Properties

Label 668.2.e
Level $668$
Weight $2$
Character orbit 668.e
Rep. character $\chi_{668}(9,\cdot)$
Character field $\Q(\zeta_{83})$
Dimension $1148$
Newform subspaces $1$
Sturm bound $168$
Trace bound $0$

Related objects

Downloads

Learn more about

Defining parameters

Level: \( N \) \(=\) \( 668 = 2^{2} \cdot 167 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 668.e (of order \(83\) and degree \(82\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 167 \)
Character field: \(\Q(\zeta_{83})\)
Newform subspaces: \( 1 \)
Sturm bound: \(168\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(668, [\chi])\).

Total New Old
Modular forms 7134 1148 5986
Cusp forms 6642 1148 5494
Eisenstein series 492 0 492

Trace form

\( 1148q - 2q^{5} - 14q^{9} + O(q^{10}) \) \( 1148q - 2q^{5} - 14q^{9} + 2q^{11} + 4q^{13} + 14q^{15} + 2q^{17} + 2q^{19} + 14q^{23} - 6q^{25} + 2q^{29} - 2q^{31} + 16q^{33} - 2q^{35} + 10q^{37} + 6q^{39} + 4q^{41} + 4q^{43} - 2q^{45} + 2q^{47} - 30q^{49} - 2q^{51} - 6q^{55} - 4q^{57} + 6q^{59} + 2q^{61} + 14q^{63} + 22q^{65} + 12q^{67} - 14q^{69} - 8q^{71} - 18q^{73} - 26q^{75} - 2q^{79} - 6q^{81} - 22q^{83} + 34q^{85} + 2q^{87} + 14q^{89} - 6q^{91} + 32q^{93} - 8q^{95} + 44q^{97} + 2q^{99} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(668, [\chi])\) into newform subspaces

Label Dim. \(A\) Field CM Traces $q$-expansion
\(a_2\) \(a_3\) \(a_5\) \(a_7\)
668.2.e.a \(1148\) \(5.334\) None \(0\) \(0\) \(-2\) \(0\)

Decomposition of \(S_{2}^{\mathrm{old}}(668, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(668, [\chi]) \cong \) \(S_{2}^{\mathrm{new}}(167, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(334, [\chi])\)\(^{\oplus 2}\)

Hecke characteristic polynomials

There are no characteristic polynomials of Hecke operators in the database