Properties

Label 6664.2.a.y.1.4
Level $6664$
Weight $2$
Character 6664.1
Self dual yes
Analytic conductor $53.212$
Analytic rank $1$
Dimension $7$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [6664,2,Mod(1,6664)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("6664.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(6664, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 6664 = 2^{3} \cdot 7^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 6664.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [7,0,3,0,-2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(53.2123079070\)
Analytic rank: \(1\)
Dimension: \(7\)
Coefficient field: \(\mathbb{Q}[x]/(x^{7} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{7} - 3x^{6} - 8x^{5} + 21x^{4} + 25x^{3} - 41x^{2} - 28x + 19 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 952)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(0.474430\) of defining polynomial
Character \(\chi\) \(=\) 6664.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.474430 q^{3} -1.63521 q^{5} -2.77492 q^{9} -0.241103 q^{11} -1.90325 q^{13} -0.775795 q^{15} -1.00000 q^{17} +5.11412 q^{19} +3.66413 q^{23} -2.32607 q^{25} -2.73980 q^{27} +2.50385 q^{29} +2.41583 q^{31} -0.114387 q^{33} +3.35512 q^{37} -0.902958 q^{39} +9.52792 q^{41} +9.54468 q^{43} +4.53758 q^{45} +8.63945 q^{47} -0.474430 q^{51} -11.6158 q^{53} +0.394255 q^{55} +2.42629 q^{57} +2.07093 q^{59} -10.6760 q^{61} +3.11222 q^{65} -12.5662 q^{67} +1.73837 q^{69} +0.576299 q^{71} -15.5443 q^{73} -1.10356 q^{75} -8.46606 q^{79} +7.02491 q^{81} -1.02923 q^{83} +1.63521 q^{85} +1.18790 q^{87} -11.4269 q^{89} +1.14614 q^{93} -8.36268 q^{95} +3.69602 q^{97} +0.669041 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 7 q + 3 q^{3} - 2 q^{5} + 4 q^{9} - 12 q^{11} - 2 q^{13} - 6 q^{15} - 7 q^{17} + 3 q^{19} - 18 q^{23} + 15 q^{25} + 18 q^{27} + 5 q^{29} + 10 q^{31} - 21 q^{33} + 11 q^{37} - 12 q^{39} - 15 q^{43} - 13 q^{45}+ \cdots - 20 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.474430 0.273913 0.136956 0.990577i \(-0.456268\pi\)
0.136956 + 0.990577i \(0.456268\pi\)
\(4\) 0 0
\(5\) −1.63521 −0.731290 −0.365645 0.930754i \(-0.619152\pi\)
−0.365645 + 0.930754i \(0.619152\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 0 0
\(9\) −2.77492 −0.924972
\(10\) 0 0
\(11\) −0.241103 −0.0726953 −0.0363477 0.999339i \(-0.511572\pi\)
−0.0363477 + 0.999339i \(0.511572\pi\)
\(12\) 0 0
\(13\) −1.90325 −0.527866 −0.263933 0.964541i \(-0.585020\pi\)
−0.263933 + 0.964541i \(0.585020\pi\)
\(14\) 0 0
\(15\) −0.775795 −0.200310
\(16\) 0 0
\(17\) −1.00000 −0.242536
\(18\) 0 0
\(19\) 5.11412 1.17326 0.586630 0.809855i \(-0.300454\pi\)
0.586630 + 0.809855i \(0.300454\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 3.66413 0.764023 0.382012 0.924158i \(-0.375231\pi\)
0.382012 + 0.924158i \(0.375231\pi\)
\(24\) 0 0
\(25\) −2.32607 −0.465215
\(26\) 0 0
\(27\) −2.73980 −0.527274
\(28\) 0 0
\(29\) 2.50385 0.464953 0.232477 0.972602i \(-0.425317\pi\)
0.232477 + 0.972602i \(0.425317\pi\)
\(30\) 0 0
\(31\) 2.41583 0.433896 0.216948 0.976183i \(-0.430390\pi\)
0.216948 + 0.976183i \(0.430390\pi\)
\(32\) 0 0
\(33\) −0.114387 −0.0199122
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 3.35512 0.551579 0.275789 0.961218i \(-0.411061\pi\)
0.275789 + 0.961218i \(0.411061\pi\)
\(38\) 0 0
\(39\) −0.902958 −0.144589
\(40\) 0 0
\(41\) 9.52792 1.48801 0.744006 0.668173i \(-0.232924\pi\)
0.744006 + 0.668173i \(0.232924\pi\)
\(42\) 0 0
\(43\) 9.54468 1.45555 0.727775 0.685816i \(-0.240555\pi\)
0.727775 + 0.685816i \(0.240555\pi\)
\(44\) 0 0
\(45\) 4.53758 0.676423
\(46\) 0 0
\(47\) 8.63945 1.26019 0.630097 0.776517i \(-0.283015\pi\)
0.630097 + 0.776517i \(0.283015\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0 0
\(51\) −0.474430 −0.0664335
\(52\) 0 0
\(53\) −11.6158 −1.59556 −0.797779 0.602949i \(-0.793992\pi\)
−0.797779 + 0.602949i \(0.793992\pi\)
\(54\) 0 0
\(55\) 0.394255 0.0531614
\(56\) 0 0
\(57\) 2.42629 0.321370
\(58\) 0 0
\(59\) 2.07093 0.269612 0.134806 0.990872i \(-0.456959\pi\)
0.134806 + 0.990872i \(0.456959\pi\)
\(60\) 0 0
\(61\) −10.6760 −1.36693 −0.683463 0.729985i \(-0.739527\pi\)
−0.683463 + 0.729985i \(0.739527\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 3.11222 0.386023
\(66\) 0 0
\(67\) −12.5662 −1.53521 −0.767604 0.640924i \(-0.778551\pi\)
−0.767604 + 0.640924i \(0.778551\pi\)
\(68\) 0 0
\(69\) 1.73837 0.209275
\(70\) 0 0
\(71\) 0.576299 0.0683942 0.0341971 0.999415i \(-0.489113\pi\)
0.0341971 + 0.999415i \(0.489113\pi\)
\(72\) 0 0
\(73\) −15.5443 −1.81932 −0.909659 0.415355i \(-0.863657\pi\)
−0.909659 + 0.415355i \(0.863657\pi\)
\(74\) 0 0
\(75\) −1.10356 −0.127428
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) −8.46606 −0.952507 −0.476253 0.879308i \(-0.658005\pi\)
−0.476253 + 0.879308i \(0.658005\pi\)
\(80\) 0 0
\(81\) 7.02491 0.780545
\(82\) 0 0
\(83\) −1.02923 −0.112972 −0.0564862 0.998403i \(-0.517990\pi\)
−0.0564862 + 0.998403i \(0.517990\pi\)
\(84\) 0 0
\(85\) 1.63521 0.177364
\(86\) 0 0
\(87\) 1.18790 0.127356
\(88\) 0 0
\(89\) −11.4269 −1.21125 −0.605624 0.795751i \(-0.707076\pi\)
−0.605624 + 0.795751i \(0.707076\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 1.14614 0.118850
\(94\) 0 0
\(95\) −8.36268 −0.857993
\(96\) 0 0
\(97\) 3.69602 0.375274 0.187637 0.982238i \(-0.439917\pi\)
0.187637 + 0.982238i \(0.439917\pi\)
\(98\) 0 0
\(99\) 0.669041 0.0672411
\(100\) 0 0
\(101\) −8.68120 −0.863811 −0.431906 0.901919i \(-0.642159\pi\)
−0.431906 + 0.901919i \(0.642159\pi\)
\(102\) 0 0
\(103\) 14.1120 1.39050 0.695248 0.718770i \(-0.255294\pi\)
0.695248 + 0.718770i \(0.255294\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −13.8529 −1.33921 −0.669605 0.742718i \(-0.733537\pi\)
−0.669605 + 0.742718i \(0.733537\pi\)
\(108\) 0 0
\(109\) −6.26739 −0.600308 −0.300154 0.953891i \(-0.597038\pi\)
−0.300154 + 0.953891i \(0.597038\pi\)
\(110\) 0 0
\(111\) 1.59177 0.151084
\(112\) 0 0
\(113\) −14.5983 −1.37329 −0.686644 0.726993i \(-0.740917\pi\)
−0.686644 + 0.726993i \(0.740917\pi\)
\(114\) 0 0
\(115\) −5.99163 −0.558723
\(116\) 0 0
\(117\) 5.28135 0.488261
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) −10.9419 −0.994715
\(122\) 0 0
\(123\) 4.52033 0.407585
\(124\) 0 0
\(125\) 11.9797 1.07150
\(126\) 0 0
\(127\) −14.9323 −1.32502 −0.662512 0.749052i \(-0.730510\pi\)
−0.662512 + 0.749052i \(0.730510\pi\)
\(128\) 0 0
\(129\) 4.52828 0.398693
\(130\) 0 0
\(131\) −9.23736 −0.807072 −0.403536 0.914964i \(-0.632219\pi\)
−0.403536 + 0.914964i \(0.632219\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 4.48015 0.385590
\(136\) 0 0
\(137\) −0.201993 −0.0172574 −0.00862872 0.999963i \(-0.502747\pi\)
−0.00862872 + 0.999963i \(0.502747\pi\)
\(138\) 0 0
\(139\) 8.80733 0.747028 0.373514 0.927625i \(-0.378153\pi\)
0.373514 + 0.927625i \(0.378153\pi\)
\(140\) 0 0
\(141\) 4.09882 0.345183
\(142\) 0 0
\(143\) 0.458879 0.0383734
\(144\) 0 0
\(145\) −4.09433 −0.340016
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −4.90694 −0.401992 −0.200996 0.979592i \(-0.564418\pi\)
−0.200996 + 0.979592i \(0.564418\pi\)
\(150\) 0 0
\(151\) −3.03913 −0.247321 −0.123661 0.992325i \(-0.539463\pi\)
−0.123661 + 0.992325i \(0.539463\pi\)
\(152\) 0 0
\(153\) 2.77492 0.224339
\(154\) 0 0
\(155\) −3.95040 −0.317304
\(156\) 0 0
\(157\) 19.9083 1.58886 0.794429 0.607357i \(-0.207770\pi\)
0.794429 + 0.607357i \(0.207770\pi\)
\(158\) 0 0
\(159\) −5.51091 −0.437044
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 5.54155 0.434048 0.217024 0.976166i \(-0.430365\pi\)
0.217024 + 0.976166i \(0.430365\pi\)
\(164\) 0 0
\(165\) 0.187047 0.0145616
\(166\) 0 0
\(167\) −3.42008 −0.264654 −0.132327 0.991206i \(-0.542245\pi\)
−0.132327 + 0.991206i \(0.542245\pi\)
\(168\) 0 0
\(169\) −9.37765 −0.721358
\(170\) 0 0
\(171\) −14.1912 −1.08523
\(172\) 0 0
\(173\) −11.3536 −0.863195 −0.431598 0.902066i \(-0.642050\pi\)
−0.431598 + 0.902066i \(0.642050\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 0.982511 0.0738501
\(178\) 0 0
\(179\) 14.7667 1.10372 0.551859 0.833938i \(-0.313919\pi\)
0.551859 + 0.833938i \(0.313919\pi\)
\(180\) 0 0
\(181\) −4.00555 −0.297730 −0.148865 0.988858i \(-0.547562\pi\)
−0.148865 + 0.988858i \(0.547562\pi\)
\(182\) 0 0
\(183\) −5.06504 −0.374418
\(184\) 0 0
\(185\) −5.48635 −0.403364
\(186\) 0 0
\(187\) 0.241103 0.0176312
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −21.6248 −1.56471 −0.782357 0.622830i \(-0.785983\pi\)
−0.782357 + 0.622830i \(0.785983\pi\)
\(192\) 0 0
\(193\) 15.5283 1.11775 0.558877 0.829251i \(-0.311233\pi\)
0.558877 + 0.829251i \(0.311233\pi\)
\(194\) 0 0
\(195\) 1.47653 0.105737
\(196\) 0 0
\(197\) 0.389479 0.0277492 0.0138746 0.999904i \(-0.495583\pi\)
0.0138746 + 0.999904i \(0.495583\pi\)
\(198\) 0 0
\(199\) −3.06877 −0.217539 −0.108770 0.994067i \(-0.534691\pi\)
−0.108770 + 0.994067i \(0.534691\pi\)
\(200\) 0 0
\(201\) −5.96180 −0.420513
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) −15.5802 −1.08817
\(206\) 0 0
\(207\) −10.1676 −0.706700
\(208\) 0 0
\(209\) −1.23303 −0.0852904
\(210\) 0 0
\(211\) −16.8747 −1.16170 −0.580850 0.814010i \(-0.697280\pi\)
−0.580850 + 0.814010i \(0.697280\pi\)
\(212\) 0 0
\(213\) 0.273414 0.0187340
\(214\) 0 0
\(215\) −15.6076 −1.06443
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) −7.37467 −0.498334
\(220\) 0 0
\(221\) 1.90325 0.128026
\(222\) 0 0
\(223\) 4.32590 0.289683 0.144842 0.989455i \(-0.453733\pi\)
0.144842 + 0.989455i \(0.453733\pi\)
\(224\) 0 0
\(225\) 6.45466 0.430311
\(226\) 0 0
\(227\) −24.1219 −1.60103 −0.800514 0.599313i \(-0.795440\pi\)
−0.800514 + 0.599313i \(0.795440\pi\)
\(228\) 0 0
\(229\) 0.408154 0.0269716 0.0134858 0.999909i \(-0.495707\pi\)
0.0134858 + 0.999909i \(0.495707\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −1.57468 −0.103161 −0.0515804 0.998669i \(-0.516426\pi\)
−0.0515804 + 0.998669i \(0.516426\pi\)
\(234\) 0 0
\(235\) −14.1274 −0.921567
\(236\) 0 0
\(237\) −4.01656 −0.260903
\(238\) 0 0
\(239\) −7.31831 −0.473382 −0.236691 0.971585i \(-0.576063\pi\)
−0.236691 + 0.971585i \(0.576063\pi\)
\(240\) 0 0
\(241\) −13.0642 −0.841540 −0.420770 0.907167i \(-0.638240\pi\)
−0.420770 + 0.907167i \(0.638240\pi\)
\(242\) 0 0
\(243\) 11.5522 0.741075
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) −9.73343 −0.619324
\(248\) 0 0
\(249\) −0.488297 −0.0309446
\(250\) 0 0
\(251\) 10.1335 0.639619 0.319810 0.947482i \(-0.396381\pi\)
0.319810 + 0.947482i \(0.396381\pi\)
\(252\) 0 0
\(253\) −0.883432 −0.0555409
\(254\) 0 0
\(255\) 0.775795 0.0485822
\(256\) 0 0
\(257\) −14.3509 −0.895183 −0.447591 0.894238i \(-0.647718\pi\)
−0.447591 + 0.894238i \(0.647718\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) −6.94797 −0.430069
\(262\) 0 0
\(263\) −17.6427 −1.08789 −0.543947 0.839120i \(-0.683071\pi\)
−0.543947 + 0.839120i \(0.683071\pi\)
\(264\) 0 0
\(265\) 18.9944 1.16682
\(266\) 0 0
\(267\) −5.42126 −0.331776
\(268\) 0 0
\(269\) −9.00765 −0.549206 −0.274603 0.961558i \(-0.588546\pi\)
−0.274603 + 0.961558i \(0.588546\pi\)
\(270\) 0 0
\(271\) 19.5196 1.18573 0.592864 0.805302i \(-0.297997\pi\)
0.592864 + 0.805302i \(0.297997\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 0.560823 0.0338189
\(276\) 0 0
\(277\) 26.2675 1.57826 0.789131 0.614225i \(-0.210531\pi\)
0.789131 + 0.614225i \(0.210531\pi\)
\(278\) 0 0
\(279\) −6.70373 −0.401342
\(280\) 0 0
\(281\) −0.117643 −0.00701798 −0.00350899 0.999994i \(-0.501117\pi\)
−0.00350899 + 0.999994i \(0.501117\pi\)
\(282\) 0 0
\(283\) 2.86895 0.170542 0.0852708 0.996358i \(-0.472824\pi\)
0.0852708 + 0.996358i \(0.472824\pi\)
\(284\) 0 0
\(285\) −3.96751 −0.235015
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) 1.00000 0.0588235
\(290\) 0 0
\(291\) 1.75350 0.102792
\(292\) 0 0
\(293\) 17.8039 1.04011 0.520057 0.854132i \(-0.325911\pi\)
0.520057 + 0.854132i \(0.325911\pi\)
\(294\) 0 0
\(295\) −3.38641 −0.197164
\(296\) 0 0
\(297\) 0.660573 0.0383303
\(298\) 0 0
\(299\) −6.97374 −0.403302
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) −4.11862 −0.236609
\(304\) 0 0
\(305\) 17.4576 0.999620
\(306\) 0 0
\(307\) 21.8210 1.24539 0.622695 0.782465i \(-0.286038\pi\)
0.622695 + 0.782465i \(0.286038\pi\)
\(308\) 0 0
\(309\) 6.69516 0.380874
\(310\) 0 0
\(311\) −5.94343 −0.337021 −0.168511 0.985700i \(-0.553896\pi\)
−0.168511 + 0.985700i \(0.553896\pi\)
\(312\) 0 0
\(313\) 12.8644 0.727138 0.363569 0.931567i \(-0.381558\pi\)
0.363569 + 0.931567i \(0.381558\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −3.31744 −0.186326 −0.0931629 0.995651i \(-0.529698\pi\)
−0.0931629 + 0.995651i \(0.529698\pi\)
\(318\) 0 0
\(319\) −0.603686 −0.0337999
\(320\) 0 0
\(321\) −6.57223 −0.366826
\(322\) 0 0
\(323\) −5.11412 −0.284557
\(324\) 0 0
\(325\) 4.42709 0.245571
\(326\) 0 0
\(327\) −2.97344 −0.164432
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 7.44505 0.409217 0.204608 0.978844i \(-0.434408\pi\)
0.204608 + 0.978844i \(0.434408\pi\)
\(332\) 0 0
\(333\) −9.31019 −0.510195
\(334\) 0 0
\(335\) 20.5485 1.12268
\(336\) 0 0
\(337\) −4.05359 −0.220813 −0.110407 0.993887i \(-0.535215\pi\)
−0.110407 + 0.993887i \(0.535215\pi\)
\(338\) 0 0
\(339\) −6.92586 −0.376161
\(340\) 0 0
\(341\) −0.582465 −0.0315422
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) −2.84261 −0.153041
\(346\) 0 0
\(347\) −35.3082 −1.89544 −0.947722 0.319096i \(-0.896621\pi\)
−0.947722 + 0.319096i \(0.896621\pi\)
\(348\) 0 0
\(349\) 1.80670 0.0967104 0.0483552 0.998830i \(-0.484602\pi\)
0.0483552 + 0.998830i \(0.484602\pi\)
\(350\) 0 0
\(351\) 5.21451 0.278330
\(352\) 0 0
\(353\) 0.450656 0.0239860 0.0119930 0.999928i \(-0.496182\pi\)
0.0119930 + 0.999928i \(0.496182\pi\)
\(354\) 0 0
\(355\) −0.942373 −0.0500160
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 36.2275 1.91201 0.956007 0.293344i \(-0.0947681\pi\)
0.956007 + 0.293344i \(0.0947681\pi\)
\(360\) 0 0
\(361\) 7.15421 0.376537
\(362\) 0 0
\(363\) −5.19116 −0.272465
\(364\) 0 0
\(365\) 25.4182 1.33045
\(366\) 0 0
\(367\) 19.2616 1.00545 0.502724 0.864447i \(-0.332331\pi\)
0.502724 + 0.864447i \(0.332331\pi\)
\(368\) 0 0
\(369\) −26.4392 −1.37637
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) −22.4332 −1.16155 −0.580774 0.814065i \(-0.697250\pi\)
−0.580774 + 0.814065i \(0.697250\pi\)
\(374\) 0 0
\(375\) 5.68353 0.293496
\(376\) 0 0
\(377\) −4.76544 −0.245433
\(378\) 0 0
\(379\) 1.03798 0.0533176 0.0266588 0.999645i \(-0.491513\pi\)
0.0266588 + 0.999645i \(0.491513\pi\)
\(380\) 0 0
\(381\) −7.08432 −0.362941
\(382\) 0 0
\(383\) 23.1557 1.18320 0.591600 0.806232i \(-0.298497\pi\)
0.591600 + 0.806232i \(0.298497\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −26.4857 −1.34634
\(388\) 0 0
\(389\) −36.6431 −1.85788 −0.928940 0.370231i \(-0.879278\pi\)
−0.928940 + 0.370231i \(0.879278\pi\)
\(390\) 0 0
\(391\) −3.66413 −0.185303
\(392\) 0 0
\(393\) −4.38248 −0.221067
\(394\) 0 0
\(395\) 13.8438 0.696559
\(396\) 0 0
\(397\) 17.1632 0.861396 0.430698 0.902496i \(-0.358267\pi\)
0.430698 + 0.902496i \(0.358267\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 3.95796 0.197651 0.0988256 0.995105i \(-0.468491\pi\)
0.0988256 + 0.995105i \(0.468491\pi\)
\(402\) 0 0
\(403\) −4.59793 −0.229039
\(404\) 0 0
\(405\) −11.4872 −0.570805
\(406\) 0 0
\(407\) −0.808931 −0.0400972
\(408\) 0 0
\(409\) −6.06740 −0.300014 −0.150007 0.988685i \(-0.547930\pi\)
−0.150007 + 0.988685i \(0.547930\pi\)
\(410\) 0 0
\(411\) −0.0958317 −0.00472703
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 1.68301 0.0826157
\(416\) 0 0
\(417\) 4.17846 0.204620
\(418\) 0 0
\(419\) −5.33057 −0.260415 −0.130208 0.991487i \(-0.541564\pi\)
−0.130208 + 0.991487i \(0.541564\pi\)
\(420\) 0 0
\(421\) 17.1834 0.837466 0.418733 0.908109i \(-0.362474\pi\)
0.418733 + 0.908109i \(0.362474\pi\)
\(422\) 0 0
\(423\) −23.9738 −1.16564
\(424\) 0 0
\(425\) 2.32607 0.112831
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 0.217706 0.0105109
\(430\) 0 0
\(431\) 5.62016 0.270713 0.135357 0.990797i \(-0.456782\pi\)
0.135357 + 0.990797i \(0.456782\pi\)
\(432\) 0 0
\(433\) 6.15198 0.295645 0.147823 0.989014i \(-0.452773\pi\)
0.147823 + 0.989014i \(0.452773\pi\)
\(434\) 0 0
\(435\) −1.94247 −0.0931345
\(436\) 0 0
\(437\) 18.7388 0.896397
\(438\) 0 0
\(439\) −38.6667 −1.84546 −0.922731 0.385444i \(-0.874048\pi\)
−0.922731 + 0.385444i \(0.874048\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −34.8987 −1.65809 −0.829045 0.559183i \(-0.811115\pi\)
−0.829045 + 0.559183i \(0.811115\pi\)
\(444\) 0 0
\(445\) 18.6854 0.885773
\(446\) 0 0
\(447\) −2.32800 −0.110111
\(448\) 0 0
\(449\) 13.1959 0.622752 0.311376 0.950287i \(-0.399210\pi\)
0.311376 + 0.950287i \(0.399210\pi\)
\(450\) 0 0
\(451\) −2.29721 −0.108171
\(452\) 0 0
\(453\) −1.44186 −0.0677443
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −21.7706 −1.01839 −0.509193 0.860653i \(-0.670056\pi\)
−0.509193 + 0.860653i \(0.670056\pi\)
\(458\) 0 0
\(459\) 2.73980 0.127883
\(460\) 0 0
\(461\) −20.9376 −0.975159 −0.487579 0.873079i \(-0.662120\pi\)
−0.487579 + 0.873079i \(0.662120\pi\)
\(462\) 0 0
\(463\) 12.4193 0.577175 0.288588 0.957453i \(-0.406814\pi\)
0.288588 + 0.957453i \(0.406814\pi\)
\(464\) 0 0
\(465\) −1.87419 −0.0869136
\(466\) 0 0
\(467\) −9.43012 −0.436374 −0.218187 0.975907i \(-0.570014\pi\)
−0.218187 + 0.975907i \(0.570014\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 9.44512 0.435208
\(472\) 0 0
\(473\) −2.30125 −0.105812
\(474\) 0 0
\(475\) −11.8958 −0.545817
\(476\) 0 0
\(477\) 32.2330 1.47585
\(478\) 0 0
\(479\) −0.519314 −0.0237281 −0.0118640 0.999930i \(-0.503777\pi\)
−0.0118640 + 0.999930i \(0.503777\pi\)
\(480\) 0 0
\(481\) −6.38563 −0.291160
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −6.04378 −0.274434
\(486\) 0 0
\(487\) −37.5904 −1.70338 −0.851691 0.524044i \(-0.824423\pi\)
−0.851691 + 0.524044i \(0.824423\pi\)
\(488\) 0 0
\(489\) 2.62908 0.118891
\(490\) 0 0
\(491\) −27.0798 −1.22210 −0.611048 0.791593i \(-0.709252\pi\)
−0.611048 + 0.791593i \(0.709252\pi\)
\(492\) 0 0
\(493\) −2.50385 −0.112768
\(494\) 0 0
\(495\) −1.09403 −0.0491728
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) −28.0722 −1.25668 −0.628342 0.777937i \(-0.716266\pi\)
−0.628342 + 0.777937i \(0.716266\pi\)
\(500\) 0 0
\(501\) −1.62259 −0.0724920
\(502\) 0 0
\(503\) 33.5454 1.49572 0.747858 0.663858i \(-0.231082\pi\)
0.747858 + 0.663858i \(0.231082\pi\)
\(504\) 0 0
\(505\) 14.1956 0.631697
\(506\) 0 0
\(507\) −4.44904 −0.197589
\(508\) 0 0
\(509\) −11.0980 −0.491910 −0.245955 0.969281i \(-0.579102\pi\)
−0.245955 + 0.969281i \(0.579102\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) −14.0116 −0.618629
\(514\) 0 0
\(515\) −23.0761 −1.01686
\(516\) 0 0
\(517\) −2.08300 −0.0916102
\(518\) 0 0
\(519\) −5.38647 −0.236440
\(520\) 0 0
\(521\) 34.8637 1.52741 0.763704 0.645567i \(-0.223379\pi\)
0.763704 + 0.645567i \(0.223379\pi\)
\(522\) 0 0
\(523\) −23.8737 −1.04392 −0.521961 0.852969i \(-0.674799\pi\)
−0.521961 + 0.852969i \(0.674799\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −2.41583 −0.105235
\(528\) 0 0
\(529\) −9.57418 −0.416269
\(530\) 0 0
\(531\) −5.74665 −0.249383
\(532\) 0 0
\(533\) −18.1340 −0.785470
\(534\) 0 0
\(535\) 22.6525 0.979351
\(536\) 0 0
\(537\) 7.00579 0.302322
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) 17.4510 0.750276 0.375138 0.926969i \(-0.377595\pi\)
0.375138 + 0.926969i \(0.377595\pi\)
\(542\) 0 0
\(543\) −1.90035 −0.0815520
\(544\) 0 0
\(545\) 10.2485 0.438999
\(546\) 0 0
\(547\) 17.0311 0.728198 0.364099 0.931360i \(-0.381377\pi\)
0.364099 + 0.931360i \(0.381377\pi\)
\(548\) 0 0
\(549\) 29.6251 1.26437
\(550\) 0 0
\(551\) 12.8050 0.545510
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) −2.60289 −0.110487
\(556\) 0 0
\(557\) 1.75404 0.0743210 0.0371605 0.999309i \(-0.488169\pi\)
0.0371605 + 0.999309i \(0.488169\pi\)
\(558\) 0 0
\(559\) −18.1659 −0.768335
\(560\) 0 0
\(561\) 0.114387 0.00482941
\(562\) 0 0
\(563\) −36.6610 −1.54508 −0.772539 0.634968i \(-0.781013\pi\)
−0.772539 + 0.634968i \(0.781013\pi\)
\(564\) 0 0
\(565\) 23.8713 1.00427
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 41.7045 1.74835 0.874173 0.485615i \(-0.161404\pi\)
0.874173 + 0.485615i \(0.161404\pi\)
\(570\) 0 0
\(571\) −9.07579 −0.379810 −0.189905 0.981802i \(-0.560818\pi\)
−0.189905 + 0.981802i \(0.560818\pi\)
\(572\) 0 0
\(573\) −10.2594 −0.428595
\(574\) 0 0
\(575\) −8.52303 −0.355435
\(576\) 0 0
\(577\) −45.5424 −1.89595 −0.947977 0.318338i \(-0.896875\pi\)
−0.947977 + 0.318338i \(0.896875\pi\)
\(578\) 0 0
\(579\) 7.36711 0.306167
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 2.80062 0.115990
\(584\) 0 0
\(585\) −8.63614 −0.357061
\(586\) 0 0
\(587\) 14.6764 0.605759 0.302879 0.953029i \(-0.402052\pi\)
0.302879 + 0.953029i \(0.402052\pi\)
\(588\) 0 0
\(589\) 12.3549 0.509073
\(590\) 0 0
\(591\) 0.184781 0.00760086
\(592\) 0 0
\(593\) 22.4432 0.921633 0.460817 0.887495i \(-0.347557\pi\)
0.460817 + 0.887495i \(0.347557\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) −1.45592 −0.0595868
\(598\) 0 0
\(599\) −19.0834 −0.779728 −0.389864 0.920872i \(-0.627478\pi\)
−0.389864 + 0.920872i \(0.627478\pi\)
\(600\) 0 0
\(601\) 13.1280 0.535503 0.267751 0.963488i \(-0.413719\pi\)
0.267751 + 0.963488i \(0.413719\pi\)
\(602\) 0 0
\(603\) 34.8702 1.42002
\(604\) 0 0
\(605\) 17.8923 0.727426
\(606\) 0 0
\(607\) 13.8740 0.563126 0.281563 0.959543i \(-0.409147\pi\)
0.281563 + 0.959543i \(0.409147\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −16.4430 −0.665213
\(612\) 0 0
\(613\) 44.1168 1.78186 0.890931 0.454138i \(-0.150053\pi\)
0.890931 + 0.454138i \(0.150053\pi\)
\(614\) 0 0
\(615\) −7.39172 −0.298063
\(616\) 0 0
\(617\) −35.7861 −1.44069 −0.720347 0.693614i \(-0.756018\pi\)
−0.720347 + 0.693614i \(0.756018\pi\)
\(618\) 0 0
\(619\) 13.6707 0.549473 0.274736 0.961520i \(-0.411409\pi\)
0.274736 + 0.961520i \(0.411409\pi\)
\(620\) 0 0
\(621\) −10.0390 −0.402849
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) −7.95901 −0.318361
\(626\) 0 0
\(627\) −0.584987 −0.0233621
\(628\) 0 0
\(629\) −3.35512 −0.133778
\(630\) 0 0
\(631\) −11.5439 −0.459557 −0.229779 0.973243i \(-0.573800\pi\)
−0.229779 + 0.973243i \(0.573800\pi\)
\(632\) 0 0
\(633\) −8.00586 −0.318204
\(634\) 0 0
\(635\) 24.4174 0.968977
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) −1.59918 −0.0632627
\(640\) 0 0
\(641\) 14.1088 0.557263 0.278631 0.960398i \(-0.410119\pi\)
0.278631 + 0.960398i \(0.410119\pi\)
\(642\) 0 0
\(643\) −31.8841 −1.25738 −0.628692 0.777654i \(-0.716410\pi\)
−0.628692 + 0.777654i \(0.716410\pi\)
\(644\) 0 0
\(645\) −7.40472 −0.291560
\(646\) 0 0
\(647\) 2.68038 0.105377 0.0526884 0.998611i \(-0.483221\pi\)
0.0526884 + 0.998611i \(0.483221\pi\)
\(648\) 0 0
\(649\) −0.499307 −0.0195995
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 3.88111 0.151880 0.0759398 0.997112i \(-0.475804\pi\)
0.0759398 + 0.997112i \(0.475804\pi\)
\(654\) 0 0
\(655\) 15.1051 0.590204
\(656\) 0 0
\(657\) 43.1340 1.68282
\(658\) 0 0
\(659\) −18.8524 −0.734383 −0.367192 0.930145i \(-0.619681\pi\)
−0.367192 + 0.930145i \(0.619681\pi\)
\(660\) 0 0
\(661\) 20.4000 0.793469 0.396734 0.917933i \(-0.370143\pi\)
0.396734 + 0.917933i \(0.370143\pi\)
\(662\) 0 0
\(663\) 0.902958 0.0350680
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 9.17442 0.355235
\(668\) 0 0
\(669\) 2.05234 0.0793479
\(670\) 0 0
\(671\) 2.57403 0.0993692
\(672\) 0 0
\(673\) 51.4240 1.98225 0.991125 0.132931i \(-0.0424389\pi\)
0.991125 + 0.132931i \(0.0424389\pi\)
\(674\) 0 0
\(675\) 6.37297 0.245296
\(676\) 0 0
\(677\) −24.4045 −0.937941 −0.468971 0.883214i \(-0.655375\pi\)
−0.468971 + 0.883214i \(0.655375\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) −11.4442 −0.438542
\(682\) 0 0
\(683\) −23.0029 −0.880182 −0.440091 0.897953i \(-0.645054\pi\)
−0.440091 + 0.897953i \(0.645054\pi\)
\(684\) 0 0
\(685\) 0.330302 0.0126202
\(686\) 0 0
\(687\) 0.193641 0.00738785
\(688\) 0 0
\(689\) 22.1078 0.842241
\(690\) 0 0
\(691\) 8.51322 0.323858 0.161929 0.986802i \(-0.448228\pi\)
0.161929 + 0.986802i \(0.448228\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −14.4019 −0.546294
\(696\) 0 0
\(697\) −9.52792 −0.360896
\(698\) 0 0
\(699\) −0.747077 −0.0282570
\(700\) 0 0
\(701\) −28.3455 −1.07060 −0.535298 0.844663i \(-0.679801\pi\)
−0.535298 + 0.844663i \(0.679801\pi\)
\(702\) 0 0
\(703\) 17.1585 0.647145
\(704\) 0 0
\(705\) −6.70245 −0.252429
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 22.2872 0.837012 0.418506 0.908214i \(-0.362554\pi\)
0.418506 + 0.908214i \(0.362554\pi\)
\(710\) 0 0
\(711\) 23.4926 0.881042
\(712\) 0 0
\(713\) 8.85191 0.331507
\(714\) 0 0
\(715\) −0.750365 −0.0280621
\(716\) 0 0
\(717\) −3.47203 −0.129665
\(718\) 0 0
\(719\) 19.1219 0.713128 0.356564 0.934271i \(-0.383948\pi\)
0.356564 + 0.934271i \(0.383948\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) −6.19806 −0.230508
\(724\) 0 0
\(725\) −5.82414 −0.216303
\(726\) 0 0
\(727\) 8.01996 0.297444 0.148722 0.988879i \(-0.452484\pi\)
0.148722 + 0.988879i \(0.452484\pi\)
\(728\) 0 0
\(729\) −15.5940 −0.577555
\(730\) 0 0
\(731\) −9.54468 −0.353023
\(732\) 0 0
\(733\) −36.2759 −1.33988 −0.669941 0.742414i \(-0.733681\pi\)
−0.669941 + 0.742414i \(0.733681\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 3.02975 0.111602
\(738\) 0 0
\(739\) −36.4999 −1.34267 −0.671336 0.741153i \(-0.734279\pi\)
−0.671336 + 0.741153i \(0.734279\pi\)
\(740\) 0 0
\(741\) −4.61784 −0.169640
\(742\) 0 0
\(743\) 5.06824 0.185936 0.0929678 0.995669i \(-0.470365\pi\)
0.0929678 + 0.995669i \(0.470365\pi\)
\(744\) 0 0
\(745\) 8.02389 0.293973
\(746\) 0 0
\(747\) 2.85602 0.104496
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 25.2136 0.920059 0.460029 0.887904i \(-0.347839\pi\)
0.460029 + 0.887904i \(0.347839\pi\)
\(752\) 0 0
\(753\) 4.80763 0.175200
\(754\) 0 0
\(755\) 4.96963 0.180863
\(756\) 0 0
\(757\) −7.28908 −0.264926 −0.132463 0.991188i \(-0.542289\pi\)
−0.132463 + 0.991188i \(0.542289\pi\)
\(758\) 0 0
\(759\) −0.419127 −0.0152133
\(760\) 0 0
\(761\) −5.31688 −0.192737 −0.0963683 0.995346i \(-0.530723\pi\)
−0.0963683 + 0.995346i \(0.530723\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) −4.53758 −0.164057
\(766\) 0 0
\(767\) −3.94149 −0.142319
\(768\) 0 0
\(769\) 32.0489 1.15571 0.577857 0.816138i \(-0.303889\pi\)
0.577857 + 0.816138i \(0.303889\pi\)
\(770\) 0 0
\(771\) −6.80849 −0.245202
\(772\) 0 0
\(773\) −5.70523 −0.205203 −0.102601 0.994723i \(-0.532717\pi\)
−0.102601 + 0.994723i \(0.532717\pi\)
\(774\) 0 0
\(775\) −5.61940 −0.201855
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 48.7269 1.74582
\(780\) 0 0
\(781\) −0.138948 −0.00497193
\(782\) 0 0
\(783\) −6.86003 −0.245158
\(784\) 0 0
\(785\) −32.5544 −1.16192
\(786\) 0 0
\(787\) −39.6366 −1.41289 −0.706446 0.707767i \(-0.749703\pi\)
−0.706446 + 0.707767i \(0.749703\pi\)
\(788\) 0 0
\(789\) −8.37022 −0.297988
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 20.3191 0.721554
\(794\) 0 0
\(795\) 9.01152 0.319606
\(796\) 0 0
\(797\) 30.9698 1.09701 0.548503 0.836148i \(-0.315198\pi\)
0.548503 + 0.836148i \(0.315198\pi\)
\(798\) 0 0
\(799\) −8.63945 −0.305642
\(800\) 0 0
\(801\) 31.7086 1.12037
\(802\) 0 0
\(803\) 3.74777 0.132256
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) −4.27350 −0.150434
\(808\) 0 0
\(809\) −39.9889 −1.40593 −0.702967 0.711223i \(-0.748142\pi\)
−0.702967 + 0.711223i \(0.748142\pi\)
\(810\) 0 0
\(811\) 8.21437 0.288446 0.144223 0.989545i \(-0.453932\pi\)
0.144223 + 0.989545i \(0.453932\pi\)
\(812\) 0 0
\(813\) 9.26067 0.324786
\(814\) 0 0
\(815\) −9.06162 −0.317415
\(816\) 0 0
\(817\) 48.8126 1.70774
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −49.3341 −1.72177 −0.860886 0.508799i \(-0.830090\pi\)
−0.860886 + 0.508799i \(0.830090\pi\)
\(822\) 0 0
\(823\) 1.97772 0.0689391 0.0344696 0.999406i \(-0.489026\pi\)
0.0344696 + 0.999406i \(0.489026\pi\)
\(824\) 0 0
\(825\) 0.266072 0.00926343
\(826\) 0 0
\(827\) −9.58007 −0.333132 −0.166566 0.986030i \(-0.553268\pi\)
−0.166566 + 0.986030i \(0.553268\pi\)
\(828\) 0 0
\(829\) −11.9550 −0.415214 −0.207607 0.978212i \(-0.566568\pi\)
−0.207607 + 0.978212i \(0.566568\pi\)
\(830\) 0 0
\(831\) 12.4621 0.432305
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) 5.59257 0.193539
\(836\) 0 0
\(837\) −6.61889 −0.228782
\(838\) 0 0
\(839\) −34.7915 −1.20114 −0.600569 0.799573i \(-0.705059\pi\)
−0.600569 + 0.799573i \(0.705059\pi\)
\(840\) 0 0
\(841\) −22.7307 −0.783819
\(842\) 0 0
\(843\) −0.0558133 −0.00192231
\(844\) 0 0
\(845\) 15.3345 0.527522
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) 1.36112 0.0467135
\(850\) 0 0
\(851\) 12.2936 0.421419
\(852\) 0 0
\(853\) 54.9715 1.88219 0.941095 0.338143i \(-0.109799\pi\)
0.941095 + 0.338143i \(0.109799\pi\)
\(854\) 0 0
\(855\) 23.2057 0.793619
\(856\) 0 0
\(857\) −24.5572 −0.838858 −0.419429 0.907788i \(-0.637770\pi\)
−0.419429 + 0.907788i \(0.637770\pi\)
\(858\) 0 0
\(859\) −33.2337 −1.13392 −0.566959 0.823746i \(-0.691880\pi\)
−0.566959 + 0.823746i \(0.691880\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 9.37246 0.319042 0.159521 0.987195i \(-0.449005\pi\)
0.159521 + 0.987195i \(0.449005\pi\)
\(864\) 0 0
\(865\) 18.5655 0.631246
\(866\) 0 0
\(867\) 0.474430 0.0161125
\(868\) 0 0
\(869\) 2.04119 0.0692428
\(870\) 0 0
\(871\) 23.9166 0.810384
\(872\) 0 0
\(873\) −10.2561 −0.347117
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 32.0865 1.08348 0.541742 0.840545i \(-0.317765\pi\)
0.541742 + 0.840545i \(0.317765\pi\)
\(878\) 0 0
\(879\) 8.44670 0.284900
\(880\) 0 0
\(881\) 4.55055 0.153312 0.0766559 0.997058i \(-0.475576\pi\)
0.0766559 + 0.997058i \(0.475576\pi\)
\(882\) 0 0
\(883\) −20.7818 −0.699362 −0.349681 0.936869i \(-0.613710\pi\)
−0.349681 + 0.936869i \(0.613710\pi\)
\(884\) 0 0
\(885\) −1.60662 −0.0540058
\(886\) 0 0
\(887\) 14.9653 0.502487 0.251243 0.967924i \(-0.419161\pi\)
0.251243 + 0.967924i \(0.419161\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) −1.69373 −0.0567420
\(892\) 0 0
\(893\) 44.1832 1.47853
\(894\) 0 0
\(895\) −24.1468 −0.807138
\(896\) 0 0
\(897\) −3.30855 −0.110469
\(898\) 0 0
\(899\) 6.04888 0.201741
\(900\) 0 0
\(901\) 11.6158 0.386980
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 6.54993 0.217727
\(906\) 0 0
\(907\) 42.0823 1.39732 0.698661 0.715453i \(-0.253780\pi\)
0.698661 + 0.715453i \(0.253780\pi\)
\(908\) 0 0
\(909\) 24.0896 0.799001
\(910\) 0 0
\(911\) 4.98375 0.165119 0.0825594 0.996586i \(-0.473691\pi\)
0.0825594 + 0.996586i \(0.473691\pi\)
\(912\) 0 0
\(913\) 0.248150 0.00821257
\(914\) 0 0
\(915\) 8.28242 0.273808
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) 18.0195 0.594410 0.297205 0.954814i \(-0.403946\pi\)
0.297205 + 0.954814i \(0.403946\pi\)
\(920\) 0 0
\(921\) 10.3525 0.341128
\(922\) 0 0
\(923\) −1.09684 −0.0361029
\(924\) 0 0
\(925\) −7.80426 −0.256603
\(926\) 0 0
\(927\) −39.1596 −1.28617
\(928\) 0 0
\(929\) −31.1983 −1.02358 −0.511791 0.859110i \(-0.671018\pi\)
−0.511791 + 0.859110i \(0.671018\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) −2.81974 −0.0923143
\(934\) 0 0
\(935\) −0.394255 −0.0128935
\(936\) 0 0
\(937\) −58.5957 −1.91424 −0.957119 0.289695i \(-0.906446\pi\)
−0.957119 + 0.289695i \(0.906446\pi\)
\(938\) 0 0
\(939\) 6.10326 0.199172
\(940\) 0 0
\(941\) −33.2705 −1.08459 −0.542293 0.840189i \(-0.682444\pi\)
−0.542293 + 0.840189i \(0.682444\pi\)
\(942\) 0 0
\(943\) 34.9115 1.13687
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −47.9688 −1.55878 −0.779388 0.626542i \(-0.784470\pi\)
−0.779388 + 0.626542i \(0.784470\pi\)
\(948\) 0 0
\(949\) 29.5846 0.960356
\(950\) 0 0
\(951\) −1.57389 −0.0510370
\(952\) 0 0
\(953\) −4.51078 −0.146119 −0.0730593 0.997328i \(-0.523276\pi\)
−0.0730593 + 0.997328i \(0.523276\pi\)
\(954\) 0 0
\(955\) 35.3611 1.14426
\(956\) 0 0
\(957\) −0.286407 −0.00925822
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) −25.1638 −0.811734
\(962\) 0 0
\(963\) 38.4406 1.23873
\(964\) 0 0
\(965\) −25.3921 −0.817402
\(966\) 0 0
\(967\) −12.4644 −0.400830 −0.200415 0.979711i \(-0.564229\pi\)
−0.200415 + 0.979711i \(0.564229\pi\)
\(968\) 0 0
\(969\) −2.42629 −0.0779438
\(970\) 0 0
\(971\) 1.20656 0.0387205 0.0193602 0.999813i \(-0.493837\pi\)
0.0193602 + 0.999813i \(0.493837\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 2.10035 0.0672650
\(976\) 0 0
\(977\) −12.0291 −0.384845 −0.192422 0.981312i \(-0.561634\pi\)
−0.192422 + 0.981312i \(0.561634\pi\)
\(978\) 0 0
\(979\) 2.75506 0.0880520
\(980\) 0 0
\(981\) 17.3915 0.555268
\(982\) 0 0
\(983\) 8.10551 0.258526 0.129263 0.991610i \(-0.458739\pi\)
0.129263 + 0.991610i \(0.458739\pi\)
\(984\) 0 0
\(985\) −0.636882 −0.0202927
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 34.9729 1.11207
\(990\) 0 0
\(991\) 16.8504 0.535272 0.267636 0.963520i \(-0.413758\pi\)
0.267636 + 0.963520i \(0.413758\pi\)
\(992\) 0 0
\(993\) 3.53216 0.112090
\(994\) 0 0
\(995\) 5.01810 0.159084
\(996\) 0 0
\(997\) 16.1781 0.512367 0.256184 0.966628i \(-0.417535\pi\)
0.256184 + 0.966628i \(0.417535\pi\)
\(998\) 0 0
\(999\) −9.19235 −0.290833
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 6664.2.a.y.1.4 7
7.3 odd 6 952.2.q.e.681.4 yes 14
7.5 odd 6 952.2.q.e.137.4 14
7.6 odd 2 6664.2.a.v.1.4 7
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
952.2.q.e.137.4 14 7.5 odd 6
952.2.q.e.681.4 yes 14 7.3 odd 6
6664.2.a.v.1.4 7 7.6 odd 2
6664.2.a.y.1.4 7 1.1 even 1 trivial