0.582141i 0.952410 0.304819i \(-0.0985959\pi\)
−0.461846 + 0.886960i \(0.652813\pi\)
\(384\) 0 0
\(385\) −3.57622 62.9209i −0.182261 3.20674i
\(386\) 0 0
\(387\) 8.67458 + 50.4354i 0.440954 + 2.56378i
\(388\) 0 0
\(389\) 10.3697 5.55849i 0.525764 0.281827i −0.188053 0.982159i \(-0.560218\pi\)
0.713817 + 0.700332i \(0.246965\pi\)
\(390\) 0 0
\(391\) −3.46193 1.69030i −0.175077 0.0854821i
\(392\) 0 0
\(393\) −20.0467 + 1.52046i −1.01122 + 0.0766972i
\(394\) 0 0
\(395\) 1.64995 1.68147i 0.0830179 0.0846041i
\(396\) 0 0
\(397\) 3.25334 18.9154i 0.163280 0.949338i −0.782048 0.623218i \(-0.785825\pi\)
0.945328 0.326120i \(-0.105741\pi\)
\(398\) 0 0
\(399\) −2.92924 + 2.37512i −0.146646 + 0.118905i
\(400\) 0 0
\(401\) −5.54765 + 2.45322i −0.277037 + 0.122508i −0.538283 0.842764i \(-0.680927\pi\)
0.261246 + 0.965272i \(0.415867\pi\)
\(402\) 0 0
\(403\) −0.282697 + 1.12576i −0.0140821 + 0.0560782i
\(404\) 0 0
\(405\) −82.5154 + 9.41023i −4.10022 + 0.467598i
\(406\) 0 0
\(407\) −3.23303 + 2.42456i −0.160255 + 0.120181i
\(408\) 0 0
\(409\) 2.80951 3.33398i 0.138921 0.164855i −0.690775 0.723070i \(-0.742730\pi\)
0.829696 + 0.558215i \(0.188514\pi\)
\(410\) 0 0
\(411\) −11.8381 23.1252i −0.583929 1.14068i
\(412\) 0 0
\(413\) −6.40684 + 17.0429i −0.315260 + 0.838629i
\(414\) 0 0
\(415\) −23.2088 + 13.5956i −1.13928 + 0.667380i
\(416\) 0 0
\(417\) −1.32959 + 1.84467i −0.0651105 + 0.0903340i
\(418\) 0 0
\(419\) 14.4499 + 7.74560i 0.705922 + 0.378397i 0.785862 0.618402i \(-0.212220\pi\)
−0.0799397 + 0.996800i \(0.525473\pi\)
\(420\) 0 0
\(421\) 18.0775 + 32.2439i 0.881043 + 1.57147i 0.819290 + 0.573380i \(0.194368\pi\)
0.0617532 + 0.998091i \(0.480331\pi\)
\(422\) 0 0
\(423\) −21.5276 73.7855i −1.04671 3.58757i
\(424\) 0 0
\(425\) 13.2239 + 16.9552i 0.641455 + 0.822450i
\(426\) 0 0
\(427\) 12.1093 + 32.2120i 0.586008 + 1.55885i
\(428\) 0 0
\(429\) 78.0956 49.8101i 3.77049 2.40485i
\(430\) 0 0
\(431\) −1.75888 0.406460i −0.0847224 0.0195785i 0.182582 0.983191i \(-0.441555\pi\)
−0.267304 + 0.963612i \(0.586133\pi\)
\(432\) 0 0
\(433\) 10.0088 23.8437i 0.480994 1.14586i −0.481961 0.876193i \(-0.660075\pi\)
0.962954 0.269665i \(-0.0869128\pi\)
\(434\) 0 0
\(435\) 8.78761 + 92.5892i 0.421334 + 4.43931i
\(436\) 0 0
\(437\) −0.330984 + 0.229174i −0.0158331 + 0.0109629i
\(438\) 0 0
\(439\) 14.6091 + 12.7915i 0.697253 + 0.610503i 0.932388 0.361460i \(-0.117722\pi\)
−0.235134 + 0.971963i \(0.575553\pi\)
\(440\) 0 0
\(441\) 40.6105 + 28.1188i 1.93384 + 1.33899i
\(442\) 0 0
\(443\) −16.3488 10.4274i −0.776756 0.495422i 0.0889131 0.996039i \(-0.471661\pi\)
−0.865669 + 0.500617i \(0.833106\pi\)
\(444\) 0 0
\(445\) −0.491654 + 3.68951i −0.0233067 + 0.174900i
\(446\) 0 0
\(447\) 22.6129 36.9794i 1.06955 1.74907i
\(448\) 0 0
\(449\) 7.38491 + 7.52601i 0.348516 + 0.355175i 0.865579 0.500773i \(-0.166951\pi\)
−0.517063 + 0.855947i \(0.672975\pi\)
\(450\) 0 0
\(451\) 7.69211 36.4144i 0.362207 1.71469i
\(452\) 0 0
\(453\) 23.1767 41.3390i 1.08893 1.94228i
\(454\) 0 0
\(455\) 18.3255 + 72.9763i 0.859112 + 3.42118i
\(456\) 0 0
\(457\) −5.68859 8.55733i −0.266101 0.400295i 0.675322 0.737523i \(-0.264005\pi\)
−0.941423 + 0.337228i \(0.890511\pi\)
\(458\) 0 0
\(459\) 13.6696 + 41.0118i 0.638043 + 1.91427i
\(460\) 0 0
\(461\) −29.7958 3.39798i −1.38773 0.158260i −0.612765 0.790265i \(-0.709943\pi\)
−0.774964 + 0.632006i \(0.782232\pi\)
\(462\) 0 0
\(463\) −2.86665 + 0.108556i −0.133225 + 0.00504503i −0.104370 0.994539i \(-0.533283\pi\)
−0.0288550 + 0.999584i \(0.509186\pi\)
\(464\) 0 0
\(465\) 0.126453 2.22485i 0.00586414 0.103175i
\(466\) 0 0
\(467\) −12.3045 20.1219i −0.569386 0.931131i −0.999597 0.0284020i \(-0.990958\pi\)
0.430210 0.902729i \(-0.358439\pi\)
\(468\) 0 0
\(469\) −0.398588 + 21.0586i −0.0184051 + 0.972398i
\(470\) 0 0
\(471\) −32.6491 + 11.5732i −1.50439 + 0.533266i
\(472\) 0 0
\(473\) 24.5552 + 23.1992i 1.12905 + 1.06670i
\(474\) 0 0
\(475\) 2.22124 0.338894i 0.101917 0.0155495i
\(476\) 0 0
\(477\) 34.2278 + 73.6037i 1.56718 + 3.37008i
\(478\) 0 0
\(479\) 25.5099 + 0.966022i 1.16557 + 0.0441387i 0.613527 0.789674i \(-0.289750\pi\)
0.552048 + 0.833812i \(0.313847\pi\)
\(480\) 0 0
\(481\) 3.24642 3.56912i 0.148024 0.162738i
\(482\) 0 0
\(483\) 11.8021 + 9.56953i 0.537016 + 0.435429i
\(484\) 0 0
\(485\) −16.7615 12.5700i −0.761102 0.570776i
\(486\) 0 0
\(487\) 36.0487 6.90495i 1.63352 0.312893i 0.712285 0.701890i \(-0.247660\pi\)
0.921239 + 0.388997i \(0.127178\pi\)
\(488\) 0 0
\(489\) −30.6163 5.86440i −1.38452 0.265197i
\(490\) 0 0
\(491\) 1.86090 + 8.80950i 0.0839814 + 0.397567i 0.999994 0.00358324i \(-0.00114058\pi\)
−0.916012 + 0.401150i \(0.868610\pi\)
\(492\) 0 0
\(493\) 23.9003 7.46672i 1.07641 0.336284i
\(494\) 0 0
\(495\) −92.0714 + 86.9870i −4.13830 + 3.90977i
\(496\) 0 0
\(497\) 1.31472 3.94444i 0.0589732 0.176932i
\(498\) 0 0
\(499\) −4.61397 6.40140i −0.206550 0.286566i 0.695207 0.718809i \(-0.255313\pi\)
−0.901757 + 0.432243i \(0.857722\pi\)
\(500\) 0 0
\(501\) −5.70182 41.3355i −0.254738 1.84673i
\(502\) 0 0
\(503\) −8.98164 12.4611i −0.400471 0.555612i 0.561950 0.827171i \(-0.310051\pi\)
−0.962422 + 0.271559i \(0.912461\pi\)
\(504\) 0 0
\(505\) 2.15861 6.47629i 0.0960570 0.288191i
\(506\) 0 0
\(507\) −49.8736 + 47.1194i −2.21496 + 2.09265i
\(508\) 0 0
\(509\) 8.53728 2.66714i 0.378408 0.118219i −0.103077 0.994673i \(-0.532869\pi\)
0.481485 + 0.876454i \(0.340098\pi\)
\(510\) 0 0
\(511\) −1.04827 4.96250i −0.0463727 0.219528i
\(512\) 0 0
\(513\) 4.43675 + 0.849837i 0.195887 + 0.0375212i
\(514\) 0 0
\(515\) 28.2057 5.40266i 1.24289 0.238070i
\(516\) 0 0
\(517\) −40.5902 30.4399i −1.78515 1.33875i
\(518\) 0 0
\(519\) −38.5351 31.2454i −1.69150 1.37152i
\(520\) 0 0
\(521\) 27.7159 30.4710i 1.21426 1.33496i 0.288202 0.957570i \(-0.406942\pi\)
0.926055 0.377389i \(-0.123178\pi\)
\(522\) 0 0
\(523\) 22.8299 + 0.864536i 0.998281 + 0.0378035i 0.531923 0.846793i \(-0.321469\pi\)
0.466358 + 0.884596i \(0.345566\pi\)
\(524\) 0 0
\(525\) −35.7592 76.8968i −1.56066 3.35605i
\(526\) 0 0
\(527\) −0.593092 + 0.0904878i −0.0258355 + 0.00394171i
\(528\) 0 0
\(529\) −15.5395 14.6813i −0.675630 0.638320i
\(530\) 0 0
\(531\) 34.4910 12.2261i 1.49678 0.530570i
\(532\) 0 0
\(533\) −0.840880 + 44.4263i −0.0364226 + 1.92432i
\(534\) 0 0
\(535\) 28.0346 + 45.8457i 1.21204 + 1.98208i
\(536\) 0 0
\(537\) −4.36289 + 76.7616i −0.188273 + 3.31251i
\(538\) 0 0
\(539\) 32.5822 1.23384i 1.40341 0.0531453i
\(540\) 0 0
\(541\) 27.3349 + 3.11733i 1.17522 + 0.134025i 0.678978 0.734159i \(-0.262423\pi\)
0.496243 + 0.868184i \(0.334712\pi\)
\(542\) 0 0
\(543\) −26.0415 78.1300i −1.11755 3.35288i
\(544\) 0 0
\(545\) 32.8525 + 49.4200i 1.40725 + 2.11692i
\(546\) 0 0
\(547\) 10.7845 + 42.9464i 0.461112 + 1.83626i 0.543163 + 0.839627i \(0.317226\pi\)
−0.0820510 + 0.996628i \(0.526147\pi\)
\(548\) 0 0
\(549\) 33.8236 60.3295i 1.44356 2.57480i
\(550\) 0 0
\(551\) 0.540784 2.56007i 0.0230382 0.109062i
\(552\) 0 0
\(553\) 1.75195 + 1.78542i 0.0745004 + 0.0759239i
\(554\) 0 0
\(555\) −4.83237 + 7.90249i −0.205123 + 0.335442i
\(556\) 0 0
\(557\) −0.393237 + 2.95096i −0.0166620 + 0.125036i −0.997595 0.0693086i \(-0.977921\pi\)
0.980933 + 0.194345i \(0.0622580\pi\)
\(558\) 0 0
\(559\) −34.0034 21.6877i −1.43819 0.917291i
\(560\) 0 0
\(561\) 39.3632 + 27.2551i 1.66191 + 1.15071i
\(562\) 0 0
\(563\) −2.31862 2.03014i −0.0977182 0.0855603i 0.608503 0.793552i \(-0.291770\pi\)
−0.706221 + 0.707991i \(0.749602\pi\)
\(564\) 0 0
\(565\) −31.4554 + 21.7798i −1.32334 + 0.916282i
\(566\) 0 0
\(567\) −8.33212 87.7899i −0.349916 3.68683i
\(568\) 0 0
\(569\) −0.768102 + 1.82983i −0.0322005 + 0.0767104i −0.937361 0.348360i \(-0.886739\pi\)
0.905160 + 0.425070i \(0.139751\pi\)
\(570\) 0 0
\(571\) 6.36844 + 1.47168i 0.266511 + 0.0615880i 0.356296 0.934373i \(-0.384040\pi\)
−0.0897847 + 0.995961i \(0.528618\pi\)
\(572\) 0 0
\(573\) −55.3415 + 35.2973i −2.31192 + 1.47457i
\(574\) 0 0
\(575\) −3.18562 8.47411i −0.132849 0.353395i
\(576\) 0 0
\(577\) 1.34879 + 1.72937i 0.0561510 + 0.0719947i 0.815782 0.578360i \(-0.196307\pi\)
−0.759631 + 0.650355i \(0.774620\pi\)
\(578\) 0 0
\(579\) −3.11494 10.6764i −0.129453 0.443697i
\(580\) 0 0
\(581\) −13.9671 24.9124i −0.579452 1.03354i
\(582\) 0 0
\(583\) 47.2251 + 25.3142i 1.95586 + 1.04841i
\(584\) 0 0
\(585\) 88.4235 122.678i 3.65586 5.07212i
\(586\) 0 0
\(587\) 2.95648 1.73188i 0.122027 0.0714825i −0.443175 0.896435i \(-0.646148\pi\)
0.565202 + 0.824953i \(0.308798\pi\)
\(588\) 0 0
\(589\) −0.0220607 + 0.0586841i −0.000908997 + 0.00241804i
\(590\) 0 0
\(591\) 2.46128 + 4.80802i 0.101244 + 0.197776i
\(592\) 0 0
\(593\) −14.8634 + 17.6380i −0.610366 + 0.724308i −0.978679 0.205394i \(-0.934152\pi\)
0.368313 + 0.929702i \(0.379935\pi\)
\(594\) 0 0
\(595\) −31.1141 + 23.3335i −1.27555 + 0.956581i
\(596\) 0 0
\(597\) 65.0408 7.41739i 2.66194 0.303573i
\(598\) 0 0
\(599\) 4.81625 19.1794i 0.196787 0.783650i −0.788824 0.614619i \(-0.789310\pi\)
0.985611 0.169031i \(-0.0540638\pi\)
\(600\) 0 0
\(601\) 27.1536 12.0075i 1.10762 0.489798i 0.231957 0.972726i \(-0.425487\pi\)
0.875660 + 0.482928i \(0.160427\pi\)
\(602\) 0 0
\(603\) 32.8813 26.6611i 1.33903 1.08572i
\(604\) 0 0
\(605\) −7.68431 + 44.6778i −0.312412 + 1.81641i
\(606\) 0 0
\(607\) 11.8044 12.0299i 0.479126 0.488281i −0.431151 0.902280i \(-0.641892\pi\)
0.910277 + 0.413999i \(0.135868\pi\)
\(608\) 0 0
\(609\) −98.4720 + 7.46870i −3.99029 + 0.302647i
\(610\) 0 0
\(611\) 54.4320 + 26.5766i 2.20208 + 1.07517i
\(612\) 0 0
\(613\) 12.3969 6.64517i 0.500708 0.268396i −0.202625 0.979256i \(-0.564947\pi\)
0.703333 + 0.710861i \(0.251694\pi\)
\(614\) 0 0
\(615\) −14.4603 84.0743i −0.583094 3.39020i
\(616\) 0 0
\(617\) −0.938834 16.5181i −0.0377961 0.664992i −0.960294 0.278990i \(-0.910000\pi\)
0.922498 0.386002i \(-0.126144\pi\)
\(618\) 0 0
\(619\) 24.6242 + 29.2209i 0.989729 + 1.17449i 0.984657 + 0.174502i \(0.0558314\pi\)
0.00507225 + 0.999987i \(0.498385\pi\)
\(620\) 0 0
\(621\) −0.344438 18.1977i −0.0138218 0.730250i
\(622\) 0 0
\(623\) −3.90702 0.596092i −0.156531 0.0238819i
\(624\) 0 0
\(625\) 0.946095 9.96836i 0.0378438 0.398735i
\(626\) 0 0
\(627\) 4.49585 2.19512i 0.179547 0.0876645i
\(628\) 0 0
\(629\) 2.35051 + 0.833194i 0.0937210 + 0.0332216i
\(630\) 0 0
\(631\) −24.6767 6.69559i −0.982363 0.266547i −0.265768 0.964037i \(-0.585626\pi\)
−0.716595 + 0.697490i \(0.754300\pi\)
\(632\) 0 0
\(633\) 31.7001 27.7561i 1.25997 1.10320i
\(634\) 0 0
\(635\) 46.3585 + 27.1564i 1.83968 + 1.07767i
\(636\) 0 0
\(637\) −37.9280 + 8.76477i −1.50276 + 0.347273i
\(638\) 0 0
\(639\) −7.76494 + 3.08796i −0.307176 + 0.122158i
\(640\) 0 0
\(641\) −14.4130 34.3356i −0.569279 1.35618i −0.909450 0.415813i \(-0.863497\pi\)
0.340171 0.940363i \(-0.389515\pi\)
\(642\) 0 0
\(643\) −3.40689 3.74554i −0.134355 0.147710i 0.668885 0.743366i \(-0.266772\pi\)
−0.803240 + 0.595656i \(0.796892\pi\)
\(644\) 0 0
\(645\) 71.9501 + 28.6131i 2.83303 + 1.12664i
\(646\) 0 0
\(647\) −13.5118 4.22123i −0.531202 0.165954i 0.0208197 0.999783i \(-0.493372\pi\)
−0.552022 + 0.833830i \(0.686143\pi\)
\(648\) 0 0
\(649\) 13.3725 20.1162i 0.524916 0.789629i
\(650\) 0 0
\(651\) 2.35942 + 0.178953i 0.0924732 + 0.00701372i
\(652\) 0 0
\(653\) −4.71466 + 16.1595i −0.184499 + 0.632369i 0.814162 + 0.580638i \(0.197197\pi\)
−0.998661 + 0.0517310i \(0.983526\pi\)
\(654\) 0 0
\(655\) −9.87255 + 19.2857i −0.385753 + 0.753553i
\(656\) 0 0
\(657\) −6.26922 + 8.03816i −0.244585 + 0.313598i
\(658\) 0 0
\(659\) −38.8614 + 10.5444i −1.51383 + 0.410751i −0.919375 0.393382i \(-0.871305\pi\)
−0.594451 + 0.804132i \(0.702630\pi\)
\(660\) 0 0
\(661\) 8.96320 19.2745i 0.348628 0.749692i −0.651330 0.758794i \(-0.725789\pi\)
0.999959 + 0.00910184i \(0.00289724\pi\)
\(662\) 0 0
\(663\) −52.2779 23.1177i −2.03030 0.897818i
\(664\) 0 0
\(665\) 0.536819 + 4.02844i 0.0208170 + 0.156216i
\(666\) 0 0
\(667\) −10.5423 −0.408200
\(668\) 0 0
\(669\) −36.8919 −1.42632
\(670\) 0 0
\(671\) −6.03055 45.2549i −0.232807 1.74705i
\(672\) 0 0
\(673\) 14.2668 + 6.30890i 0.549945 + 0.243190i 0.660690 0.750659i \(-0.270264\pi\)
−0.110746 + 0.993849i \(0.535324\pi\)
\(674\) 0 0
\(675\) −42.8353 + 92.1134i −1.64873 + 3.54545i
\(676\) 0 0
\(677\) 2.82819 0.767381i 0.108696 0.0294929i −0.207101 0.978320i \(-0.566403\pi\)
0.315797 + 0.948827i \(0.397728\pi\)
\(678\) 0 0
\(679\) 13.6815 17.5420i 0.525049 0.673199i
\(680\) 0 0
\(681\) 12.1725 23.7786i 0.466452 0.911196i
\(682\) 0 0
\(683\) 1.64751 5.64681i 0.0630401 0.216069i −0.922358 0.386337i \(-0.873740\pi\)
0.985398 + 0.170267i \(0.0544632\pi\)
\(684\) 0 0
\(685\) −27.9167 2.11737i −1.06664 0.0809005i
\(686\) 0 0
\(687\) 28.9737 43.5851i 1.10542 1.66288i
\(688\) 0 0
\(689\) −61.0606 19.0760i −2.32622 0.726739i
\(690\) 0 0
\(691\) 10.0699 + 4.00461i 0.383078 + 0.152343i 0.553135 0.833092i \(-0.313431\pi\)
−0.170057 + 0.985434i \(0.554395\pi\)
\(692\) 0 0
\(693\) −90.4978 99.4936i −3.43773 3.77945i
\(694\) 0 0
\(695\) 0.948470 + 2.25951i 0.0359775 + 0.0857082i
\(696\) 0 0
\(697\) −21.3417 + 8.48717i −0.808374 + 0.321475i
\(698\) 0 0
\(699\) −23.6910 + 5.47474i −0.896075 + 0.207074i
\(700\) 0 0
\(701\) 0.538435 + 0.315411i 0.0203364 + 0.0119129i 0.515586 0.856838i \(-0.327574\pi\)
−0.495250 + 0.868751i \(0.664924\pi\)
\(702\) 0 0
\(703\) 0.196063 0.171669i 0.00739465 0.00647463i
\(704\) 0 0
\(705\) −112.236 30.4533i −4.22706 1.14694i
\(706\) 0 0
\(707\) 6.83205 + 2.42178i 0.256946 + 0.0910805i
\(708\) 0 0
\(709\) 5.73506 2.80016i 0.215385 0.105162i −0.327895 0.944714i \(-0.606339\pi\)
0.543279 + 0.839552i \(0.317182\pi\)
\(710\) 0 0
\(711\) 0.475016 5.00492i 0.0178145 0.187699i
\(712\) 0 0
\(713\) 0.249708 + 0.0380979i 0.00935165 + 0.00142678i
\(714\) 0 0
\(715\) −1.88905 99.8043i −0.0706464 3.73247i
\(716\) 0 0
\(717\) −1.30606 1.54987i −0.0487757 0.0578810i
\(718\) 0 0
\(719\) 2.87530 + 50.5886i 0.107231 + 1.88664i 0.380617 + 0.924733i \(0.375712\pi\)
−0.273386 + 0.961904i \(0.588144\pi\)
\(720\) 0 0
\(721\) 5.16886 + 30.0526i 0.192498 + 1.11922i
\(722\) 0 0
\(723\) 51.3237 27.5112i 1.90875 1.02315i
\(724\) 0 0
\(725\) 52.8745 + 25.8162i 1.96371 + 0.958788i
\(726\) 0 0
\(727\) 47.9486 3.63671i 1.77832 0.134878i 0.854929 0.518746i \(-0.173601\pi\)
0.923388 + 0.383867i \(0.125408\pi\)
\(728\) 0 0
\(729\) −27.1756 + 27.6949i −1.00650 + 1.02574i
\(730\) 0 0
\(731\) 3.53357 20.5448i 0.130694 0.759875i
\(732\) 0 0
\(733\) −28.9320 + 23.4589i −1.06863 + 0.866475i −0.991443 0.130542i \(-0.958328\pi\)
−0.0771853 + 0.997017i \(0.524593\pi\)
\(734\) 0 0
\(735\) 68.3516 30.2257i 2.52119 1.11489i
\(736\) 0 0
\(737\) 6.80565 27.1017i 0.250689 0.998302i
\(738\) 0 0
\(739\) −39.3379 + 4.48617i −1.44707 + 0.165027i −0.801187 0.598413i \(-0.795798\pi\)
−0.645879 + 0.763440i \(0.723509\pi\)
\(740\) 0 0
\(741\) −4.77871 + 3.58372i −0.175550 + 0.131651i
\(742\) 0 0
\(743\) 6.36996 7.55909i 0.233691 0.277316i −0.635169 0.772373i \(-0.719070\pi\)
0.868861 + 0.495057i \(0.164853\pi\)
\(744\) 0 0
\(745\) −21.2855 41.5804i −0.779839 1.52339i
\(746\) 0 0
\(747\) −20.1986 + 53.7308i −0.739030 + 1.96591i
\(748\) 0 0
\(749\) −49.2345 + 28.8412i −1.79899 + 1.05383i
\(750\) 0 0
\(751\) 24.6127 34.1475i 0.898129 1.24606i −0.0704914 0.997512i \(-0.522457\pi\)
0.968620 0.248547i \(-0.0799529\pi\)
\(752\) 0 0
\(753\) 57.2932 + 30.7111i 2.08788 + 1.11917i
\(754\) 0 0
\(755\) −24.9767 44.5497i −0.908996 1.62133i
\(756\) 0 0
\(757\) −5.53898 18.9848i −0.201318 0.690014i −0.996496 0.0836390i \(-0.973346\pi\)
0.795178 0.606375i \(-0.207377\pi\)
\(758\) 0 0
\(759\) −12.3971 15.8951i −0.449987 0.576957i
\(760\) 0 0
\(761\) 11.5353 + 30.6853i 0.418155 + 1.11234i 0.961975 + 0.273139i \(0.0880618\pi\)
−0.543820 + 0.839202i \(0.683023\pi\)
\(762\) 0 0
\(763\) −53.1258 + 33.8842i −1.92328 + 1.22669i
\(764\) 0 0
\(765\) 76.1581 + 17.5994i 2.75350 + 0.636306i
\(766\) 0 0
\(767\) −11.1621 + 26.5912i −0.403042 + 0.960154i
\(768\) 0 0
\(769\) −4.41709 46.5399i −0.159284 1.67827i −0.615296 0.788296i \(-0.710963\pi\)
0.456012 0.889974i \(-0.349278\pi\)
\(770\) 0 0
\(771\) 9.64331 6.67705i 0.347295 0.240468i
\(772\) 0 0
\(773\) −28.0497 24.5598i −1.00888 0.883356i −0.0156903 0.999877i \(-0.504995\pi\)
−0.993188 + 0.116521i \(0.962826\pi\)
\(774\) 0 0
\(775\) −1.15911 0.802567i −0.0416363 0.0288291i
\(776\) 0 0
\(777\) −8.29242 5.28898i −0.297489 0.189741i
\(778\) 0 0
\(779\) −0.317019 + 2.37900i −0.0113584 + 0.0852365i
\(780\) 0 0
\(781\) −2.87767 + 4.70592i −0.102971 + 0.168391i
\(782\) 0 0
\(783\) 82.8532 + 84.4362i 2.96093 + 3.01750i
\(784\) 0 0
\(785\) −7.71525 + 36.5239i −0.275369 + 1.30359i
\(786\) 0 0
\(787\) 16.8220 30.0045i 0.599640 1.06955i −0.389283 0.921118i \(-0.627277\pi\)
0.988923 0.148429i \(-0.0474215\pi\)
\(788\) 0 0
\(789\) 18.7775 + 74.7765i 0.668498 + 2.66211i
\(790\) 0 0
\(791\) −22.4900 33.8316i −0.799652 1.20291i
\(792\) 0 0
\(793\) 17.2356 + 51.7104i 0.612054 + 1.83629i
\(794\) 0 0
\(795\) 122.026 + 13.9161i 4.32782 + 0.493554i
\(796\) 0 0