Properties

Label 667.2
Level 667
Weight 2
Dimension 17797
Nonzero newspaces 12
Newform subspaces 22
Sturm bound 73920
Trace bound 2

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 667 = 23 \cdot 29 \)
Weight: \( k \) = \( 2 \)
Nonzero newspaces: \( 12 \)
Newform subspaces: \( 22 \)
Sturm bound: \(73920\)
Trace bound: \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_1(667))\).

Total New Old
Modular forms 19096 18933 163
Cusp forms 17865 17797 68
Eisenstein series 1231 1136 95

Trace form

\( 17797 q - 267 q^{2} - 270 q^{3} - 279 q^{4} - 276 q^{5} - 294 q^{6} - 282 q^{7} - 303 q^{8} - 297 q^{9} - 312 q^{10} - 294 q^{11} - 342 q^{12} - 300 q^{13} - 330 q^{14} - 308 q^{15} - 307 q^{16} - 290 q^{17}+ \cdots + 12 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_1(667))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
667.2.a \(\chi_{667}(1, \cdot)\) 667.2.a.a 10 1
667.2.a.b 12
667.2.a.c 13
667.2.a.d 16
667.2.c \(\chi_{667}(231, \cdot)\) 667.2.c.a 24 1
667.2.c.b 30
667.2.f \(\chi_{667}(505, \cdot)\) 667.2.f.a 12 2
667.2.f.b 104
667.2.g \(\chi_{667}(24, \cdot)\) 667.2.g.a 6 6
667.2.g.b 144
667.2.g.c 186
667.2.h \(\chi_{667}(59, \cdot)\) 667.2.h.a 280 10
667.2.h.b 280
667.2.j \(\chi_{667}(93, \cdot)\) 667.2.j.a 144 6
667.2.j.b 180
667.2.m \(\chi_{667}(144, \cdot)\) 667.2.m.a 580 10
667.2.o \(\chi_{667}(68, \cdot)\) 667.2.o.a 72 12
667.2.o.b 624
667.2.q \(\chi_{667}(17, \cdot)\) 667.2.q.a 1160 20
667.2.s \(\chi_{667}(16, \cdot)\) 667.2.s.a 3480 60
667.2.u \(\chi_{667}(4, \cdot)\) 667.2.u.a 3480 60
667.2.x \(\chi_{667}(10, \cdot)\) 667.2.x.a 6960 120

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_1(667))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_1(667)) \cong \) \(S_{2}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(23))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(29))\)\(^{\oplus 2}\)