Properties

Label 668.2.e.a.21.1
Level $668$
Weight $2$
Character 668.21
Analytic conductor $5.334$
Analytic rank $0$
Dimension $1148$
CM no
Inner twists $2$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 668 = 2^{2} \cdot 167 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 668.e (of order \(83\), degree \(82\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(5.33400685502\)
Analytic rank: \(0\)
Dimension: \(1148\)
Relative dimension: \(14\) over \(\Q(\zeta_{83})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{83}]$

Embedding invariants

Embedding label 21.1
Character \(\chi\) \(=\) 668.21
Dual form 668.2.e.a.509.1

$q$-expansion

\(f(q)\) \(=\) \(q+(-3.30940 - 0.504914i) q^{3} +(-2.26577 - 2.68874i) q^{5} +(1.34830 - 1.87063i) q^{7} +(7.83367 + 2.44733i) q^{9} +O(q^{10})\) \(q+(-3.30940 - 0.504914i) q^{3} +(-2.26577 - 2.68874i) q^{5} +(1.34830 - 1.87063i) q^{7} +(7.83367 + 2.44733i) q^{9} +(4.12227 - 3.89463i) q^{11} +(0.147148 - 1.10424i) q^{13} +(6.14075 + 10.0421i) q^{15} +(2.68317 - 4.03629i) q^{17} +(-7.00893 - 1.61969i) q^{19} +(-5.40658 + 5.50988i) q^{21} +(-0.971946 - 4.60119i) q^{23} +(-1.24807 + 7.25647i) q^{25} +(-15.6642 - 7.64811i) q^{27} +(-1.17751 + 5.57434i) q^{29} +(-0.811528 + 0.155444i) q^{31} +(-15.6087 + 10.8075i) q^{33} +(-8.08457 + 0.613182i) q^{35} +(6.51057 - 2.03398i) q^{37} +(-1.04451 + 3.58006i) q^{39} +(6.16653 - 2.45231i) q^{41} +(-5.99079 - 2.12358i) q^{43} +(-11.1691 - 26.6077i) q^{45} +(-0.401377 + 1.59837i) q^{47} +(0.532123 + 1.59648i) q^{49} +(-10.9177 + 12.0029i) q^{51} +(2.67386 + 2.00522i) q^{53} +(-19.8117 - 2.25937i) q^{55} +(22.3775 + 8.89911i) q^{57} +(5.27120 + 7.92946i) q^{59} +(-3.18062 - 4.07808i) q^{61} +(15.1402 - 11.3541i) q^{63} +(-3.30240 + 2.10631i) q^{65} +(0.337603 - 0.400625i) q^{67} +(0.893356 + 15.7179i) q^{69} +(-0.366451 - 3.86105i) q^{71} +(3.53031 - 6.29683i) q^{73} +(7.79424 - 23.3844i) q^{75} +(-1.72733 - 12.9624i) q^{77} +(-9.00987 - 0.341191i) q^{79} +(27.7351 + 19.2038i) q^{81} +(2.05692 - 0.558109i) q^{83} +(-16.9320 + 1.93096i) q^{85} +(6.71142 - 17.8532i) q^{87} +(-8.86736 + 14.5010i) q^{89} +(-1.86722 - 1.76410i) q^{91} +(2.76416 - 0.104675i) q^{93} +(11.5257 + 22.5150i) q^{95} +(-15.2582 - 2.92263i) q^{97} +(41.8239 - 20.4207i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 1148q - 2q^{5} - 14q^{9} + O(q^{10}) \) \( 1148q - 2q^{5} - 14q^{9} + 2q^{11} + 4q^{13} + 14q^{15} + 2q^{17} + 2q^{19} + 14q^{23} - 6q^{25} + 2q^{29} - 2q^{31} + 16q^{33} - 2q^{35} + 10q^{37} + 6q^{39} + 4q^{41} + 4q^{43} - 2q^{45} + 2q^{47} - 30q^{49} - 2q^{51} - 6q^{55} - 4q^{57} + 6q^{59} + 2q^{61} + 14q^{63} + 22q^{65} + 12q^{67} - 14q^{69} - 8q^{71} - 18q^{73} - 26q^{75} - 2q^{79} - 6q^{81} - 22q^{83} + 34q^{85} + 2q^{87} + 14q^{89} - 6q^{91} + 32q^{93} - 8q^{95} + 44q^{97} + 2q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/668\mathbb{Z}\right)^\times\).

\(n\) \(5\) \(335\)
\(\chi(n)\) \(e\left(\frac{23}{83}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −3.30940 0.504914i −1.91068 0.291512i −0.916570 0.399873i \(-0.869054\pi\)
−0.994112 + 0.108361i \(0.965440\pi\)
\(4\) 0 0
\(5\) −2.26577 2.68874i −1.01328 1.20244i −0.979174 0.203021i \(-0.934924\pi\)
−0.0341086 0.999418i \(-0.510859\pi\)
\(6\) 0 0
\(7\) 1.34830 1.87063i 0.509611 0.707031i −0.475353 0.879795i \(-0.657679\pi\)
0.984963 + 0.172764i \(0.0552699\pi\)
\(8\) 0 0
\(9\) 7.83367 + 2.44733i 2.61122 + 0.815776i
\(10\) 0 0
\(11\) 4.12227 3.89463i 1.24291 1.17427i 0.265228 0.964186i \(-0.414553\pi\)
0.977682 0.210088i \(-0.0673751\pi\)
\(12\) 0 0
\(13\) 0.147148 1.10424i 0.0408114 0.306260i −0.958933 0.283634i \(-0.908460\pi\)
0.999744 0.0226262i \(-0.00720275\pi\)
\(14\) 0 0
\(15\) 6.14075 + 10.0421i 1.58554 + 2.59286i
\(16\) 0 0
\(17\) 2.68317 4.03629i 0.650765 0.978944i −0.348370 0.937357i \(-0.613265\pi\)
0.999135 0.0415872i \(-0.0132414\pi\)
\(18\) 0 0
\(19\) −7.00893 1.61969i −1.60796 0.371583i −0.676792 0.736174i \(-0.736630\pi\)
−0.931168 + 0.364591i \(0.881209\pi\)
\(20\) 0 0
\(21\) −5.40658 + 5.50988i −1.17981 + 1.20235i
\(22\) 0 0
\(23\) −0.971946 4.60119i −0.202665 0.959414i −0.954073 0.299575i \(-0.903155\pi\)
0.751408 0.659838i \(-0.229375\pi\)
\(24\) 0 0
\(25\) −1.24807 + 7.25647i −0.249613 + 1.45129i
\(26\) 0 0
\(27\) −15.6642 7.64811i −3.01458 1.47188i
\(28\) 0 0
\(29\) −1.17751 + 5.57434i −0.218659 + 1.03513i 0.720979 + 0.692957i \(0.243692\pi\)
−0.939638 + 0.342171i \(0.888838\pi\)
\(30\) 0 0
\(31\) −0.811528 + 0.155444i −0.145755 + 0.0279186i −0.260484 0.965478i \(-0.583882\pi\)
0.114729 + 0.993397i \(0.463400\pi\)
\(32\) 0 0
\(33\) −15.6087 + 10.8075i −2.71712 + 1.88134i
\(34\) 0 0
\(35\) −8.08457 + 0.613182i −1.36654 + 0.103647i
\(36\) 0 0
\(37\) 6.51057 2.03398i 1.07033 0.334384i 0.288247 0.957556i \(-0.406928\pi\)
0.782085 + 0.623172i \(0.214156\pi\)
\(38\) 0 0
\(39\) −1.04451 + 3.58006i −0.167256 + 0.573269i
\(40\) 0 0
\(41\) 6.16653 2.45231i 0.963050 0.382986i 0.165480 0.986213i \(-0.447083\pi\)
0.797570 + 0.603227i \(0.206119\pi\)
\(42\) 0 0
\(43\) −5.99079 2.12358i −0.913587 0.323842i −0.164548 0.986369i \(-0.552617\pi\)
−0.749038 + 0.662527i \(0.769484\pi\)
\(44\) 0 0
\(45\) −11.1691 26.6077i −1.66499 3.96645i
\(46\) 0 0
\(47\) −0.401377 + 1.59837i −0.0585468 + 0.233147i −0.992130 0.125215i \(-0.960038\pi\)
0.933583 + 0.358362i \(0.116665\pi\)
\(48\) 0 0
\(49\) 0.532123 + 1.59648i 0.0760176 + 0.228069i
\(50\) 0 0
\(51\) −10.9177 + 12.0029i −1.52878 + 1.68075i
\(52\) 0 0
\(53\) 2.67386 + 2.00522i 0.367283 + 0.275438i 0.767587 0.640944i \(-0.221457\pi\)
−0.400305 + 0.916382i \(0.631096\pi\)
\(54\) 0 0
\(55\) −19.8117 2.25937i −2.67141 0.304654i
\(56\) 0 0
\(57\) 22.3775 + 8.89911i 2.96398 + 1.17872i
\(58\) 0 0
\(59\) 5.27120 + 7.92946i 0.686252 + 1.03233i 0.996655 + 0.0817225i \(0.0260421\pi\)
−0.310403 + 0.950605i \(0.600464\pi\)
\(60\) 0 0
\(61\) −3.18062 4.07808i −0.407237 0.522144i 0.540437 0.841385i \(-0.318259\pi\)
−0.947674 + 0.319240i \(0.896572\pi\)
\(62\) 0 0
\(63\) 15.1402 11.3541i 1.90749 1.43049i
\(64\) 0 0
\(65\) −3.30240 + 2.10631i −0.409613 + 0.261255i
\(66\) 0 0
\(67\) 0.337603 0.400625i 0.0412447 0.0489442i −0.743677 0.668539i \(-0.766920\pi\)
0.784922 + 0.619595i \(0.212703\pi\)
\(68\) 0 0
\(69\) 0.893356 + 15.7179i 0.107547 + 1.89221i
\(70\) 0 0
\(71\) −0.366451 3.86105i −0.0434897 0.458222i −0.990549 0.137162i \(-0.956202\pi\)
0.947059 0.321060i \(-0.104039\pi\)
\(72\) 0 0
\(73\) 3.53031 6.29683i 0.413192 0.736988i −0.584010 0.811746i \(-0.698517\pi\)
0.997202 + 0.0747579i \(0.0238184\pi\)
\(74\) 0 0
\(75\) 7.79424 23.3844i 0.900001 2.70019i
\(76\) 0 0
\(77\) −1.72733 12.9624i −0.196848 1.47720i
\(78\) 0 0
\(79\) −9.00987 0.341191i −1.01369 0.0383870i −0.474232 0.880400i \(-0.657274\pi\)
−0.539457 + 0.842013i \(0.681371\pi\)
\(80\) 0 0
\(81\) 27.7351 + 19.2038i 3.08168 + 2.13376i
\(82\) 0 0
\(83\) 2.05692 0.558109i 0.225776 0.0612604i −0.147179 0.989110i \(-0.547019\pi\)
0.372955 + 0.927849i \(0.378345\pi\)
\(84\) 0 0
\(85\) −16.9320 + 1.93096i −1.83653 + 0.209442i
\(86\) 0 0
\(87\) 6.71142 17.8532i 0.719539 1.91406i
\(88\) 0 0
\(89\) −8.86736 + 14.5010i −0.939938 + 1.53710i −0.0996089 + 0.995027i \(0.531759\pi\)
−0.840329 + 0.542076i \(0.817638\pi\)
\(90\) 0 0
\(91\) −1.86722 1.76410i −0.195738 0.184928i
\(92\) 0 0
\(93\) 2.76416 0.104675i 0.286630 0.0108543i
\(94\) 0 0
\(95\) 11.5257 + 22.5150i 1.18251 + 2.30999i
\(96\) 0 0
\(97\) −15.2582 2.92263i −1.54924 0.296748i −0.658963 0.752176i \(-0.729004\pi\)
−0.890273 + 0.455428i \(0.849486\pi\)
\(98\) 0 0
\(99\) 41.8239 20.4207i 4.20346 2.05235i
\(100\) 0 0
\(101\) 5.42940 1.92458i 0.540245 0.191503i −0.0499669 0.998751i \(-0.515912\pi\)
0.590212 + 0.807248i \(0.299044\pi\)
\(102\) 0 0
\(103\) −0.0153314 + 0.810008i −0.00151065 + 0.0798124i 0.998269 + 0.0588153i \(0.0187323\pi\)
−0.999780 + 0.0209972i \(0.993316\pi\)
\(104\) 0 0
\(105\) 27.0647 + 2.05275i 2.64124 + 0.200328i
\(106\) 0 0
\(107\) −0.0607041 3.20719i −0.00586849 0.310051i −0.990663 0.136330i \(-0.956469\pi\)
0.984795 0.173721i \(-0.0555789\pi\)
\(108\) 0 0
\(109\) −5.67399 + 11.0839i −0.543470 + 1.06165i 0.442818 + 0.896612i \(0.353979\pi\)
−0.986288 + 0.165036i \(0.947226\pi\)
\(110\) 0 0
\(111\) −22.5731 + 3.44396i −2.14254 + 0.326887i
\(112\) 0 0
\(113\) 2.25512 + 1.97454i 0.212144 + 0.185749i 0.758245 0.651970i \(-0.226057\pi\)
−0.546101 + 0.837719i \(0.683888\pi\)
\(114\) 0 0
\(115\) −10.1692 + 13.0385i −0.948280 + 1.21585i
\(116\) 0 0
\(117\) 3.85513 8.29011i 0.356407 0.766421i
\(118\) 0 0
\(119\) −3.93267 10.4614i −0.360507 0.958992i
\(120\) 0 0
\(121\) 1.20080 21.1271i 0.109163 1.92065i
\(122\) 0 0
\(123\) −21.6457 + 5.00210i −1.95173 + 0.451024i
\(124\) 0 0
\(125\) 7.16912 4.19961i 0.641225 0.375625i
\(126\) 0 0
\(127\) −0.400413 + 4.21888i −0.0355309 + 0.374365i 0.960005 + 0.279982i \(0.0903286\pi\)
−0.995536 + 0.0943825i \(0.969912\pi\)
\(128\) 0 0
\(129\) 18.7537 + 10.0526i 1.65117 + 0.885081i
\(130\) 0 0
\(131\) 9.22210 + 10.1388i 0.805738 + 0.885832i 0.995379 0.0960219i \(-0.0306119\pi\)
−0.189641 + 0.981854i \(0.560732\pi\)
\(132\) 0 0
\(133\) −12.4800 + 10.9273i −1.08215 + 0.947515i
\(134\) 0 0
\(135\) 14.9278 + 59.4458i 1.28478 + 5.11628i
\(136\) 0 0
\(137\) −0.198479 0.680284i −0.0169572 0.0581205i 0.951058 0.309013i \(-0.0999988\pi\)
−0.968015 + 0.250893i \(0.919276\pi\)
\(138\) 0 0
\(139\) 6.65483 2.94282i 0.564456 0.249607i −0.102464 0.994737i \(-0.532673\pi\)
0.666920 + 0.745130i \(0.267612\pi\)
\(140\) 0 0
\(141\) 2.13536 5.08700i 0.179829 0.428402i
\(142\) 0 0
\(143\) −3.69401 5.12505i −0.308908 0.428578i
\(144\) 0 0
\(145\) 17.6559 9.46414i 1.46624 0.785954i
\(146\) 0 0
\(147\) −0.954922 5.55207i −0.0787606 0.457927i
\(148\) 0 0
\(149\) −13.6922 8.73303i −1.12171 0.715438i −0.159352 0.987222i \(-0.550941\pi\)
−0.962358 + 0.271784i \(0.912386\pi\)
\(150\) 0 0
\(151\) −5.27725 9.41277i −0.429457 0.766000i 0.568953 0.822370i \(-0.307349\pi\)
−0.998410 + 0.0563699i \(0.982047\pi\)
\(152\) 0 0
\(153\) 30.8972 25.0524i 2.49789 2.02536i
\(154\) 0 0
\(155\) 2.25668 + 1.82978i 0.181261 + 0.146972i
\(156\) 0 0
\(157\) 4.98514 + 10.7201i 0.397858 + 0.855556i 0.998432 + 0.0559868i \(0.0178305\pi\)
−0.600574 + 0.799569i \(0.705061\pi\)
\(158\) 0 0
\(159\) −7.83640 7.98613i −0.621467 0.633341i
\(160\) 0 0
\(161\) −9.91759 4.38564i −0.781615 0.345637i
\(162\) 0 0
\(163\) 7.17641 + 4.20389i 0.562100 + 0.329274i 0.758939 0.651162i \(-0.225718\pi\)
−0.196839 + 0.980436i \(0.563068\pi\)
\(164\) 0 0
\(165\) 64.4241 + 17.4804i 5.01541 + 1.36085i
\(166\) 0 0
\(167\) 3.89992 12.3203i 0.301785 0.953376i
\(168\) 0 0
\(169\) 11.3487 + 3.07927i 0.872975 + 0.236867i
\(170\) 0 0
\(171\) −50.9417 29.8413i −3.89561 2.28202i
\(172\) 0 0
\(173\) 3.04011 + 1.34436i 0.231135 + 0.102210i 0.516756 0.856133i \(-0.327139\pi\)
−0.285621 + 0.958343i \(0.592200\pi\)
\(174\) 0 0
\(175\) 11.8914 + 12.1186i 0.898904 + 0.916079i
\(176\) 0 0
\(177\) −13.4408 28.9032i −1.01027 2.17250i
\(178\) 0 0
\(179\) 11.7859 + 9.55638i 0.880922 + 0.714277i 0.959222 0.282653i \(-0.0912144\pi\)
−0.0783003 + 0.996930i \(0.524949\pi\)
\(180\) 0 0
\(181\) 13.2762 10.7647i 0.986810 0.800135i 0.00698214 0.999976i \(-0.497777\pi\)
0.979828 + 0.199841i \(0.0640426\pi\)
\(182\) 0 0
\(183\) 8.46687 + 15.1019i 0.625889 + 1.11637i
\(184\) 0 0
\(185\) −20.2203 12.8967i −1.48662 0.948184i
\(186\) 0 0
\(187\) −4.65908 27.0886i −0.340705 1.98092i
\(188\) 0 0
\(189\) −35.4269 + 18.9900i −2.57693 + 1.38132i
\(190\) 0 0
\(191\) 4.87078 + 6.75769i 0.352437 + 0.488969i 0.949737 0.313049i \(-0.101350\pi\)
−0.597300 + 0.802018i \(0.703760\pi\)
\(192\) 0 0
\(193\) −2.13416 + 5.08414i −0.153620 + 0.365964i −0.980530 0.196370i \(-0.937085\pi\)
0.826910 + 0.562334i \(0.190097\pi\)
\(194\) 0 0
\(195\) 11.9925 5.30317i 0.858799 0.379768i
\(196\) 0 0
\(197\) −6.50828 22.3071i −0.463696 1.58931i −0.770435 0.637519i \(-0.779961\pi\)
0.306739 0.951794i \(-0.400762\pi\)
\(198\) 0 0
\(199\) 4.19675 + 16.7124i 0.297500 + 1.18471i 0.916732 + 0.399504i \(0.130818\pi\)
−0.619232 + 0.785208i \(0.712556\pi\)
\(200\) 0 0
\(201\) −1.31954 + 1.15537i −0.0930734 + 0.0814935i
\(202\) 0 0
\(203\) 8.83987 + 9.71858i 0.620437 + 0.682111i
\(204\) 0 0
\(205\) −20.5655 11.0238i −1.43636 0.769936i
\(206\) 0 0
\(207\) 3.64670 38.4228i 0.253463 2.67057i
\(208\) 0 0
\(209\) −35.2008 + 20.6204i −2.43489 + 1.42634i
\(210\) 0 0
\(211\) −1.52894 + 0.353322i −0.105256 + 0.0243237i −0.277455 0.960738i \(-0.589491\pi\)
0.172199 + 0.985062i \(0.444913\pi\)
\(212\) 0 0
\(213\) −0.736763 + 12.9628i −0.0504822 + 0.888195i
\(214\) 0 0
\(215\) 7.86401 + 20.9192i 0.536321 + 1.42668i
\(216\) 0 0
\(217\) −0.803408 + 1.72765i −0.0545389 + 0.117281i
\(218\) 0 0
\(219\) −14.8626 + 19.0562i −1.00432 + 1.28770i
\(220\) 0 0
\(221\) −4.06220 3.55679i −0.273253 0.239256i
\(222\) 0 0
\(223\) −16.6984 + 2.54767i −1.11821 + 0.170605i −0.683489 0.729960i \(-0.739538\pi\)
−0.434721 + 0.900565i \(0.643153\pi\)
\(224\) 0 0
\(225\) −27.5359 + 53.7903i −1.83573 + 3.58602i
\(226\) 0 0
\(227\) −0.0715253 3.77891i −0.00474730 0.250815i −0.994298 0.106633i \(-0.965993\pi\)
0.989551 0.144182i \(-0.0460551\pi\)
\(228\) 0 0
\(229\) −0.695324 0.0527375i −0.0459483 0.00348499i 0.0526345 0.998614i \(-0.483238\pi\)
−0.0985828 + 0.995129i \(0.531431\pi\)
\(230\) 0 0
\(231\) −0.828454 + 43.7698i −0.0545082 + 2.87984i
\(232\) 0 0
\(233\) 1.10063 0.390145i 0.0721048 0.0255592i −0.297807 0.954626i \(-0.596255\pi\)
0.369912 + 0.929067i \(0.379388\pi\)
\(234\) 0 0
\(235\) 5.20703 2.54235i 0.339669 0.165845i
\(236\) 0 0
\(237\) 29.6450 + 5.67834i 1.92565 + 0.368848i
\(238\) 0 0
\(239\) −6.96856 13.6128i −0.450759 0.880540i −0.999021 0.0442337i \(-0.985915\pi\)
0.548263 0.836306i \(-0.315289\pi\)
\(240\) 0 0
\(241\) −8.66768 + 0.328233i −0.558334 + 0.0211433i −0.315502 0.948925i \(-0.602173\pi\)
−0.242832 + 0.970068i \(0.578076\pi\)
\(242\) 0 0
\(243\) −44.0775 41.6434i −2.82757 2.67142i
\(244\) 0 0
\(245\) 3.08685 5.04800i 0.197212 0.322505i
\(246\) 0 0
\(247\) −2.81987 + 7.50119i −0.179424 + 0.477289i
\(248\) 0 0
\(249\) −7.08896 + 0.808440i −0.449244 + 0.0512328i
\(250\) 0 0
\(251\) 22.0124 5.97269i 1.38941 0.376993i 0.512930 0.858430i \(-0.328560\pi\)
0.876480 + 0.481438i \(0.159885\pi\)
\(252\) 0 0
\(253\) −21.9265 15.1820i −1.37851 0.954482i
\(254\) 0 0
\(255\) 57.0096 + 2.15887i 3.57008 + 0.135194i
\(256\) 0 0
\(257\) 0.532118 + 3.99316i 0.0331926 + 0.249087i 0.999979 0.00649958i \(-0.00206890\pi\)
−0.966786 + 0.255586i \(0.917732\pi\)
\(258\) 0 0
\(259\) 4.97341 14.9213i 0.309033 0.927163i
\(260\) 0 0
\(261\) −22.8665 + 40.7857i −1.41540 + 2.52457i
\(262\) 0 0
\(263\) −1.22990 12.9586i −0.0758389 0.799064i −0.949757 0.312990i \(-0.898669\pi\)
0.873918 0.486074i \(-0.161571\pi\)
\(264\) 0 0
\(265\) −0.666848 11.7327i −0.0409641 0.720732i
\(266\) 0 0
\(267\) 36.6674 43.5123i 2.24401 2.66291i
\(268\) 0 0
\(269\) 8.33654 5.31713i 0.508288 0.324191i −0.258586 0.965988i \(-0.583257\pi\)
0.766874 + 0.641797i \(0.221811\pi\)
\(270\) 0 0
\(271\) −4.45396 + 3.34018i −0.270559 + 0.202901i −0.726606 0.687054i \(-0.758903\pi\)
0.456047 + 0.889956i \(0.349265\pi\)
\(272\) 0 0
\(273\) 5.28865 + 6.78091i 0.320083 + 0.410399i
\(274\) 0 0
\(275\) 23.1163 + 34.7739i 1.39397 + 2.09694i
\(276\) 0 0
\(277\) 12.6802 + 5.04267i 0.761879 + 0.302984i 0.717991 0.696052i \(-0.245062\pi\)
0.0438878 + 0.999036i \(0.486026\pi\)
\(278\) 0 0
\(279\) −6.73767 0.768378i −0.403373 0.0460016i
\(280\) 0 0
\(281\) −1.60592 1.20433i −0.0958009 0.0718443i 0.550989 0.834512i \(-0.314251\pi\)
−0.646790 + 0.762668i \(0.723889\pi\)
\(282\) 0 0
\(283\) −4.47658 + 4.92157i −0.266105 + 0.292557i −0.858204 0.513308i \(-0.828420\pi\)
0.592099 + 0.805865i \(0.298299\pi\)
\(284\) 0 0
\(285\) −26.7750 80.3307i −1.58601 4.75838i
\(286\) 0 0
\(287\) 3.72699 14.8417i 0.219997 0.876080i
\(288\) 0 0
\(289\) −2.51237 5.98514i −0.147786 0.352067i
\(290\) 0 0
\(291\) 49.0198 + 17.3762i 2.87359 + 1.01861i
\(292\) 0 0
\(293\) −2.95635 + 1.17568i −0.172712 + 0.0686841i −0.454288 0.890855i \(-0.650106\pi\)
0.281577 + 0.959539i \(0.409143\pi\)
\(294\) 0 0
\(295\) 9.37689 32.1392i 0.545944 1.87122i
\(296\) 0 0
\(297\) −94.3587 + 29.4787i −5.47525 + 1.71053i
\(298\) 0 0
\(299\) −5.22382 + 0.396206i −0.302101 + 0.0229132i
\(300\) 0 0
\(301\) −12.0498 + 8.34332i −0.694540 + 0.480901i
\(302\) 0 0
\(303\) −18.9398 + 3.62782i −1.08806 + 0.208413i
\(304\) 0 0
\(305\) −3.75832 + 17.7918i −0.215201 + 1.01876i
\(306\) 0 0
\(307\) 2.37699 + 1.16057i 0.135662 + 0.0662373i 0.505328 0.862927i \(-0.331371\pi\)
−0.369666 + 0.929165i \(0.620528\pi\)
\(308\) 0 0
\(309\) 0.459722 2.67290i 0.0261527 0.152056i
\(310\) 0 0
\(311\) 6.65397 + 31.4998i 0.377312 + 1.78619i 0.588237 + 0.808689i \(0.299822\pi\)
−0.210925 + 0.977502i \(0.567648\pi\)
\(312\) 0 0
\(313\) 8.77629 8.94398i 0.496065 0.505543i −0.419477 0.907766i \(-0.637786\pi\)
0.915542 + 0.402223i \(0.131762\pi\)
\(314\) 0 0
\(315\) −64.8325 14.9821i −3.65290 0.844147i
\(316\) 0 0
\(317\) −1.26069 + 1.89646i −0.0708076 + 0.106516i −0.866481 0.499211i \(-0.833623\pi\)
0.795673 + 0.605726i \(0.207117\pi\)
\(318\) 0 0
\(319\) 16.8559 + 27.5649i 0.943751 + 1.54334i
\(320\) 0 0
\(321\) −1.41846 + 10.6445i −0.0791706 + 0.594119i
\(322\) 0 0
\(323\) −25.3437 + 23.9442i −1.41016 + 1.33229i
\(324\) 0 0
\(325\) 7.82921 + 2.44593i 0.434286 + 0.135676i
\(326\) 0 0
\(327\) 24.3739 33.8163i 1.34788 1.87004i
\(328\) 0 0
\(329\) 2.44879 + 2.90592i 0.135006 + 0.160209i
\(330\) 0 0
\(331\) 9.96725 + 1.52070i 0.547849 + 0.0835852i 0.418843 0.908059i \(-0.362436\pi\)
0.129006 + 0.991644i \(0.458821\pi\)
\(332\) 0 0
\(333\) 55.9795 3.06766
\(334\) 0 0
\(335\) −1.84211 −0.100645
\(336\) 0 0
\(337\) −13.6385 2.08082i −0.742935 0.113349i −0.231697 0.972788i \(-0.574428\pi\)
−0.511239 + 0.859439i \(0.670813\pi\)
\(338\) 0 0
\(339\) −6.46612 7.67319i −0.351191 0.416751i
\(340\) 0 0
\(341\) −2.73994 + 3.80138i −0.148376 + 0.205856i
\(342\) 0 0
\(343\) 19.1108 + 5.97044i 1.03189 + 0.322373i
\(344\) 0 0
\(345\) 40.2372 38.0152i 2.16630 2.04667i
\(346\) 0 0
\(347\) 0.706071 5.29855i 0.0379039 0.284441i −0.962030 0.272944i \(-0.912003\pi\)
0.999934 0.0114977i \(-0.00365990\pi\)
\(348\) 0 0
\(349\) −15.6077 25.5237i −0.835463 1.36625i −0.928786 0.370617i \(-0.879146\pi\)
0.0933224 0.995636i \(-0.470251\pi\)
\(350\) 0 0
\(351\) −10.7503 + 16.1716i −0.573808 + 0.863177i
\(352\) 0 0
\(353\) 28.8286 + 6.66200i 1.53439 + 0.354582i 0.905988 0.423303i \(-0.139130\pi\)
0.628405 + 0.777886i \(0.283708\pi\)
\(354\) 0 0
\(355\) −9.55105 + 9.73354i −0.506917 + 0.516602i
\(356\) 0 0
\(357\) 7.73269 + 36.6065i 0.409257 + 1.93742i
\(358\) 0 0
\(359\) 5.52899 32.1465i 0.291809 1.69663i −0.355726 0.934590i \(-0.615767\pi\)
0.647535 0.762035i \(-0.275800\pi\)
\(360\) 0 0
\(361\) 29.4282 + 14.3684i 1.54885 + 0.756231i
\(362\) 0 0
\(363\) −14.6413 + 69.3117i −0.768468 + 3.63792i
\(364\) 0 0
\(365\) −24.9294 + 4.77510i −1.30486 + 0.249940i
\(366\) 0 0
\(367\) −23.9060 + 16.5526i −1.24788 + 0.864038i −0.994643 0.103366i \(-0.967039\pi\)
−0.253241 + 0.967403i \(0.581497\pi\)
\(368\) 0 0
\(369\) 54.3081 4.11905i 2.82717 0.214429i
\(370\) 0 0
\(371\) 7.35619 2.29816i 0.381914 0.119314i
\(372\) 0 0
\(373\) −4.19884 + 14.3915i −0.217408 + 0.745164i 0.776020 + 0.630708i \(0.217235\pi\)
−0.993428 + 0.114456i \(0.963488\pi\)
\(374\) 0 0
\(375\) −25.8459 + 10.2784i −1.33468 + 0.530775i
\(376\) 0 0
\(377\) 5.98212 + 2.12050i 0.308095 + 0.109211i
\(378\) 0 0
\(379\) 0.775805 + 1.84818i 0.0398504 + 0.0949345i 0.940761 0.339070i \(-0.110112\pi\)
−0.900911 + 0.434004i \(0.857100\pi\)
\(380\) 0 0
\(381\) 3.45529 13.7598i 0.177020 0.704935i
\(382\) 0 0
\(383\) −4.95810 14.8754i −0.253347 0.760095i −0.995913 0.0903218i \(-0.971210\pi\)
0.742565 0.669774i \(-0.233609\pi\)
\(384\) 0 0
\(385\) −30.9387 + 34.0141i −1.57678 + 1.73352i
\(386\) 0 0
\(387\) −41.7328 31.2968i −2.12140 1.59091i
\(388\) 0 0
\(389\) −35.2019 4.01449i −1.78481 0.203543i −0.842591 0.538554i \(-0.818971\pi\)
−0.942214 + 0.335011i \(0.891260\pi\)
\(390\) 0 0
\(391\) −21.1796 8.42272i −1.07110 0.425955i
\(392\) 0 0
\(393\) −25.4004 38.2097i −1.28128 1.92743i
\(394\) 0 0
\(395\) 19.4969 + 24.9982i 0.980996 + 1.25780i
\(396\) 0 0
\(397\) 15.4911 11.6173i 0.777477 0.583056i −0.135638 0.990758i \(-0.543308\pi\)
0.913115 + 0.407702i \(0.133670\pi\)
\(398\) 0 0
\(399\) 46.8187 29.8614i 2.34386 1.49494i
\(400\) 0 0
\(401\) 10.3243 12.2516i 0.515570 0.611815i −0.443053 0.896496i \(-0.646104\pi\)
0.958622 + 0.284681i \(0.0918876\pi\)
\(402\) 0 0
\(403\) 0.0522327 + 0.918993i 0.00260189 + 0.0457783i
\(404\) 0 0
\(405\) −11.2073 118.084i −0.556895 5.86763i
\(406\) 0 0
\(407\) 18.9168 33.7408i 0.937669 1.67247i
\(408\) 0 0
\(409\) 8.21608 24.6500i 0.406259 1.21886i −0.523923 0.851765i \(-0.675532\pi\)
0.930182 0.367098i \(-0.119649\pi\)
\(410\) 0 0
\(411\) 0.313360 + 2.35154i 0.0154569 + 0.115993i
\(412\) 0 0
\(413\) 21.9403 + 0.830847i 1.07961 + 0.0408833i
\(414\) 0 0
\(415\) −6.16111 4.26596i −0.302437 0.209408i
\(416\) 0 0
\(417\) −23.5094 + 6.37886i −1.15126 + 0.312374i
\(418\) 0 0
\(419\) −13.6930 + 1.56157i −0.668945 + 0.0762879i −0.441167 0.897425i \(-0.645435\pi\)
−0.227778 + 0.973713i \(0.573146\pi\)
\(420\) 0 0
\(421\) −9.95704 + 26.4869i −0.485276 + 1.29089i 0.435285 + 0.900293i \(0.356648\pi\)
−0.920561 + 0.390599i \(0.872268\pi\)
\(422\) 0 0
\(423\) −7.05600 + 11.5388i −0.343074 + 0.561037i
\(424\) 0 0
\(425\) 25.9404 + 24.5079i 1.25830 + 1.18881i
\(426\) 0 0
\(427\) −11.9170 + 0.451281i −0.576705 + 0.0218390i
\(428\) 0 0
\(429\) 9.63724 + 18.8260i 0.465290 + 0.908927i
\(430\) 0 0
\(431\) 7.71498 + 1.47777i 0.371618 + 0.0711815i 0.370536 0.928818i \(-0.379174\pi\)
0.00108128 + 0.999999i \(0.499656\pi\)
\(432\) 0 0
\(433\) −10.8131 + 5.27953i −0.519645 + 0.253718i −0.679831 0.733369i \(-0.737947\pi\)
0.160187 + 0.987087i \(0.448790\pi\)
\(434\) 0 0
\(435\) −63.2090 + 22.4059i −3.03064 + 1.07428i
\(436\) 0 0
\(437\) −0.640198 + 33.8237i −0.0306248 + 1.61801i
\(438\) 0 0
\(439\) −21.3183 1.61690i −1.01747 0.0771706i −0.443687 0.896182i \(-0.646330\pi\)
−0.573778 + 0.819011i \(0.694523\pi\)
\(440\) 0 0
\(441\) 0.261362 + 13.8086i 0.0124458 + 0.657552i
\(442\) 0 0
\(443\) 14.9090 29.1241i 0.708346 1.38373i −0.205903 0.978572i \(-0.566013\pi\)
0.914248 0.405154i \(-0.132782\pi\)
\(444\) 0 0
\(445\) 59.0808 9.01393i 2.80070 0.427301i
\(446\) 0 0
\(447\) 40.9036 + 35.8145i 1.93467 + 1.69397i
\(448\) 0 0
\(449\) 14.6060 18.7273i 0.689301 0.883796i −0.308422 0.951250i \(-0.599801\pi\)
0.997722 + 0.0674538i \(0.0214875\pi\)
\(450\) 0 0
\(451\) 15.8693 34.1254i 0.747255 1.60690i
\(452\) 0 0
\(453\) 12.7119 + 33.8152i 0.597257 + 1.58877i
\(454\) 0 0
\(455\) −0.512527 + 9.01751i −0.0240276 + 0.422747i
\(456\) 0 0
\(457\) −28.1146 + 6.49699i −1.31514 + 0.303916i −0.823716 0.567002i \(-0.808103\pi\)
−0.491428 + 0.870918i \(0.663525\pi\)
\(458\) 0 0
\(459\) −72.8999 + 42.7042i −3.40267 + 1.99326i
\(460\) 0 0
\(461\) 2.52060 26.5578i 0.117396 1.23692i −0.721416 0.692502i \(-0.756509\pi\)
0.838812 0.544421i \(-0.183250\pi\)
\(462\) 0 0
\(463\) −8.37309 4.48825i −0.389131 0.208587i 0.266219 0.963913i \(-0.414226\pi\)
−0.655349 + 0.755326i \(0.727479\pi\)
\(464\) 0 0
\(465\) −6.54438 7.19492i −0.303488 0.333656i
\(466\) 0 0
\(467\) −25.6899 + 22.4936i −1.18879 + 1.04088i −0.190540 + 0.981679i \(0.561024\pi\)
−0.998246 + 0.0592005i \(0.981145\pi\)
\(468\) 0 0
\(469\) −0.294231 1.17169i −0.0135863 0.0541038i
\(470\) 0 0
\(471\) −11.0851 37.9941i −0.510775 1.75068i
\(472\) 0 0
\(473\) −32.9662 + 14.5779i −1.51579 + 0.670294i
\(474\) 0 0
\(475\) 20.5009 48.8386i 0.940644 2.24087i
\(476\) 0 0
\(477\) 16.0387 + 22.2520i 0.734362 + 1.01885i
\(478\) 0 0
\(479\) 14.4110 7.72477i 0.658456 0.352954i −0.109013 0.994040i \(-0.534769\pi\)
0.767469 + 0.641087i \(0.221516\pi\)
\(480\) 0 0
\(481\) −1.28798 7.48851i −0.0587267 0.341447i
\(482\) 0 0
\(483\) 30.6069 + 19.5214i 1.39266 + 0.888253i
\(484\) 0 0
\(485\) 26.7134 + 47.6473i 1.21299 + 2.16355i
\(486\) 0 0
\(487\) −10.1498 + 8.22972i −0.459930 + 0.372924i −0.831540 0.555464i \(-0.812541\pi\)
0.371611 + 0.928389i \(0.378806\pi\)
\(488\) 0 0
\(489\) −21.6270 17.5358i −0.978007 0.792997i
\(490\) 0 0
\(491\) 6.96144 + 14.9699i 0.314165 + 0.675583i 0.998567 0.0535223i \(-0.0170448\pi\)
−0.684401 + 0.729105i \(0.739936\pi\)
\(492\) 0 0
\(493\) 19.3402 + 19.7097i 0.871037 + 0.887680i
\(494\) 0 0
\(495\) −149.669 66.1850i −6.72713 2.97479i
\(496\) 0 0
\(497\) −7.71667 4.52037i −0.346140 0.202766i
\(498\) 0 0
\(499\) 3.09404 + 0.839514i 0.138508 + 0.0375818i 0.330443 0.943826i \(-0.392802\pi\)
−0.191935 + 0.981408i \(0.561476\pi\)
\(500\) 0 0
\(501\) −19.1271 + 38.8038i −0.854536 + 1.73362i
\(502\) 0 0
\(503\) 3.19719 + 0.867504i 0.142556 + 0.0386801i 0.332427 0.943129i \(-0.392132\pi\)
−0.189871 + 0.981809i \(0.560807\pi\)
\(504\) 0 0
\(505\) −17.4764 10.2376i −0.777691 0.455566i
\(506\) 0 0
\(507\) −36.0025 15.9206i −1.59893 0.707060i
\(508\) 0 0
\(509\) 8.73975 + 8.90674i 0.387383 + 0.394784i 0.879620 0.475677i \(-0.157797\pi\)
−0.492237 + 0.870461i \(0.663821\pi\)
\(510\) 0 0
\(511\) −7.01911 15.0939i −0.310507 0.667716i
\(512\) 0 0
\(513\) 97.4020 + 78.9763i 4.30040 + 3.48689i
\(514\) 0 0
\(515\) 2.21263 1.79407i 0.0975003 0.0790561i
\(516\) 0 0
\(517\) 4.57049 + 8.15214i 0.201010 + 0.358531i
\(518\) 0 0
\(519\) −9.38215 5.98402i −0.411830 0.262669i
\(520\) 0 0
\(521\) −3.60855 20.9807i −0.158094 0.919181i −0.950852 0.309646i \(-0.899790\pi\)
0.792759 0.609536i \(-0.208644\pi\)
\(522\) 0 0
\(523\) 32.2562 17.2904i 1.41046 0.756055i 0.421870 0.906656i \(-0.361374\pi\)
0.988595 + 0.150601i \(0.0481209\pi\)
\(524\) 0 0
\(525\) −33.2345 46.1093i −1.45047 2.01238i
\(526\) 0 0
\(527\) −1.55005 + 3.69265i −0.0675214 + 0.160854i
\(528\) 0 0
\(529\) 0.808852 0.357681i 0.0351675 0.0155514i
\(530\) 0 0
\(531\) 21.8869 + 75.0171i 0.949810 + 3.25547i
\(532\) 0 0
\(533\) −1.80054 7.17016i −0.0779900 0.310574i
\(534\) 0 0
\(535\) −8.48574 + 7.42996i −0.366871 + 0.321225i
\(536\) 0 0
\(537\) −34.1792 37.5767i −1.47494 1.62156i
\(538\) 0 0
\(539\) 8.41125 + 4.50871i 0.362298 + 0.194204i
\(540\) 0 0
\(541\) 2.40541 25.3442i 0.103417 1.08963i −0.781507 0.623896i \(-0.785549\pi\)
0.884924 0.465736i \(-0.154210\pi\)
\(542\) 0 0
\(543\) −49.3714 + 28.9214i −2.11873 + 1.24114i
\(544\) 0 0
\(545\) 42.6577 9.85776i 1.82726 0.422260i
\(546\) 0 0
\(547\) 0.00580676 0.102165i 0.000248279 0.00436828i −0.998262 0.0589293i \(-0.981231\pi\)
0.998510 + 0.0545610i \(0.0173759\pi\)
\(548\) 0 0
\(549\) −14.9356 39.7303i −0.637434 1.69565i
\(550\) 0 0
\(551\) 17.2818 37.1629i 0.736230 1.58319i
\(552\) 0 0
\(553\) −12.7863 + 16.3941i −0.543728 + 0.697148i
\(554\) 0 0
\(555\) 60.4053 + 52.8898i 2.56406 + 2.24505i
\(556\) 0 0
\(557\) −35.4807 + 5.41328i −1.50337 + 0.229368i −0.849640 0.527363i \(-0.823181\pi\)
−0.653726 + 0.756731i \(0.726795\pi\)
\(558\) 0 0
\(559\) −3.22646 + 6.30277i −0.136465 + 0.266579i
\(560\) 0 0
\(561\) 1.74132 + 91.9995i 0.0735187 + 3.88422i
\(562\) 0 0
\(563\) −8.18269 0.620624i −0.344859 0.0261562i −0.0979403 0.995192i \(-0.531225\pi\)
−0.246919 + 0.969036i \(0.579418\pi\)
\(564\) 0 0
\(565\) 0.199445 10.5373i 0.00839070 0.443307i
\(566\) 0 0
\(567\) 73.3186 25.9895i 3.07909 1.09146i
\(568\) 0 0
\(569\) 23.7907 11.6159i 0.997359 0.486964i 0.133690 0.991023i \(-0.457317\pi\)
0.863669 + 0.504059i \(0.168161\pi\)
\(570\) 0 0
\(571\) 3.71556 + 0.711696i 0.155491 + 0.0297836i 0.265280 0.964171i \(-0.414536\pi\)
−0.109789 + 0.993955i \(0.535017\pi\)
\(572\) 0 0
\(573\) −12.7073 24.8232i −0.530855 1.03700i
\(574\) 0 0
\(575\) 34.6014 1.31031i 1.44298 0.0546436i
\(576\) 0 0
\(577\) 2.97004 + 2.80603i 0.123644 + 0.116816i 0.746085 0.665850i \(-0.231931\pi\)
−0.622441 + 0.782667i \(0.713859\pi\)
\(578\) 0 0
\(579\) 9.62983 15.7479i 0.400202 0.654459i
\(580\) 0 0
\(581\) 1.72933 4.60023i 0.0717448 0.190850i
\(582\) 0 0
\(583\) 18.8319 2.14763i 0.779939 0.0889459i
\(584\) 0 0
\(585\) −31.0248 + 8.41803i −1.28272 + 0.348043i
\(586\) 0 0
\(587\) 30.5404 + 21.1462i 1.26054 + 0.872797i 0.995803 0.0915250i \(-0.0291741\pi\)
0.264733 + 0.964322i \(0.414716\pi\)
\(588\) 0 0
\(589\) 5.93972 + 0.224929i 0.244742 + 0.00926803i
\(590\) 0 0
\(591\) 10.2753 + 77.1091i 0.422671 + 3.17184i
\(592\) 0 0
\(593\) 9.27485 27.8265i 0.380872 1.14270i −0.566910 0.823780i \(-0.691861\pi\)
0.947782 0.318918i \(-0.103319\pi\)
\(594\) 0 0
\(595\) −19.2173 + 34.2770i −0.787834 + 1.40522i
\(596\) 0 0
\(597\) −5.45039 57.4271i −0.223069 2.35033i
\(598\) 0 0
\(599\) 0.555744 + 9.77787i 0.0227071 + 0.399513i 0.989555 + 0.144159i \(0.0460476\pi\)
−0.966848 + 0.255354i \(0.917808\pi\)
\(600\) 0 0
\(601\) −10.7169 + 12.7175i −0.437150 + 0.518756i −0.937933 0.346817i \(-0.887262\pi\)
0.500783 + 0.865573i \(0.333046\pi\)
\(602\) 0 0
\(603\) 3.62513 2.31214i 0.147627 0.0941577i
\(604\) 0 0
\(605\) −59.5260 + 44.6405i −2.42007 + 1.81490i
\(606\) 0 0
\(607\) −24.7609 31.7476i −1.00502 1.28859i −0.957105 0.289743i \(-0.906430\pi\)
−0.0479113 0.998852i \(-0.515256\pi\)
\(608\) 0 0
\(609\) −24.3476 36.6260i −0.986615 1.48416i
\(610\) 0 0
\(611\) 1.70592 + 0.678412i 0.0690142 + 0.0274456i
\(612\) 0 0
\(613\) −32.4487 3.70052i −1.31059 0.149462i −0.570125 0.821558i \(-0.693105\pi\)
−0.740464 + 0.672095i \(0.765394\pi\)
\(614\) 0 0
\(615\) 62.4935 + 46.8660i 2.51998 + 1.88982i
\(616\) 0 0
\(617\) 24.3612 26.7828i 0.980744 1.07823i −0.0161810 0.999869i \(-0.505151\pi\)
0.996925 0.0783642i \(-0.0249697\pi\)
\(618\) 0 0
\(619\) 2.94919 + 8.84821i 0.118538 + 0.355639i 0.991145 0.132784i \(-0.0423916\pi\)
−0.872607 + 0.488423i \(0.837572\pi\)
\(620\) 0 0
\(621\) −19.9656 + 79.5076i −0.801192 + 3.19053i
\(622\) 0 0
\(623\) 15.1701 + 36.1393i 0.607777 + 1.44789i
\(624\) 0 0
\(625\) 7.16431 + 2.53956i 0.286572 + 0.101582i
\(626\) 0 0
\(627\) 126.905 50.4676i 5.06810 2.01548i
\(628\) 0 0
\(629\) 9.25928 31.7361i 0.369191 1.26540i
\(630\) 0 0
\(631\) 18.0386 5.63545i 0.718104 0.224344i 0.0827562 0.996570i \(-0.473628\pi\)
0.635348 + 0.772226i \(0.280857\pi\)
\(632\) 0 0
\(633\) 5.23827 0.397301i 0.208202 0.0157913i
\(634\) 0 0
\(635\) 12.2507 8.48240i 0.486154 0.336614i
\(636\) 0 0
\(637\) 1.84119 0.352671i 0.0729508 0.0139733i
\(638\) 0 0
\(639\) 6.57859 31.1430i 0.260245 1.23200i
\(640\) 0 0
\(641\) −1.86950 0.912791i −0.0738409 0.0360531i 0.401458 0.915877i \(-0.368504\pi\)
−0.475299 + 0.879824i \(0.657660\pi\)
\(642\) 0 0
\(643\) −4.89226 + 28.4444i −0.192932 + 1.12174i 0.713901 + 0.700247i \(0.246927\pi\)
−0.906833 + 0.421491i \(0.861507\pi\)
\(644\) 0 0
\(645\) −15.4628 73.2006i −0.608845 2.88227i
\(646\) 0 0
\(647\) 3.42184 3.48722i 0.134527 0.137097i −0.643204 0.765695i \(-0.722395\pi\)
0.777730 + 0.628598i \(0.216371\pi\)
\(648\) 0 0
\(649\) 52.6116 + 12.1580i 2.06519 + 0.477243i
\(650\) 0 0
\(651\) 3.53111 5.31184i 0.138395 0.208188i
\(652\) 0 0
\(653\) −23.0132 37.6340i −0.900577 1.47273i −0.881104 0.472923i \(-0.843199\pi\)
−0.0194731 0.999810i \(-0.506199\pi\)
\(654\) 0 0
\(655\) 6.36543 47.7680i 0.248718 1.86645i
\(656\) 0 0
\(657\) 43.0657 40.6875i 1.68015 1.58737i
\(658\) 0 0
\(659\) 28.9743 + 9.05190i 1.12868 + 0.352612i 0.804835 0.593499i \(-0.202254\pi\)
0.323843 + 0.946111i \(0.395025\pi\)
\(660\) 0 0
\(661\) 23.0064 31.9190i 0.894846 1.24150i −0.0748518 0.997195i \(-0.523848\pi\)
0.969697 0.244309i \(-0.0785613\pi\)
\(662\) 0 0
\(663\) 11.6476 + 13.8219i 0.452354 + 0.536798i
\(664\) 0 0
\(665\) 57.6574 + 8.79676i 2.23586 + 0.341124i
\(666\) 0 0
\(667\) 26.7930 1.03743
\(668\) 0 0
\(669\) 56.5481 2.18628
\(670\) 0 0
\(671\) −28.9940 4.42360i −1.11930 0.170771i
\(672\) 0 0
\(673\) 20.5300 + 24.3624i 0.791372 + 0.939102i 0.999237 0.0390551i \(-0.0124348\pi\)
−0.207866 + 0.978157i \(0.566652\pi\)
\(674\) 0 0
\(675\) 75.0483 104.122i 2.88861 4.00764i
\(676\) 0 0
\(677\) 10.4341 + 3.25973i 0.401015 + 0.125282i 0.492052 0.870566i \(-0.336247\pi\)
−0.0910367 + 0.995848i \(0.529018\pi\)
\(678\) 0 0
\(679\) −26.0398 + 24.6018i −0.999317 + 0.944132i
\(680\) 0 0
\(681\) −1.67132 + 12.5420i −0.0640450 + 0.480611i
\(682\) 0 0
\(683\) 20.1523 + 32.9555i 0.771105 + 1.26101i 0.960273 + 0.279061i \(0.0900232\pi\)
−0.189168 + 0.981945i \(0.560579\pi\)
\(684\) 0 0
\(685\) −1.37940 + 2.07502i −0.0527040 + 0.0792825i
\(686\) 0 0
\(687\) 2.27447 + 0.525608i 0.0867766 + 0.0200532i
\(688\) 0 0
\(689\) 2.60769 2.65751i 0.0993450 0.101243i
\(690\) 0 0
\(691\) 7.16553 + 33.9215i 0.272590 + 1.29044i 0.871807 + 0.489850i \(0.162948\pi\)
−0.599217 + 0.800586i \(0.704521\pi\)
\(692\) 0 0
\(693\) 18.1918 105.770i 0.691050 4.01788i
\(694\) 0 0
\(695\) −22.9908 11.2253i −0.872091 0.425801i
\(696\) 0 0
\(697\) 6.64764 31.4699i 0.251797 1.19201i
\(698\) 0 0
\(699\) −3.83942 + 0.735421i −0.145220 + 0.0278162i
\(700\) 0 0
\(701\) 18.2359 12.6265i 0.688759 0.476898i −0.172536 0.985003i \(-0.555196\pi\)
0.861295 + 0.508106i \(0.169654\pi\)
\(702\) 0 0
\(703\) −48.9266 + 3.71088i −1.84530 + 0.139959i
\(704\) 0 0
\(705\) −18.5158 + 5.78455i −0.697346 + 0.217859i
\(706\) 0 0
\(707\) 3.72030 12.7513i 0.139916 0.479562i
\(708\) 0 0
\(709\) −38.7065 + 15.3928i −1.45365 + 0.578089i −0.957059 0.289894i \(-0.906380\pi\)
−0.496594 + 0.867983i \(0.665416\pi\)
\(710\) 0 0
\(711\) −69.7453 24.7229i −2.61565 0.927180i
\(712\) 0 0
\(713\) 1.50399 + 3.58291i 0.0563248 + 0.134181i
\(714\) 0 0
\(715\) −5.41013 + 21.5444i −0.202327 + 0.805714i
\(716\) 0 0
\(717\) 16.1884 + 48.5688i 0.604568 + 1.81383i
\(718\) 0 0
\(719\) 12.2373 13.4537i 0.456373 0.501738i −0.467736 0.883868i \(-0.654930\pi\)
0.924108 + 0.382131i \(0.124810\pi\)
\(720\) 0 0
\(721\) 1.49455 + 1.12082i 0.0556600 + 0.0417413i
\(722\) 0 0
\(723\) 28.8505 + 3.29018i 1.07296 + 0.122363i
\(724\) 0 0
\(725\) −38.9804 15.5017i −1.44769 0.575720i
\(726\) 0 0
\(727\) 7.90749 + 11.8952i 0.293273 + 0.441169i 0.949673 0.313244i \(-0.101416\pi\)
−0.656400 + 0.754413i \(0.727922\pi\)
\(728\) 0 0
\(729\) 62.6034 + 80.2678i 2.31865 + 2.97288i
\(730\) 0 0
\(731\) −24.6457 + 18.4826i −0.911554 + 0.683605i
\(732\) 0 0
\(733\) 24.3116 15.5062i 0.897971 0.572734i −0.00616451 0.999981i \(-0.501962\pi\)
0.904135 + 0.427247i \(0.140516\pi\)
\(734\) 0 0
\(735\) −12.7644 + 15.1472i −0.470823 + 0.558714i
\(736\) 0 0
\(737\) −0.168596 2.96632i −0.00621033 0.109266i
\(738\) 0 0
\(739\) −3.67552 38.7265i −0.135206 1.42458i −0.763101 0.646279i \(-0.776324\pi\)
0.627895 0.778298i \(-0.283917\pi\)
\(740\) 0 0
\(741\) 13.1195 23.4006i 0.481958 0.859644i
\(742\) 0 0
\(743\) 6.32404 18.9735i 0.232006 0.696069i −0.766541 0.642195i \(-0.778024\pi\)
0.998548 0.0538736i \(-0.0171568\pi\)
\(744\) 0 0
\(745\) 7.54260 + 56.6018i 0.276340 + 2.07373i
\(746\) 0 0
\(747\) 17.4791 + 0.661909i 0.639526 + 0.0242180i
\(748\) 0 0
\(749\) −6.08130 4.21071i −0.222206 0.153856i
\(750\) 0 0
\(751\) −6.48009 + 1.75826i −0.236462 + 0.0641598i −0.378123 0.925755i \(-0.623430\pi\)
0.141661 + 0.989915i \(0.454756\pi\)
\(752\) 0 0
\(753\) −75.8635 + 8.65164i −2.76462 + 0.315283i
\(754\) 0 0
\(755\) −13.3514 + 35.5163i −0.485907 + 1.29257i
\(756\) 0 0
\(757\) −8.71101 + 14.2453i −0.316607 + 0.517755i −0.971212 0.238216i \(-0.923437\pi\)
0.654605 + 0.755971i \(0.272835\pi\)
\(758\) 0 0
\(759\) 64.8980 + 61.3142i 2.35565 + 2.22556i
\(760\) 0 0
\(761\) −26.7491 + 1.01295i −0.969654 + 0.0367194i −0.517916 0.855431i \(-0.673292\pi\)
−0.451738 + 0.892151i \(0.649196\pi\)
\(762\) 0 0
\(763\) 13.0837 + 25.5584i 0.473660 + 0.925277i
\(764\) 0 0
\(765\) −137.365 26.3116i −4.96645 0.951298i
\(766\) 0 0
\(767\) 9.53165 4.65386i 0.344168 0.168041i
\(768\) 0 0
\(769\) −21.1714 + 7.50470i −0.763460 + 0.270626i −0.687207 0.726462i \(-0.741163\pi\)
−0.0762535 + 0.997088i \(0.524296\pi\)
\(770\) 0 0
\(771\) 0.255212 13.4836i 0.00919123 0.485601i
\(772\) 0 0
\(773\) 30.2998 + 2.29812i 1.08981 + 0.0826577i 0.608242 0.793751i \(-0.291875\pi\)
0.481567 + 0.876409i \(0.340068\pi\)
\(774\) 0 0
\(775\) −0.115133 6.08283i −0.00413570 0.218502i
\(776\) 0 0
\(777\) −23.9930 + 46.8693i −0.860742 + 1.68143i
\(778\) 0 0
\(779\) −47.1928 + 7.20018i −1.69086 + 0.257973i
\(780\) 0 0
\(781\) −16.5479 14.4891i −0.592132 0.518460i
\(782\) 0 0
\(783\) 61.0780 78.3119i 2.18275 2.79864i
\(784\) 0 0
\(785\) 17.5283 37.6930i 0.625612 1.34532i
\(786\) 0 0
\(787\) 16.0589 + 42.7184i 0.572436 + 1.52275i 0.830727 + 0.556681i \(0.187925\pi\)
−0.258290 + 0.966067i \(0.583159\pi\)
\(788\) 0 0
\(789\) −2.47276 + 43.5063i −0.0880326 + 1.54886i
\(790\) 0 0
\(791\) 6.73422 1.55621i 0.239441 0.0553324i
\(792\) 0 0
\(793\) −4.97119 + 2.91208i −0.176532 + 0.103411i
\(794\) 0 0
\(795\) −3.71712 + 39.1648i −0.131833 + 1.38903i
\(796\) 0 0
\(797\)