Properties

Label 6664.2.a.y.1.6
Level $6664$
Weight $2$
Character 6664.1
Self dual yes
Analytic conductor $53.212$
Analytic rank $1$
Dimension $7$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [6664,2,Mod(1,6664)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("6664.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(6664, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 6664 = 2^{3} \cdot 7^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 6664.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [7,0,3,0,-2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(53.2123079070\)
Analytic rank: \(1\)
Dimension: \(7\)
Coefficient field: \(\mathbb{Q}[x]/(x^{7} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{7} - 3x^{6} - 8x^{5} + 21x^{4} + 25x^{3} - 41x^{2} - 28x + 19 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 952)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.6
Root \(2.50581\) of defining polynomial
Character \(\chi\) \(=\) 6664.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.50581 q^{3} -3.79423 q^{5} +3.27908 q^{9} -4.84722 q^{11} +2.44913 q^{13} -9.50763 q^{15} -1.00000 q^{17} +6.99485 q^{19} +4.21329 q^{23} +9.39621 q^{25} +0.699322 q^{27} +3.62181 q^{29} -3.18061 q^{31} -12.1462 q^{33} +4.01047 q^{37} +6.13704 q^{39} -4.63689 q^{41} -11.7265 q^{43} -12.4416 q^{45} -11.3302 q^{47} -2.50581 q^{51} -4.79078 q^{53} +18.3915 q^{55} +17.5278 q^{57} -9.75878 q^{59} +9.55410 q^{61} -9.29256 q^{65} -13.0997 q^{67} +10.5577 q^{69} -0.382777 q^{71} +0.591867 q^{73} +23.5451 q^{75} +8.78161 q^{79} -8.08487 q^{81} +5.09035 q^{83} +3.79423 q^{85} +9.07558 q^{87} -0.425528 q^{89} -7.97000 q^{93} -26.5401 q^{95} -1.02209 q^{97} -15.8944 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 7 q + 3 q^{3} - 2 q^{5} + 4 q^{9} - 12 q^{11} - 2 q^{13} - 6 q^{15} - 7 q^{17} + 3 q^{19} - 18 q^{23} + 15 q^{25} + 18 q^{27} + 5 q^{29} + 10 q^{31} - 21 q^{33} + 11 q^{37} - 12 q^{39} - 15 q^{43} - 13 q^{45}+ \cdots - 20 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 2.50581 1.44673 0.723365 0.690466i \(-0.242594\pi\)
0.723365 + 0.690466i \(0.242594\pi\)
\(4\) 0 0
\(5\) −3.79423 −1.69683 −0.848417 0.529329i \(-0.822444\pi\)
−0.848417 + 0.529329i \(0.822444\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 0 0
\(9\) 3.27908 1.09303
\(10\) 0 0
\(11\) −4.84722 −1.46149 −0.730746 0.682650i \(-0.760828\pi\)
−0.730746 + 0.682650i \(0.760828\pi\)
\(12\) 0 0
\(13\) 2.44913 0.679265 0.339633 0.940558i \(-0.389697\pi\)
0.339633 + 0.940558i \(0.389697\pi\)
\(14\) 0 0
\(15\) −9.50763 −2.45486
\(16\) 0 0
\(17\) −1.00000 −0.242536
\(18\) 0 0
\(19\) 6.99485 1.60473 0.802365 0.596834i \(-0.203575\pi\)
0.802365 + 0.596834i \(0.203575\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 4.21329 0.878532 0.439266 0.898357i \(-0.355239\pi\)
0.439266 + 0.898357i \(0.355239\pi\)
\(24\) 0 0
\(25\) 9.39621 1.87924
\(26\) 0 0
\(27\) 0.699322 0.134585
\(28\) 0 0
\(29\) 3.62181 0.672554 0.336277 0.941763i \(-0.390832\pi\)
0.336277 + 0.941763i \(0.390832\pi\)
\(30\) 0 0
\(31\) −3.18061 −0.571254 −0.285627 0.958341i \(-0.592202\pi\)
−0.285627 + 0.958341i \(0.592202\pi\)
\(32\) 0 0
\(33\) −12.1462 −2.11438
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 4.01047 0.659318 0.329659 0.944100i \(-0.393066\pi\)
0.329659 + 0.944100i \(0.393066\pi\)
\(38\) 0 0
\(39\) 6.13704 0.982713
\(40\) 0 0
\(41\) −4.63689 −0.724161 −0.362080 0.932147i \(-0.617933\pi\)
−0.362080 + 0.932147i \(0.617933\pi\)
\(42\) 0 0
\(43\) −11.7265 −1.78828 −0.894139 0.447790i \(-0.852211\pi\)
−0.894139 + 0.447790i \(0.852211\pi\)
\(44\) 0 0
\(45\) −12.4416 −1.85468
\(46\) 0 0
\(47\) −11.3302 −1.65268 −0.826339 0.563173i \(-0.809580\pi\)
−0.826339 + 0.563173i \(0.809580\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0 0
\(51\) −2.50581 −0.350883
\(52\) 0 0
\(53\) −4.79078 −0.658064 −0.329032 0.944319i \(-0.606722\pi\)
−0.329032 + 0.944319i \(0.606722\pi\)
\(54\) 0 0
\(55\) 18.3915 2.47991
\(56\) 0 0
\(57\) 17.5278 2.32161
\(58\) 0 0
\(59\) −9.75878 −1.27048 −0.635242 0.772313i \(-0.719100\pi\)
−0.635242 + 0.772313i \(0.719100\pi\)
\(60\) 0 0
\(61\) 9.55410 1.22328 0.611638 0.791137i \(-0.290511\pi\)
0.611638 + 0.791137i \(0.290511\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −9.29256 −1.15260
\(66\) 0 0
\(67\) −13.0997 −1.60039 −0.800194 0.599741i \(-0.795270\pi\)
−0.800194 + 0.599741i \(0.795270\pi\)
\(68\) 0 0
\(69\) 10.5577 1.27100
\(70\) 0 0
\(71\) −0.382777 −0.0454273 −0.0227136 0.999742i \(-0.507231\pi\)
−0.0227136 + 0.999742i \(0.507231\pi\)
\(72\) 0 0
\(73\) 0.591867 0.0692728 0.0346364 0.999400i \(-0.488973\pi\)
0.0346364 + 0.999400i \(0.488973\pi\)
\(74\) 0 0
\(75\) 23.5451 2.71876
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 8.78161 0.988009 0.494004 0.869459i \(-0.335533\pi\)
0.494004 + 0.869459i \(0.335533\pi\)
\(80\) 0 0
\(81\) −8.08487 −0.898319
\(82\) 0 0
\(83\) 5.09035 0.558738 0.279369 0.960184i \(-0.409875\pi\)
0.279369 + 0.960184i \(0.409875\pi\)
\(84\) 0 0
\(85\) 3.79423 0.411542
\(86\) 0 0
\(87\) 9.07558 0.973004
\(88\) 0 0
\(89\) −0.425528 −0.0451059 −0.0225530 0.999746i \(-0.507179\pi\)
−0.0225530 + 0.999746i \(0.507179\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) −7.97000 −0.826451
\(94\) 0 0
\(95\) −26.5401 −2.72296
\(96\) 0 0
\(97\) −1.02209 −0.103778 −0.0518889 0.998653i \(-0.516524\pi\)
−0.0518889 + 0.998653i \(0.516524\pi\)
\(98\) 0 0
\(99\) −15.8944 −1.59745
\(100\) 0 0
\(101\) 2.38574 0.237390 0.118695 0.992931i \(-0.462129\pi\)
0.118695 + 0.992931i \(0.462129\pi\)
\(102\) 0 0
\(103\) 6.16896 0.607846 0.303923 0.952697i \(-0.401703\pi\)
0.303923 + 0.952697i \(0.401703\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 6.75604 0.653131 0.326565 0.945175i \(-0.394109\pi\)
0.326565 + 0.945175i \(0.394109\pi\)
\(108\) 0 0
\(109\) −11.2460 −1.07717 −0.538586 0.842571i \(-0.681041\pi\)
−0.538586 + 0.842571i \(0.681041\pi\)
\(110\) 0 0
\(111\) 10.0495 0.953855
\(112\) 0 0
\(113\) −12.2360 −1.15107 −0.575534 0.817778i \(-0.695206\pi\)
−0.575534 + 0.817778i \(0.695206\pi\)
\(114\) 0 0
\(115\) −15.9862 −1.49072
\(116\) 0 0
\(117\) 8.03088 0.742455
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 12.4955 1.13596
\(122\) 0 0
\(123\) −11.6192 −1.04767
\(124\) 0 0
\(125\) −16.6803 −1.49193
\(126\) 0 0
\(127\) 0.800731 0.0710534 0.0355267 0.999369i \(-0.488689\pi\)
0.0355267 + 0.999369i \(0.488689\pi\)
\(128\) 0 0
\(129\) −29.3844 −2.58715
\(130\) 0 0
\(131\) −19.1559 −1.67366 −0.836830 0.547462i \(-0.815594\pi\)
−0.836830 + 0.547462i \(0.815594\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) −2.65339 −0.228368
\(136\) 0 0
\(137\) −4.53242 −0.387231 −0.193615 0.981078i \(-0.562021\pi\)
−0.193615 + 0.981078i \(0.562021\pi\)
\(138\) 0 0
\(139\) 13.9470 1.18297 0.591483 0.806318i \(-0.298543\pi\)
0.591483 + 0.806318i \(0.298543\pi\)
\(140\) 0 0
\(141\) −28.3913 −2.39098
\(142\) 0 0
\(143\) −11.8715 −0.992741
\(144\) 0 0
\(145\) −13.7420 −1.14121
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −18.5642 −1.52084 −0.760420 0.649432i \(-0.775007\pi\)
−0.760420 + 0.649432i \(0.775007\pi\)
\(150\) 0 0
\(151\) −20.3810 −1.65858 −0.829292 0.558816i \(-0.811256\pi\)
−0.829292 + 0.558816i \(0.811256\pi\)
\(152\) 0 0
\(153\) −3.27908 −0.265098
\(154\) 0 0
\(155\) 12.0680 0.969323
\(156\) 0 0
\(157\) −0.191776 −0.0153054 −0.00765269 0.999971i \(-0.502436\pi\)
−0.00765269 + 0.999971i \(0.502436\pi\)
\(158\) 0 0
\(159\) −12.0048 −0.952040
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) −14.4437 −1.13132 −0.565660 0.824638i \(-0.691379\pi\)
−0.565660 + 0.824638i \(0.691379\pi\)
\(164\) 0 0
\(165\) 46.0856 3.58776
\(166\) 0 0
\(167\) 0.601637 0.0465561 0.0232780 0.999729i \(-0.492590\pi\)
0.0232780 + 0.999729i \(0.492590\pi\)
\(168\) 0 0
\(169\) −7.00178 −0.538599
\(170\) 0 0
\(171\) 22.9367 1.75401
\(172\) 0 0
\(173\) 5.89975 0.448549 0.224275 0.974526i \(-0.427999\pi\)
0.224275 + 0.974526i \(0.427999\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) −24.4536 −1.83805
\(178\) 0 0
\(179\) −8.93532 −0.667857 −0.333929 0.942598i \(-0.608374\pi\)
−0.333929 + 0.942598i \(0.608374\pi\)
\(180\) 0 0
\(181\) −19.7947 −1.47133 −0.735663 0.677347i \(-0.763129\pi\)
−0.735663 + 0.677347i \(0.763129\pi\)
\(182\) 0 0
\(183\) 23.9407 1.76975
\(184\) 0 0
\(185\) −15.2167 −1.11875
\(186\) 0 0
\(187\) 4.84722 0.354464
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 19.9798 1.44569 0.722845 0.691010i \(-0.242834\pi\)
0.722845 + 0.691010i \(0.242834\pi\)
\(192\) 0 0
\(193\) −21.5954 −1.55447 −0.777237 0.629208i \(-0.783379\pi\)
−0.777237 + 0.629208i \(0.783379\pi\)
\(194\) 0 0
\(195\) −23.2854 −1.66750
\(196\) 0 0
\(197\) 19.6358 1.39900 0.699498 0.714635i \(-0.253407\pi\)
0.699498 + 0.714635i \(0.253407\pi\)
\(198\) 0 0
\(199\) −20.3568 −1.44306 −0.721529 0.692384i \(-0.756560\pi\)
−0.721529 + 0.692384i \(0.756560\pi\)
\(200\) 0 0
\(201\) −32.8254 −2.31533
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 17.5935 1.22878
\(206\) 0 0
\(207\) 13.8157 0.960259
\(208\) 0 0
\(209\) −33.9056 −2.34530
\(210\) 0 0
\(211\) −8.61581 −0.593137 −0.296569 0.955012i \(-0.595842\pi\)
−0.296569 + 0.955012i \(0.595842\pi\)
\(212\) 0 0
\(213\) −0.959167 −0.0657210
\(214\) 0 0
\(215\) 44.4932 3.03441
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 1.48311 0.100219
\(220\) 0 0
\(221\) −2.44913 −0.164746
\(222\) 0 0
\(223\) 11.1008 0.743366 0.371683 0.928360i \(-0.378781\pi\)
0.371683 + 0.928360i \(0.378781\pi\)
\(224\) 0 0
\(225\) 30.8109 2.05406
\(226\) 0 0
\(227\) 23.8308 1.58171 0.790854 0.612005i \(-0.209637\pi\)
0.790854 + 0.612005i \(0.209637\pi\)
\(228\) 0 0
\(229\) −6.53764 −0.432019 −0.216010 0.976391i \(-0.569304\pi\)
−0.216010 + 0.976391i \(0.569304\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −20.7619 −1.36016 −0.680079 0.733139i \(-0.738055\pi\)
−0.680079 + 0.733139i \(0.738055\pi\)
\(234\) 0 0
\(235\) 42.9894 2.80432
\(236\) 0 0
\(237\) 22.0050 1.42938
\(238\) 0 0
\(239\) −12.1185 −0.783884 −0.391942 0.919990i \(-0.628197\pi\)
−0.391942 + 0.919990i \(0.628197\pi\)
\(240\) 0 0
\(241\) 18.5851 1.19717 0.598587 0.801058i \(-0.295729\pi\)
0.598587 + 0.801058i \(0.295729\pi\)
\(242\) 0 0
\(243\) −22.3571 −1.43421
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 17.1313 1.09004
\(248\) 0 0
\(249\) 12.7554 0.808344
\(250\) 0 0
\(251\) −21.3552 −1.34793 −0.673966 0.738763i \(-0.735410\pi\)
−0.673966 + 0.738763i \(0.735410\pi\)
\(252\) 0 0
\(253\) −20.4228 −1.28397
\(254\) 0 0
\(255\) 9.50763 0.595391
\(256\) 0 0
\(257\) 2.74811 0.171423 0.0857113 0.996320i \(-0.472684\pi\)
0.0857113 + 0.996320i \(0.472684\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 11.8762 0.735120
\(262\) 0 0
\(263\) 4.23821 0.261339 0.130670 0.991426i \(-0.458287\pi\)
0.130670 + 0.991426i \(0.458287\pi\)
\(264\) 0 0
\(265\) 18.1773 1.11662
\(266\) 0 0
\(267\) −1.06629 −0.0652561
\(268\) 0 0
\(269\) 2.79189 0.170225 0.0851123 0.996371i \(-0.472875\pi\)
0.0851123 + 0.996371i \(0.472875\pi\)
\(270\) 0 0
\(271\) 28.2630 1.71686 0.858428 0.512934i \(-0.171442\pi\)
0.858428 + 0.512934i \(0.171442\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −45.5455 −2.74650
\(276\) 0 0
\(277\) −3.01662 −0.181251 −0.0906256 0.995885i \(-0.528887\pi\)
−0.0906256 + 0.995885i \(0.528887\pi\)
\(278\) 0 0
\(279\) −10.4295 −0.624396
\(280\) 0 0
\(281\) −7.02716 −0.419205 −0.209602 0.977787i \(-0.567217\pi\)
−0.209602 + 0.977787i \(0.567217\pi\)
\(282\) 0 0
\(283\) 8.51900 0.506402 0.253201 0.967414i \(-0.418517\pi\)
0.253201 + 0.967414i \(0.418517\pi\)
\(284\) 0 0
\(285\) −66.5045 −3.93938
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) 1.00000 0.0588235
\(290\) 0 0
\(291\) −2.56117 −0.150138
\(292\) 0 0
\(293\) −6.99134 −0.408438 −0.204219 0.978925i \(-0.565466\pi\)
−0.204219 + 0.978925i \(0.565466\pi\)
\(294\) 0 0
\(295\) 37.0271 2.15580
\(296\) 0 0
\(297\) −3.38977 −0.196694
\(298\) 0 0
\(299\) 10.3189 0.596756
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 5.97821 0.343439
\(304\) 0 0
\(305\) −36.2505 −2.07570
\(306\) 0 0
\(307\) −29.8285 −1.70240 −0.851201 0.524840i \(-0.824125\pi\)
−0.851201 + 0.524840i \(0.824125\pi\)
\(308\) 0 0
\(309\) 15.4582 0.879389
\(310\) 0 0
\(311\) −8.76472 −0.497001 −0.248501 0.968632i \(-0.579938\pi\)
−0.248501 + 0.968632i \(0.579938\pi\)
\(312\) 0 0
\(313\) −7.82420 −0.442250 −0.221125 0.975245i \(-0.570973\pi\)
−0.221125 + 0.975245i \(0.570973\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −15.9683 −0.896869 −0.448435 0.893816i \(-0.648018\pi\)
−0.448435 + 0.893816i \(0.648018\pi\)
\(318\) 0 0
\(319\) −17.5557 −0.982932
\(320\) 0 0
\(321\) 16.9293 0.944903
\(322\) 0 0
\(323\) −6.99485 −0.389204
\(324\) 0 0
\(325\) 23.0125 1.27650
\(326\) 0 0
\(327\) −28.1803 −1.55838
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) −17.3509 −0.953691 −0.476845 0.878987i \(-0.658220\pi\)
−0.476845 + 0.878987i \(0.658220\pi\)
\(332\) 0 0
\(333\) 13.1507 0.720652
\(334\) 0 0
\(335\) 49.7035 2.71559
\(336\) 0 0
\(337\) 28.3325 1.54337 0.771685 0.636005i \(-0.219414\pi\)
0.771685 + 0.636005i \(0.219414\pi\)
\(338\) 0 0
\(339\) −30.6611 −1.66528
\(340\) 0 0
\(341\) 15.4171 0.834883
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) −40.0584 −2.15667
\(346\) 0 0
\(347\) 11.3760 0.610694 0.305347 0.952241i \(-0.401228\pi\)
0.305347 + 0.952241i \(0.401228\pi\)
\(348\) 0 0
\(349\) 22.5889 1.20915 0.604577 0.796547i \(-0.293342\pi\)
0.604577 + 0.796547i \(0.293342\pi\)
\(350\) 0 0
\(351\) 1.71273 0.0914187
\(352\) 0 0
\(353\) −10.7144 −0.570270 −0.285135 0.958487i \(-0.592038\pi\)
−0.285135 + 0.958487i \(0.592038\pi\)
\(354\) 0 0
\(355\) 1.45235 0.0770825
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −34.3298 −1.81186 −0.905928 0.423432i \(-0.860825\pi\)
−0.905928 + 0.423432i \(0.860825\pi\)
\(360\) 0 0
\(361\) 29.9280 1.57516
\(362\) 0 0
\(363\) 31.3114 1.64342
\(364\) 0 0
\(365\) −2.24568 −0.117544
\(366\) 0 0
\(367\) 19.1036 0.997198 0.498599 0.866833i \(-0.333848\pi\)
0.498599 + 0.866833i \(0.333848\pi\)
\(368\) 0 0
\(369\) −15.2047 −0.791527
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) −15.8981 −0.823171 −0.411585 0.911371i \(-0.635025\pi\)
−0.411585 + 0.911371i \(0.635025\pi\)
\(374\) 0 0
\(375\) −41.7976 −2.15842
\(376\) 0 0
\(377\) 8.87028 0.456843
\(378\) 0 0
\(379\) −15.4844 −0.795382 −0.397691 0.917519i \(-0.630188\pi\)
−0.397691 + 0.917519i \(0.630188\pi\)
\(380\) 0 0
\(381\) 2.00648 0.102795
\(382\) 0 0
\(383\) 10.6601 0.544707 0.272354 0.962197i \(-0.412198\pi\)
0.272354 + 0.962197i \(0.412198\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −38.4522 −1.95463
\(388\) 0 0
\(389\) −9.03166 −0.457923 −0.228962 0.973435i \(-0.573533\pi\)
−0.228962 + 0.973435i \(0.573533\pi\)
\(390\) 0 0
\(391\) −4.21329 −0.213075
\(392\) 0 0
\(393\) −48.0011 −2.42133
\(394\) 0 0
\(395\) −33.3195 −1.67649
\(396\) 0 0
\(397\) 7.57689 0.380273 0.190137 0.981758i \(-0.439107\pi\)
0.190137 + 0.981758i \(0.439107\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 6.03901 0.301574 0.150787 0.988566i \(-0.451819\pi\)
0.150787 + 0.988566i \(0.451819\pi\)
\(402\) 0 0
\(403\) −7.78971 −0.388033
\(404\) 0 0
\(405\) 30.6759 1.52430
\(406\) 0 0
\(407\) −19.4396 −0.963587
\(408\) 0 0
\(409\) 11.3684 0.562133 0.281067 0.959688i \(-0.409312\pi\)
0.281067 + 0.959688i \(0.409312\pi\)
\(410\) 0 0
\(411\) −11.3574 −0.560218
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) −19.3140 −0.948086
\(416\) 0 0
\(417\) 34.9484 1.71143
\(418\) 0 0
\(419\) 7.81481 0.381778 0.190889 0.981612i \(-0.438863\pi\)
0.190889 + 0.981612i \(0.438863\pi\)
\(420\) 0 0
\(421\) −10.9355 −0.532964 −0.266482 0.963840i \(-0.585861\pi\)
−0.266482 + 0.963840i \(0.585861\pi\)
\(422\) 0 0
\(423\) −37.1526 −1.80642
\(424\) 0 0
\(425\) −9.39621 −0.455783
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) −29.7476 −1.43623
\(430\) 0 0
\(431\) −18.9660 −0.913560 −0.456780 0.889580i \(-0.650997\pi\)
−0.456780 + 0.889580i \(0.650997\pi\)
\(432\) 0 0
\(433\) 2.06964 0.0994607 0.0497304 0.998763i \(-0.484164\pi\)
0.0497304 + 0.998763i \(0.484164\pi\)
\(434\) 0 0
\(435\) −34.4349 −1.65103
\(436\) 0 0
\(437\) 29.4714 1.40981
\(438\) 0 0
\(439\) 33.8163 1.61396 0.806981 0.590577i \(-0.201100\pi\)
0.806981 + 0.590577i \(0.201100\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 8.97504 0.426417 0.213208 0.977007i \(-0.431609\pi\)
0.213208 + 0.977007i \(0.431609\pi\)
\(444\) 0 0
\(445\) 1.61455 0.0765372
\(446\) 0 0
\(447\) −46.5184 −2.20024
\(448\) 0 0
\(449\) −17.8245 −0.841190 −0.420595 0.907249i \(-0.638179\pi\)
−0.420595 + 0.907249i \(0.638179\pi\)
\(450\) 0 0
\(451\) 22.4760 1.05836
\(452\) 0 0
\(453\) −51.0709 −2.39952
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 17.8033 0.832801 0.416401 0.909181i \(-0.363291\pi\)
0.416401 + 0.909181i \(0.363291\pi\)
\(458\) 0 0
\(459\) −0.699322 −0.0326416
\(460\) 0 0
\(461\) 1.49574 0.0696634 0.0348317 0.999393i \(-0.488910\pi\)
0.0348317 + 0.999393i \(0.488910\pi\)
\(462\) 0 0
\(463\) −18.5747 −0.863238 −0.431619 0.902056i \(-0.642057\pi\)
−0.431619 + 0.902056i \(0.642057\pi\)
\(464\) 0 0
\(465\) 30.2400 1.40235
\(466\) 0 0
\(467\) −7.53800 −0.348817 −0.174408 0.984673i \(-0.555801\pi\)
−0.174408 + 0.984673i \(0.555801\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) −0.480554 −0.0221428
\(472\) 0 0
\(473\) 56.8410 2.61355
\(474\) 0 0
\(475\) 65.7251 3.01568
\(476\) 0 0
\(477\) −15.7093 −0.719281
\(478\) 0 0
\(479\) 34.6707 1.58415 0.792073 0.610426i \(-0.209002\pi\)
0.792073 + 0.610426i \(0.209002\pi\)
\(480\) 0 0
\(481\) 9.82215 0.447852
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 3.87806 0.176094
\(486\) 0 0
\(487\) 13.6809 0.619942 0.309971 0.950746i \(-0.399681\pi\)
0.309971 + 0.950746i \(0.399681\pi\)
\(488\) 0 0
\(489\) −36.1933 −1.63672
\(490\) 0 0
\(491\) 37.3533 1.68573 0.842865 0.538124i \(-0.180867\pi\)
0.842865 + 0.538124i \(0.180867\pi\)
\(492\) 0 0
\(493\) −3.62181 −0.163118
\(494\) 0 0
\(495\) 60.3072 2.71061
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 8.68560 0.388821 0.194410 0.980920i \(-0.437721\pi\)
0.194410 + 0.980920i \(0.437721\pi\)
\(500\) 0 0
\(501\) 1.50759 0.0673541
\(502\) 0 0
\(503\) 15.1280 0.674523 0.337261 0.941411i \(-0.390499\pi\)
0.337261 + 0.941411i \(0.390499\pi\)
\(504\) 0 0
\(505\) −9.05206 −0.402811
\(506\) 0 0
\(507\) −17.5451 −0.779207
\(508\) 0 0
\(509\) −6.12456 −0.271467 −0.135733 0.990745i \(-0.543339\pi\)
−0.135733 + 0.990745i \(0.543339\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) 4.89166 0.215972
\(514\) 0 0
\(515\) −23.4065 −1.03141
\(516\) 0 0
\(517\) 54.9199 2.41537
\(518\) 0 0
\(519\) 14.7836 0.648930
\(520\) 0 0
\(521\) −11.9757 −0.524666 −0.262333 0.964977i \(-0.584492\pi\)
−0.262333 + 0.964977i \(0.584492\pi\)
\(522\) 0 0
\(523\) −36.2433 −1.58481 −0.792405 0.609995i \(-0.791171\pi\)
−0.792405 + 0.609995i \(0.791171\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 3.18061 0.138550
\(528\) 0 0
\(529\) −5.24817 −0.228181
\(530\) 0 0
\(531\) −31.9998 −1.38867
\(532\) 0 0
\(533\) −11.3563 −0.491897
\(534\) 0 0
\(535\) −25.6340 −1.10825
\(536\) 0 0
\(537\) −22.3902 −0.966209
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) 12.1816 0.523730 0.261865 0.965105i \(-0.415663\pi\)
0.261865 + 0.965105i \(0.415663\pi\)
\(542\) 0 0
\(543\) −49.6017 −2.12861
\(544\) 0 0
\(545\) 42.6700 1.82778
\(546\) 0 0
\(547\) −32.7211 −1.39905 −0.699526 0.714607i \(-0.746605\pi\)
−0.699526 + 0.714607i \(0.746605\pi\)
\(548\) 0 0
\(549\) 31.3287 1.33707
\(550\) 0 0
\(551\) 25.3341 1.07927
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) −38.1301 −1.61853
\(556\) 0 0
\(557\) 25.7737 1.09207 0.546033 0.837764i \(-0.316137\pi\)
0.546033 + 0.837764i \(0.316137\pi\)
\(558\) 0 0
\(559\) −28.7197 −1.21471
\(560\) 0 0
\(561\) 12.1462 0.512813
\(562\) 0 0
\(563\) −37.4518 −1.57840 −0.789202 0.614133i \(-0.789506\pi\)
−0.789202 + 0.614133i \(0.789506\pi\)
\(564\) 0 0
\(565\) 46.4263 1.95317
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 42.6573 1.78829 0.894143 0.447781i \(-0.147786\pi\)
0.894143 + 0.447781i \(0.147786\pi\)
\(570\) 0 0
\(571\) 12.4580 0.521349 0.260675 0.965427i \(-0.416055\pi\)
0.260675 + 0.965427i \(0.416055\pi\)
\(572\) 0 0
\(573\) 50.0657 2.09152
\(574\) 0 0
\(575\) 39.5890 1.65098
\(576\) 0 0
\(577\) 39.6892 1.65228 0.826141 0.563464i \(-0.190532\pi\)
0.826141 + 0.563464i \(0.190532\pi\)
\(578\) 0 0
\(579\) −54.1141 −2.24890
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 23.2219 0.961755
\(584\) 0 0
\(585\) −30.4710 −1.25982
\(586\) 0 0
\(587\) −9.17691 −0.378772 −0.189386 0.981903i \(-0.560650\pi\)
−0.189386 + 0.981903i \(0.560650\pi\)
\(588\) 0 0
\(589\) −22.2479 −0.916708
\(590\) 0 0
\(591\) 49.2037 2.02397
\(592\) 0 0
\(593\) 24.8548 1.02066 0.510332 0.859978i \(-0.329523\pi\)
0.510332 + 0.859978i \(0.329523\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) −51.0104 −2.08772
\(598\) 0 0
\(599\) −4.45211 −0.181908 −0.0909542 0.995855i \(-0.528992\pi\)
−0.0909542 + 0.995855i \(0.528992\pi\)
\(600\) 0 0
\(601\) 36.3507 1.48277 0.741387 0.671077i \(-0.234168\pi\)
0.741387 + 0.671077i \(0.234168\pi\)
\(602\) 0 0
\(603\) −42.9551 −1.74927
\(604\) 0 0
\(605\) −47.4110 −1.92753
\(606\) 0 0
\(607\) −15.4605 −0.627523 −0.313761 0.949502i \(-0.601589\pi\)
−0.313761 + 0.949502i \(0.601589\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −27.7491 −1.12261
\(612\) 0 0
\(613\) 8.95712 0.361775 0.180887 0.983504i \(-0.442103\pi\)
0.180887 + 0.983504i \(0.442103\pi\)
\(614\) 0 0
\(615\) 44.0858 1.77771
\(616\) 0 0
\(617\) 37.4791 1.50885 0.754427 0.656384i \(-0.227915\pi\)
0.754427 + 0.656384i \(0.227915\pi\)
\(618\) 0 0
\(619\) 26.4780 1.06424 0.532120 0.846669i \(-0.321396\pi\)
0.532120 + 0.846669i \(0.321396\pi\)
\(620\) 0 0
\(621\) 2.94645 0.118237
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 16.3078 0.652311
\(626\) 0 0
\(627\) −84.9609 −3.39301
\(628\) 0 0
\(629\) −4.01047 −0.159908
\(630\) 0 0
\(631\) 12.7300 0.506774 0.253387 0.967365i \(-0.418455\pi\)
0.253387 + 0.967365i \(0.418455\pi\)
\(632\) 0 0
\(633\) −21.5896 −0.858109
\(634\) 0 0
\(635\) −3.03816 −0.120566
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) −1.25516 −0.0496532
\(640\) 0 0
\(641\) −9.84680 −0.388925 −0.194463 0.980910i \(-0.562296\pi\)
−0.194463 + 0.980910i \(0.562296\pi\)
\(642\) 0 0
\(643\) −19.3523 −0.763182 −0.381591 0.924331i \(-0.624624\pi\)
−0.381591 + 0.924331i \(0.624624\pi\)
\(644\) 0 0
\(645\) 111.491 4.38997
\(646\) 0 0
\(647\) −27.2238 −1.07028 −0.535140 0.844764i \(-0.679741\pi\)
−0.535140 + 0.844764i \(0.679741\pi\)
\(648\) 0 0
\(649\) 47.3029 1.85680
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 28.3565 1.10968 0.554838 0.831958i \(-0.312780\pi\)
0.554838 + 0.831958i \(0.312780\pi\)
\(654\) 0 0
\(655\) 72.6821 2.83992
\(656\) 0 0
\(657\) 1.94078 0.0757170
\(658\) 0 0
\(659\) 28.5156 1.11081 0.555405 0.831580i \(-0.312563\pi\)
0.555405 + 0.831580i \(0.312563\pi\)
\(660\) 0 0
\(661\) 7.94844 0.309159 0.154579 0.987980i \(-0.450598\pi\)
0.154579 + 0.987980i \(0.450598\pi\)
\(662\) 0 0
\(663\) −6.13704 −0.238343
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 15.2598 0.590860
\(668\) 0 0
\(669\) 27.8165 1.07545
\(670\) 0 0
\(671\) −46.3108 −1.78781
\(672\) 0 0
\(673\) 43.0255 1.65851 0.829255 0.558870i \(-0.188765\pi\)
0.829255 + 0.558870i \(0.188765\pi\)
\(674\) 0 0
\(675\) 6.57098 0.252917
\(676\) 0 0
\(677\) 8.57456 0.329547 0.164774 0.986331i \(-0.447311\pi\)
0.164774 + 0.986331i \(0.447311\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 59.7155 2.28830
\(682\) 0 0
\(683\) −32.0582 −1.22667 −0.613337 0.789821i \(-0.710173\pi\)
−0.613337 + 0.789821i \(0.710173\pi\)
\(684\) 0 0
\(685\) 17.1971 0.657066
\(686\) 0 0
\(687\) −16.3821 −0.625015
\(688\) 0 0
\(689\) −11.7332 −0.447000
\(690\) 0 0
\(691\) 30.4481 1.15830 0.579151 0.815220i \(-0.303384\pi\)
0.579151 + 0.815220i \(0.303384\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −52.9180 −2.00730
\(696\) 0 0
\(697\) 4.63689 0.175635
\(698\) 0 0
\(699\) −52.0254 −1.96778
\(700\) 0 0
\(701\) −5.57614 −0.210608 −0.105304 0.994440i \(-0.533582\pi\)
−0.105304 + 0.994440i \(0.533582\pi\)
\(702\) 0 0
\(703\) 28.0527 1.05803
\(704\) 0 0
\(705\) 107.723 4.05709
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) −35.1910 −1.32163 −0.660814 0.750550i \(-0.729789\pi\)
−0.660814 + 0.750550i \(0.729789\pi\)
\(710\) 0 0
\(711\) 28.7956 1.07992
\(712\) 0 0
\(713\) −13.4008 −0.501865
\(714\) 0 0
\(715\) 45.0431 1.68452
\(716\) 0 0
\(717\) −30.3668 −1.13407
\(718\) 0 0
\(719\) 6.27050 0.233850 0.116925 0.993141i \(-0.462696\pi\)
0.116925 + 0.993141i \(0.462696\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) 46.5708 1.73199
\(724\) 0 0
\(725\) 34.0313 1.26389
\(726\) 0 0
\(727\) 11.3407 0.420603 0.210301 0.977637i \(-0.432556\pi\)
0.210301 + 0.977637i \(0.432556\pi\)
\(728\) 0 0
\(729\) −31.7681 −1.17659
\(730\) 0 0
\(731\) 11.7265 0.433721
\(732\) 0 0
\(733\) 34.0544 1.25783 0.628915 0.777474i \(-0.283500\pi\)
0.628915 + 0.777474i \(0.283500\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 63.4973 2.33895
\(738\) 0 0
\(739\) −14.3472 −0.527771 −0.263886 0.964554i \(-0.585004\pi\)
−0.263886 + 0.964554i \(0.585004\pi\)
\(740\) 0 0
\(741\) 42.9277 1.57699
\(742\) 0 0
\(743\) 26.5838 0.975264 0.487632 0.873049i \(-0.337861\pi\)
0.487632 + 0.873049i \(0.337861\pi\)
\(744\) 0 0
\(745\) 70.4370 2.58061
\(746\) 0 0
\(747\) 16.6917 0.610716
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 5.03283 0.183650 0.0918252 0.995775i \(-0.470730\pi\)
0.0918252 + 0.995775i \(0.470730\pi\)
\(752\) 0 0
\(753\) −53.5122 −1.95009
\(754\) 0 0
\(755\) 77.3303 2.81434
\(756\) 0 0
\(757\) −21.2568 −0.772592 −0.386296 0.922375i \(-0.626246\pi\)
−0.386296 + 0.922375i \(0.626246\pi\)
\(758\) 0 0
\(759\) −51.1755 −1.85755
\(760\) 0 0
\(761\) 30.6015 1.10930 0.554651 0.832083i \(-0.312852\pi\)
0.554651 + 0.832083i \(0.312852\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 12.4416 0.449827
\(766\) 0 0
\(767\) −23.9005 −0.862996
\(768\) 0 0
\(769\) −2.38477 −0.0859971 −0.0429986 0.999075i \(-0.513691\pi\)
−0.0429986 + 0.999075i \(0.513691\pi\)
\(770\) 0 0
\(771\) 6.88625 0.248002
\(772\) 0 0
\(773\) 15.5402 0.558943 0.279471 0.960154i \(-0.409841\pi\)
0.279471 + 0.960154i \(0.409841\pi\)
\(774\) 0 0
\(775\) −29.8857 −1.07353
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −32.4344 −1.16208
\(780\) 0 0
\(781\) 1.85541 0.0663916
\(782\) 0 0
\(783\) 2.53282 0.0905155
\(784\) 0 0
\(785\) 0.727643 0.0259707
\(786\) 0 0
\(787\) −25.1186 −0.895380 −0.447690 0.894189i \(-0.647753\pi\)
−0.447690 + 0.894189i \(0.647753\pi\)
\(788\) 0 0
\(789\) 10.6201 0.378087
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 23.3992 0.830930
\(794\) 0 0
\(795\) 45.5489 1.61545
\(796\) 0 0
\(797\) −21.0066 −0.744093 −0.372046 0.928214i \(-0.621344\pi\)
−0.372046 + 0.928214i \(0.621344\pi\)
\(798\) 0 0
\(799\) 11.3302 0.400833
\(800\) 0 0
\(801\) −1.39534 −0.0493020
\(802\) 0 0
\(803\) −2.86891 −0.101242
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 6.99595 0.246269
\(808\) 0 0
\(809\) −7.40293 −0.260273 −0.130137 0.991496i \(-0.541542\pi\)
−0.130137 + 0.991496i \(0.541542\pi\)
\(810\) 0 0
\(811\) −36.8579 −1.29426 −0.647128 0.762381i \(-0.724030\pi\)
−0.647128 + 0.762381i \(0.724030\pi\)
\(812\) 0 0
\(813\) 70.8217 2.48383
\(814\) 0 0
\(815\) 54.8029 1.91966
\(816\) 0 0
\(817\) −82.0253 −2.86970
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −33.5521 −1.17098 −0.585489 0.810681i \(-0.699097\pi\)
−0.585489 + 0.810681i \(0.699097\pi\)
\(822\) 0 0
\(823\) −38.6605 −1.34762 −0.673809 0.738905i \(-0.735343\pi\)
−0.673809 + 0.738905i \(0.735343\pi\)
\(824\) 0 0
\(825\) −114.128 −3.97344
\(826\) 0 0
\(827\) 6.04811 0.210314 0.105157 0.994456i \(-0.466466\pi\)
0.105157 + 0.994456i \(0.466466\pi\)
\(828\) 0 0
\(829\) −47.8537 −1.66203 −0.831014 0.556252i \(-0.812239\pi\)
−0.831014 + 0.556252i \(0.812239\pi\)
\(830\) 0 0
\(831\) −7.55908 −0.262222
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) −2.28275 −0.0789979
\(836\) 0 0
\(837\) −2.22427 −0.0768821
\(838\) 0 0
\(839\) 18.7792 0.648329 0.324165 0.946001i \(-0.394917\pi\)
0.324165 + 0.946001i \(0.394917\pi\)
\(840\) 0 0
\(841\) −15.8825 −0.547671
\(842\) 0 0
\(843\) −17.6087 −0.606476
\(844\) 0 0
\(845\) 26.5664 0.913912
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) 21.3470 0.732627
\(850\) 0 0
\(851\) 16.8973 0.579232
\(852\) 0 0
\(853\) −5.42303 −0.185681 −0.0928404 0.995681i \(-0.529595\pi\)
−0.0928404 + 0.995681i \(0.529595\pi\)
\(854\) 0 0
\(855\) −87.0272 −2.97627
\(856\) 0 0
\(857\) −19.6060 −0.669728 −0.334864 0.942266i \(-0.608690\pi\)
−0.334864 + 0.942266i \(0.608690\pi\)
\(858\) 0 0
\(859\) −20.7412 −0.707679 −0.353839 0.935306i \(-0.615124\pi\)
−0.353839 + 0.935306i \(0.615124\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −25.7209 −0.875551 −0.437776 0.899084i \(-0.644234\pi\)
−0.437776 + 0.899084i \(0.644234\pi\)
\(864\) 0 0
\(865\) −22.3850 −0.761113
\(866\) 0 0
\(867\) 2.50581 0.0851017
\(868\) 0 0
\(869\) −42.5664 −1.44397
\(870\) 0 0
\(871\) −32.0829 −1.08709
\(872\) 0 0
\(873\) −3.35152 −0.113432
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −57.3001 −1.93489 −0.967443 0.253090i \(-0.918553\pi\)
−0.967443 + 0.253090i \(0.918553\pi\)
\(878\) 0 0
\(879\) −17.5190 −0.590900
\(880\) 0 0
\(881\) −36.9570 −1.24511 −0.622557 0.782575i \(-0.713906\pi\)
−0.622557 + 0.782575i \(0.713906\pi\)
\(882\) 0 0
\(883\) −53.0813 −1.78633 −0.893165 0.449730i \(-0.851520\pi\)
−0.893165 + 0.449730i \(0.851520\pi\)
\(884\) 0 0
\(885\) 92.7828 3.11886
\(886\) 0 0
\(887\) −29.5961 −0.993740 −0.496870 0.867825i \(-0.665517\pi\)
−0.496870 + 0.867825i \(0.665517\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 39.1892 1.31289
\(892\) 0 0
\(893\) −79.2530 −2.65210
\(894\) 0 0
\(895\) 33.9027 1.13324
\(896\) 0 0
\(897\) 25.8571 0.863345
\(898\) 0 0
\(899\) −11.5196 −0.384199
\(900\) 0 0
\(901\) 4.79078 0.159604
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 75.1056 2.49660
\(906\) 0 0
\(907\) 47.9718 1.59288 0.796439 0.604719i \(-0.206714\pi\)
0.796439 + 0.604719i \(0.206714\pi\)
\(908\) 0 0
\(909\) 7.82304 0.259474
\(910\) 0 0
\(911\) −18.1999 −0.602990 −0.301495 0.953468i \(-0.597486\pi\)
−0.301495 + 0.953468i \(0.597486\pi\)
\(912\) 0 0
\(913\) −24.6740 −0.816592
\(914\) 0 0
\(915\) −90.8368 −3.00297
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) 30.2617 0.998242 0.499121 0.866532i \(-0.333656\pi\)
0.499121 + 0.866532i \(0.333656\pi\)
\(920\) 0 0
\(921\) −74.7445 −2.46292
\(922\) 0 0
\(923\) −0.937469 −0.0308572
\(924\) 0 0
\(925\) 37.6833 1.23902
\(926\) 0 0
\(927\) 20.2285 0.664392
\(928\) 0 0
\(929\) −4.20392 −0.137926 −0.0689631 0.997619i \(-0.521969\pi\)
−0.0689631 + 0.997619i \(0.521969\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) −21.9627 −0.719027
\(934\) 0 0
\(935\) −18.3915 −0.601466
\(936\) 0 0
\(937\) 11.6210 0.379643 0.189822 0.981819i \(-0.439209\pi\)
0.189822 + 0.981819i \(0.439209\pi\)
\(938\) 0 0
\(939\) −19.6060 −0.639816
\(940\) 0 0
\(941\) 48.1221 1.56874 0.784368 0.620295i \(-0.212987\pi\)
0.784368 + 0.620295i \(0.212987\pi\)
\(942\) 0 0
\(943\) −19.5366 −0.636199
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 7.49362 0.243510 0.121755 0.992560i \(-0.461148\pi\)
0.121755 + 0.992560i \(0.461148\pi\)
\(948\) 0 0
\(949\) 1.44956 0.0470546
\(950\) 0 0
\(951\) −40.0135 −1.29753
\(952\) 0 0
\(953\) 38.4095 1.24421 0.622103 0.782935i \(-0.286278\pi\)
0.622103 + 0.782935i \(0.286278\pi\)
\(954\) 0 0
\(955\) −75.8082 −2.45310
\(956\) 0 0
\(957\) −43.9913 −1.42204
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) −20.8837 −0.673669
\(962\) 0 0
\(963\) 22.1536 0.713889
\(964\) 0 0
\(965\) 81.9382 2.63768
\(966\) 0 0
\(967\) −3.36687 −0.108271 −0.0541357 0.998534i \(-0.517240\pi\)
−0.0541357 + 0.998534i \(0.517240\pi\)
\(968\) 0 0
\(969\) −17.5278 −0.563073
\(970\) 0 0
\(971\) 16.9506 0.543971 0.271985 0.962301i \(-0.412320\pi\)
0.271985 + 0.962301i \(0.412320\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 57.6650 1.84676
\(976\) 0 0
\(977\) −4.42459 −0.141555 −0.0707775 0.997492i \(-0.522548\pi\)
−0.0707775 + 0.997492i \(0.522548\pi\)
\(978\) 0 0
\(979\) 2.06263 0.0659219
\(980\) 0 0
\(981\) −36.8766 −1.17738
\(982\) 0 0
\(983\) 44.7820 1.42832 0.714162 0.699980i \(-0.246808\pi\)
0.714162 + 0.699980i \(0.246808\pi\)
\(984\) 0 0
\(985\) −74.5030 −2.37386
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −49.4072 −1.57106
\(990\) 0 0
\(991\) 29.3088 0.931026 0.465513 0.885041i \(-0.345870\pi\)
0.465513 + 0.885041i \(0.345870\pi\)
\(992\) 0 0
\(993\) −43.4780 −1.37973
\(994\) 0 0
\(995\) 77.2386 2.44863
\(996\) 0 0
\(997\) 22.1842 0.702580 0.351290 0.936267i \(-0.385743\pi\)
0.351290 + 0.936267i \(0.385743\pi\)
\(998\) 0 0
\(999\) 2.80461 0.0887341
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 6664.2.a.y.1.6 7
7.3 odd 6 952.2.q.e.681.6 yes 14
7.5 odd 6 952.2.q.e.137.6 14
7.6 odd 2 6664.2.a.v.1.2 7
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
952.2.q.e.137.6 14 7.5 odd 6
952.2.q.e.681.6 yes 14 7.3 odd 6
6664.2.a.v.1.2 7 7.6 odd 2
6664.2.a.y.1.6 7 1.1 even 1 trivial