Properties

Label 6664.2.a.w.1.6
Level $6664$
Weight $2$
Character 6664.1
Self dual yes
Analytic conductor $53.212$
Analytic rank $0$
Dimension $7$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [6664,2,Mod(1,6664)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("6664.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(6664, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 6664 = 2^{3} \cdot 7^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 6664.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [7,0,0,0,-1] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(53.2123079070\)
Analytic rank: \(0\)
Dimension: \(7\)
Coefficient field: \(\mathbb{Q}[x]/(x^{7} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{7} - 11x^{5} - 3x^{4} + 27x^{3} + 6x^{2} - 12x - 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 952)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.6
Root \(1.51862\) of defining polynomial
Character \(\chi\) \(=\) 6664.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.51862 q^{3} -0.798372 q^{5} -0.693805 q^{9} -5.64429 q^{11} +4.80031 q^{13} -1.21242 q^{15} -1.00000 q^{17} -5.07740 q^{19} +4.19007 q^{23} -4.36260 q^{25} -5.60947 q^{27} +1.85926 q^{29} +10.0901 q^{31} -8.57151 q^{33} -6.11378 q^{37} +7.28982 q^{39} +6.24965 q^{41} -0.575750 q^{43} +0.553915 q^{45} +5.74135 q^{47} -1.51862 q^{51} +4.50334 q^{53} +4.50625 q^{55} -7.71062 q^{57} +7.97849 q^{59} +8.93411 q^{61} -3.83243 q^{65} +10.6787 q^{67} +6.36311 q^{69} +3.73942 q^{71} -13.1786 q^{73} -6.62512 q^{75} +5.15610 q^{79} -6.43722 q^{81} +5.24724 q^{83} +0.798372 q^{85} +2.82350 q^{87} -0.528350 q^{89} +15.3230 q^{93} +4.05366 q^{95} +5.53836 q^{97} +3.91604 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 7 q - q^{5} + q^{9} + 5 q^{11} + 11 q^{13} + 8 q^{15} - 7 q^{17} - 2 q^{19} + 9 q^{23} + 2 q^{25} + 9 q^{27} + 9 q^{29} - 2 q^{31} + 2 q^{33} + 8 q^{37} + q^{39} + 6 q^{41} + 10 q^{43} - 10 q^{45} - q^{47}+ \cdots - 12 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.51862 0.876773 0.438387 0.898786i \(-0.355550\pi\)
0.438387 + 0.898786i \(0.355550\pi\)
\(4\) 0 0
\(5\) −0.798372 −0.357043 −0.178521 0.983936i \(-0.557131\pi\)
−0.178521 + 0.983936i \(0.557131\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 0 0
\(9\) −0.693805 −0.231268
\(10\) 0 0
\(11\) −5.64429 −1.70182 −0.850909 0.525313i \(-0.823948\pi\)
−0.850909 + 0.525313i \(0.823948\pi\)
\(12\) 0 0
\(13\) 4.80031 1.33137 0.665683 0.746235i \(-0.268140\pi\)
0.665683 + 0.746235i \(0.268140\pi\)
\(14\) 0 0
\(15\) −1.21242 −0.313046
\(16\) 0 0
\(17\) −1.00000 −0.242536
\(18\) 0 0
\(19\) −5.07740 −1.16484 −0.582418 0.812890i \(-0.697893\pi\)
−0.582418 + 0.812890i \(0.697893\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 4.19007 0.873691 0.436845 0.899537i \(-0.356096\pi\)
0.436845 + 0.899537i \(0.356096\pi\)
\(24\) 0 0
\(25\) −4.36260 −0.872520
\(26\) 0 0
\(27\) −5.60947 −1.07954
\(28\) 0 0
\(29\) 1.85926 0.345256 0.172628 0.984987i \(-0.444774\pi\)
0.172628 + 0.984987i \(0.444774\pi\)
\(30\) 0 0
\(31\) 10.0901 1.81224 0.906120 0.423020i \(-0.139030\pi\)
0.906120 + 0.423020i \(0.139030\pi\)
\(32\) 0 0
\(33\) −8.57151 −1.49211
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −6.11378 −1.00510 −0.502550 0.864548i \(-0.667605\pi\)
−0.502550 + 0.864548i \(0.667605\pi\)
\(38\) 0 0
\(39\) 7.28982 1.16731
\(40\) 0 0
\(41\) 6.24965 0.976032 0.488016 0.872835i \(-0.337721\pi\)
0.488016 + 0.872835i \(0.337721\pi\)
\(42\) 0 0
\(43\) −0.575750 −0.0878010 −0.0439005 0.999036i \(-0.513978\pi\)
−0.0439005 + 0.999036i \(0.513978\pi\)
\(44\) 0 0
\(45\) 0.553915 0.0825727
\(46\) 0 0
\(47\) 5.74135 0.837462 0.418731 0.908110i \(-0.362475\pi\)
0.418731 + 0.908110i \(0.362475\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0 0
\(51\) −1.51862 −0.212649
\(52\) 0 0
\(53\) 4.50334 0.618581 0.309291 0.950968i \(-0.399908\pi\)
0.309291 + 0.950968i \(0.399908\pi\)
\(54\) 0 0
\(55\) 4.50625 0.607622
\(56\) 0 0
\(57\) −7.71062 −1.02130
\(58\) 0 0
\(59\) 7.97849 1.03871 0.519355 0.854558i \(-0.326172\pi\)
0.519355 + 0.854558i \(0.326172\pi\)
\(60\) 0 0
\(61\) 8.93411 1.14390 0.571948 0.820290i \(-0.306188\pi\)
0.571948 + 0.820290i \(0.306188\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −3.83243 −0.475355
\(66\) 0 0
\(67\) 10.6787 1.30462 0.652308 0.757954i \(-0.273801\pi\)
0.652308 + 0.757954i \(0.273801\pi\)
\(68\) 0 0
\(69\) 6.36311 0.766029
\(70\) 0 0
\(71\) 3.73942 0.443787 0.221894 0.975071i \(-0.428776\pi\)
0.221894 + 0.975071i \(0.428776\pi\)
\(72\) 0 0
\(73\) −13.1786 −1.54244 −0.771218 0.636572i \(-0.780352\pi\)
−0.771218 + 0.636572i \(0.780352\pi\)
\(74\) 0 0
\(75\) −6.62512 −0.765003
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 5.15610 0.580107 0.290053 0.957010i \(-0.406327\pi\)
0.290053 + 0.957010i \(0.406327\pi\)
\(80\) 0 0
\(81\) −6.43722 −0.715247
\(82\) 0 0
\(83\) 5.24724 0.575960 0.287980 0.957636i \(-0.407016\pi\)
0.287980 + 0.957636i \(0.407016\pi\)
\(84\) 0 0
\(85\) 0.798372 0.0865956
\(86\) 0 0
\(87\) 2.82350 0.302711
\(88\) 0 0
\(89\) −0.528350 −0.0560049 −0.0280025 0.999608i \(-0.508915\pi\)
−0.0280025 + 0.999608i \(0.508915\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 15.3230 1.58892
\(94\) 0 0
\(95\) 4.05366 0.415896
\(96\) 0 0
\(97\) 5.53836 0.562336 0.281168 0.959659i \(-0.409278\pi\)
0.281168 + 0.959659i \(0.409278\pi\)
\(98\) 0 0
\(99\) 3.91604 0.393577
\(100\) 0 0
\(101\) 11.7142 1.16560 0.582801 0.812615i \(-0.301957\pi\)
0.582801 + 0.812615i \(0.301957\pi\)
\(102\) 0 0
\(103\) −4.55841 −0.449154 −0.224577 0.974456i \(-0.572100\pi\)
−0.224577 + 0.974456i \(0.572100\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 17.6436 1.70567 0.852834 0.522182i \(-0.174882\pi\)
0.852834 + 0.522182i \(0.174882\pi\)
\(108\) 0 0
\(109\) 13.4212 1.28551 0.642757 0.766070i \(-0.277791\pi\)
0.642757 + 0.766070i \(0.277791\pi\)
\(110\) 0 0
\(111\) −9.28449 −0.881245
\(112\) 0 0
\(113\) −15.4940 −1.45755 −0.728775 0.684753i \(-0.759910\pi\)
−0.728775 + 0.684753i \(0.759910\pi\)
\(114\) 0 0
\(115\) −3.34524 −0.311945
\(116\) 0 0
\(117\) −3.33048 −0.307903
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 20.8580 1.89618
\(122\) 0 0
\(123\) 9.49082 0.855759
\(124\) 0 0
\(125\) 7.47484 0.668570
\(126\) 0 0
\(127\) 1.46849 0.130308 0.0651539 0.997875i \(-0.479246\pi\)
0.0651539 + 0.997875i \(0.479246\pi\)
\(128\) 0 0
\(129\) −0.874343 −0.0769816
\(130\) 0 0
\(131\) −12.6991 −1.10952 −0.554761 0.832009i \(-0.687190\pi\)
−0.554761 + 0.832009i \(0.687190\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 4.47845 0.385443
\(136\) 0 0
\(137\) −12.2219 −1.04419 −0.522093 0.852888i \(-0.674849\pi\)
−0.522093 + 0.852888i \(0.674849\pi\)
\(138\) 0 0
\(139\) −6.86885 −0.582608 −0.291304 0.956631i \(-0.594089\pi\)
−0.291304 + 0.956631i \(0.594089\pi\)
\(140\) 0 0
\(141\) 8.71891 0.734265
\(142\) 0 0
\(143\) −27.0943 −2.26574
\(144\) 0 0
\(145\) −1.48438 −0.123271
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −6.94297 −0.568791 −0.284395 0.958707i \(-0.591793\pi\)
−0.284395 + 0.958707i \(0.591793\pi\)
\(150\) 0 0
\(151\) −13.7436 −1.11844 −0.559220 0.829019i \(-0.688899\pi\)
−0.559220 + 0.829019i \(0.688899\pi\)
\(152\) 0 0
\(153\) 0.693805 0.0560908
\(154\) 0 0
\(155\) −8.05568 −0.647048
\(156\) 0 0
\(157\) −3.89577 −0.310916 −0.155458 0.987842i \(-0.549685\pi\)
−0.155458 + 0.987842i \(0.549685\pi\)
\(158\) 0 0
\(159\) 6.83885 0.542356
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 24.3662 1.90851 0.954254 0.298999i \(-0.0966526\pi\)
0.954254 + 0.298999i \(0.0966526\pi\)
\(164\) 0 0
\(165\) 6.84326 0.532747
\(166\) 0 0
\(167\) 14.5608 1.12675 0.563374 0.826202i \(-0.309503\pi\)
0.563374 + 0.826202i \(0.309503\pi\)
\(168\) 0 0
\(169\) 10.0429 0.772534
\(170\) 0 0
\(171\) 3.52273 0.269390
\(172\) 0 0
\(173\) 13.9870 1.06341 0.531704 0.846930i \(-0.321552\pi\)
0.531704 + 0.846930i \(0.321552\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 12.1163 0.910714
\(178\) 0 0
\(179\) 22.8083 1.70477 0.852387 0.522912i \(-0.175154\pi\)
0.852387 + 0.522912i \(0.175154\pi\)
\(180\) 0 0
\(181\) 0.886797 0.0659151 0.0329575 0.999457i \(-0.489507\pi\)
0.0329575 + 0.999457i \(0.489507\pi\)
\(182\) 0 0
\(183\) 13.5675 1.00294
\(184\) 0 0
\(185\) 4.88108 0.358864
\(186\) 0 0
\(187\) 5.64429 0.412751
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 8.77707 0.635086 0.317543 0.948244i \(-0.397142\pi\)
0.317543 + 0.948244i \(0.397142\pi\)
\(192\) 0 0
\(193\) −17.2235 −1.23978 −0.619889 0.784690i \(-0.712822\pi\)
−0.619889 + 0.784690i \(0.712822\pi\)
\(194\) 0 0
\(195\) −5.81999 −0.416778
\(196\) 0 0
\(197\) 20.3939 1.45300 0.726502 0.687164i \(-0.241145\pi\)
0.726502 + 0.687164i \(0.241145\pi\)
\(198\) 0 0
\(199\) −8.41576 −0.596577 −0.298289 0.954476i \(-0.596416\pi\)
−0.298289 + 0.954476i \(0.596416\pi\)
\(200\) 0 0
\(201\) 16.2169 1.14385
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) −4.98955 −0.348485
\(206\) 0 0
\(207\) −2.90709 −0.202057
\(208\) 0 0
\(209\) 28.6583 1.98234
\(210\) 0 0
\(211\) −22.8992 −1.57644 −0.788222 0.615391i \(-0.788998\pi\)
−0.788222 + 0.615391i \(0.788998\pi\)
\(212\) 0 0
\(213\) 5.67874 0.389101
\(214\) 0 0
\(215\) 0.459663 0.0313487
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) −20.0132 −1.35237
\(220\) 0 0
\(221\) −4.80031 −0.322904
\(222\) 0 0
\(223\) −9.97337 −0.667866 −0.333933 0.942597i \(-0.608376\pi\)
−0.333933 + 0.942597i \(0.608376\pi\)
\(224\) 0 0
\(225\) 3.02679 0.201786
\(226\) 0 0
\(227\) −23.5144 −1.56071 −0.780353 0.625340i \(-0.784960\pi\)
−0.780353 + 0.625340i \(0.784960\pi\)
\(228\) 0 0
\(229\) −10.4418 −0.690013 −0.345007 0.938600i \(-0.612123\pi\)
−0.345007 + 0.938600i \(0.612123\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 24.0907 1.57824 0.789118 0.614242i \(-0.210538\pi\)
0.789118 + 0.614242i \(0.210538\pi\)
\(234\) 0 0
\(235\) −4.58374 −0.299010
\(236\) 0 0
\(237\) 7.83014 0.508622
\(238\) 0 0
\(239\) 29.7263 1.92283 0.961417 0.275095i \(-0.0887093\pi\)
0.961417 + 0.275095i \(0.0887093\pi\)
\(240\) 0 0
\(241\) 4.06445 0.261814 0.130907 0.991395i \(-0.458211\pi\)
0.130907 + 0.991395i \(0.458211\pi\)
\(242\) 0 0
\(243\) 7.05275 0.452434
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) −24.3731 −1.55082
\(248\) 0 0
\(249\) 7.96854 0.504986
\(250\) 0 0
\(251\) 2.80048 0.176765 0.0883823 0.996087i \(-0.471830\pi\)
0.0883823 + 0.996087i \(0.471830\pi\)
\(252\) 0 0
\(253\) −23.6500 −1.48686
\(254\) 0 0
\(255\) 1.21242 0.0759248
\(256\) 0 0
\(257\) 3.79658 0.236824 0.118412 0.992965i \(-0.462220\pi\)
0.118412 + 0.992965i \(0.462220\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) −1.28996 −0.0798468
\(262\) 0 0
\(263\) −7.23328 −0.446023 −0.223012 0.974816i \(-0.571589\pi\)
−0.223012 + 0.974816i \(0.571589\pi\)
\(264\) 0 0
\(265\) −3.59534 −0.220860
\(266\) 0 0
\(267\) −0.802360 −0.0491036
\(268\) 0 0
\(269\) 0.843371 0.0514212 0.0257106 0.999669i \(-0.491815\pi\)
0.0257106 + 0.999669i \(0.491815\pi\)
\(270\) 0 0
\(271\) 2.41212 0.146526 0.0732630 0.997313i \(-0.476659\pi\)
0.0732630 + 0.997313i \(0.476659\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 24.6238 1.48487
\(276\) 0 0
\(277\) 23.7300 1.42580 0.712900 0.701266i \(-0.247381\pi\)
0.712900 + 0.701266i \(0.247381\pi\)
\(278\) 0 0
\(279\) −7.00058 −0.419114
\(280\) 0 0
\(281\) −2.87529 −0.171526 −0.0857629 0.996316i \(-0.527333\pi\)
−0.0857629 + 0.996316i \(0.527333\pi\)
\(282\) 0 0
\(283\) −26.2474 −1.56025 −0.780123 0.625626i \(-0.784843\pi\)
−0.780123 + 0.625626i \(0.784843\pi\)
\(284\) 0 0
\(285\) 6.15595 0.364647
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) 1.00000 0.0588235
\(290\) 0 0
\(291\) 8.41065 0.493041
\(292\) 0 0
\(293\) −14.2126 −0.830311 −0.415156 0.909750i \(-0.636273\pi\)
−0.415156 + 0.909750i \(0.636273\pi\)
\(294\) 0 0
\(295\) −6.36980 −0.370864
\(296\) 0 0
\(297\) 31.6615 1.83719
\(298\) 0 0
\(299\) 20.1136 1.16320
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 17.7893 1.02197
\(304\) 0 0
\(305\) −7.13275 −0.408420
\(306\) 0 0
\(307\) 26.5976 1.51800 0.759002 0.651088i \(-0.225687\pi\)
0.759002 + 0.651088i \(0.225687\pi\)
\(308\) 0 0
\(309\) −6.92248 −0.393806
\(310\) 0 0
\(311\) 21.2543 1.20522 0.602611 0.798035i \(-0.294127\pi\)
0.602611 + 0.798035i \(0.294127\pi\)
\(312\) 0 0
\(313\) −17.7569 −1.00368 −0.501839 0.864961i \(-0.667343\pi\)
−0.501839 + 0.864961i \(0.667343\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 1.99053 0.111799 0.0558997 0.998436i \(-0.482197\pi\)
0.0558997 + 0.998436i \(0.482197\pi\)
\(318\) 0 0
\(319\) −10.4942 −0.587563
\(320\) 0 0
\(321\) 26.7938 1.49548
\(322\) 0 0
\(323\) 5.07740 0.282514
\(324\) 0 0
\(325\) −20.9418 −1.16164
\(326\) 0 0
\(327\) 20.3816 1.12710
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) −15.3990 −0.846408 −0.423204 0.906034i \(-0.639095\pi\)
−0.423204 + 0.906034i \(0.639095\pi\)
\(332\) 0 0
\(333\) 4.24177 0.232448
\(334\) 0 0
\(335\) −8.52561 −0.465804
\(336\) 0 0
\(337\) −24.0830 −1.31188 −0.655942 0.754811i \(-0.727729\pi\)
−0.655942 + 0.754811i \(0.727729\pi\)
\(338\) 0 0
\(339\) −23.5294 −1.27794
\(340\) 0 0
\(341\) −56.9516 −3.08410
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) −5.08013 −0.273505
\(346\) 0 0
\(347\) −18.3933 −0.987402 −0.493701 0.869632i \(-0.664356\pi\)
−0.493701 + 0.869632i \(0.664356\pi\)
\(348\) 0 0
\(349\) 22.6309 1.21140 0.605701 0.795692i \(-0.292893\pi\)
0.605701 + 0.795692i \(0.292893\pi\)
\(350\) 0 0
\(351\) −26.9272 −1.43727
\(352\) 0 0
\(353\) 5.51846 0.293718 0.146859 0.989157i \(-0.453084\pi\)
0.146859 + 0.989157i \(0.453084\pi\)
\(354\) 0 0
\(355\) −2.98545 −0.158451
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 18.6668 0.985197 0.492599 0.870257i \(-0.336047\pi\)
0.492599 + 0.870257i \(0.336047\pi\)
\(360\) 0 0
\(361\) 6.78000 0.356842
\(362\) 0 0
\(363\) 31.6753 1.66252
\(364\) 0 0
\(365\) 10.5214 0.550716
\(366\) 0 0
\(367\) 25.6477 1.33880 0.669398 0.742904i \(-0.266552\pi\)
0.669398 + 0.742904i \(0.266552\pi\)
\(368\) 0 0
\(369\) −4.33604 −0.225725
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) −5.04036 −0.260980 −0.130490 0.991450i \(-0.541655\pi\)
−0.130490 + 0.991450i \(0.541655\pi\)
\(374\) 0 0
\(375\) 11.3514 0.586185
\(376\) 0 0
\(377\) 8.92502 0.459662
\(378\) 0 0
\(379\) 22.9762 1.18021 0.590105 0.807326i \(-0.299086\pi\)
0.590105 + 0.807326i \(0.299086\pi\)
\(380\) 0 0
\(381\) 2.23008 0.114250
\(382\) 0 0
\(383\) −28.9346 −1.47849 −0.739245 0.673436i \(-0.764818\pi\)
−0.739245 + 0.673436i \(0.764818\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 0.399458 0.0203056
\(388\) 0 0
\(389\) 7.51392 0.380971 0.190486 0.981690i \(-0.438994\pi\)
0.190486 + 0.981690i \(0.438994\pi\)
\(390\) 0 0
\(391\) −4.19007 −0.211901
\(392\) 0 0
\(393\) −19.2850 −0.972800
\(394\) 0 0
\(395\) −4.11649 −0.207123
\(396\) 0 0
\(397\) −26.1059 −1.31022 −0.655109 0.755534i \(-0.727378\pi\)
−0.655109 + 0.755534i \(0.727378\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 6.72306 0.335733 0.167867 0.985810i \(-0.446312\pi\)
0.167867 + 0.985810i \(0.446312\pi\)
\(402\) 0 0
\(403\) 48.4357 2.41275
\(404\) 0 0
\(405\) 5.13930 0.255374
\(406\) 0 0
\(407\) 34.5080 1.71050
\(408\) 0 0
\(409\) 4.89731 0.242156 0.121078 0.992643i \(-0.461365\pi\)
0.121078 + 0.992643i \(0.461365\pi\)
\(410\) 0 0
\(411\) −18.5604 −0.915515
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) −4.18925 −0.205642
\(416\) 0 0
\(417\) −10.4311 −0.510815
\(418\) 0 0
\(419\) −4.81341 −0.235151 −0.117575 0.993064i \(-0.537512\pi\)
−0.117575 + 0.993064i \(0.537512\pi\)
\(420\) 0 0
\(421\) −0.402770 −0.0196298 −0.00981490 0.999952i \(-0.503124\pi\)
−0.00981490 + 0.999952i \(0.503124\pi\)
\(422\) 0 0
\(423\) −3.98338 −0.193678
\(424\) 0 0
\(425\) 4.36260 0.211617
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) −41.1459 −1.98654
\(430\) 0 0
\(431\) 8.06403 0.388431 0.194215 0.980959i \(-0.437784\pi\)
0.194215 + 0.980959i \(0.437784\pi\)
\(432\) 0 0
\(433\) −31.8869 −1.53238 −0.766192 0.642611i \(-0.777851\pi\)
−0.766192 + 0.642611i \(0.777851\pi\)
\(434\) 0 0
\(435\) −2.25421 −0.108081
\(436\) 0 0
\(437\) −21.2747 −1.01771
\(438\) 0 0
\(439\) 18.9637 0.905086 0.452543 0.891742i \(-0.350517\pi\)
0.452543 + 0.891742i \(0.350517\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 10.9216 0.518899 0.259449 0.965757i \(-0.416459\pi\)
0.259449 + 0.965757i \(0.416459\pi\)
\(444\) 0 0
\(445\) 0.421820 0.0199962
\(446\) 0 0
\(447\) −10.5437 −0.498700
\(448\) 0 0
\(449\) 3.09341 0.145987 0.0729936 0.997332i \(-0.476745\pi\)
0.0729936 + 0.997332i \(0.476745\pi\)
\(450\) 0 0
\(451\) −35.2749 −1.66103
\(452\) 0 0
\(453\) −20.8713 −0.980618
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 1.04923 0.0490810 0.0245405 0.999699i \(-0.492188\pi\)
0.0245405 + 0.999699i \(0.492188\pi\)
\(458\) 0 0
\(459\) 5.60947 0.261828
\(460\) 0 0
\(461\) −29.5804 −1.37770 −0.688848 0.724906i \(-0.741883\pi\)
−0.688848 + 0.724906i \(0.741883\pi\)
\(462\) 0 0
\(463\) 1.85379 0.0861529 0.0430764 0.999072i \(-0.486284\pi\)
0.0430764 + 0.999072i \(0.486284\pi\)
\(464\) 0 0
\(465\) −12.2335 −0.567314
\(466\) 0 0
\(467\) 31.8357 1.47318 0.736591 0.676338i \(-0.236434\pi\)
0.736591 + 0.676338i \(0.236434\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) −5.91618 −0.272603
\(472\) 0 0
\(473\) 3.24970 0.149421
\(474\) 0 0
\(475\) 22.1507 1.01634
\(476\) 0 0
\(477\) −3.12444 −0.143058
\(478\) 0 0
\(479\) −37.4836 −1.71267 −0.856334 0.516422i \(-0.827264\pi\)
−0.856334 + 0.516422i \(0.827264\pi\)
\(480\) 0 0
\(481\) −29.3480 −1.33816
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −4.42168 −0.200778
\(486\) 0 0
\(487\) 31.0843 1.40857 0.704283 0.709920i \(-0.251269\pi\)
0.704283 + 0.709920i \(0.251269\pi\)
\(488\) 0 0
\(489\) 37.0029 1.67333
\(490\) 0 0
\(491\) 37.0322 1.67124 0.835621 0.549306i \(-0.185108\pi\)
0.835621 + 0.549306i \(0.185108\pi\)
\(492\) 0 0
\(493\) −1.85926 −0.0837369
\(494\) 0 0
\(495\) −3.12646 −0.140524
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 7.63405 0.341747 0.170873 0.985293i \(-0.445341\pi\)
0.170873 + 0.985293i \(0.445341\pi\)
\(500\) 0 0
\(501\) 22.1123 0.987903
\(502\) 0 0
\(503\) 0.908307 0.0404994 0.0202497 0.999795i \(-0.493554\pi\)
0.0202497 + 0.999795i \(0.493554\pi\)
\(504\) 0 0
\(505\) −9.35226 −0.416170
\(506\) 0 0
\(507\) 15.2514 0.677337
\(508\) 0 0
\(509\) −7.08235 −0.313920 −0.156960 0.987605i \(-0.550169\pi\)
−0.156960 + 0.987605i \(0.550169\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) 28.4815 1.25749
\(514\) 0 0
\(515\) 3.63931 0.160367
\(516\) 0 0
\(517\) −32.4059 −1.42521
\(518\) 0 0
\(519\) 21.2408 0.932369
\(520\) 0 0
\(521\) −16.9271 −0.741589 −0.370795 0.928715i \(-0.620915\pi\)
−0.370795 + 0.928715i \(0.620915\pi\)
\(522\) 0 0
\(523\) −8.62332 −0.377071 −0.188536 0.982066i \(-0.560374\pi\)
−0.188536 + 0.982066i \(0.560374\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −10.0901 −0.439533
\(528\) 0 0
\(529\) −5.44328 −0.236664
\(530\) 0 0
\(531\) −5.53552 −0.240221
\(532\) 0 0
\(533\) 30.0002 1.29946
\(534\) 0 0
\(535\) −14.0861 −0.608997
\(536\) 0 0
\(537\) 34.6371 1.49470
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) −44.6120 −1.91802 −0.959009 0.283374i \(-0.908546\pi\)
−0.959009 + 0.283374i \(0.908546\pi\)
\(542\) 0 0
\(543\) 1.34670 0.0577926
\(544\) 0 0
\(545\) −10.7151 −0.458983
\(546\) 0 0
\(547\) 34.2732 1.46542 0.732709 0.680543i \(-0.238256\pi\)
0.732709 + 0.680543i \(0.238256\pi\)
\(548\) 0 0
\(549\) −6.19853 −0.264547
\(550\) 0 0
\(551\) −9.44021 −0.402167
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 7.41248 0.314642
\(556\) 0 0
\(557\) 22.9262 0.971413 0.485707 0.874122i \(-0.338562\pi\)
0.485707 + 0.874122i \(0.338562\pi\)
\(558\) 0 0
\(559\) −2.76378 −0.116895
\(560\) 0 0
\(561\) 8.57151 0.361890
\(562\) 0 0
\(563\) 13.2963 0.560370 0.280185 0.959946i \(-0.409604\pi\)
0.280185 + 0.959946i \(0.409604\pi\)
\(564\) 0 0
\(565\) 12.3700 0.520408
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 15.9671 0.669376 0.334688 0.942329i \(-0.391369\pi\)
0.334688 + 0.942329i \(0.391369\pi\)
\(570\) 0 0
\(571\) −22.5937 −0.945517 −0.472759 0.881192i \(-0.656742\pi\)
−0.472759 + 0.881192i \(0.656742\pi\)
\(572\) 0 0
\(573\) 13.3290 0.556827
\(574\) 0 0
\(575\) −18.2796 −0.762313
\(576\) 0 0
\(577\) 37.1048 1.54469 0.772346 0.635202i \(-0.219083\pi\)
0.772346 + 0.635202i \(0.219083\pi\)
\(578\) 0 0
\(579\) −26.1559 −1.08700
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) −25.4182 −1.05271
\(584\) 0 0
\(585\) 2.65896 0.109934
\(586\) 0 0
\(587\) −14.9886 −0.618646 −0.309323 0.950957i \(-0.600102\pi\)
−0.309323 + 0.950957i \(0.600102\pi\)
\(588\) 0 0
\(589\) −51.2316 −2.11096
\(590\) 0 0
\(591\) 30.9705 1.27396
\(592\) 0 0
\(593\) 42.5518 1.74739 0.873697 0.486471i \(-0.161716\pi\)
0.873697 + 0.486471i \(0.161716\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) −12.7803 −0.523063
\(598\) 0 0
\(599\) −5.39333 −0.220365 −0.110183 0.993911i \(-0.535144\pi\)
−0.110183 + 0.993911i \(0.535144\pi\)
\(600\) 0 0
\(601\) −39.2266 −1.60009 −0.800044 0.599942i \(-0.795191\pi\)
−0.800044 + 0.599942i \(0.795191\pi\)
\(602\) 0 0
\(603\) −7.40896 −0.301716
\(604\) 0 0
\(605\) −16.6525 −0.677019
\(606\) 0 0
\(607\) −3.71236 −0.150680 −0.0753401 0.997158i \(-0.524004\pi\)
−0.0753401 + 0.997158i \(0.524004\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 27.5602 1.11497
\(612\) 0 0
\(613\) −18.6584 −0.753605 −0.376803 0.926294i \(-0.622976\pi\)
−0.376803 + 0.926294i \(0.622976\pi\)
\(614\) 0 0
\(615\) −7.57721 −0.305543
\(616\) 0 0
\(617\) 0.327324 0.0131776 0.00658878 0.999978i \(-0.497903\pi\)
0.00658878 + 0.999978i \(0.497903\pi\)
\(618\) 0 0
\(619\) 11.6615 0.468716 0.234358 0.972150i \(-0.424701\pi\)
0.234358 + 0.972150i \(0.424701\pi\)
\(620\) 0 0
\(621\) −23.5041 −0.943187
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 15.8453 0.633812
\(626\) 0 0
\(627\) 43.5210 1.73806
\(628\) 0 0
\(629\) 6.11378 0.243773
\(630\) 0 0
\(631\) 10.1776 0.405162 0.202581 0.979266i \(-0.435067\pi\)
0.202581 + 0.979266i \(0.435067\pi\)
\(632\) 0 0
\(633\) −34.7750 −1.38218
\(634\) 0 0
\(635\) −1.17241 −0.0465255
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) −2.59443 −0.102634
\(640\) 0 0
\(641\) −16.9177 −0.668211 −0.334105 0.942536i \(-0.608434\pi\)
−0.334105 + 0.942536i \(0.608434\pi\)
\(642\) 0 0
\(643\) −17.1979 −0.678220 −0.339110 0.940747i \(-0.610126\pi\)
−0.339110 + 0.940747i \(0.610126\pi\)
\(644\) 0 0
\(645\) 0.698051 0.0274857
\(646\) 0 0
\(647\) −30.8934 −1.21455 −0.607273 0.794493i \(-0.707737\pi\)
−0.607273 + 0.794493i \(0.707737\pi\)
\(648\) 0 0
\(649\) −45.0329 −1.76770
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 7.13997 0.279408 0.139704 0.990193i \(-0.455385\pi\)
0.139704 + 0.990193i \(0.455385\pi\)
\(654\) 0 0
\(655\) 10.1386 0.396147
\(656\) 0 0
\(657\) 9.14336 0.356716
\(658\) 0 0
\(659\) 31.5442 1.22879 0.614394 0.789000i \(-0.289401\pi\)
0.614394 + 0.789000i \(0.289401\pi\)
\(660\) 0 0
\(661\) −41.4489 −1.61218 −0.806088 0.591796i \(-0.798419\pi\)
−0.806088 + 0.591796i \(0.798419\pi\)
\(662\) 0 0
\(663\) −7.28982 −0.283113
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 7.79044 0.301647
\(668\) 0 0
\(669\) −15.1457 −0.585567
\(670\) 0 0
\(671\) −50.4267 −1.94670
\(672\) 0 0
\(673\) −34.7524 −1.33961 −0.669804 0.742538i \(-0.733622\pi\)
−0.669804 + 0.742538i \(0.733622\pi\)
\(674\) 0 0
\(675\) 24.4719 0.941924
\(676\) 0 0
\(677\) 5.27903 0.202890 0.101445 0.994841i \(-0.467653\pi\)
0.101445 + 0.994841i \(0.467653\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) −35.7093 −1.36839
\(682\) 0 0
\(683\) 28.2578 1.08125 0.540627 0.841262i \(-0.318187\pi\)
0.540627 + 0.841262i \(0.318187\pi\)
\(684\) 0 0
\(685\) 9.75762 0.372819
\(686\) 0 0
\(687\) −15.8571 −0.604985
\(688\) 0 0
\(689\) 21.6174 0.823558
\(690\) 0 0
\(691\) 34.2871 1.30434 0.652172 0.758071i \(-0.273858\pi\)
0.652172 + 0.758071i \(0.273858\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 5.48390 0.208016
\(696\) 0 0
\(697\) −6.24965 −0.236723
\(698\) 0 0
\(699\) 36.5846 1.38376
\(700\) 0 0
\(701\) 30.1766 1.13975 0.569877 0.821730i \(-0.306991\pi\)
0.569877 + 0.821730i \(0.306991\pi\)
\(702\) 0 0
\(703\) 31.0421 1.17078
\(704\) 0 0
\(705\) −6.96094 −0.262164
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 37.1916 1.39676 0.698380 0.715727i \(-0.253905\pi\)
0.698380 + 0.715727i \(0.253905\pi\)
\(710\) 0 0
\(711\) −3.57733 −0.134160
\(712\) 0 0
\(713\) 42.2784 1.58334
\(714\) 0 0
\(715\) 21.6314 0.808967
\(716\) 0 0
\(717\) 45.1428 1.68589
\(718\) 0 0
\(719\) 25.4763 0.950106 0.475053 0.879957i \(-0.342429\pi\)
0.475053 + 0.879957i \(0.342429\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) 6.17234 0.229552
\(724\) 0 0
\(725\) −8.11121 −0.301243
\(726\) 0 0
\(727\) 29.7250 1.10244 0.551220 0.834360i \(-0.314162\pi\)
0.551220 + 0.834360i \(0.314162\pi\)
\(728\) 0 0
\(729\) 30.0221 1.11193
\(730\) 0 0
\(731\) 0.575750 0.0212949
\(732\) 0 0
\(733\) 32.2085 1.18965 0.594824 0.803856i \(-0.297222\pi\)
0.594824 + 0.803856i \(0.297222\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −60.2739 −2.22022
\(738\) 0 0
\(739\) −12.7400 −0.468649 −0.234325 0.972158i \(-0.575288\pi\)
−0.234325 + 0.972158i \(0.575288\pi\)
\(740\) 0 0
\(741\) −37.0134 −1.35972
\(742\) 0 0
\(743\) −37.8141 −1.38727 −0.693633 0.720328i \(-0.743991\pi\)
−0.693633 + 0.720328i \(0.743991\pi\)
\(744\) 0 0
\(745\) 5.54308 0.203083
\(746\) 0 0
\(747\) −3.64056 −0.133201
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 28.2976 1.03259 0.516296 0.856410i \(-0.327310\pi\)
0.516296 + 0.856410i \(0.327310\pi\)
\(752\) 0 0
\(753\) 4.25285 0.154983
\(754\) 0 0
\(755\) 10.9725 0.399331
\(756\) 0 0
\(757\) −27.2325 −0.989782 −0.494891 0.868955i \(-0.664792\pi\)
−0.494891 + 0.868955i \(0.664792\pi\)
\(758\) 0 0
\(759\) −35.9153 −1.30364
\(760\) 0 0
\(761\) 12.0865 0.438136 0.219068 0.975710i \(-0.429698\pi\)
0.219068 + 0.975710i \(0.429698\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) −0.553915 −0.0200268
\(766\) 0 0
\(767\) 38.2992 1.38290
\(768\) 0 0
\(769\) −1.76850 −0.0637739 −0.0318870 0.999491i \(-0.510152\pi\)
−0.0318870 + 0.999491i \(0.510152\pi\)
\(770\) 0 0
\(771\) 5.76555 0.207641
\(772\) 0 0
\(773\) 7.91241 0.284589 0.142295 0.989824i \(-0.454552\pi\)
0.142295 + 0.989824i \(0.454552\pi\)
\(774\) 0 0
\(775\) −44.0192 −1.58122
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −31.7320 −1.13692
\(780\) 0 0
\(781\) −21.1064 −0.755245
\(782\) 0 0
\(783\) −10.4295 −0.372719
\(784\) 0 0
\(785\) 3.11027 0.111010
\(786\) 0 0
\(787\) 15.8449 0.564810 0.282405 0.959295i \(-0.408868\pi\)
0.282405 + 0.959295i \(0.408868\pi\)
\(788\) 0 0
\(789\) −10.9846 −0.391061
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 42.8865 1.52294
\(794\) 0 0
\(795\) −5.45995 −0.193644
\(796\) 0 0
\(797\) 7.19960 0.255023 0.127511 0.991837i \(-0.459301\pi\)
0.127511 + 0.991837i \(0.459301\pi\)
\(798\) 0 0
\(799\) −5.74135 −0.203114
\(800\) 0 0
\(801\) 0.366572 0.0129522
\(802\) 0 0
\(803\) 74.3837 2.62494
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 1.28076 0.0450848
\(808\) 0 0
\(809\) −32.2702 −1.13456 −0.567280 0.823525i \(-0.692004\pi\)
−0.567280 + 0.823525i \(0.692004\pi\)
\(810\) 0 0
\(811\) −9.81258 −0.344566 −0.172283 0.985047i \(-0.555114\pi\)
−0.172283 + 0.985047i \(0.555114\pi\)
\(812\) 0 0
\(813\) 3.66309 0.128470
\(814\) 0 0
\(815\) −19.4533 −0.681419
\(816\) 0 0
\(817\) 2.92331 0.102274
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −4.27394 −0.149162 −0.0745808 0.997215i \(-0.523762\pi\)
−0.0745808 + 0.997215i \(0.523762\pi\)
\(822\) 0 0
\(823\) −0.896382 −0.0312459 −0.0156230 0.999878i \(-0.504973\pi\)
−0.0156230 + 0.999878i \(0.504973\pi\)
\(824\) 0 0
\(825\) 37.3941 1.30190
\(826\) 0 0
\(827\) −19.0211 −0.661428 −0.330714 0.943731i \(-0.607290\pi\)
−0.330714 + 0.943731i \(0.607290\pi\)
\(828\) 0 0
\(829\) 8.52244 0.295997 0.147998 0.988988i \(-0.452717\pi\)
0.147998 + 0.988988i \(0.452717\pi\)
\(830\) 0 0
\(831\) 36.0368 1.25010
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) −11.6249 −0.402298
\(836\) 0 0
\(837\) −56.6003 −1.95639
\(838\) 0 0
\(839\) −16.8692 −0.582389 −0.291195 0.956664i \(-0.594053\pi\)
−0.291195 + 0.956664i \(0.594053\pi\)
\(840\) 0 0
\(841\) −25.5432 −0.880798
\(842\) 0 0
\(843\) −4.36647 −0.150389
\(844\) 0 0
\(845\) −8.01800 −0.275828
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) −39.8597 −1.36798
\(850\) 0 0
\(851\) −25.6172 −0.878147
\(852\) 0 0
\(853\) 14.8586 0.508750 0.254375 0.967106i \(-0.418130\pi\)
0.254375 + 0.967106i \(0.418130\pi\)
\(854\) 0 0
\(855\) −2.81245 −0.0961837
\(856\) 0 0
\(857\) 1.70855 0.0583629 0.0291815 0.999574i \(-0.490710\pi\)
0.0291815 + 0.999574i \(0.490710\pi\)
\(858\) 0 0
\(859\) 0.749299 0.0255658 0.0127829 0.999918i \(-0.495931\pi\)
0.0127829 + 0.999918i \(0.495931\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −23.0076 −0.783186 −0.391593 0.920138i \(-0.628076\pi\)
−0.391593 + 0.920138i \(0.628076\pi\)
\(864\) 0 0
\(865\) −11.1668 −0.379683
\(866\) 0 0
\(867\) 1.51862 0.0515749
\(868\) 0 0
\(869\) −29.1026 −0.987236
\(870\) 0 0
\(871\) 51.2612 1.73692
\(872\) 0 0
\(873\) −3.84254 −0.130050
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 48.3027 1.63107 0.815534 0.578709i \(-0.196443\pi\)
0.815534 + 0.578709i \(0.196443\pi\)
\(878\) 0 0
\(879\) −21.5835 −0.727995
\(880\) 0 0
\(881\) −52.2783 −1.76130 −0.880650 0.473767i \(-0.842894\pi\)
−0.880650 + 0.473767i \(0.842894\pi\)
\(882\) 0 0
\(883\) 11.5340 0.388149 0.194075 0.980987i \(-0.437830\pi\)
0.194075 + 0.980987i \(0.437830\pi\)
\(884\) 0 0
\(885\) −9.67329 −0.325164
\(886\) 0 0
\(887\) 24.7707 0.831717 0.415859 0.909429i \(-0.363481\pi\)
0.415859 + 0.909429i \(0.363481\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 36.3335 1.21722
\(892\) 0 0
\(893\) −29.1511 −0.975506
\(894\) 0 0
\(895\) −18.2095 −0.608677
\(896\) 0 0
\(897\) 30.5449 1.01986
\(898\) 0 0
\(899\) 18.7602 0.625687
\(900\) 0 0
\(901\) −4.50334 −0.150028
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −0.707994 −0.0235345
\(906\) 0 0
\(907\) −11.6604 −0.387177 −0.193588 0.981083i \(-0.562013\pi\)
−0.193588 + 0.981083i \(0.562013\pi\)
\(908\) 0 0
\(909\) −8.12734 −0.269567
\(910\) 0 0
\(911\) −15.4049 −0.510389 −0.255194 0.966890i \(-0.582139\pi\)
−0.255194 + 0.966890i \(0.582139\pi\)
\(912\) 0 0
\(913\) −29.6170 −0.980178
\(914\) 0 0
\(915\) −10.8319 −0.358092
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) −44.9428 −1.48253 −0.741264 0.671214i \(-0.765773\pi\)
−0.741264 + 0.671214i \(0.765773\pi\)
\(920\) 0 0
\(921\) 40.3915 1.33095
\(922\) 0 0
\(923\) 17.9504 0.590843
\(924\) 0 0
\(925\) 26.6720 0.876970
\(926\) 0 0
\(927\) 3.16265 0.103875
\(928\) 0 0
\(929\) −35.0540 −1.15008 −0.575042 0.818124i \(-0.695014\pi\)
−0.575042 + 0.818124i \(0.695014\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 32.2771 1.05671
\(934\) 0 0
\(935\) −4.50625 −0.147370
\(936\) 0 0
\(937\) 9.30499 0.303981 0.151990 0.988382i \(-0.451432\pi\)
0.151990 + 0.988382i \(0.451432\pi\)
\(938\) 0 0
\(939\) −26.9659 −0.879999
\(940\) 0 0
\(941\) −10.3680 −0.337986 −0.168993 0.985617i \(-0.554052\pi\)
−0.168993 + 0.985617i \(0.554052\pi\)
\(942\) 0 0
\(943\) 26.1865 0.852750
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 11.4557 0.372260 0.186130 0.982525i \(-0.440405\pi\)
0.186130 + 0.982525i \(0.440405\pi\)
\(948\) 0 0
\(949\) −63.2612 −2.05354
\(950\) 0 0
\(951\) 3.02286 0.0980228
\(952\) 0 0
\(953\) 25.4052 0.822956 0.411478 0.911420i \(-0.365013\pi\)
0.411478 + 0.911420i \(0.365013\pi\)
\(954\) 0 0
\(955\) −7.00737 −0.226753
\(956\) 0 0
\(957\) −15.9367 −0.515159
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) 70.8107 2.28422
\(962\) 0 0
\(963\) −12.2412 −0.394467
\(964\) 0 0
\(965\) 13.7508 0.442654
\(966\) 0 0
\(967\) 29.5141 0.949108 0.474554 0.880226i \(-0.342609\pi\)
0.474554 + 0.880226i \(0.342609\pi\)
\(968\) 0 0
\(969\) 7.71062 0.247701
\(970\) 0 0
\(971\) −10.6885 −0.343012 −0.171506 0.985183i \(-0.554863\pi\)
−0.171506 + 0.985183i \(0.554863\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) −31.8026 −1.01850
\(976\) 0 0
\(977\) −52.1761 −1.66926 −0.834631 0.550810i \(-0.814319\pi\)
−0.834631 + 0.550810i \(0.814319\pi\)
\(978\) 0 0
\(979\) 2.98216 0.0953102
\(980\) 0 0
\(981\) −9.31166 −0.297298
\(982\) 0 0
\(983\) −20.0698 −0.640126 −0.320063 0.947396i \(-0.603704\pi\)
−0.320063 + 0.947396i \(0.603704\pi\)
\(984\) 0 0
\(985\) −16.2819 −0.518785
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −2.41243 −0.0767110
\(990\) 0 0
\(991\) −45.2564 −1.43762 −0.718809 0.695208i \(-0.755312\pi\)
−0.718809 + 0.695208i \(0.755312\pi\)
\(992\) 0 0
\(993\) −23.3852 −0.742108
\(994\) 0 0
\(995\) 6.71891 0.213004
\(996\) 0 0
\(997\) 26.4524 0.837756 0.418878 0.908042i \(-0.362423\pi\)
0.418878 + 0.908042i \(0.362423\pi\)
\(998\) 0 0
\(999\) 34.2951 1.08505
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 6664.2.a.w.1.6 7
7.2 even 3 952.2.q.d.137.2 14
7.4 even 3 952.2.q.d.681.2 yes 14
7.6 odd 2 6664.2.a.x.1.2 7
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
952.2.q.d.137.2 14 7.2 even 3
952.2.q.d.681.2 yes 14 7.4 even 3
6664.2.a.w.1.6 7 1.1 even 1 trivial
6664.2.a.x.1.2 7 7.6 odd 2